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Future work scenarios envision increased collaboration between humans and
robots, emphasizing the need for versatile interaction modalities. Robotic
systems can support various use cases, including on-site operations and
telerobotics. This study investigates a hybrid interaction model in which
a single user engages with the same robot both on-site and remotely.
Specifically, the Robot System Assistant (RoSA) framework is evaluated to assess
the effectiveness of touch and speech input modalities in these contexts.
The participants interact with two robots, Rosa and Ari, utilizing both input
modalities. The results reveal that touch input excels in precision and task
efficiency, while speech input is preferred for its intuitive and natural interaction
flow. These findings contribute to understanding the complementary roles of
touch and speech in hybrid systems and their potential for future telerobotic
applications.
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1 Introduction

The ongoing development of the industry is driven by new ideas and the necessity for
adaptation. Recent advancements in technology, including the emergence of the Internet of
Robotic Things (IoRT) (Romeo et al., 2020), improvements in processing capabilities from
newer generations of processors, and better loadmanagement via cloud and edge computing
(Afanasyev et al., 2019), allows for the creation of more advanced robotic applications. The
advancements in hardware and software have enabled an effective integration of on-site
and remote robotics, leading to increased flexibility and efficiency in industrial operations
(Sadiku et al., 2023; Morgan et al., 2022). On-site robotics typically operate within the
boundaries of a workplace environment, requiring minimal latency to interact efficiently
with the environment, while remote robotics involves controlling robots over a distance
through communication technologies (Hentout et al., 2019).

The high degree of robot automation shifts the user’s role towards that of a
supervisor, allowing them to oversee and control robotic operations either locally
or through telepresence, making telerobotics a crucial component in Human Robot
Interaction (HRI) and future developments.
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FIGURE 1
The local interaction on-site and remote interaction is seamless when using the same interaction modalities, getting the same feedback from the robot.

Supervising and directing task-oriented semi-autonomous
robots can be done remotely, as long as the delay between the
operator’s commands and the robot’s response and task status,
is within the time range tolerable by the process. This requires
a reliable communication system, as well as an intuitive and
user-friendly interface that allows the operator to interact with
the robot as naturally as possible, regardless of their physical
location (Su et al., 2023; Hempel and Al-Hamadi, 2023) Figure 1
illustrates a system where an operator can control the robot
in both local and remote scenarios using the same interaction
modalities.

The emergence of collaborative robots, or cobots, has further
reduced the barriers between humans and their automated
counterparts, enabling new interaction possibilities using the
strengths of each (Keshvarparast et al., 2024). This paper will focus
on addressing the challenge of integrating intuitive interfaces for
human-robot collaboration by developing interaction modalities
that can be effectively used for both local and remote environments,
thereby overcoming the limitations of current telerobotic systems.

Previous iterations of the Robot System Assistant (RoSA)
framework have explored various multimodal interaction
techniques to enhance HRI. RoSA 1 laid the foundation by
simulating basic interaction capabilities (Strazdas et al., 2020)
(as wizard of Oz), while RoSA 2 expanded on this framework
by integrating speech and gesture recognition, creating a real
operational system (Strazdas et al., 2022).

Building on earlier versions that highlighted issues such as
conflicting inputs and the need for better input management
strategies, RoSA 3 tries to improve the interaction efficiency and user
satisfaction by refining the multimodal system and incorporating
new features like touch screen input. This paper evaluates touch
and speech input modalities for RoSA, identifying the strengths
and weaknesses of each in terms of user efficiency, task accuracy,
and satisfaction. The study aims to provide insights into how these
modalities can be effectively used in both local and remote settings,

thereby contributing to the development of more intuitive and
accessible HRI systems.

To further contextualize our research, we review existing
approaches in HRI, focusing on collaborative robots, telerobotics,
and multimodal interfaces. This section highlights the key findings
and challenges faced by current systems.

2 Related work

Schmaus et al. (2020) demonstrate that action-level robot
control offers significant benefits for teleoperation by executing
commands through a local control loop, which enhances robustness
against communication delays. This user-friendly and intuitive
approach enables novice operators, without robotics or control
experience, to perform tasks effectively. While action-level control
addresses the challenges posed by latency, task-level authoring, as
described by Senft et al. (2021), complements this by allowing
operators to define high-level command sequences.

Together, these approaches improve the usability and efficiency
of remote control systems, though they do not fully eliminate issues
such as complex task planning and environmental adaptation. It
should be noted that action-level control alone has limitations.
When using the robot to do a sequence of tasks, users must
specify each action, wait for it to be executed, and then specify the
next one, which may not be optimum. Action-level control, like
other high-level control techniques, may also limit the robot to its
predefined language.

The usage of web-based platforms for telerobotics is presented
in many research studies. In a study by Kapić et al. a web
application for remote controlling a Robot Operating System (ROS)
robot, using a virtual joystick interface, is presented Kapić et al.
(2021). In another study, a web-based platform for remotely
controlling robotic manipulators is validated with a real UR3
manipulator (Stefanuto et al., 2023).
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These studies highlight the use of backend systems for
processing and managing complex ROS tasks, ensuring a
streamlined experience for remote users. Both emphasize the
importance of real-time communication through WebSockets and
3Dvisual interfaces, which are crucial for enhancing user interaction
and ensuring precise robot control in telerobotic systems.

Current telerobotic systems face several limitations, including
high latency, lack of robust multimodal integration, and usability
issues Studying and comparing different interaction modalities is
essential to address these challenges. Bongiovanni et al. (2022)
compared gestural and touchscreen interfaces using a smartwatch
and a tablet for controlling a lightweight industrial robot,
highlighting that both methods were well-received but required
additional hardware for gesture recognition.

Another study compared four modalities—speech, gesture,
touchscreen, and a 3D tracking device—for robot programming
in small and medium-sized enterprises, using a Wizard of Oz
experiment with tasks like pick and place, object assembly,
and welding (Profanter et al., 2015). Users preferred touchscreen
and gesture over the 3D tracking device, while speech was the
least favored due to difficulties in naming unknown objects
and specifying precise positions. These studies reveal that while
touchscreen and gesture inputs are promising, the lack of
seamless integration across modalities and challenges with speech
recognition hinder the usability of telerobotic systems.

The speech, gesture, and touchscreen modalities were
also studied in the context of the In-Vehicle Infotainment
System (IVIS) (Angelini et al., 2016). It turns out users had fewer
interactions when using the speech modality, and a shorter task
completion time was observed for the touchscreen modality. The
study concluded that the speech modality was more suitable for
hands-free tasks, while the touchscreen modality was more efficient
for precision tasks. These findings are relevant to RoSA, as they
provide insights into the strengths and weaknesses of different
interaction modalities for cobots in various scenarios.

3 System design and architecture

3.1 Overview and hardware

The RoSA system allows users to engage with robots through
multiple modalities, such as speech, gestures, touchscreen interface,
proximity, and attention detection. The system incorporates two
robots: Rosa, a stationary industrial UR5e equipped with a gripper
used in previous studies, and Ari, a humanoid robot from PAL
Robotics, which is a new addition to the system. (Note: RoSA refers
to the overall system, while Rosa denotes the stationary robot.) Both
robots are shown in Figure 2.

A projector is utilized to highlight objects and can also exhibit
directing feedback, if necessary. Monitors are used to provide
visual feedback, whereas loudspeakers are used to deliver auditory
feedback, such as speech output or signal tones.TheMicrosoftAzure
Kinect camera captures both color images and depth data using a
Time of Flight (ToF) sensor. Additional cameras are used to capture
the scene andparticipants, and the gathered data can later be used for
evaluation purposes. The Jabra 930Pro, a wireless headset, is utilized
for the purpose of voice recognition.

The stationary robot Rosa is securely attached to a robust metal
table and is capable of manipulating letter cubes by utilizing the
OnRobot RG6 gripper, as used in the previous experiments. The
Universal Robot teach pendant, initially intended for direct robot
programming, is repurposed as a versatile touchscreen interface
that displays a customized Guided User Interface (GUI) explained
in the following sections. A camera is positioned close to the
gripper to provide Rosa with visual access to the surroundings,
while a TV monitor in the background provides information and
interaction feedback.

The humanoid robotAri possesses a range of characteristics that
enable it to engage in basic interactions with people. The robot is
outfitted with wheels for locomotion and possesses the capacity to
execute basic movements with its head and arms. The robot features
a 10-inch touchscreen integrated into its body. In addition, Ari
perceives its surroundings using a built-in RGB camera and two
RGB-D cameras.

3.2 Interaction concept

Both robots can align themselves towards the user or go
into a “sleep” position if unengaged. To engage a robot, the user
must initiate interaction via touch or speech input. At any given
time, only one user can be actively engaged with a robot, and
only inputs from the engaged user are processed. Although the
system supports multi-user interaction and attention tracking, as
demonstrated by Abdelrahman et al. (2022), these features were
disabled during the experiment. Only one participant was present
at a time, and attention detection was turned off. Therefore, no
user differentiation or automatic disengagement occurred. Speech
input omits positional information and works identically for both
robots in local and remote scenarios. Local touch input is robot-
specific, while remote touch can switch between robots and mirrors
local input.

Both robots can perform actions like greeting, dancing,
replaying specific pre-programmed sequences, and allow a level of
personalization: voice (both robots) and eye color (Ari). Figure 3
summarizes the possible actions the robots can perform.

Rosa includes a cube-gripping scenario called CubeMode,
enabling letter cube manipulation, which remains consistent with
previous studies. Regarding this mode, two essential pieces of
information are required to execute a CubeAction: a source
CubeMessage and a destination CubeMessage. A CubeMessage is
the smallest piece of information a user can express in this
scenario and is a class that can contain the color, letter, or
position of a letter cube. The position can be defined by XY
coordinates on the table, the sequential position of a word, or it
can be the hand of the user, or the gripper itself. The preceding
publication RoSA 2 offers comprehensive information regarding the
various CubeMessage permutations and their resulting outcomes
(Strazdas et al., 2022).

For all other interactions besides cubes, CommandActions are
composed using CommandMessages by defining a command type
and optionally the necessary command parameters. The splitting of
the actions into small information parts allows the system to handle
multimodal messages from different inputs. A summary of used
message types can be seen in Figure 4.
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FIGURE 2
Robots used in the experiment: Rosa (stationary, UR5e with a gripper) and Ari (humanoid, by PAL Robotics), both capable of speech and touchscreen
interaction.

FIGURE 3
Different possible RobotActions.

3.3 System architecture

The system overview is presented as a flowchart in Figure 5.
Each element represents a separate ROS 1 (Noetic) node responsible
for input (data), pre-processing (features), domain (knowledge),

FIGURE 4
CommandAction and CubeAction.

different user interface modalities (Touch UI, Voice UI, Gesture
UI), and output mechanisms (actions). The main information flow
is from left to right, however some system variables (e.g., current
robot or cube status) can be received by the according modules
immediately on information update (ROS subscription model).
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FIGURE 5
Overview of the system workflow. Sensor data and user input (left) are processed by dedicated ROS 1 (Noetic) nodes. The information is aggregated
and resolved by the Commander, which decides on the appropriate system action. Outputs are executed via robot modules, the projector, or remote
interfaces.

FIGURE 6
Commander assembles the messages and creates a corresponding
RobotAction.

These connections are not specifically depicted to preserve the clear
direction of information processing.

The system incorporates interactions between components
such as Robot Modules, Projector Module, and external
and remote devices and the main logic gate called
Commander.

3.4 Commander

The RoSA system’s “Commander” module was introduced
to support advanced task-oriented, multimodal robot control
by managing data from multiple input modalities. Its
main goal is to assemble the messages to a corresponding
RobotAction (see Figure 6). Commander module goes beyond
traditional First In First Out (FIFO) paradigms to enable flexible,
context-aware interactions by progressively gathering all required
information before executing actions. For example, it allows
users to specify a destination before selecting a source, leading
to more natural commands like “give me that cube” while
pointing at it later.

3.5 Touch module

The development of the touchscreen interface began with an
online UI design survey, followed by a paper prototyping study,
and ultimately led to the creation and integration of a React-based
web application into the existing system via ROS. The goal was
to provide users with an intuitive, accessible interface for robot
control, compatible with any web-enabled device, including robot
manufacturer-provided monitors.

The implementation utilized React along with ROS libraries
like roslibjs and rosbridgesuite to enable seamless communication
between the interface and ROS modules. A modular design
approach was taken to ensure the application’s independence from
other system components, improving flexibility and usability.

The application features three primary pages: Common Tasks,
Personalization, and Specific Tasks, designed with a minimal and
intuitive UI to reduce complexity. Users can navigate by swiping
between pages or using a top tab bar. Figure 7 shows the three pages
of the touch interface. The Common Tasks page includes functions
that both robots can perform, while the Personalization page allows
for voice and language customization, and forAri, eye color changes.

The Specific Tasks page highlights the distinctive functionalities
of each robot. For Rosa, it activates the CubeMode, displaying a grid
that represents the current positions of the cubes. Users can interact
with this grid by selecting a cube’s current location (Source) and
specifying its target location (Destination). The interface includes a
“Gripper” button, enabling the robot to pick up and hold a cube,
as well as a “Hand” button for transferring a cube to or from the
user’s hand.

Additional control options include a “Clean Up” button, which
commandsRosa to return all cubes to their default starting positions,
and a “Cancel” button to terminate or reset the current action or
selection. Each interaction, such as pressing a button or selecting
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FIGURE 7
Touchscreen app on Rosa’s screen in CubeMode with other available pages (screenshot mockup left and right), which would be available by sliding or
tab selection.

a cube on the grid, generates a corresponding CubeMessage or
CommandMessage.

As a form of feedback, the application displays UI changes after
each interaction, indicating the system’s response and asks the user
to wait while the robots are moving, until a stable system status
is reached.

3.6 Speech module

The architecture of our speech module, as depicted in
Figure 8, is modelled after a classical dialogue system processing
pipeline approach (McTear, 2022). The pipeline consists of various
specialized modules, each performing a distinct task and passing
its results to the next module in sequence. While it is conceivable
to utilize online services for individual components of the dialogue
pipeline, the current requirements demand that it operates locally
on the robot with limited resources.

The initial stage involves the acoustic signal being captured
by a microphone and subsequently transformed into text by an
Automatic Speech Recognition (ASR) component. The Natural
Language Understanding (NLU) component seeks to determine the
user’s request from their utterances following this conversion.

NLU components are often trained using Natural Language
Processing machine learning models. Developers provide an
interaction model, which consists of intents and a list of training
examples (utterances). Intents define commands and instructions
that the user might utter during the interaction; slots specify
additional parameters for these commands.

Spoken Language Understanding (SLU) components combine
ASR and NLU functionalities in a single unit for certain
use cases (Radfar et al., 2021). This means that an ASR component
is not necessarily required, as intents are directly derived from the
acoustic signal by an end-to-end machine learning module.

However, this can introduce limitations regarding the
complexity of intent recognition. As a trade-off, the SLU methods

FIGURE 8
Architecture of the Voice UI pipeline.

have lower resource consumption at the expense of the complexity
of the interaction model.
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FIGURE 9
The local RoSA system setup with the three interaction areas (each with a touch screen) for the stationary robot Rosa, humanoid robot Ari, and a
monitor for tasks or remote control.

For the RoSA 3 model, we decided to use the SLU technology
developed by PicoVoice1, which specializes in resource-efficient
models capable of directly mapping audio signals onto intents. This
integration allows for a more resource-efficient implementation of a
Voice User Interface (VUI).

The decision-making process of the VUI is orchestrated by
the Dialogue Manager (DM), which is informed by the outcomes
of the NLU or SLU components. This process also considers
context information representing the state of the conversation and
system context. In the RoSA system, the Commander documents
information such as currently running actions or error situations.
Through the “Users” and “Cube-Master” components that contain
the domain knowledge (see flowchart in Figure 5), relevant
environmental context can be modeled. Furthermore, the VUI
can utilize domain knowledge from the Users and Cube-Master
components to validate user inputs. If a valid Cube or Command
message cannot be created from the user’s input, theDMwill directly
ask the user for correction or additional information.

In the context of RoSA 3, the VUI is not the only inputmodality;
therefore, Cube or Command messages for an action are sent
to the Commander. If the Commander does not set an error or
abort status, the current user request is then considered completed.
Additionally, the Commander has the possibility to convey direct
system statements or confirmations to the user via Text-to-Speech
(TTS).This ensures that the system can draw attention to itself at any
time in case of an error. These system responses are available to the
DM of the Voice UI component in the system status, in case the user
reacts to such a message with “pardon?”, triggering a Repeat-Intent.

Regarding the dialogue context, there are two distinct dialogue
states: Cube Mode and RoSA Commands. Each state offers help
for its respective intents and adjusts the intents accordingly
(Activate Cube Mode/Deactivate Cube Mode; Activate “Normal”

1 see https://picovoice.ai/

Mode/Deactivate Normal Mode). Each state is linked to its
specific NLU model.

To respond to the user, the Text Generation (TG) component
must first formulate a textual response, which is then converted
into an audio signal by the TTS component. For RoSA, various
synthetic voices are available to generate this audio stream, thus
concluding the dialogue turn of the system. The TG component
utilizes predefined text blocks. Future methodologies of Natural
Language Generation, such as Large Language Models, could
enhance this process.

4 User study design

4.1 Experimental setup

This study is a continuation of previous RoSA studies with the
intent of consistency and compatibility for comparison reasons. The
inclusion of new features, such as the humanoid robot Ari and a
touchscreen interface, expanded the previous approach. Feedback
from participants in previous studies, such as “I wish I knew the
system was capable of this …”, motivated the introduction of a
learning phase. During this phase, users complete a guided tutorial
with specific tasks, ensuring they understand and utilize each
interaction modality at least once. Tasks are considered complete
only after successful execution using the designated modality.

Following the learning phase, an exploration phase allows
participants to freely interact with the system while still having a
task in the background. In this phase, no specific instructions are
provided on how to accomplish the tasks, encouraging users to
choose their preferred modalities. This procedure is repeated across
both robots and modalities, with participants periodically returning
to the monitor for task updates.

Throughout the experiment, multiple cameras capture
participant interactions from various angles. Behind a partition, a

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1561188
https://picovoice.ai/
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Strazdas et al. 10.3389/frobt.2025.1561188

supervisor monitors the session, taking notes and using a keyboard
with predefined hotkeys to log noteworthy events. These events
include incorrect robot responses, unresponsiveness to speech
commands, misunderstandings of speech inputs, system errors,
or issues such as the gripper dropping a cube. The system’s activity
logs are later merged with questionnaire data for detailed analysis.

The spatial arrangement of the robot interaction areas is
illustrated in Figure 9. Following is the detailed procedure of the
experiment.

4.2 Experiment procedure

Declaration of consent [Table near monitor]: Participants
receive a detailed explanation of the study objectives, procedures,
and potential risks involved. They are asked to provide their
informed consent to participate voluntarily.

Socio-demographic questionnaire [Monitor]: At this stage,
demographic and sociological data were collected, including
participants’ age, gender, educational background, employment
status, and any vision or hearing impairments. Additionally,
participants reported their prior experience with collaborative
robots, artificial intelligence, programming, and touchscreen use.

Task set 1 (learning phase) [Rosa, Ari]: Wake up and put Rosa
and Ari to sleep using single modalities.

1. Wake up Rosa using speech
2. Sleep Rosa using touch
3. Wake up Ari using touch
4. Sleep Ari using speech

Task set 2 (exploration phase) [Rosa, Ari]: Personalization and
playing a motion using any modality.

1. Change voice of Rosa
2. Change the eye color of Ari
3. Make Ari dance
4. Make Rosa nod

Task set 3 (learningphase) [Rosa]:Moving the cube using single
modalities.

1. Build a small pyramid
□
■■ using touch

2. Spell using touch
3. Build a small pyramid

□
■■ using speech

4. Spell using speech

Task set 4 (exploration phase) [Rosa]: Moving the cube using
any modality.

1. Make Rosa give you a cube
2. Spell

3. Build a big three layer pyramid

Main questionnaire [Monitor]: The questionnaire includes
standardized assessments UMUX (Finstad, 2010), SUS (Brooke,
1996), ASQ (Lewis, 1991), PSSUQ (Lewis, 2002) and UEQ-
S (Schrepp et al., 2017), which measure the user experience of the
whole system. In addition, custom Likert-scale questions (7-point)
were used to evaluate satisfaction with the interaction modules for
each robot and for the system overall.

FIGURE 10
Experimental procedure: Tasks with robots Rosa and Ari are
color-coded. Interaction modalities are indicated by shapes—circles
for touch, squares for speech, and rounded squares for hybrid options.

Remote interaction + interview [Monitor]: The remote
segment of the experiment used the think-aloud method, in
which participants engaged in open-ended exploration rather
than following a specific task. This approach aimed to identify
critical features and possible pressure points. An interview
followed this exploration. To prevent bias, the remote phase
commenced only after the on-site experiment had been thoroughly
analyzed.

The complete layout of the experiment procedure is
summarized in Figure 10.

4.3 Participants

Figure 11 shows four participants during different phases of the
experiment: Introduction (Declaration of consent), Learning Phase,
Exploration Phase, and Questionnaire.

All 10 participants who completed the experiment had prior
experience with touchscreens, while half of them also reported some
experience with robots. The group consisted of five males and five
females, aged between 20 and 40, with the majority falling within
the 20 to 30 age range.
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FIGURE 11
Experimental Study phases: Introduction (Top Left), Learning Phase (Top Right), Exploration Phase (Bottom Left), and Questionnaire (Bottom Right).

5 Results

This section presents the findings of the comparative
study, focusing on the evaluation of touch and speech
interaction modalities, as well as the overall performance of
the RoSA 3 system. The results are based on task completion
times, user preferences, questionnaire feedback, and manual
observations.

5.1 Touch vs. speech: task time analysis

The time required to complete tasks using touch and speech
modalities was analyzed. The tasks included spelling the word

with speech and touch modalities in Task Set 3 and
completing the first three letters of the word
during the exploratory task in Task Set 4. Timing started when
participants initiated the task and ended when the experimenter
confirmed completion.

The touchscreen interface had the shortest average task
completion time at 27.8 s, followed by the exploration task at 43.5 s.
The speech tasks required more time, with an average of 77.2 s.
One participant required significantly longer using speech interface,
due to manual correction of multiple misplaced blocks. Figure 12a
summarizes the time results.

5.2 Touch vs. speech: user preferences and
satisfaction

During the exploration tasks in Task Set 2, participants
preferred speech for 90% of interactions with both robots. For cube
manipulation in Task Set 4, participants initially preferred speech for
58% of the tasks. However, this preference decreased to 47% by the
end of the task as some participants switched to touch.

Ratings for interaction modalities, displayed in Figure 12b,
indicate that both modalities were rated equally for Ari. For
Rosa, participants rated the touchscreen interface higher than the
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FIGURE 12
Summary of the experimental results for touch and speech modalities. (a) Average task completion times per modality. In the speech and touch tasks,
users were restricted to one input type. The broader spread during the exploration phase suggests varied modality use, potentially including more
frequent use of speech. (b) User satisfaction across tasks and modalities. Touch received the highest overall ratings. Speech and touch interfaces were
also evaluated separately for Rosa and Ari, revealing slight differences in user preference between the robots. (c) UEQ-S item-level ratings for speech
and touch interfaces across bipolar adjective pairs. Positive values indicate favorable user perception on each scale. (d) Hedonic vs. pragmatic quality
of the interfaces. Pragmatic reflects task efficiency and clarity; hedonic captures user enjoyment and engagement.

speech modality. Considering the overall, robot independent use,
participants rated the touchscreen modality the highest followed by
free exploration, followed by the speech modality.

5.3 Touch vs. speech: hedonic vs.
pragmatic quality

The UEQ-S analysis assessed both pragmatic quality, i.e., the
task-related aspects such as efficiency and clarity, and hedonic
quality, which reflects user enjoyment and engagement. As shown
in Figure 12d, the touchscreen interface scored higher in pragmatic
dimensions, while speech was rated more positively in hedonic
aspects. Overall quality scores (Figure 12c) align with the direct
modality ratings shown in Figure 12b, supporting the observed
trade-off between precision and naturalness across input types.

5.4 System evaluation: time analysis
between all RoSA studies

Task completion times for RoSA 3 were compared with
RoSA 1 and 2. Table 1 summarizes the results. RoSA 3 had

TABLE 1 Comparison: Time efficiency.

Study Task 1 Task 2 Task 3 Total

RoSA 1 (WoZ) 00:01:46 00:07:57 00:09:52 00:19:35

RoSA 2 00:01:21 00:12:56 00:11:06 00:25:20

RoSA 3 00:00:27 00:01:22 00:01:57 00:03:46

Bold values indicate the shortest (i.e., best) times for each task.

the shortest average completion time (3:46 min), compared to
19:35 min for RoSA 1 and 25:20 min for RoSA 2.

5.5 Speech command success-rate analysis

As the system uses Picovoice as a local SLU component, which
directlymaps audio signals to intents, this study focuses on the intent
recognition accuracy rather than traditional word-level metrics.
Simple intents such as Help, Wake Up, and Sleep were recognized
reliably and triggered correctly in 95% of the cases during the
experiment.
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Looking at overall command success rates, 67.2% of the
commands issued via speech input were executed successfully by the
system, compared to 81.6% of the commands issued via touch input.
Successful execution in this context means that the robot performed
a RobotAction, such as manipulating a cube or changing its state,
and confirmed completion with an “OK” message. A command was
considered unsuccessful if theCommander returned an error andno
RobotActionwas performed. This includes commands issued during
the initial learning phase as well as user errors due to logical issues,
such as attempting to pick up a partially obstructed cube or stacking
a cube onto itself. The discrepancy between speech and touch input
reflects the higher likelihood of recognition or interpretation errors
in the speech modality, particularly for more complex command
structures.

5.6 System evaluation: questionnaire
analysis

Theuser experience scores from the standardized questionnaires
(UMUX, SUS, PSSUQ, and ASQ) were normalized to a scale
of 0%–100% for consistency. The total average score across all
questionnaires was calculated to be 75.58%, indicating a positive
overall user experiencewith the system. RoSA 3 achieved the highest
scores among the three system versions or came close to the highest
score of the RoSA 1 system in the case of the UMUX questionnaire.
The breakdown of scores by questionnaire type is shown in Table 2.

5.7 Statistical analysis

A Pearson correlation analysis was conducted between all
collected questionnaire items and objective performance measures
from the experiment, including task completion times and the
number of errors encountered across different input modalities. The
goal was to explore potential relationships between subjective user
evaluations and observed interaction performance. However, it is
important to note that the statistical power of this analysis is limited
due to the small sample size (n = 10). As such, the results should
be interpreted with caution, and no claims about significance or
generalizability are made.

• A negative correlation was observed between participant age
and overall system satisfaction scores (r = − 0.89).
• Older participants tended to rate the system as more complex
(r = 0.66) and frustrating (r = 0.86) compared to younger
participants.
• Participants who rated the speech interface positively also gave

higher overall system scores (r = 0.67).
• Conversely, participants who rated speech performance poorly

for theRosa robot often described the system as overly complex
(r = − 0.80).
• Preferences for the touchscreen interface varied by robot

type. Participants with less programming experience favored
touchscreen interactions with humanoid robots (r = − 0.58),
while those with more programming experience preferred
touchscreen interactions with industrial robots (r = 0.70).
• The overall personal speech and touch modality evaluation

contribute differently to the overall system score: speech has a

TABLE 2 Comparison of usability and user-experience questionnaires.

Metric SUS UMUX PSSUQ ASQ

Answer Range 1 to 5 1 to 7 1 to 7, NA 1 to 7, NA

Score Range 0 to 100 0 to 100 1 to 7 1 to 7

Nr. of Questions 10 4 16 3

Avg. Score 82.00 70.42 5.39 5.10

Std. Deviation 10.19 17.94 12.89 9.80

Normalized Score 82.00 70.42 77.05 72.86

Comparison with other RoSA studies

RoSA 1 (WoZ) 79.24 71.53 73.70 71.60

RoSA 2 72.27 57.57 62.90 64.06

RoSA 3 (this study) 82.00 70.42 77.05 72.86

Bold values indicate the highest (i.e., best) scores.

higher impact on the overall system score (r = 0.82) than touch
(r = − 0.06).

5.8 Remote interview

In the remote interviews, participants commented that the
commands and operations they had learned during on-site
interaction were also usable in the remote environment. They noted
that adapting to reduced information about the robot’s state took
some getting used to. They emphasized the necessity of audio
and video feeds, or possibly a 3D digital twin, combined with
indicators such as progress bars to maintain a sense of control.
Swiping between tabs was found to be unintuitive, suggesting that
a learning phase for the touch interface or additional guidance
could be beneficial. Participants also highlighted the need for
the remote interface to access manufacturer screens for low-level
or administrative tasks, as well as the importance of autostart
and reboot options. On the positive side, the uniformity and
familiarity of the web-based interface across different locations was
well-received.

5.9 Summarized results

The touchscreen interface proved more efficient, particularly in
tasks requiring precision, while speech excelled in natural, hands-
free interaction during exploratory tasks. Touch was rated higher
in pragmatic quality for its reliability and task efficiency, whereas
speech was valued for its hedonic quality and engaging nature.
Participants preferences shifted based on task demands, favoring
speech initially but transitioning to touch for accuracy. The RoSA 3
system outperformed its predecessors in task completion times and
user satisfaction, although speech interactions faced challenges like
recognition errors, leading to a reliance on touch as a fallback.
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6 Evaluation and discussion

This study evaluated the effectiveness of touch and
speech interaction modalities within the RoSA 3 framework,
highlighting their respective strengths and limitations in
Human-Robot Interaction (HRI) and telerobotics. The findings
underscore the importance of task-specific modality selection
and provide insights into how multimodal systems can enhance
user experience.

6.1 Time efficiency

The touchscreen interface consistently outperformed speech
in task completion times, particularly in precise, task-oriented
scenarios like cube manipulation. This advantage can be attributed
to the direct and deterministic nature of touch inputs, which provide
immediate feedback and eliminate ambiguities inherent in speech-
based interaction. Speech, while slower, offered flexibility and a
natural interaction flow, making it preferable for exploratory tasks
or when participants sought hands-free operation.

A significant reduction in completion time was also influenced
by the structured learning phase introduced in the RoSA 3
system. This phase familiarized participants with the system before
task execution, a benefit not provided in earlier studies with
RoSA 1 and 2, where learning was integrated into task time.
Moreover, this approach reflects a more realistic scenario for
future industrial deployments, as workers are typically trained in
advance to operate such systems efficiently in their professional
environment.

Additionally, participants were not instructed to prioritize
speed, allowing them to interact naturally. Some deliberately took
extra time to explore the system, which may have influenced overall
completion times but provided valuable insights into user behavior
and interaction preferences.

While the raw time data can be analyzed as a quantitative
measure of efficiency, a qualitative efficiency comparison between
the studies is challenging due to differences in system capabilities,
and participant familiarity with the modalities. The studies also
show the importance of a structured learning phase to familiarize
participants with the system, which can significantly impact task
completion times and overall user experience.

6.2 User preferences and quality dynamics

During the exploratory phases, participants initially favored
speech due to its intuitive and natural interaction flow, which they
found engaging and enjoyable (hedonic quality). This can be seen
particularly well in Figure 12b, where satisfaction with the speech
interface varies significantly between the humanoid robot Ari and
the industrial robot Rosa. While Ari’s speech interface was rated
similarly to its touch interface, Rosa’s speech interface was evaluated
considerably lower.

Although the humanoid appearance of Ari may have had a
minor influence, we attribute the difference primarily to the varying

complexity of the speech interfaces. Interaction withAriwas limited
to simple option selections, whereas controlling the Rosa robot
via speech required more complex, multistep interaction, such as
specifying cube positions or coordinating actions—making errors
more likely and the experience more frustrating.

However, when tasks required more precision, speech
recognition errors and additional confirmations made speech input
less appealing. In these cases, the touchscreen’s efficiency, reliability,
and direct control (pragmatic quality) became more attractive. By
the end of the study, most participants preferred touch for cube-
related tasks.This duality highlights the complementary strengths of
both modalities: speech offers a more human-like, fluid interaction,
while touch excels in precise, task-oriented operations.

Because the same input modalities are used both on-site
and remotely, these findings also transfer directly to telerobotics.
Participants noted that, to better understand the robot’s status
and ongoing tasks, a live audio and video feed would be
beneficial. The system’s design facilitates seamless operation in
both local and remote scenarios, making it suitable for supervisory
tasks in environments with varying latency or network quality.
Consequently, this flexible approach paves the way for a new
working style, where operators can switch between local and remote
operations as needed, showing particular promise for long-duration
tasks that benefit from a hybrid work mode.

6.3 Evaluating the systems through the
lens of multimodality

Reflecting on the evolution of RoSA systems, the progression
in multimodal interaction capabilities has been a defining feature
of its development. The preceding version RoSA 2 demonstrated
functional multimodal interactions but were limited by racing
conditions and conflicts arising from simultaneous inputs, which
can be summarized as “Sequential Multimodality”.These limitations
highlighted the need for more advanced input management
strategies to achieve a seamless user experience.

RoSA 3 eliminated the racing conditions by introducing a
new “Buffered Multimodality” approach. This system progressively
gathers input frommultiple modalities before executing commands,
ensuring context-aware and conflict-free interactions. While this
method introduces slight delays, it marks a clear departure from the
challenges of earlier versions, prioritizing reliability.

RoSA 1, by being aWizard ofOz study, achieved the highest level
of multimodality so far. The human operator (Wizard) was able to
interpret user inputs contextually, leveraging implicit learning and
adaptation throughout the experiment. This created the illusion of
“AI-adaptive Multimodality”, where the system appeared to learn
and adapt to user preferences and behaviors. The aspirational
goal for future iterations could be to achieve true AI-adaptive
multimodality. In such a system, the robot would dynamically
understand context, learn from user behavior, and adapt its
responses in real-time, offering a seamless and intuitive interaction
experience. Figure 13 illustrates this progression, emphasizing the
increasing sophistication of the RoSA systems in managing and
integrating multiple input modalities effectively.
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FIGURE 13
Levels of MultiModality and current RoSA implementations.

6.4 Limitations and future improvements

While the presented study offers insights into hybrid human-
robot interaction using touch and speech modalities, several
limitations should be acknowledged to contextualize the findings.

The studywas conductedwith a small sample of ten participants.
This limited size constrains the generalizability of the results. The
primary aim was to explore interaction patterns and modality
trade-offs in depth, as part of a continued research line across
three RoSA system iterations. Future work will incorporate larger
and more diverse user groups to improve statistical power and
external validity.

While remote interaction was a partial focus, the study
did not include detailed latency measurements. The system was
evaluated from a user experience perspective, and although network
conditions were stable enough not to interfere with task execution,
future studies will integrate performance logging and analysis of
recognition errors.

The use of ROS 1 (Noetic) instead of ROS 2 was driven by
hardware constraints. Specifically, the humanoid robotAri currently
only supports ROS 1. Although some system components are being
prepared for ROS 2 migration, full transition was not feasible within
the scope of this study.

By using PicoVoice as the NLU component, a resource-efficient
implementation could be realized. PicoVoice maps user intents
directly from the speech signal, which works particularly well for
short commands and statements, however, this approach limits
dialogue complexity and restricts system-level analysis. Specifically,

it is only possible to determinewhether an utterancewas successfully
mapped to an intent, without deeper insights. It is not possible to
analyse whether specific parts of the utterance may have caused
recognition issues.

In terms of user population, most participants had prior
exposure to touch-based technology, and some had experience
with robots, which may influence the interaction preferences
observed. Additionally, task scenarios focused primarily on
cube manipulation, limiting the range of real-world application
scenarios. Expanding the system to include collaborative assembly
or diagnostic tasks is planned for future iterations.

To maintain comparability with previous RoSA studies, we
retained the same set of standardized questionnaires (UMUX,
SUS, PSSUQ, ASQ). Although some of these instruments partially
overlap in focus, they were intentionally selected for continuity and
because their limited length imposed minimal additional workload
on participants. Short formats like ASQ (3 items) and UMUX (4
items) allowed us to assess both task-specific and overall usability
efficiently. While more recent tools such as UMUX-Lite may offer
similar insights with even fewer items, we prioritized consistency in
this iteration and plan to revise the questionnaire set and include
UMUX-Lite in future studies.

7 Conclusion

Thiswork has shown that both touch and speech can successfully
bridge local and remote interaction scenarios without substantial
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changes to the underlying interface. Such hybrid usability paves
the way for future industrial deployments, where operators will
seamlessly switch between on-site and remote control depending on
task demands.

While speech encountered issues in precision-heavy tasks,
ongoing advances in large language models (LLMs) and reasoning
agents hold promise for more natural, open-ended dialogue
and improved contextual understanding (Wei et al., 2022;
Mialon et al., 2023). By equipping the Commander module
with LLM-based reasoning (Yao et al., 2023; Schick et al.,
2024), the system could dynamically select the best action or
modality based on learned experience and contextual cues,
moving toward genuinely adaptive multimodality. Recent
work integrating LLMs into embodied robotic scenarios
(Ichter et al., 2023; Driess et al., 2023) also underscores the
potential for AI-driven tools that bridge the gap between human
instructions and robotic execution in both local and remote
environments.

A structured learning phase proved crucial, underscoring the
practical importance of training users before complex operations.
In real-world industrial environments, familiarizing workers with
a system’s capabilities can lead to significant time savings and
smoother workflows. Though users often gravitate toward their
familiarmethods, the ability of a system to integrate novelmodalities
without sacrificing reliability or performance will be key to long-
term acceptance.

Moving forward, a hybrid local and remote HRI marks
a step toward cooperative robots that adapt their interaction
style to the needs and preferences of the users, whether
working side-by-side on the factory floor or assisting remotely
from afar.
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