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Autonomous mission planning
for planetary surface exploration
using a team of micro rovers

Sarah Swinton*, Jan-Hendrik Ewers, Euan McGookin,
David Anderson and Douglas Thomson

James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom

One of the fundamental limiting factors in planetary exploration is the level
of autonomy achieved by planetary exploration rovers. This study proposes a
novel methodology for the coordination of an autonomous multi-robot team
that evaluates efficient exploration routes in Jezero crater, Mars. A map is
generated consisting of a 3D terrainmodel, traversability analysis, and probability
distribution map of points of scientific interest. A three-stage mission planner
generates an efficient team-wide route, which maximises the accumulated
probability of identifying points of interest. A 4D RRT* algorithm is used
to determine smooth and flat paths for individual rovers, following the team-
wide route planner, and prioritized planning is used to coordinate a safe set
of individual paths. The above methodology is shown to coordinate safe and
efficient rover paths, which ensure the rovers remain within their nominal pitch
and roll limits throughout operation.
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1 Introduction

Multi-robot teams are widely used to carry out tasks that are too complex, too risky, or
too time-consuming for a single robot to complete. This is often achieved by leveraging
the capabilities of heterogenous robots, with individual specialisations (Parker, 1998),
allowing a wider array of tasks to be carried out at any given time (Gautam and Mohan,
2012). Alternatively, a team of homogeneous robots may cooperate to complete tasks more
efficiently than a single robot (Rogers et al., 2013). These beneficial characteristics of multi-
robot teamshave seen themused in applications including firefighting (Roldán-Gómez et al.,
2021), search and rescue (Worrall, 2008), and planetary exploration (Farley et al., 2020).

NASA’s Mars 2020 Mission has been the first planetary exploration mission to utilise
two robotic platforms working in close proximity: the Perseverance Rover, and the
Ingenuity Mars Helicopter (Farley et al., 2020). Further research has investigated the
efficacy of multi-robot teams for planetary exploration on both the surface (Fong et al.,
2021; Swinton and McGookin, 2022) and in caves (Fink et al., 2015; Vaquero et al.,
2018). Planetary exploration missions present an opportunity to capitalise on the
beneficial characteristics of robot teams outlined above. A team of cooperative rovers
would have a significantly increased sensor footprint, and therefore allow larger regions
to be investigated, compared to current single rover missions. The team of rovers
could complete their own separate tasks, contributing to an overall mission goal,
or work collaboratively to carry out a larger central goal, e.g., to map an area.
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Despite the advantages outlined above, multi-robot planetary
exploration presents several challenges. Planetary exploration rovers
(PERs) operate in extremely remote and hazardous environments,
where collisions could lead to the loss of the rovers involved
and result in severe degradation to the group’s data collection
capabilities. The paths of each member of the rover team must,
therefore, be coordinated such that no collisions occur between
them as they traverse paths towards their respective targets. This
coordination cannot be carried out by human operators, due
to the tele-operation constraints present in planetary exploration
missions. Low-level pre-planning of rover team operations by
human operators is also impractical, due to increased complexity of
the entire system compared to a single robot. As system complexity
increases, so too does the workload and stress of a human operator.
Therefore, high levels of autonomy within multi-robot systems
are essential to reduce the required cognitive load on human
operators (St-Onge et al., 2019).

Methodologies for autonomous multi-robot coordination have
been extensively explored in the academic literature. The selection
of an appropriate coordination strategy is highly dependent on the
specificmission requirements of themulti-robot system (MRS). One
of the simplest and most widely employed strategies, particularly in
teams of unmanned ground vehicles (UGVs), is the leader-follower
formation (Abujabal et al., 2023).This approach follows a centralized
paradigm in which a designated “leader” robot possesses complete
knowledge ofwaypoints and target locations, while “follower” robots
rely entirely on the leader for path planning and navigation (Liu
and Bucknall, 2018). Despite its ease of implementation, the leader-
follower approach presents several critical limitations. Notably,
follower robots lack independent path-planning capabilities, which
may compromise mission robustness, particularly in high-risk
applications such as planetary exploration. In such environments,
dependence on a single leader introduces a potential single
point of failure, necessitating additional mechanisms to enhance
resilience and mitigate the risks associated with centralized control.
Furthermore, strict formation constraints may be unsuitable for
highly unstructured or dynamic environments.

To address these challenges, a decentralised approach to MRS
path planning can be taken. Within a decentralised framework,
each robot has the ability to plan and follow its own path.
One such approach allows robots to follow independent paths
before regrouping at predefined waypoints. This method, which
can be facilitated using Rapidly-exploring Random Trees (RRT)
for efficient navigation through cluttered environments, provides
a more adaptable and robust coordination framework (Liu et al.,
2014). However, operating in dynamic environments is inherent in
the nature ofMRS.Therefore, it is crucial that any paths generated by
members of the team be coordinated such that no collisions occur.
Prioritised planning is a decoupled approach to the path planning
for MRS (Erdmann and Lozano-Perez, 1987). This approach has
two key stages. First, initial robot paths are planned. Next, the
algorithm seeks to resolve any conflicts between paths, replacing
individual paths until a set of collision free paths is obtained.
Prioritised planning has been shown to outperform fixed path
coordination, whereby the velocity profiles of individual robots
are adjusted to avoid collisions, by eliminating dynamic collisions
in teams of micro-rovers for planetary exploration (Swinton and
McGookin, 2022). However, prioritised planning faces a challenge:

the computational requirements increase with the number of robots
and the map size, negatively impacting scalability (Heselden and
Das, 2023). Therefore, prioritised planning is most appropriate for
MRS with a small number of robots.

This work addresses the issue of mission planning for multi-
robot planetary exploration, by proposing a mission planner that
enables a team of five micro-rovers to autonomously explore a large
region of the surface of Jezero Crater, Mars. Using this approach,
human operators need only provide a partial mission map. The
micro-rovers examined in this study are designed to be low-cost.
Consequently, while not the primary focus of this work, eachmicro-
rover may possess unique roles and hardware capabilities. This
variability makes independent travel to separate points of interest
impractical, as team members must remain in proximity to one
another to provide necessary capabilities when required, or to assist
in the event of faults and failures. The exploration approach within
this work therefore allows rovers to spread out while following a
team-wide route. The key contributions of the work are:

• a mapping approach for planetary exploration mission sites
that combines data on terrain traversability and the location of
points of scientific interest using probability distribution maps

• a clustered exploration approach for a team of low-cost
micro-rovers in a 3D environment utilising RRT∗and
prioritised planning.

This paper is set out in the following manner. Section 2
sets out the multi-rover system. Section 3 defines the mission
planning approach. Section 4 describes the experiments carried out
to evaluate the proposedmethods. Finally, Section 5 summarises the
outcomes from this study and the overall conclusions that can be
drawn from this work.

2 Modelling a team of suitable
micro-rovers

2.1 Selecting a suitable micro-rover
platform

Planetary exploration missions are subject to strict financial
and payload constraints (Planetary-Society, 2024). It would not,
therefore, be feasible to plan a multi-rover mission where each
individual rover has the technological capabilities of, for example,
the Perseverance rover, and in turn the same constraints. A multi-
rover team should be able to be stowed in a launch capsule that has
regularly been used to hold a single, larger rover. Further, a reduced
sensor suite may have to be employed. However, the members of
a multi-rover team could be given specialised roles, each of which
has a distinct and complementary set of sensors, to allow the team
to carry out complex exploration tasks in a similar way to existing
single rover systems. These specialised roles could include scouts,
drillers, image analysers, and sample storers/carriers. It is important
to note that reduced individual capability should not come at the cost
of overall mobility as PERs must be able to traverse uneven terrain
and slopes.

To satisfy these requirements, a prototype micro-rover has been
developed at the University of Glasgow as a suitable analogue for
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FIGURE 1
Prototype of the micro-rover, developed at the University of Glasgow,
using the Servocity chassis and COTS components.

this work (Figure 1). The chassis of this micro-rover is a rocker-
bogie runt (ServoCity, 2024). The prototype has been designed
using commercial-off-the-shelf (COTS) components. The micro-
rover has a small form factor (0.271 m× 0.251m× 0.144m), and a
six-wheel rocker bogie suspension in line with the baseline mobility
characteristics of current PERs (Flessa et al., 2014). The multi-
rover team consists of five RBR rovers, which have been simulated
using MATLAB.

2.2 Mathematical modelling

Central to the implementation of an robust simulation of each
micro-rover is the development of an accurate mathematical model,
which considers both the dynamics and kinematics of the rover.
For this mathematical model, two reference frames are defined: the
Mars-fixed frame, and the rover body frame. The Mars-fixed frame
has an inertially fixed origin, and the rover body frame has its origin
at the rover’s centre of gravity. These axes are oriented following the
North EastDown (NED) system,where positive Zmotion is directed
downwards from the rover’s centre of gravity (Fossen, 1994), and
are shown in Figure 2.

Here, the rover’s translational velocities are u, v, and w. The
rover’s rotational velocities are p, q, and r. The rover’s rigid body
dynamics, with reference to the body-fixed frame and Mars-fixed
frame, can be described by the matrix relationships shown in
Equations 1–3 (Fossen, 1994).

[
v̇
η̇
] = [

α (v) β (v)
J (η) 0

][
v
η
]+[
−M−1

0
]τ (1)

α (v) = −(C (v) +D (v))M−1 (2)

FIGURE 2
Mars-fixed (XM, YM, ZM (blue)) and rover body-fixed axes (XB, YB, ZB

(red)) for the modelled rover (Swinton et al., 2024b).

β (v) = −g (v)M−1 (3)

Here, v is the body-fixed velocity vector and η is the inertially
fixed position/orientation vector. M is the mass and inertia matrix,
C(v) is the Coriolis matrix, D(v) is the damping matrix, g(v)
represents the gravitational forces and moments, J(η) is an Euler
matrix representing the kinematic transformation from the body-
fixed reference frame to the Mars-fixed reference frame, and
the τ vector represents the forces and moments generated by
the actuators. These result in the equations of motion shown
in Equation 4.

X =m (u̇+w.q− v.r)

Y =m (v̇+ u.r−w.p)

Z =m (ẇ+ v.p− u.q)

K = Jx.ṗ+ (Jz − Jy) .q.r

M = Jy.q̇+ (Jx − Jz) .p.r

N = Jz. ̇r+ (Jy − Jx) .p.q

(4)

Here, X, Y, and Z are the rover’s surge, sway, and yaw forces.The
rover’s roll, pitch, and yaw moments are represented by K, M, and
N, respectively. The rover’s mass is represented by m, its moments
of inertia about the x, y, and z-axes are represented by Jx, Jy, and Jz,
respectively.

2.3 Guidance and control systems

Each simulated rover is equipped with a guidance and control
system. A line-of-sight algorithm (Breivik, 2003) is used to enable
the rover to navigate towards a waypoint. Path following can then
be carried out by iterating through a series of waypoints. The
control system consists of two PID controllers, as shown in Figure 3.
The first of these PID controllers corresponds to the rover’s surge
velocity, u, by evaluating the difference between the desired and
measured surge velocity values, eu. As the RBR does not have
steerable wheels, skid steering is used. Using this method, a
difference between the voltages supplied to the left hand side
(LHS) motors, VLHS, and right hand side (RHS) motors, VLHS,
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FIGURE 3
Architecture of the micro-rover’s control system, providing voltages to the left and right hand side motors.

FIGURE 4
High-level architecture of the autonomous mission planner, encapsulating the role of a human operator, as well as both team-wide and individual
autonomous tasks.

motors will result in turning motion. The second PID controller
therefore utilises the difference, eψ, between the rover’s desired
and measured heading, to provide a control signal that allows the
rover to turn.

3 Autonomous mission planner

3.1 Mission planner architecture

In order to fully leverage the capabilities of a rover team, the
role of a human operator must be carefully considered. Previous
work has shown that it is not desirable to have a human operator
attempt to fully manage more than one robot (St-Onge et al.,
2019). The autonomous mission planner proposed within this
work allows a human operator to specify the mission site to be
explored, and provide a probability distribution map that defines
which sections of the map are likely to contain points of scientific
interest. Using these inputs, the autonomous mission planner will
identify an efficient route - which maximises the likelihood of
identifying points of scientific interest, while avoiding high risk
terrain regions. Once a team-wide route has been established,
individual rover paths are identified. Each individual path should
avoid overlap with the paths of team mates, in order to increase the
overall sensor footprint of the team. To ensure each path will not
incur collisions, prioritised planning is utilised. This architecture
is set out in Figure 4, and is discussed throughout the remainder
of this section.

3.2 3D mission site map

In 2006, the Mars Reconnaissance Orbiter began operation
surveying the surface of Mars (Zurek and Smrekar, 2007). One
of the primary instruments on the orbiter is the High-Resolution
Imaging Science Experiment (HiRISE). HiRISE captures images
of the surface of Mars with resolution of ∼30cm per pixel (from
an altitude of 300 km) (Arizona-HiRISE, 2024), providing terrain
information that is sufficient for high-level mission planning.
Using HiRISE data, a 3D mission site map of areas on the
surface of Mars can be generated as a matrix of latitude,
longitude, and elevation points. Human operators can, therefore,
provide the rover team with a map of their environment, i.e.,
the area that is to be searched. For this work, a 1500 m×
1500m mission site has been selected from within the Jezero
crater. As the rover used in this work is approx. 1/10th the
size of the Perseverance rover, the environment model is scaled
to 150 m× 150m. Within the simulation, the Martian surface
is composed of a 600× 600 block grid, where each block is
0.25 m× 0.25m. Figure 5 shows the 3D terrain model that has been
simulated in MATLAB.

3.3 Probability distribution map

The second input to the autonomous mission planner is a
probability distribution map (PDM), that defines the probability
of finding a point of interest (POI) at any given position in
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FIGURE 5
3D mission site map of the selected region of Jezero Crater, Mars.

a continuous manner (Figure 6). What constitutes a POI varies
with the scientific goals of a given planetary exploration mission.
Selection of such scientific objectives has been considered out with
the scope of this study. Within this work, PDMs are modelled
which cover the entire map, and contain small regions of high
probability.

These PDMs modelled as the sum of G bivariate Gaussians (Lin
and Goodrich, 2014) such that a point on map at coordinate x⃗ ∈ ℝ2

has a probability of containing the POI, p(x⃗), as shown in Equation 5.

p (x⃗) = 1
G

G

∑
i=0

exp[− 1
2
(x⃗− μ⃗i)

Tσ⃗−1i (x⃗− μ⃗i)]

√4π2det σ⃗i
(5)

Here μ⃗i and σ⃗i are the mean location and covariance matrix of
the ith bivariate Gaussian respectively. For the purpose of this study,
these values are randomly generated with G = 4. In a real-world
scenario, this can be generated using an algorithm such as J1 for
wilderness search and rescue (Ewers et al., 2023).

3.4 Traversability analysis

Planetary exploration rovers are subject to slip as they traverse
steep slopes and rough terrain. To reduce the number of potential
collisions due to slip, smooth and flat terrain should be explored
when possible. A traversability analysis is carried out on the 3D
mission site map where-by the elevation of neighbouring blocks
in the 600× 600 block grid are compared to find the slope angle
required to traverse between the blocks. A given block inherits the
worst-case slope angle. Nominal pitch and roll limits of 15°, in

line with the nominal operational limits of the Perseverance rover
(Rankin et al., 2020), have been implemented. The traversability
analysis determines which regions of each map are traversable, high
risk, and impassable. Traversable terrain is safe to explore. High-
risk terrain has a slope of θ > = 10°. Impassable terrain has a slope
of θ > = 15°. Figure 7 shows the resulting traversability map for the
selected mission site. Here 89.50% of the map is traversable, 8.36%
of the map is high risk, and 2.14% of the map is impassable.

3.5 Team-wide route planning

PDM-based search planning differs from classical A to B path
planning in that it aims to accumulate the maximum probability,
p(x⃗), along a path. The search planning algorithm selected for this
work is LHC_GW_CONV (Lin and Goodrich, 2009). LHC_GW_
CONV approaches the path planning problem by segmenting the
search area into N×M cells, such that each cell is as large as the
search footprint. In this study, the search footprint has a diameter
of 5 m (i.e., each of the five rovers in the team has a 1 m search
diameter).

LHC_GW_CONV is based on the Local Hill Climbing (LHC)
optimisation method, which considers all eight cells around the
current position and selects the cell with the highest probability
value. This cell is selected for the next step and the previous cell is
marked as having been completely seen with a value of 0. This does
not prohibit future traversing of this cell, but strongly discourages it
to mitigate the risk of deadlock, which could necessitate premature
termination. In the case that multiple cells have equal values, a 3× 3
normalized box blur convolution kernel,ω, is applied to each equally
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FIGURE 6
Representative example of a PDM, p(x⃗), that covers the 3D mission site map.

FIGURE 7
Traversability analysis of the selected mission site. Traversable terrain is
shown in white, high risk terrain is shown in red, and impassable
terrain is shown in black.

valued cell (Equation 6).

ω = 1
9
[[

[

1 1 1
1 1 1
1 1 1

]]

]

(6)

The convoluted value pconv(x⃗) for any position is
found using Equation 7.

pconv (x⃗) = ω∗ p (x⃗) =
1

∑
i=−1

1

∑
j=−1

ω (i, j)p(x⃗−[
i
j
]) (7)

The cell with the largest vale of pconv(x⃗) is selected for the next
step. Without any further modifications, the algorithm would fully
explore the nearest local maxima fully before considering others.
This is a common problem with LHC. To encourage exploring the
entire PDM, the concept of global warming, GW, is introduced.
Here, a value C is subtracted from the PDM a l number of times,
where C = pmax/l and pmax is the global maxima. The PDM is then
updated through Equation 8.

p′ (x⃗) = {
p (x⃗) −C, p (x⃗) > C
0, else

(8)

After all lGWsteps are completed, each path is evaluated against
the original PDM p(x⃗) and the one with the maximum accumulated
probability is returned.

3.6 Identifying and coordinating individual
rover paths

Once a team-wide route has been established, individual
rover paths can be evaluated. Each of these individual paths
will follow the team-wide route, whilst avoiding collisions and
increasing the sensor footprint of the team. This increased sensor
footprint (compared to having the rovers follow behind one another
at a safe distance) is a result of both the random nature of
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the RRT∗ algorithm, and the collision avoidance implemented
within the coordination algorithm. In this work, an RRT∗path
planning algorithm is used to identify individual rover paths.
First set out by LaValle, a Rapidly-exploring Random Tree (RRT)
is a randomised data structure that facilitates path planning for
non-holonomic vehicles (LaValle, 1998). Karaman and Frazzoli
introduced RRT∗, an asymptotically optimal extension of RRT;
as the number of nodes on the tree increases, the cost of the
returned solution converges on an optimal region (Karaman and
Frazzoli, 2011).

In the general form of RRT∗, path cost is based purely on
distance. However, for robots in 3D environments with varying
terrain, the shortest path may not always be the preferred path. For
planetary exploration robots, paths which are longer, but smoother
and flatter are often preferable for robot safety. Equation 9 shows
the cost function implemented in order to produce paths which are
obstacle-free, smooth, and flat (Takemura and Ishigami, 2017). Four
cost components are utilised: path length (R), roll (ϕ), pitch (θ), and
required turning angle from the previous node to current node (Δψ).

cost(qi) =WR
Ri

NR
+Wϕ

ϕi
Nϕ
+Wθ

θi
Nθ
+Wψ

Δψi

Nψ
(9)

In the above equation, qi is the node currently being checked,W
represents a weighting factor for each cost component such that the
weights sum to 1.TheweightsWϕ andWθ are set to 0.4 withWR and
Wψ set to 0.1 such that the flatness of paths is prioritised. Rovers are
prone to slip when navigating slopes, which can lead to localization
errors since wheel encoders do not capture this movement. Severe
cases of slip can cause a rover to deviate significantly from its
intended path, potentially resulting in collisions with teammates.
In this study, where rovers operate in close proximity, slip-risk is
reduced by prioritising path flatness. N represents a normalisation
factor to make each index dimensionless. These values are based on
the maximum valid value of the respective cost components (i.e.,
the maximum step the RRT can take is 1 m, hence NR = 1 m). The
respective normalisation factors are NR = 1 m, Nϕ = 15°, Nθ = 15°,
and Nψ = 60°.

For any given pair of start and target points, boundaries are set to
ensure the RRT∗path planner searches only a small, relevant chunk
of the full mission site (i.e., 2 m clearance of the start and target
points in both the X and Y directions). These boundaries ensure the
scalability of this methodology to larger mission sites as, regardless
of size of the mission area, the RRT∗ algorithmwill only be required
to search over one path segment at a time.TheRRT∗planner searches
the bounded area by growing the tree until the maximum number
of nodes has been reached.Themaximum number of nodes selected
in this work is 1,250, which is sufficient to thoroughly search the
bounded area, but does not incur a high run time.

The paths generated for each rover must be coordinated such
that no collisions occur. For this purpose, prioritised planning is
utilised. Prioritised planning is a 4D coordination methodology,
which has been shown to eliminate dynamic collisions under
nominal conditions (i.e., when no faults are present in the system),
outperforming other common coordination algorithms such as
fixed path coordination (Swinton and McGookin, 2022). Using this
method, an initial set of safe paths can be coordinated offline. Each
rover is awarded a priority index.The highest priority rover’s path is
planned first, and a simulation is run to acquire 4D positional and

temporal data as the rover traverses its planned path. The algorithm
then attempts to plan a path for the second rover, comparing the
positions of both rovers at each time-step to check for potential
collisions. If collisions are detected, another path planning attempt
is made for the second rover. This process repeats until the second
rover’s path is deemed ‘safe’. The algorithm then attempts plan a
collision free path for each subsequent rover, descending in priority.
This process is carried out sequentially for each segment of the
team-wide route. This process is outlined in Figure 8, where n is the
segment index (with a maximum value of nmax), and m is the rover
index. The maximum rover index is mmax, which has a value of 5
in this case.

4 Results

4.1 Simulation set-up

To evaluate the ability of the multi-layer mapping and
mission planning methodologies to generate safe and efficient
paths autonomously, various test scenarios have been considered
within the Jezero crater mission site. Throughout this section,
a representative scenario has been illustrated where appropriate.
In each test scenario, the PDM is varied randomly. This results
in unique target generation for each test case, and consequently
different areas of the mission site are explored. The experimental
results are set out as follows. First, the generation of team-wide
route plans is described. Second, the safety of the coordinated paths
is assessed. Finally, the efficiency of autonomous exploration plan
is analysed.

4.2 Generation of team-wide route plan

In each mission scenario, a random PDM is generated, and a
team-wide route plan is evaluated using LHC_GW_CONV. This
route plan consists of a set of target points, which maximise the
accumulated probability of capturing the POI along the path.
Figure 9 shows the set of target points generated for a representative
scenario. In the case shown, which features overlapping regions
of high probability density, it can be seen that LHC_GW_
CONVguides the mission planner away from searching only one
local maxima. While the representative PDM example shown in
Figures 6, 9, 11 includes overlapping exploration areas, the extent
of these overlaps varied across the full test set. In cases without
overlapping regions of high probability, LHC_GW_CONVprovided
paths which would explore the initial region fully, before
moving to the next.

4.3 Generation of safe and efficient rover
paths

Throughout the test set, data has been sampled from each rover
at a frequency of 10 Hz, resulting in a total of 942,321 samples for
the rover poses. Within the resulting data set, rover pitch and roll
measurements exceeded the nominal threshold of 15° on only 25
occasions. This means that the RRT∗path planner has been able to
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FIGURE 8
Block diagram of prioritised planning coordination algorithm, where n represents the index of the path segment, and m represents the index of the
rover team member.
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FIGURE 9
A set of target points generated using a random PDM (p(x)) and LHC_GW_CONV.

provide paths that keep the rovers within their nominal pitch and
roll limits for 99.99% of operation.The few instances where pitch or
roll exceed nominal limits are due to slip as the rover attempts to
traverse waypoints, causing it to veer slightly off the ideal trajectory.

For each pair of sequential targets within the team-wide
route plan, the RRT∗path planner attempts to find a safe
path using the traversability map. Figure 10 shows a path
generated over a full set of target points. A single rover path is
shown for clarity.

The prioritised planning coordination algorithm invalidates any
RRT∗path planning attempts that cause a rover to collidewith higher
priority team mates. As such, the selected method generates safe
paths in each mission scenario. Figure 11 shows an example of the
full trajectories of five rovers in a test case. The boundaries of the
team’s sensor footprint are shown by the search buffer. Gaps in the
search buffer can be observed where the rovers follow paths around
impassable terrain.

4.4 Exploration efficiency

The full mission site covers 22500m2. Considering a team of five
rovers, each with a sensor footprint of 1 m radius, each rover would
be required to travel∼4500m for the team to acquire an accumulated
probability of locating the POI approaching 1.

Over the mission scenarios considered, the average time taken
for a rover team to traverse the 64 target points was 2,295.25 s
(38.26 min), with an average trajectory of 653.68 m. By utilising the
proposed autonomous exploration method, the rovers are able to
acquire almost p(x) = 0.2 while travelling only 650 m. Figure 12

FIGURE 10
A representative example of a path generated by RRT∗to explore the
team-wide route.

shows the increase in accumulated probability for a single rover,
compared to that of a team of five rovers.

These results show that the proposed methodologies allow a
large area to be searched effectively by a small team of rovers,
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FIGURE 11
A representative example of fully coordinated rover team trajectories over a full mission scenario. An expanded view of a subset of the paths
(highlighted in red) is shown in the top right corner of the figure.

FIGURE 12
Accumulated probability over distance travelled for a single rover
compared to a team of five rovers.

generating paths which increase accumulated probability and can be
carried out in less than one sol of operation.

5 Conclusion

This work tackled the problem of autonomous exploration for
multi-rover teams by considering a mapping approach to identify

high-interest, safe, regions of terrain, and a novel mission planning
methodology that allows the rover team to safely and efficiently
explore a given mission region. The mapping approach in this
work was composed of three stages: a 3D digital terrain model of
Jezero crater (generated using HiRISE orbiter data), a traversability
analysis of the mission site, and a PDM which maps the areas of
the mission site most likely to contain scientific POI. The mission
planning methodology consisted of three stages. First, PDM-based
search planning was used to identify a team-wide route plan
which accumulates the highest probability of finding scientific POI.
Second, a 4D RRT∗path planner was used to identify flat, smooth
paths between targets. Finally, prioritised planning coordinationwas
used to ensure that each rover path was safe, i.e., did not incur any
collisions.

While this study focuses on a small team of micro-
rovers consisting of only five members, it is important to
acknowledge that the proposed prioritized planning algorithm
may not be inherently scalable to larger robotic teams (Heselden
and Das, 2023). Addressing this limitation requires further
investigation into the algorithm’s applicability across alternative
multi-robot configurations. A potential approach to improving
scalability involves the hierarchical organization of larger teams,
where micro-rovers are assigned distinct roles based on their
capabilities. In this framework, a larger team could be partitioned
into multiple sub-teams, each possessing a complete set of
functional capabilities. These sub-teams could then operate semi-
independently, investigating distinct points of interest (POIs)
while maintaining coordinated mission objectives. Future work
should explore the feasibility of such an approach, assessing its
impact on efficiency, robustness, and overall mission performance.
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Additionally, the coordination algorithm proposed in this work
does not impose penalties for re-exploring previously visited areas
of the map. Instead, coverage naturally emerges from the inherent
randomness of the RRT∗ algorithm and the collision avoidance
mechanisms integrated into the coordination framework. Future
research should focus on optimizing the degree of exploration
overlap among team members to enhance the overall efficiency of
the proposed clustered exploration algorithm.

The performance of the proposed methods has been evaluated
over a set of randomly generated PDMs in the mission site
of Jezero crater, Mars. It has been shown that collision-
free autonomous exploration can be carried out efficiently
over an area of 22500m2 in an average time of 38.26 min.
Further, the rover trajectories generated during testing had
an average length of 653.68 m; comparable to the current
record for longest distance driven without human review by a
planetary exploration rover. Therefore, the approach proposed
in this paper successfully enables safe and efficient autonomous
exploration of a 3D environment using a team of planetary
exploration rovers.
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