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Outfitting andmaintenance are important to an in-space architecture consisting
of long duration missions. During such missions, crew is not continuously
present; robotic agents become essential to the construction, maintenance, and
servicing of complicated space assets, requiring some degree of autonomy to
plan and execute tasks. There has been significant research into manipulation
planning for rigid elements for in-space assembly and servicing, but flexible
electrical cables, which fall under the domain of Deformable Linear Objects
(DLOs), have not received such attention despite being critical components
of powered space systems. Cables often have a non-zero bend equilibrium
configuration, which the majority of DLO research does not consider. This
article implements a model-based optimization approach to estimate cable
configuration, where a design parameter of the model’s discretization level
enables trading model accuracy vs computational complexity. Observed
2D cable configurations are used to improve the model via parameter
estimation. The parameter estimation is validated through comparing predicted
configurations based on estimated parameters to that of a real cable. The
incorporation of parameter estimation to the cable model is shown to reduce
prediction errors by an order of magnitude. The results of this work demonstrate
some of the challenges present with robotic cable manipulation, exploring the
complexities of outfitting and maintenance operations of in-space facilities, and
puts forth a method for reducing the size of the state space of a cable payload
while accounting for non-zero equilibrium configurations.

KEYWORDS

deformable linear objects, robotic outfitting, model based state estimation, in-space
construction, lunar outfitting, parameter estimation

1 Introduction

With the introduction of permanent in-space assets that will not have continuous crew,
such as a lunar space station or a surface facility, autonomous robotic systems are critical
to infrastructure development and maintenance. This article investigates the modeling
of electrical cables, required for robotic construction and maintenance, focusing on
minimizing the cable state space and estimating hardware parameters. This is a challenging
and unsolved area in the space robotics domain. Cables, which fall under the mechanical
domain of Deformable Linear Objects (DLOs), are present in a vast majority of subsystems
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responsible for providing power and data transfer. This article
presents a parametric multibody kinematic formulation for DLOs
which balances computational complexity and model accuracy. A
parameter estimation scheme leveraging visual measurements is
used to increase model accuracy for a given cable. Utilizing image
processing techniques, measurements of a cable center-line are
obtained to enable parameter estimation and validation of predicted
configurations.

Over the last few decades there has been significant research
in the field of in-space robotics, spanning a wide variety of
projects: demonstrated robotic servicing of spacecraft in low Earth
orbit (LEO) (Gao and Chien, 2017; Li et al., 2019), assembly of
large aperture telescopes (Belvin et al., 2016; Cresta et al., 2024),
and surface robotics for the Moon and Mars (Govindaraj et al.,
2019; Zhang et al., 2024; Waltz et al., 2022; Puig-Navarro et al.,
2024). Autonomous systems are becoming increasingly important
to space and planetary missions where communication latency
is high. There have been substantial efforts in autonomous
robotic in-space construction and servicing, including multi-
robotic operations (Karumanchi et al., 2018; Everson et al., 2020),
precision control (Nakanose and Nakamura-Messenger, 2023;
Chang andMarquez, 2018), and in situmanufacturing (ICON, 2022;
Muthumanickam et al., 2022). However, all of these efforts focus
on the manipulation of rigid objects or the erection of large scale
structures. Long-term space missions will require robotic agents
for outfitting and maintenance including manipulation of electrical
cables for power and data. Cables require a different approach than
rigid elements due to their nature as DLOs. While outfitting is a
recognized technology gap by the space community (NASA, 2024),
existing work on cable manipulation and outfitting tasks with space
applications in mind has been preliminary (Quartaro et al., 2023;
Merila et al., 2023; Rojas, 2022).

Robotic DLO manipulation itself is an active research area,
with recent findings applied to areas including industrial assembly
(Jiang et al., 2010; Hermansson et al., 2013; Shah et al., 2018;
Suzuki et al., 2022), surgical applications (Leibrandt et al.,
2023; Hu et al., 2024), and soft robotics (Olson et al., 2020;
Hammond et al., 2023; Xun et al., 2024; Tummers et al.,
2023). For in-space outfitting and maintenance robotic operations,
cable routing and installation is often in obstacle-dense, complex
environments. Trajectory planners for robotic cable outfitting
operations must be able to properly predict the path of the cable
as is moves through a space to prevent kinks and snags, violation
of bend constraints, and collisions with hazardous objects in the
environment. DLOs are considered flexible elements, consisting of
infinite degrees of freedom (DOF). This flexibility makes traditional
rigid bodymechanics difficult to realize without a very large number
of states to track in the system, or sacrificing accuracy to simplify the
representation. A DLO model formulation cognizant of the effects
of large state vectors and model accuracy is needed to provide an
approach for robotic DLO manipulation without full teleoperation.

DLOs can be modeled using a variety of methods (Lv et al.,
2020). For simple discretized DLO models, the mass-spring
approach is common, where point masses act as particle nodes
connected by combinations of rotational and torsional springs
and dampers (Lv et al., 2017; Yu et al., 2023; Iben et al., 2013).
In mutibody spring formulations, the DLO is represented as
connected rigid bodies with internal springs and dampers at the

joints, generating force based on DLO motion and deflection
(Suzuki et al., 2022; Choe et al., 2005). The static DLO configuration
is then solved for by minimizing the potential energy in the
system (Wakamatsu et al., 1995). More complex approaches to
modeling DLOs include Cosserat rod theory (Tummers et al., 2023;
Gazzola et al., 2018), position based dynamics (Deul et al., 2018;
Liu et al., 2023), and high fidelity Finite Element Methods (FEM)
(Lan and Shabana, 2009; Koessler et al., 2021). In recent years,
machine learning approaches for DLO models have been explored
(Yan et al., 2020; Jin et al., 2022; Zhaole et al., 2024). Approaches
such as Cosserat Rod theory and FEM provide accurate results but
have high dimensionality and are computationally intractable for
real-time systems. Learned models based on training from pre-
flight data can be significantly faster than model-based methods;
however, a reliance on training data may not correctly account for
equilibrium positions once in an extreme environment, adding time
and risk to DLO manipulation tasks. The approach taken in this
work utilizes a multibody model due to its versatility and the ability
to control the trade off between accuracy and the size of the state
space.This formulation has been shown to have similar performance
to a the more complex Cosserat Model for the DLO configurations
considered in this article (Quartaro et al., 2024).

TheDLOs in this article are evaluated in the context of outfitting
and maintenance, focused on electrical cables. Electrical DLOs
are usually composed of multiple wires, insulation, and shielding
yielding non-homogeneous cross-sections of metal (primarily
copper), plastics, or rubber. Due to factors such as the complexities
inmanufacturing and containingmaterials thatmay undergo plastic
deformation, the complexity of cables leads to an accumulation of
internal stresses which can cause the DLO to have static equilibrium
in a non-zero (bent/curved) configuration; a configuration thatmust
be considered in creating a proper model of a cable. The majority
of DLO research focuses assumes an unbent equilibrium position
(Lv et al., 2020). Existing efforts to estimate parameters of DLOs
either do not address the non-zero equilibrium case (Ying and
Yamazaki, 2024; Caporali et al., 2024) or assume the equilibrium
points as inputs (Lv et al., 2022; Monguzzi et al., 2025). There has
not yet been research conducted into experimentally determining
the equilibrium configuration of a DLO, which must be done with
both ends constrained for complex environments such as in-space
operations.

Themultibodymodel formulated in this article represents cables
as inextensible DLOs, built parametrically to provide control over
the trade-off between accuracy and complexity via the discretization
level of theDLO as a design variable.This article evaluates the case of
DLOmoving through space with known end points in space, similar
to a simple robotic routing case of a singlemanipulator pulling along
a cable. To demonstrate initial model development, both estimation
and data collection in this article are done in a 2D plane. The model
estimates theDLOconfiguration byminimizing the potential energy
across the DLO length. The potential energy model relies on model
parameters representing the physical DLO’s equilibrium positions
and stiffness to provide a proper configuration estimate.

Model parameters are estimated through an augmented
optimization problem that incorporates point cloud DLO
observations. Over multiple configurations, parameter estimation
is achieved via a least-squares regression comparing the results
of the optimization to the configuration required to satisfy the
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Lagrangian mechanics. The configuration and parameter estimates
are dependent on each other, and are found iteratively until the
estimate of both converges. By estimating DLO parameters it
is then possible to predict behavior of a DLO with a non-zero
equilibrium configuration without measurements, for applications
such as trajectory planning or movement through occluded regions.
Prediction results highlighted in this article demonstrate the viability
of the proposed approach and advance the state of the art of
DLO modeling for robotic in-space outfitting and maintenance
operations.

This article is organized as follows: Section 2 describes the
parametric model for estimating the cable position based on
predicted potential energy, as well as the estimation of physical
parameters to increase accuracy of the specific cable asset to
be modeled. Section 3 describes a hardware validation setup, the
procedure to measure a static cable point-cloud, and compares
performance of different discretization levels in themodel. Section 3
also explores the validation of the proposed model through
configuration prediction. Finally, a discussion on further work and
applications to space systems is discussed in Section 4.

2 Deformable linear object model

This section details the formulation of the kinematics, energy
optimization, and parameter estimation techniques used to model
the cable as a DLO. The DLO is represented as a series of rigid links
connected at node end points. The nodes contain torsional springs
and dampers which generate internal forces. This work is focused
on the static case, and therefore dampers are not considered in the
remainder of the formulation. The number of links in the DLO,
n, is a design parameter that dictates the size of the model state
space and can be tuned to balance estimation accuracy and number
of calculations required. System parameters consist of the DLO
stiffness and equilibrium positions, which are determined through
observations and are dependent on n.

The DLO is split into n links, each connected by a start and
end node, represented as circles in Figure 1a. The start node of a
link is used as the location of the links frame for the kinematic
formulation. Section 2.1 defines the kinematics of the DLO based on
relative joint angles, with the constraint that the end node of the ith

node is coincident with the start node of the (i+ 1)th node. The DLO
is assumed to have constant diameter, uniform mass, and a known
length. The link mass, mlink, is constant and defined as a fraction of
the total cable mass, mlink =

mcable
n

. Similarly, the link length, llink, is
dependent on the total length and the number of links in the cable,
llink =

lcable
n

. The rotational stiffness constant of the springs at each
node, kθ, is considered equal for all springs and is approximated
based on the DLO geometry and material. Gravitational forces act
in the −y direction; the height of the ith link center of mass (COM),
yi, is used to calculate the potential energy due to gravity in the cable,
indicated with triangles in Figure 1a.

Section 2.2 defines how these properties of the DLO can
be leveraged to understand the potential energy stored in
the system. Section 2.2.1 formulates the optimization problem used
to estimate the DLO configuration using joint angles by minimizing
the potential energy in the system subject to kinematic constraints.

Section 2.3 augments the objective function of the optimization
problem to incorporate point cloud measurements, enabling
parameter estimation. Parameter estimation can be achieved using
this augmented optimization problem and measurements of the
DLO in multiple configurations. Parameters are adjusted iteratively
to reduce distance error and ensure valid configurations across
the dataset, as presented in Section 2.4. The parameter estimation
scheme enables the model to predict DLO configurations for
a non-zero equilibrium positions, benefiting efforts to plan for
robotic manipulation of DLOs in high risk environments, including
spaceflight systems.

A summary of the notation used throughout this section
to formulate the pose and parameter estimation algorithms can
be found in Table 1. Variables that are presented in bold are vectors
or matrices, with lowercase indicating vectors (p) and uppercase
indicating matrices (Ti

j). Otherwise the variable is a scalar. Standard
SI units are used in this formulation.

2.1 Multibody DLO kinematics

The rotations between links are the independent variables in this
problem that define the kinematics of the system. For the planar case
considered in this article, links are defined as revolute joints with 1
rotational DOF per joint. These rotations are represented as a single
generalized coordinate vector θ, shown in Equation 1.

θ = [θ1 …θi… θn+1] ∈ ℝn+1 for i = 1…n+ 1 (1)

The variable θi represents the relative rotation between the
(i− 1)th and ith links. The DLO is assumed to be inextensible. The
θn+1 value represents a spring that connects the DLO to the desired
end point, at the end node of link n. The multibody kinematic
formulation is shown in Figure 1.

This formulation utilizes homogeneous transformationmatrices
T ∈ SE(3) to represent the spatial position and orientation of DLO
links.The SE(3) representation of position and orientation is used to
represent DLO configuration. The SE(3) transformation matrix Ti

j ∈
ℝ4x4, defined in Equation 2, contains the position and orientation of
a link from frame i to frame j:

Ti
j = [

[

Ri
j pij

0 1
]

]
(2)

Where Ri
j ∈ SO(3) and pij ∈ ℝ

3 are the rotation matrix and
Cartesian position vector from frame i to frame j, respectively. The
global frame containing the test origin is defined as frame 0.

The boundary conditions in this article assume that the DLO is
pinned to the prescribed start and end points. The pinned constraint
indicates that the location is fixed but the rotation is free and does
not contribute potential energy to the system.The pinned constraint
might be achieved by aDLOcontaining grappling fixtures for a robot
to interface with as a way to reduce stress in the DLO. The pinned
boundary condition also benefits this work by reducing the impact
of errors in the test setup used to evaluate model performance. The
start node aligns with the global frame, p0

1 = [0 0 0]T, and the
DLO end point must align with the desired position, p0

n+1(θ) = pdes.
T0
i is the configuration of the base node of link i with respect to

the global frame. As the ith node location is dependent on the current
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FIGURE 1
Multibody system definition (a) Geometry of the links, where the circles indicate the nodes and their corresponding springs with stiffness kθ, θi indicates
relative rotation, the triangles indicate the yi position used for gravitational potential energy, and the link transforms Ti−1

i are marked to indicate link
position and rotation from frame i− 1 to from i. (b) For a link rotation angle θi, there is a reference angle θ0,i such that the rotational deformation in the
link is θi − θ0,i (a) DLO link definition. (b) Offset angle for strain energy calculation.

and preceding θ coordinates, a reduced coordinate vector is used for
the calculation of T0

i , θ
′
i , defined in Equation 3.

θ′i = [θ1 … θi] ∈ ℝi (3)

Therefore, the configuration of a given node is as defined in
Equation 4. The location of the base node and T0

i for a given link
is shown in Figure 1a.

T0
i (θ
′
i) =T

0
1(θ1)

i
∏
a=2

Ta−1
a (θa)

where

T0
1(θ1) =
[[[

[

R1(θ1) 0

0 1
]]]

]

, Ta−1
a (θa) =

[[[

[

Ra−1
a (θa) llink
0 1

]]]

]

(4)

The position vector llink = [llink 0 0]T is a constant vector
describing the geometry of the link, and is the same for every link
in the cable. The first link must be coincident with the global origin
at its start node, instead of a preceding link, resulting in a rotation
but no translation of frame 1.This first link differs fromall remaining
links, reflected in Equation 4.

The global location of each link’s COM is needed to understand
the potential energy due to gravity forces. In this formulation
gravity is assumed to act in the −y direction, therefore only the y-
coordinate of link i’s COM in the global frame, yi, contributes to the
gravitational energy. yi is a function of the relative link rotations θ′i
and is found through Equation 5.

yi(θ
′
i) = T

0
i (θ
′
i)[

[

0.5llink
1
]

]
e2 (5)

where ej ∈ ℝ4 is a standard basis vector. Each link is considered to
have uniform mass, leading to the center of mass being at half the
length of the link, 0.5llink.

2.2 Potential energy formulation

At rest, a DLO is at a minimal potential energy state. The total
potential energy in the DLO, V(θ), is as defined in Equation 6.

V(θ) =
n

∑
i=2
[1
2
kθ(θi − θ0,i)2 +mlinkgyi(θ

′
i)] +mlinkgy1(θ1) (6)

The first and second terms of the summation in Equation 6
are contributions from the spring strain energy and gravitational
potential energy, respectively. There are n+ 1 torsional springs
for n link segments, kθ is the DLO stiffness, θi is the rotation
angle from the i− 1 to i link segment and θ0,i is the zero-strain
relative rotation of the node. The relationship between θi and
θ0,i is emphasized in Figure 1b. A non-zero θ0,i is indicative of a
bent equilibrium configuration. mlink is the mass of an individual
link, g is the magnitude of the gravity force (assumed in the -
y direction) and yi(θ) is the y-position of the ith link COM,
defined in Equation 5. The starting node of the first link does
not contribute strain energy, but link still has length and mass,
hence the addition of the y1 gravitational potential term after the
summation. The n+ 1 spring does not have a link mass associated
with it, and does not contribute strain energy due to the pinned
boundary condition; the n+ 1 spring is therefore not included
in Equation 6.

In the DLO formulation used in this work, the forces
contributing to the DLO’s energy are all conservative forces.
Lagrange’s equation states that if a system is at rest (no kinetic
energy), the gradient of the potential energy with respect to
the generalized coordinates, ∇θV(θ), must be equal to zero
(?). The gradient for the DLO’s potential energy is shown
in Equation 7.

∇θV(θ) = 0 = kθ(θ − θ0) +
n

∑
i=1

mlinkg∇θyi(θ) (7)

where ∇θyj(θ) describes the gradient of the DLO with respect to the
generalized coordinates θ.

2.2.1 Potential energy minimization
TheDLO generalized coordinates θ can be found byminimizing

the total potential energy in the system, as in Equation 6. The
minimization is subject to constraints enforcing the start and end
point boundary conditions, where the start pointmust be coincident
with the global frame origin and the end point, p0

n+1(θ), must be
coincident with the desired end point, pdes. p

0
n+1(θ) is the position

vector of T0
n+1(θ) defined by Equation 4. Equation 8 illustrates the
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TABLE 1 DLOmodel notation reference.

Variable Definition Set

[̂⋅] Variable in [̂⋅] represents an estimated quantity -

̃[⋅] Variable in ̃[⋅] represents a measured quantity -

n Number of links in cable, discretization ℤ

m Number of configurations for parameter estimation ℤ

a, i, j,k Iteration counters ℤ

mcable Total cable mass [kg] ℝ

mlink Mass per link [kg] ℝ

lcable Total cable length [m] ℝ

llink Length per link [m] ℝ

kθ Approximate bending stiffness of rotational joints [Nm/rad] ℝ

g Gravity magnitude, assumed g = 9.81 in the -y direction [m/s2] ℝ

β Weighting factor for distance residual [Nm/m] ℝ

θi Relative angle between link i− 1 and i [rad] ℝ

θ0,i Zero-strain reference angle between link i− 1 and i [rad] ℝ

V(θ) Potential energy function [J or Nm] ℝ

θ Generalized coordinate vector containing all relative angles θ [rad] ℝn+1

θ′i Reduced coordinate vector containing relative angles up to θi [rad] ℝi

θ0 Zero-strain reference vector containing all reference angles θ0,i [rad] ℝn+1

α Parameter vector for cable ℝn+2

q Generalized coordinate vector of all θ values across m configurations [rad] ℝ(n+1)m

pij Cartesian position vector from point i to frame j [m] ℝ3

Ri
j SO(3) rotation matrix from frame i to frame j ℝ3×3

Ti
j SE(3) transformation matrix from frame i to frame j ℝ4×4

ei Standard basis vector with ith index equal to one ℝ4

potential energy optimization problem.

min
θ

f0(θ) = V(θ) =
n

∑
i=0

1
2
kθ(θi − θ0,i)2 +mgyi(θ)

subject to  f1(θ) = p
0
n+1(θ) − pdes = 0

− π
2
⪯ θ ⪯ π

2

(8)

The generalized coordinates are constrained as an assumption
of how the DLO behaves, maximum bend requirements could
easily be added to Equation 8. To solve the problem posed in
Equation 8 this article leverages an off-the-shelf numerical solver
method, COBYLA, as implemented in (Virtanen et al., 2020). In

this formulation the inclusion of gravity results in one solution
for the minimization, if gravity is considered negligible (a possible
case for in-space operations), additional constraints are necessary to
ensure there is one solution for the potential energy minimization
problem.

The configuration generated through solving Equation 8 is the
expected position based on given end points and cable parameters.
These inputs allow for the model to predict DLO behavior as the
end positions change, i.e., theDLO ismoved through the workspace.
However, the accuracy of the configuration estimate is reliant on
the accuracy of the model parameters for stiffness and equilibrium
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configuration. If the parameters are incorrect, themodeledDLOwill
not match a real system.

2.3 Measured distance minimization

A configuration estimate informed by observations in the
case of incorrect parameters is required in order to evaluate the
parameters themselves. The optimization problem in Equation 8
can be augmented to take advantage of DLO measurements in
addition to the theoreticalminimumpotential energy configuration.
This measurement-infused objective function ensures model nodes
of a DLO configuration are pulled towards the correct positions,
allowing for the model parameters to be adjusted to reflect the
real DLO. Such an objective function is beneficial to in-space
applications where a DLO’s parameters may have been impacted by
travel and storage before the operation.

Observational data takes the form of a 2D point cloud
representing the centerline of the DLO, p̃ ∈ ℝl×d, where d is the
dimension of the measurement (2 or 3) and l > n is the number
of points in the point cloud in the global frame. The point
cloud is determined via an image processing procedure detailed in
Section 3.1. The estimated point list, p̂(θ), is a concatenated list of
the global position vector component of each link frame, T0

i (θ
′
i),

as defined in Equation 4. To minimize the distance error between
the configuration defined by the generalized coordinates, p̂(θ), and
the observed centerline configuration, p̃, the square of the distance
between these points is used as themodel residual.The residual term
rp is as shown in Equation 9.

rp(θ) = (‖p̂(θ) − p̃∗‖2) (9)

Where p̃∗ ∈ ℝn×d is a reduced set of points from p̃ determined
as the points of the point cloud with the minimum Euclidean
distance to p̂(θ). In some cases, where the DLO can only be partially
observed, the residual can still be calculated for less than n points.

To create an objective function including terms for both
potential energy and the measurement residual, the objective
function f0 in the optimization problem in Equation 8 is
modified. This new objective function, f∗0(θ), is defined in
Equation 10. This new objective function replaces f0(θ) in the
problem posed in Equation 8 to consider measurements. The
variables and constraints remain the same.

f∗0 (θ) = f0(θ) + β(n)rp(θ)

= (V(θ) + β(n)‖p̂(θ) − p̃∗‖2)
(10)

The weighting factor β is introduced to allow for design control
of how impactful the incoming measurements are on the static
estimate. In this work the best performance occurred when β
brought the residual rp term to the same order of magnitude as
the potential energy term. β was made a function of the number of
links in the DLO, becoming β(n) = cn, where c is an experimentally
determined constant factor.

Utilizing f∗0 allows for the DLO model to estimate the
configuration where parameters are unknown or incorrect
but measurements are available. Only after parameters
are known can Equation 8 accurately predict the behavior of the
DLO in order to plan a proper trajectory with changing end points.

2.4 Parameter estimation

Due to uneven cross sections, environmental conditions, or
manufacturing errors, cables differ from rope-like DLOs in that they
often contain non-zero joint equilibrium configurations. The same
inconsistencies can also impact bending stiffness. An estimate of
the joint equilibrium positions and stiffness allows for the model to
generate predictions that account for these inconsistencies, reducing
uncertainty in the model.

In order to estimate equilibrium and stiffness parameters,
multiple configurations of the DLO must be considered. Each
configuration consists of the generalized coordinate vector, θ,
that contains the joint positions of the cable configuration.
The configurations are combined to form the complete dataset
coordinate vector q, as shown in Equation 11.

q = [θ1 …θj… θm] ∈ ℝ(n+1)m for j = 1…m (11)

Where m is the total number of configurations used for
parameter estimation; θ is defined by Equation 1.

The parameter values to be estimated include the cable
stiffness, kθ, and equilibrium positions of each segment, θ0, in
the parameterized cable. These parameters are combined into the
parameter vector α as shown in Equation 12. The parameter vector
α is constant across all cable configurations.

α = [kθ θ0,1 … θ0,n θ0,n+1] ∈ ℝn+2 (12)

To estimate the values of α, a nonlinear least squares algorithm
is used, treating the vector q as the observation vector. Because the
potential energy is known to vary based on the parameters contained
in α, Equation 6 can be referred to as V(θ,α). Results from the
optimization problem in Section 2.3 provide expected values of q =
[…θj…] through minimizing Equation 10 for some initial guess of
the parameter vector, α0, shown in Equation 13.

θj =min
θ
(V(θ,α0) + β(n)rp(θ)) for θj ∈ q (13)

All coordinate vectors in q utilize the same α, highlighted
by the change in notation in the potential energy function. Only
one configuration at a time is generated from Equation 13 to
emphasize that the configurations in q do not influence each
other. The estimated configuration based on the parameters to
compare θj against, θ̂(α), is determined by rewriting Equation 7
into Equation 14. Because all points in q are measured from static
configurations, Equation 14 must hold.

θ̂j(α) = θ0 −
n

∑
i=1

mlinkg
kθ
∇θjyi(θj) (14)

The θ̂j(α) for each configuration in the dataset can be combined
into the estimate vector q̂(α) = [… θ̂(α)j …]. The objective of
the nonlinear least squares problem can then be formulated into an
equation for the squared residual, shown in Equation 15.

rα(α) = ‖q− q̂(α)‖2 (15)

A numerical non-linear least squares solver is leveraged in this
work, utilizing the trust region reflective method as formulated
in Branch et al. (1999) (Virtanen et al., 2020). The standard least
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1: θ0,α0 = [k0
θ
,θ0

0
]

2: k← 0

3: while|αk −αk−1| ⪯ ϵαdo

4:   forθk
j
∈ qkdo

5:     θk+1
j
← minθ(V(θ,αk) +β(n)rp(θ))

6:   end for

7:   αk+1← minα(‖qk+1 − q̂(α)‖
2)

8:   k← k+1

9:  end while

10: return αf ← αk

Algorithm 1. Least Squares Parameter Estimation

squares loss function was sufficient for estimating parameters in this
work. In the case of a more complex model, including an increase
in constraints or additional external loading, it may be necessary to
implement a quadratic loss term or explore probabilistic estimation
approaches (such as maximum likelihood estimation).

2.4.1 Iterative estimation loop
The method used to generate q, Equation 8, requires α, and

conversely the solution for α is dependent on the contents of
q. Therefore, an iterative process between modeling the cable
configuration and parameter estimation is performed until the
parameter values no longer change between iterations. Algorithm 1
details the iterative process used to generate a final α vector, α f .

Initial values are required for both position and parameters
to begin the loop. The iteration loop continues until the absolute
value change in α remains greater than a desired tolerance, ϵα. In
practice, to ensure that the estimated parameters have reached a
finite value, the while loop is run until ϵα has been satisfied in
multiple iterations. In a given iteration, each configuration θk in qk is
evaluated independently, as the results of the configuration estimate
are based on the potential energy in a single configuration. Line 5
calculates the joint angles as in Section 2.3 for the current iteration.

After qk+1 has been populated, the parameters that best fit the
data can be estimated. Line 7 uses the configuration qk+1 compared
against the theoretical estimate from Equation 10, q̂k, to generate
the next iteration of parameters αk+1 by minimizing the result of
Equation 15. The parameter vector α f produced from Algorithm 1
can be used in predicting future positions of theDLOarticle utilizing
the optimization problem in Section 2.2.

3 Experimental results

A hardware experiment was preformed to validate the DLO
model and parameter estimation. An electrical cable was mounted
to a vertical frame, with prescribed attachment points allowing for
a pinned joint. The pinned joint was accomplished by placing a bolt
through the center of the cable, and attaching that bolt to the vertical
frame. Spacers were used to ensure the cable did not touch the frame
for every configuration. The same cable was used to collect image
data in 12 different configurations. After a cable was mounted in a
known configuration, images that contained the entire cable in each
frame were collected and used to generate point clouds of the cable

TABLE 2 Test cable properties.

Length 0.812 [m]

Diameter 12.8e-3 [m]

Mass 0.23 [kg]

Approximated kθ 94.956 n [Nm]

centerline, through the procedure detailed in Section 3.1, to form the
dataset used to evaluate the DLO model and parameter estimation
performance. Collected point clouds were used to evaluate the
model in three different aspects: 1) Impacts of parameter estimation
across dataset, 2) How the parameterization of the number of
links impacts accuracy and computation time, and 3) prediction
performance of parameter informed model for positions not
included in the parameter estimation.

The same initial guesses for the model configuration and
parameters are used for every configuration. The initial guess for
the orientation, θ0, of every configuration is θ0

1 = −
π
2

and all other
values in θ0 equal to 0.001.

The initial guess for stiffness is approximated material bending
stiffness as a function of the number of links n, k0

θ(n) = EI/lcable ×
n, where E is an estimated Young’s modulus of the cable, I is the
area moment of inertia of the cable cross-section, lcable is the total
cable length, and n is the number of links. The estimated Young’s
modulus is calculated utilizing the primary components in the cable
test article, copper wire and rubber insulation, assuming a cross-
section of 50%wire and 50% insulation.This stiffness approximation
for kθ is used to relate the multibody spring model to the beam
stiffness that would be utilized if the cable was treated as a slender
beam. The initial guess for equilibrium reference angles θ0

0 is all
zeros, which would be the ideal equilibrium state for a DLO.

Basic properties of the test cable are documented in Table 2.
Computations were completed using Python 3.10, leveraging the
scipy (Virtanen et al., 2020) and OpenCV (Bradski, 2000) libraries
for the optimization methods and image processing, respectively.

3.1 Image processing

For a specific static cable, images of different configurations are
captured. These images can then be processed into point clouds of
the cable center line to use asmeasurements in the formulation of the
DLO model. There has been significant research into the perception
of DLOs with visual observations (Caporali et al., 2022; Tang et al.,
2017), however it is not within the scope of this model formulation
work to incorporate online DLO perception. As such, the image
processing used in this analysis was done offline with respect to the
parameter estimation model. True cable shape is obtained using an
Intel RealSense D435i camera for RGB images of size 1280x720. The
test setup is pictured in Figure 2a. The camera is fixed relative to the
vertical stand. The vertical stand consists of fixture points for the
DLO and markings to indicate the bounding box used to straighten
the images for processing.
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FIGURE 2
Hardware experiment configuration (a) Test stand with mounted cable article (b) Processed image containing centerline point cloud used as
measurement points p̃ (a) Hardware experiment setup. (b) Processed measurement image.

The RGB images for a given configuration are processed
using the OpenCV library (Bradski, 2000). Edge detection
and morphology techniques are used to isolate the cable
as a contour in the image. Then, the Zhang-Suen thinning
algorithm (Zhang and Suen, 1984) is applied via the OpenCV
ximagproc module to generate the cable centerline to compare
against the simulated cables. Figure 2b illustrates the centerline
resulting from the processing to provide the measurement
point list p̃.

TheDLOmodel and parameter estimation are compared against
p̃ to estimate: the accuracy of the configuration estimate before
and after parameter estimation, effects of varying the discretization
parameter n, and accuracy of DLO prediction with a pre-compiled
α.

3.2 Parameter estimation

By performing parameter estimation based on the processed
image data, the accuracy and reliability can be significantly
improved. The best results were seen when β(n) was set with
c = 10000 to make the contributions from the measurements to
the objective function the same magnitude as those from the
potential energy results. Table 3 illustrates how the parameter
estimation process is capable of solving for θ0 equilibrium values
and stiffness kθ in the cable from an initial guess α0. As the first
and last nodes are pinned, Table 3 does not include θ0,1 and θ0,n+1
as they do not change. The change in the stiffness is minimal
across all discretization levels evaluated, except for the case n =
5 in which the stiffness estimate doubles to be equal to the kθ
for n = 10. When the approximated stiffness shown in Table 2 is
modified slightly for different material compositions, the parameter
estimation consistency reaches the same order of magnitude but
often not the same exact value. This inconsistency may be due to

the cable stiffness being variable across the cable length, which
is not the assumption made in this work. Additional research
is needed to further investigate the stiffness, and how sensitive
the DLO model is to slight deviations of the same order of
magnitude of kθ.

The different end points of the dataset, listed in Table 4, have
differing errors from the potential energy solutions solved with the
initial guess, α0, based on how significant the curvature of the cable
is, or when the cable is nearly vertical. Table 4 demonstrates the
effects of using either α0 or α f as defined in Table 3. The potential
energy changes significantly based on the choice of parameters,
demonstrated in the V(θ,α) columns of Table 4. The configuration
found through Equation 8 with α0 produces a minimum energy
solution,V(θ0,α0), but contains errors when compared to hardware
observations (as seen in Figure 3). The second potential energy
column contains the potential energy at the final configuration, θ f ,
with the estimated parameter vector, α. V(θf ,αf ), has significantly
reduced and error to hardware across the dataset. The third
potential energy column contains the values for configuration
θ f , which has lower error to the hardware than θ0, given the
initial parameters instead, V(θf ,α0). For every configuration in
the dataset, V(θ0,α0) < V(θf ,α0); without parameter estimation
themodel in Equation 8 will not converge on the observed positions
for this article.

The remaining columns in Table 4 demonstrate the significant
effect calculating parameters has on correcting the configuration
estimate, both in the RootMean Square Error (RMSE) and Standard
Deviation (STD) across the nodes in a configuration at the output
of Algorithm 1. The parameter estimation significantly drives down
the errors across the dataset, with the most significant reductions
being an order of magnitude (from cm to mm) in RMSE for
multiple configurations, with an average increase in accuracy
of 11 mm.
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TABLE 3 Change in parameters, n = 10.

kθ[Nm] θ0 ∈ ℝn−1[rad]

Initial α0 949 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Final α f 949 0.10 0.19 0.26 0.31 0.32 0.29 0.23 0.17 0.09

TABLE 4 Potential Energy (V), Root Mean Square Error (RMSE) and Standard Deviation (STD) for Evaluated Cable used for Parameter Estimation, before
and after implementing adjustment. n = 10.

Configuration V [Nm] RMSE [m] STD [m]

End Pose [m] (θ0,α0) (θf,αf) (θf,α0) α0 α f α0 α f

(0.36, 0.25) 489.94 55.46 510.09 0.024 0.007 0.011 0.004

(0.51, 0.0) 386.07 19.82 405.74 0.002 0.003 0.001 0.002

(0.51, 0.10) 372.00 16.35 509.23 0.005 0.002 0.003 0.001

(0.51, 0.25) 303.48 6.15 308.63 0.012 0.005 0.006 0.003

(0.51, −0.10) 371.78 17.16 372.71 0.004 0.003 0.002 0.002

(0.61, 0.0) 247.78 0.20 250.10 0.003 0.003 0.002 0.001

(0.61, 0.10) 236.92 −0.10 241.47 0.006 0.003 0.004 0.002

(0.61, −0.10) 236.69 −0.24 266.77 0.003 0.003 0.002 0.002

(0.66, −0.25) 123.58 16.78 124.44 0.004 0.004 0.002 0.002

(0.66, 0.20) 144.51 10.26 146.06 0.005 0.003 0.003 0.002

(0.71, 0.0) 119.41 18.36 191.40 0.004 0.004 0.002 0.002

(0.13, −0.79) 16.22 122.66 20.30 0.121 0.025 0.055 0.012

3.3 Parameterization

While the formulation and parameter estimation are satisfactory
for a wide range of discretization levels, the ability to modify the
number of link segments in the model is critical to creating a real-
time DLO manipulation architecture. The computation required
to generate the estimated angles and parameters from a zero
initial guess is significant. While the parameters could be evaluated
offline in a real-time environment, computing the configuration
for planning purposes should maintain a minimal state vector
when possible.

Figure3 illustrates how the estimate changes by changing the
discretization parameter. For all cases of n, the configuration
estimate that included the distance objective function and
estimated α f aligned well with the measured data. In contrast,
the configuration estimate using α0 degraded in performance
as n increased. Table 5 describes the average computation
time and accuracy across all configurations, given α f , for
varying n.

Figure 4 illustrates the impact of a changing n on the RMSE
of the model and the average time required by the model to

estimate the configuration. It is clear that while there is accuracy
improvement as n increases, it is less than an order of magnitude
and provides diminishing returns with link segments smaller
than 4 cm, illustrated in Figure 4a. However, the computation
time required to estimate the parameters increases rapidly as
the number of links increases, shown in Figure 4b. As a result,
for the cases in this experiment, utilizing a level of cable
discretization above n = 20 is not worth the computational cost.
For cases evaluating performance in this article, n was set
to 10 or 20.

3.4 Prediction performance

Previous sections demonstrate the increased model
performance when incorporating parameter estimation.
However, these sections do not explore positions after α has
been calculated. To be a viable planning tool for in-space
robotics, the model must be capable of predicting behavior
for desired positions that are not accompanied by concurrent
measurements.
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FIGURE 3
Cable segmentation results of varying the discretization parameter n. Results include both those using initial parameters α0 and those at the conclusion
of Algorithm 1, using α f . Same end pose, pdes = (0.36,0.25) [m], for different numbers of segments n = 5,10,20,35,50,81.

TABLE 5 Root Mean Square Error (RMSE) and Standard Deviation (STD) of parameter estimation results for different choices of n.

n llink [m] Average pos. Est. Time [s] RMSE [m] STD [m]

5 0.162 0.2 0.0095 0.0072

10 0.081 0.5 0.0082 0.0068

20 0.041 1.9 0.0078 0.0067

35 0.023 5.9 0.0078 0.0067

50 0.016 7.9 0.0077 0.0067

81 0.010 12.7 0.0081 0.0072

Two configurations were chosen as a test set to validate
the calculation of parameters for the cable when it is
moved to a variety of positions. The parameter estimation
was computed again using only 10 configurations, m = 10,
to give the estimation of α no knowledge of the test set
configurations. Figure 5 illustrates the results of the test cases
evaluated, including the potential energy solution with α0

and with the calculated α including the non-zero reference
configuration.

The results of the test set have increased accuracy by including
the parameters, as shown in Table 6. For both cases, the RMSE from
utilizing a pre-calculatedα is halved from the initial solutionwithα0.
The RMSE is the same magnitude as when these sets are included

in the calculation of α (as in Table 4); for n = 10, the RMSE of the
configurations in Figures 5a,b are 5 mm and 3 mm, respectively.

This work demonstrates promising results towards a multibody
spring model of cables as DLOs that accounts for non-zero
equilibrium configurations. For the cases evaluated here, the
proposed model is able to predict positions across the length of the
cable as the end position ismoved - which is a valuable advancement
for manipulation planning of cables.

4 Discussion

The results of this work illustrate the challenges with
evaluating DLOs, particularly electrical cables, which often contain
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FIGURE 4
Effects of varying n across all configurations.(a) Root Mean Square Error for varying n. (b) Estimation time required for different number of links, scaled
by the time required for n = 10 (a) RMSE for varying number of links. (b) Average estimate time for varying number of links. The y-axis is scaled w.r.t the
computation time of n = 10 value to illustrate relative changes.

uneven cross sections and internal stresses contributing to a
bent equilibrium position. Estimating the effective stiffness and
equilibrium positions of a stiff DLO greatly inform robotics
trajectory planning and control algorithms by improving the
accuracy of the prediction model. The parameter estimation has
a clear positive impact on the model performance for a static DLO
configuration. The parameterization of the cable into a discrete
number of links allows for the designer to have control over the size
of the state space in the model. For the cable evaluated in this article,
it was not significantly beneficial to have links smaller than 4 cm.
This is likely a factor of the cable stiffness and diameter.

The DLO problem posed in this article focuses on one set
of constraints and boundary conditions that might occur for in-
space or lunar DLO operations: quasi-static, obstacle-free, planar
translation with pinned ends. The addition of angle constraints,
obstacles, environmental factors, and maximum bend constraints
further complicate the potential energy problem. The quasi-static
nature of this work may not be applicable to all DLO manipulation
operations, a robotic trajectory plan may require better knowledge
of DLO velocity kinematics or dynamics. The image processing
procedure was only done for 2D images, making the estimation of
out of plane bending difficult. As a result, while the formulation
presented in this article utilized transformationmatrices that allow for
3D kinematics, the generalized coordinates consisted of one rotation
DOF per joint since there is no way to estimate out of plane values.

4.1 Future work

The model developed in this article informs future work to
advance robotic cable manipulation. Dynamics are of significant
interest, as well as the addition of parameters that impact cable
energy, shape, and path planning. For DLO operations, additional

parameters and constraints such as bend requirements, obstacle
avoidance, and boundary conditions are required, in addition to
varying external forces such as gravity or interactions with fixture
points. For in-space systems, it is important to understand the
constraint forces and how the manipulation of the DLO imparts
forces back to the larger space systems. The derivation of such
forces is more relevant to environments of increased complexity and
dynamic models, and is therefore left to future work.

An additional area of future work is to increase the rotational
DOF at each joint, enabling out of plane bending. Coupled
with improved data processing to measure the 3D centerline, the
increased DOF allows for the parameter estimation to account for
out of plane configurations, not uncommon in electrical cables
after storage. However, adding additional joint DOF increases the
number of states by n for each added DOF, and will require an
additional study into trade-off between accuracy and size of the
state space. Force sensor data on an end effector would supplement
the visual segmentation data, but would conversely increase the
computational requirements in the system.

An interesting avenue of further investigation is the definition
of the loss function for estimating α. The standard least squares
residual utilized in this article demonstrates the feasibility of the
parameter estimation schemewithbatch estimation, but a comparison
with sequential estimation and probability based approaches may
increases performance and be better suited for more complex
DLO manipulation tasks.

4.2 Conclusion

Manipulation of DLOs is a crucial technology to advancing
robotic construction and maintenance across all industries. For
in-space applications there are unique challenges that limit
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FIGURE 5
Hardware experiment data and corresponding prediction estimate results from Equation 8 compared to hardware data for n = 10,20. The green
diamonds are the estimates based on the initial parameters α0, while the orange squares are the solution including the calculated α f . (a) Desired end
position of (0.51,0.25)[m]. (b) Desired end position of (0.61,0.10)[m] (a) pdes = (0.51,0.25)[m] (b) pdes = (0.61,0.10)[m].

TABLE 6 Root Mean Square Error (RMSE) for evaluated cable used for
parameter estimation: using α0, when included in the Least Squares (LS)
calculation of α, and with loading in a previously estimated α f .

End Pose [m]
n RMSE [m]

α0 LS α f

(0.51, 0.25) 10 0.012 0.005 0.005

(0.51, 0.25) 20 0.012 0.005 0.004

(0.61, 0.10) 10 0.006 0.003 0.003

(0.61, 0.10) 20 0.005 0.002 0.002

computational ability, increase risk, and reduce the viability a fully
teleoperated system. In order to have a robotic construction and
maintenance fleet for in-space applications, it is imperative the
space domain develop an architecture that embraces the challenge
of DLOs. In an extreme environment such as space, a DLO must
be tethered at both ends, making it challenging to observe an
unconstrained equilibrium position.

This article presents an evaluation of the trade-off between
model accuracy and required state space size. This trade-off is not
explored in the literature, and is important to in-space operations
where there are limitations on available computational resources.
The parametric multibody model allows for complexity to become
a design parameter and it is shown that for the obstacle-free
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configurations evaluated in this work, increasing the number of
states does not proportionally decrease distance error; increasing
the number of states from 10 to 20 reduces RMSE by 0.4 mm, but
takes 4 times as long to compute. The methodology for parameter
estimation presented in this article is a novel approach to estimating
the stiffness and equilibrium position of DLOs, increasing model
accuracy by an average of 28% without increasing the size of the
state space. Themodel-based formulation and parameter estimation
presented in this article move the domain of in-space construction
closer to a reality, and contribute to the rapid advancement of
large-scale space missions.
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