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Hybrid intelligence systems for
reliable automation: advancing
knowledge work and
autonomous operations with
scalable AI architectures

Allan Grosvenor*, Anton Zemlyansky, Abdul Wahab,
Kyrylo Bohachov, Aras Dogan and Dwyer Deighan

MSBAI, Los Angeles, CA, United States

Introduction: Mission-critical automation demands decision-making that is
explainable, adaptive, and scalable—attributes elusive to purely symbolic or
data-driven approaches. We introduce a hybrid intelligence (H-I) system that
fuses symbolic reasoning with advanced machine learning via a hierarchical
architecture, inspired by cognitive frameworks like Global Workspace Theory
(Baars, A Cognitive Theory of Consciousness, 1988).

Methods: This architecture operates across three levels to achieve autonomous,
end-to-endworkflows: Navigation: Using Vision Transformers, and graph-based
neural networks, the system navigates file systems, databases, and software
interfaces with precision. Discrete Actions: Multi-framework automated
machine learning (AutoML) trains agents to execute discrete decisions,
augmented by Transformers and Joint Embedding Predictive Architectures
(JEPA) (Assran et al., 2023, 15619–15629) for complex time-series analysis, such
as anomaly detection. Planning: Reinforcement learning, world model-based
reinforcement learning, and model predictive control orchestrate adaptive
workflows tailored to user requests or live system demands.

Results: The system’s capabilities are demonstrated in two mission-critical
applications: Space Domain Awareness, Satellite Behavior Detection: A graph-
based JEPA paired with multi-agent reinforcement learning enables near real-
time anomaly detection across 15,000 on-orbit objects, delivering a precision-
recall score of 0.98. Autonomously Driven Simulation Setup: The system
autonomously configures Computational Fluid Dynamics (CFD) setups, with an
AutoML-driven optimizer enhancing themeshing step—boosting boundary layer
capture propagation (BL-CP) from 8% to 98% and cutting geometry failure rates
from 88% to 2% on novel aircraft geometries. Scalability is a cornerstone, with
the distributed training pipeline achieving linear scaling across 2,000 compute
nodes for AI model training, while secure model aggregation incurs less than 4%
latency in cross-domain settings.

Discussion: By blending symbolic precision with data-driven adaptability,
this hybrid intelligence system offers a robust, transferable framework for
automating complex knowledge work in domains like space operations
and engineering simulations—and adjacent applications such as autonomous
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energy and industrial facility operations, paving the way for next-generation
industrial AI systems.

KEYWORDS

hybrid intelligence (HI), space domain awareness, computational fluid dynamics, CFD,
reinforcement learning (RL), joint embedding predictive architecture (JEPA)

1 Introduction

Artificial-intelligence (AI) systems are now entrusted with
tasks where mistakes can endanger lives or incur severe economic
losses—ranging from space-domain awareness (SDA), where
thousands of resident space objectsmust bemonitored continuously,
to computational fluid dynamics (CFD) simulations that guide the
design of next-generation aircraft. In such settings, automationmust
satisfy four simultaneous demands:

• Reliability–decisions must remain robust under rapidly
changing conditions;

• Explainability–operators must understand why a
recommendation is made;

• Adaptability–models must generalize to novel environments
without manual retuning;

• Scalability–solutions must run efficiently from edge devices to
leadership-class supercomputers.

Neither purely symbolic pipelines nor end-to-end data-driven
models fulfil all four requirements. Symbolic approaches provide
formal guarantees but brittle behavior in openworlds; deep-learning
systems excel at pattern recognition yet act as opaque “black boxes”
whose failure modes are hard to predict. Bridging this gap is the
central challenge addressed in this work.

1.1 Hybrid intelligence as a unifying
paradigm

Inspired by cognitive frameworks such as Global Workspace
Theory (GWT) (Baars, 1988) and neurally-grounded accounts
of modular reasoning (Shanahan, 2020), we propose a hybrid-
intelligence (H-I) architecture that integrates symbolic task
decomposition with modern machine learning. The design follows
a three-tier hierarchy of cooperating agents, each tier operating at a
different level of abstraction:

1. Navigation agents employvision transformers andgraphneural
networks to traverse file systems, databases, and interactive
software interfaces while maintaining precise state-tracking.

2. Discrete-action agents are produced via multi-framework
automated machine learning (AutoML); they couple
transformer encoders (Chen et al., 2021) with a Joint
Embedding Predictive Architecture (JEPA) for context-aware
time-series reasoning (e.g., anomaly detection).

3. Planning agents orchestrate end-to-end workflows using
reinforcement learning (RL) (Figure 1), world-model-based
RL, and model-predictive control (MPC), adapting plans on-
the-fly to user intent and live sensor data.

A key metric for mesh-generation tasks—boundary-layer
capture propagation (BL-CP)—illustrates the benefit of this
decomposition: symbolic rules ensure physicallymeaningful surface
resolution goals, while data-driven agents optimizemeshparameters
to meet those goals efficiently.

1.2 Target domains

Wevalidate the architecture in twomission-critical domains that
exhibit contrasting data characteristics and operational constraints:

• Space-object behavior monitoring. Graph-based JEPA
embeddings (Assran et al., 2023; Skenderi et al., 2025; MSBAI,
2025) combined with multi-agent RL enable near-real-time
detection of anomalous maneuvers among ∼15,000 satellites
and debris objects.

• Autonomous CFD setup. An AutoML-driven optimizer,
seeded with Latin hypercube sampling (LHS) (McKay et al.,
1979), raises BL-CP on previously unseen aircraft geometries
while sharply reducing mesh-generation failures.

These case studies were chosen because they stress different
parts of the stack: large-scale streaming graphs in SDA, and high-
dimensional design-space exploration in CFD.

1.3 Contributions

This paper makes four primary contributions:

1. Architecture. We present the first end-to-end H-I architecture
that unifies JEPA-based world modeling, hierarchical planning,
and secure federated learning in a single deployable platform.

2. Methodology. We detail a reproducible training pipeline
that scales linearly to more than 2,000 GPUs, while secure
aggregation adds less than 4% latency when models are shared
across security domains.

3. Applications. We demonstrate state-of-the-art performance
in both SDA anomaly detection and autonomous CFD
configuration, showing the transferability of a single H-I
system across radically different problem spaces.

4. Analysis. We provide ablation studies that quantify the
individual value of symbolic constraints, JEPA context sharing,
and RL-based planning.

1.4 Paper organization

Section 2 describes the materials and methods, including the
hierarchical agent society (Minsky, 1986), the JEPA representation
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FIGURE 1
Scalable Reinforcement Learning Training Strategy. Left: Early anomaly detection agent training with Vectorized GPU environment and Decentralized
Distributed Proximal Policy Optimization (DD-PPO). Right: Throughput scales almost linearly, enabling agent to learn faster.

layer, and experimental protocols. Section 3 reports quantitative
and qualitative results for the SDA and CFD use cases. Section 4
discusses the implications, limitations, and future research avenues
for hybrid-intelligence systems in industrial and defense contexts.

2 Materials and methods

This section describes the technical foundations of the hybrid-
intelligence (H-I) platform, the training procedures used to create its
agents, and the experimental configurations for the two validation
domains introduced in Section 1. Figure 2 gives a block-level
schematic; detailed elements follow.

2.1 System architecture

The platform is implemented as a four-layer stack that converts
operator intent into executable actions (see Table 1):

2.1.1 Learning engine
The adaptive-agent and training layers together form the

Learning Engine—a “factory” that continuously builds and refines
skill agents while enforcing best practices and version control.

2.2 Universal interface and environment

The Universal Interface serves as a bridge between
users (or external software) and the agent society (Minsky,
1986). Implemented as a standards-compliant progressive

web app, it accepts multimodal input—voice, text, gestures,
images—and emits structured JSON events that trigger agent
workflows. The Environment abstraction wraps external
resources:

• GUI/CLI software (e.g., CAD, CFD pre-processors)
• Streaming telemetry (orbit state vectors)
• HPC batch queues (Frontier, Aurora)

Each wrapper exposes a consistent OpenAI-Gym–style API so
that planning agents can treat disparate resources uniformly during
RL training.

2.3 Hierarchical agent society

The platform follows a three-tier hierarchy; each tier contains
multiple agent types (Table 2).

2.3.1 Blackboard communication
Agents publish belief tuples—<state, uncertainty,

timestamp>—to an in-memory blackboard. Opportunistic reads
provide asynchronous context sharing; deterministic peer-to-peer
calls guarantee delivery of high-priority messages (e.g., safety
constraints).

2.4 Multimodal representation

Hybrid interaction requires three complementary
representations:
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FIGURE 2
System architecture i—skills agent training, ii–PWA interface, iii–multiple skills and services agents, iv–multiagent coordination, v–job submission.

TABLE 1 Four-layer hybrid-intelligence system architecture.

Layer Responsibility Key technologies

User-interface Natural-language front end; resolves ontologies and
builds task graphs

PWA front end (desktop, mobile, VR) supporting
voice, click, typed text, images

Job-execution Schedules task graphs on heterogeneous resources and
manages model versions

Kubernetes/Slurm orchestration; AMD and NVIDIA
back-ends

Adaptive-agent society Executes the task graph; agents share a global
workspace implemented as a blackboard

Joint Embedding Predictive Architecture (JEPA);
opportunistic blackboard + peer-to-peer channels

Distributed- training pipeline AutoML search, RL optimization, data ingestion, and
logging

PyTorch 2.3, Ray 2.9, Optuna 3.5; linear scaling to
>2,000 GPUs

TABLE 2 Hierarchical agent society: tiers, example agents, and training objectives.

Tier Mission Example agent types Training objective

Navigation Perceptual state tracking; traverses file systems,
GUIs, APIs

Voice, Gesture, Vision, CAD-tree Supervised imitation on interaction logs

Discrete Action Domain-specific atomic steps Mesh-parameter predictor, Maneuver classifier,
Constraint solver (Z3) (de Moura and Bjørner,
2008), Coding agent (LLM)

Task loss + JEPA consistency

Planning End-to-end workflow orchestration PPO agent, World-model MPC,
Hyperparameter tuner

Maximize task reward – constraint penalty

1. Structured JSON events for rule-based reasoning and
constraint checks.

2. High-dimensional contrastive embeddings (Radford et al.,
2021; Li et al., 2022) (e.g., CLIP, BLIP) that place
text, images, gestures, and sketches in a shared
semantic space.

3. JEPA latent vectors that model environment dynamics.
A Patch Time-Series Transformer (PatchTST)
(Assran et al., 2023; Nie et al., 2022) encoder and
predictor align current-state and future-state embeddings,
creating a lightweight world model usable by RL
agents for dense reward shaping.
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FIGURE 3
Leadership Computing Scalability: Multi-Component Performance on Frontier and Aurora (i) JEPA model training scalability on Frontier with recent
Aurora validation, showing near-linear scaling with DeepSpeed optimization; (ii) Planning agent training performance on Frontier; (iii)
DeepHyper-based architecture search for solver setting prediction; (iv) SU2 solver scaling for solution-adaptive mesh refinement; (v) TorchVecEnv
performance showing 5x speedup over DummyVecEnv for environment steps; and (vi) Reinforcement learning hyperparameter optimization scaling.
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FIGURE 4
Unified anomaly detection architecture: Methodology and applications. Our hierarchical AI system processes multi-modal inputs (left) through
specialized methodologies (center) to deliver comprehensive outputs (right). We are adapting the strategy, demonstrated for space domain awareness
applications (top) to fusion facility operations (bottom). Key components include JEPA-based representation learning, multi-agent reinforcement
learning for decision-making, and specialized processing pipelines for each domain’s unique requirements.

2.5 Training methodologies

We have utilized leadership High Performance Computing to
conduct research (Dash et al., 2024) and development, comparative
studies, and for training models and strategies at scale. Figure 3
presents a series of these leadership-scale HPC jobs and the
scale productivity and efficiency we reached. The trained system,
prepared for production deployments, is built to perform and
inference on individual servers, although larger compute systems
enable more autonomously set up compute jobs to be run
simultaneously.

2.5.1 AutoML for discrete-action agents
A synchronous multi-framework AutoML loop (Chen and

Guestrin, 2016) (LightGBM, XGBoost, Tab-Transformer) explores
model/hyperparameter pairs seeded by Latin hypercube sampling
to maximize validation F1 (classification) or minimize RMSE
(regression) (Kadupitiya et al., 2019).

2.5.2 Reinforcement learning for planning agents

• Environment wrappers. Orbit dynamics and mesh pipelines
expose Gym-compatible APIs.

• Vectorized simulation. Thousands of environment
instances run concurrently on each GPU via

TorchVecEnv (Paszke et al., 2019), giving a 5× speedup over
CPU baselines.

• Algorithm.Proximal PolicyOptimization (PPO) (Schulman et al.,
2017) with generalized-advantage estimation; world-model
variants use latent-dynamics models.

• Scaling. A Distributed Data-Parallel PPO (DD-PPO) variant
shows near-linear throughput on up to 1,024 GPUs (<3%
overhead). Hyperparameter sweeps run as ensemble jobs on
380–500 Frontier nodes.

2.5.3 HPC-tailored AutoML for CFD
Standard AutoML libraries stalled at supercomputer scale, so we

adopted DeepHyper (Balaprakash et al., 2018; Bollapragada et al.,
2020), which distributes neural-architecture and hyperparameter
search across >1,000 Frontier nodes. Top checkpoints are ensembled
for robustness; the combined pipeline (data generation → prediction
→ mesh optimization → CFD solve) runs fully in parallel.

2.6 Experimental setups

2.6.1 Space-domain awareness (SDA)

• Data. Two-year archive of Two-Line-Element sets
(CelesTrak, 2024; Unified Data Library) plus simulated
maneuvers (via GMAT); 14,710 unique space objects.
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FIGURE 5
Autonomous Grid Generation Example: (a) initial inviscid mesh capture and refinement, followed by geometry capture and then boundary layer
capture propagation; (b) detail view of refined mesh zones and boundary layer capture propagated to all solid surfaces; (c) grid generation error
reduction; (d) boundary layer capture propagation (BL-CP) performance improvement.

• Graphs. Daily proximity graphs (25 km radial cutoff).
• Agent roles. Navigation scrapes catalogs; discrete-action JEPA
classifier flags maneuvers; planning RL agent prioritizes alerts
(reward = TP – 5 FP).

• Metrics. Precision, recall, F1, and mean alert latency on a held-
out three-month slice.

2.6.2 Autonomous CFD mesh generation

• Geometry corpus. 312 watertight aircraft surfaces across
fighter, transport, and UAV classes.

• Workflow. SnappyHexMeshwith nine tunable parameters (base
cell size, growth ratio, etc.).
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TABLE 3 Autonomous CFD mesh-generation performance on unseen
geometries.

Configuration BL-CP (%) Mesh-failure rate (%)

Full H-I system 98 ± 2 2

w/o AutoML 75 15

w/o symbolic constraints 85 10

w/o RL planning 80 12

• Primary metric. Boundary-Layer Capture Propagation (BL-
CP): percent of wetted surface with y+ ≤1 and ≥8 growth layers.

• Agent roles. Navigation explores CAD trees; discrete-action
AutoML surrogate predicts BL-CP; planning RL agent adjusts
parameters (reward = ΔBL-CP – 0.1·cells).

• Metrics. BL-CP, mesh-failure rate, solver convergence,
optimization wall-time.

2.7 Evaluation metrics

Component ablations disable (i) JEPA, (ii) symbolic constraints,
(iii) RL planning to isolate each contribution.

2.8 Implementation details

• Software. PyTorch 2.3, Hugging Face Transformers 5.0, Ray 2.9,
Optuna 3.5, DeepHyper 0.6.

• Hardware. Experiments ran on Frontier (AMD MI250X) and
an internal 256-GPU NVIDIA A100 cluster.

• Runtime. SDA model converges in 11 h on 512 GPUs; mesh
optimizer converges in 7 h on 128 GPUs.

3 Results

This section reports quantitative and qualitative outcomes
for the two validation domains—space-domain awareness
(SDA) depicted in Figure 4 and autonomous CFD mesh
generation depicted in Figure 5—and summarizes platform-
wide scalability and ablation studies. All experiments follow the
configurations in Section 2 and were repeated three times; we
report the mean.

3.1 Space-domain awareness

3.1.1 Throughput
A single MI250X GPU, processes ≈1,200 proximity graphs s−1;

the pipeline scales near-linearly to 1,024 GPUs.

3.1.2 Qualitative insight
Residual false negatives were low-Δv (<5 cm s−1) drift

maneuvers. Enriching simulated training data with finer force
models is expected to close this gap.

3.2 Autonomous CFD mesh generation

Figure 5 shows the AutoML optimizer raising BL-CP from
an initial 8%–98% within 15 iterations. Table 3 compares BL-
CP and mesh-failure rates for autonomous CFD mesh generation
across four configurations, showing how the full H-I system
achieves the highest compliance and lowest failure rate. Visual
inspection confirms uniform boundary-layer coverage on narrow
pylons and aft fairings—regions that routinely defeat rule-based
scripts.

3.3 Scalability

TorchVecEnv delivers a 5× speedup over CPU vectorization for
environment stepping; end-to-end SDA throughput on 64 GPUs
exceeds 150,000 objects s⁻¹, leaving ample head-room for future
constellation growth. Table 4 shows that hyperparameter search,
model training, and RL agent workflows all sustain over 88%
parallel efficiency on leadership-class systems at scales up to 1,024
compute nodes.

3.4 Cross-domain ablation summary

JEPA provides the largest single lift by supplying a consistent
global context; symbolic rules enforce physical validity, and
RL planning reduces false alarms and accelerates convergence.
Table 5 shows that removing JEPA embeddings causes the largest
performance drop, followed by RL planning and then symbolic
constraints.

3.5 Key findings

• Reliability. High precision (0.98) in SDA and low mesh-failure
rates (2%) in CFD.

• Explainability. Traceable decision rationales via blackboard
logs and constraint checks.

• Adaptability. Robust performance on novel geometries and
dynamic orbital environments.

• Scalability. Near-linear scaling on leadership-class systems to
thousands of GPUs.
Section 4 discusses the implications of these results and outlines
future research directions.

4 Discussion

The results in Section 3 show that a carefully balanced blend
of symbolic reasoning and modern machine-learning can meet
the four requirements stated in Section 1—reliability, explainability,
adaptability, and scalability—across twoverydifferentmission-critical
domains. Here we interpret those findings, compare them with prior
work, acknowledge limitations, and outline future research.
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TABLE 4 Leadership-class scalability of core training components.

Component Max nodes tested Parallel efficiency

JEPA training [DeepSpeed ZeRO-2 (Rajbhandari et al., 2019)] 512 93%

Planning-agent PPO (DD-PPO) 1,024 GPUs >90%

DeepHyper search (CFD surrogate) 1,024 88%

TABLE 5 Cross-domain ablation study: impact of removing key
components.

Component removed Δ F1 (SDA) Δ BL-CP (CFD)

JEPA embeddings −0.06 −23 pp

Symbolic constraints −0.04 −13 pp

RL planning −0.08 −18 pp

TABLE 6 Evaluation metrics for Space-Domain Awareness and CFD
experiments.

Domain Primary Secondary

SDA Precision, recall, F1; alert latency Graphs s−1; GPU utilization

CFD Final BL-CP (%); mesh-failure
rate (%)

Cell count; compute hours

4.1 Implications of a hybrid-intelligence
architecture

• Multiplicative benefits. Ablations confirmed that JEPA context
sharing, symbolic constraints, and RL planning each contribute
distinct performance lifts; removing any one of them produced
double-digit drops (Tables 6, 7). This underscores the premise
that robust autonomy cannot rely on a single paradigm.

• Cross-domain transfer. A single architectural stack achieved
state-of-the-art results in both SDA (F1 = 0.98) and CFD
meshing (BL-CP = 98%, failure = 2%). Such breadth
suggests strong potential for horizontal transfer to adjacent
domains—e.g., fusion-facility control or autonomous energy
management—without redesigning core components.

• Explainability in practice. The blackboard logs, constraint
checks, and agent-level telemetry provide an audit trail lacking
in most end-to-end neural systems. Preliminary operator
studies (not shown) indicate that these artifacts shorten root-
cause analysis time by ∼35% compared with baseline ML
dashboards.

• Industrial-scale scalability. Near-linear scaling on >2,000
GPUs, combined with 150 k objects s−1 SDA throughput,
demonstrates readiness for leadership-class supercomputers.
Early edge tests with 8-GPU nodes suggest that pruning the
agent society to themost relevant subset retains ≥90% accuracy,
hinting at deployability in resource-constrained settings.

4.2 Limitations and open challenges

1. Data realism. SDA performance still depends on simulated
maneuver catalogs; low-Δv events (<5 cm s−1) remain a weak
spot. Incorporating real-world maneuver logs and higher-
fidelity force models is a priority.

2. Compute overhead. Although scalable, absolute resource use
is high (e.g., 128 GPUs for CFD optimization). Model-
compression and iterative-sampling schemes are needed for
organizations without leadership-class allocations.

3. Constraint tuning. Symbolic rules reduce CFD failures by 86
pp, yet overly strict settings can limit exploration. An adaptive
constraint-tuning loop—analogous to temperature schedules
in Bayesian optimization—could dynamically relax or tighten
rules based on task progress.

4. Latent interpretability. JEPA embeddings drive much of
the success, but their internal dimensions are still opaque.
Visualization probes or concept-activation tests could make
latent factors human-readable.

5. Formal safety proofs. While constraints catch many
invalid states, end-to-end formal verification of multi-agent
interactions is still pending.

4.3 Future work

• Adaptive constraint learning. Coupling symbolic rules with
meta-learning could yield task-specific constraints that evolve
as data distributions shift.

• Rich explainability tools. We plan to generate natural-
language rationales and interactive heat-maps that trace causal
chains through the agent society—further closing the human-
AI trust gap.

• Edge-optimized deployment. Lightweight agents and model-
distillation pipelines will target 8- to 32-GPU clusters, enabling
on-premise industrial use cases.

• Transfer learning across domains. Early experiments suggest
that CFD mesh-quality embeddings seed faster convergence
when fine-tuned on finite-element structural meshes;
systematic studies are underway.

• Hierarchical world models. Integrating Bayesian or ensemble
world models at the planning tier could provide calibrated
uncertainty, improving risk-aware decision making.

• Human-in-the-loop reinforcement.Active-learningworkflows
in which monitoring operators label edge cases or override
agent decisions, can both enhance safety and reduce
labeling cost.
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TABLE 7 Space-domain awareness performance metrics on held-out three-month set.

Configuration Precision Recall F1-score Mean alert latency (s)

Full H-I system 0.98 0.98 0.98 2.3

w/o JEPA 0.92 0.93 0.92 3.1

w/o symbolic constraints 0.95 0.94 0.94 2.8

w/o RL planning 0.90 0.91 0.90 4.5

By fusing symbolic precision with data-driven adaptability, the
proposed hybrid-intelligence system delivers interpretable, high-
performance automation in domains that have historically resisted
reliable AI. The demonstrated gains in SDA and CFD, coupled with
strong scalability, suggest that such architectures provide a robust
foundation for next-generation industrial and defense systems
where explainability and trust are as critical as raw accuracy.

5 Conclusion

This work introduced a hybrid-intelligence (H-I) architecture
that blends symbolic reasoning with modern machine-learning,
drawing conceptual inspiration from Global Workspace Theory.
Validated on two demanding domains—space-domain awareness
and autonomous CFD mesh generation—the system:

• achieved F1 = 0.98 in maneuver detection for ∼15,000
space objects,

• raised boundary-layer capture propagation to 98% while
cutting mesh-failure rates to 2%, and

• scaled training pipelines near-linearly to >2,000 GPUs on
leadership-class supercomputers.

These results confirm that the fourmission-critical requirements
identified in Section 1—reliability, explainability, adaptability,
and scalability—can be satisfied simultaneously when symbolic
constraints, context-sharing JEPA embeddings, and RL-based
planning are engineered to act in concert.

Beyond SDA and CFD, the modular, agent-society design
and blackboard transparency provide a transferable blueprint for
high-stakes applications such as autonomous energy management,
industrial-facility operations, and fusion-plant control. Ongoing
work will focus on adaptive constraint tuning, edge-optimized
agent distillation, deeper latent-space interpretability, and formal
verification of multi-agent safety. Taken together, these directions
aim to turn reliable hybrid intelligence from a promising prototype
into a routine ingredient of next-generation industrial and
defense systems.
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