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Haptic feedback, or tactile perception, is presented by many authors as a
technology that can greatly impact biomedical fields, such as minimally invasive
surgeries. Laparoscopic interventions are considered the gold standard for many
surgical interventions, providing recognized benefits, such as reduced recovery
time and mortality rate. In addition to this, the advances in robotic engineering in
the last few years have contributed to the increase in the number of robotic and
tele-operated interventions, providing surgeons with fewer hand tremors and
increased depth perception during surgery. However, currently, both techniques
are totally or partially devoid of haptic feedback. This added to the fact that
the skill acquisition process to be able to use these technologies shows a
pronounced learning curve, has propelled biomedical engineers to aim to
develop safe and realistic training programs using simulators to address surgical
apprentices’ needs in safe environments for the patients. This review aims to
present and summarize some of the latest engineering advances reported in
the current literature related to the development of haptic feedback systems in
surgical simulators and robotic surgical systems, as well as highlight the benefits
that these technologies provide in medical settings for surgical training and
preoperative rehearsal.
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1 Introduction

Nowadays, laparoscopic surgery is a minimally invasive
procedure considered the gold standard approach in many surgical
interventions due to the many advantages that the technique
provides, such as reduced recovery time and lower mortality
rates (Kawka et al., 2023). However, laparoscopic training shows a
pronounced learning curve that enhances the need for safe training
programs for the patients that are also effective for the surgical
apprentices outside the operating room (Kim et al., 2021; Braga et al.,
2012). This surgical technique requires a deep understanding of
laparoscopic instrumentation and a training period with diverse
experiences and scenarios so that the trainee can be aware of the
possible complications and learn how to prevent and treat them
(Tang et al., 2017). The acquisition of these skills is challenged by
the restricted working hours that limit the process of teaching and
learning minimally invasive techniques (Sparn et al., 2024).

Following the example of the aviation industry, in which
simulations are used to achieve the eminent technical skills required,
along with a very small margin of error, technological advances in
computer-aided simulations are also being applied to laparoscopic
training (Vitish-Sharma et al., 2011). The creation of virtual
environments provides the opportunity to recreate tailored and risky
surgical situations without real-life repercussions, so surgeons can
mitigate skill decay over time and trainees can improve according
to their personalized needs and increase their confidence in their
surgical skills (Nassar et al., 2021; Lohre et al., 2021; Mao et al., 2021).
Considering that a hundred cases may be required for appropriate
learning of the most complex procedures, virtual and computer-
based simulations provided by biomedical engineers may be a good
source of unlimited training cases (Susmitha et al., 2015).

In addition to this, laparoscopic surgery can benefit greatly
from simulations since surgical instrumentation differs from the
one used in conventional open surgery. Furthermore, psychomotor
practice of complex maneuvers is required before the actual surgery
to prove sufficient surgical competence to participate in human
interventions, where margins of error are very small (Cardoso et al.,
2023). Some of the required dexterities include aspects such as
appropriate depth perception, hand-eye coordination, or bimanual
manipulation (Vitish-Sharma et al, 2011; Sinha et al, 2017).
For these reasons, the usage of these simulators would optimize
the training time inside the operating room, where once the
technical side is assimilated, the teachings can be more focused
on decision-making training and intraoperative complications
treatment (Matwala et al., 2024; Selva Raj et al., 2024).

Current laparoscopic simulators, such as the LapMentor™
(Simbionix USA Corp. Cleveland, OH) provide basic skill
training, procedural tasks, simulation of full procedures, and
feedback upon completion regarding parameters such as efficiency,
accuracy rate, or safety parameters. Simulators usually provide
performance curves that can be used to optimize training
by tracking improvements and tackling specific weak points
(Olivas-Alanis et al., 2020; Atesok et al., 2017).

Robotic surgery, on the other hand, provides high accuracy
when performing repetitive tasks, with the additional advantage of
telepresence, where a master console controls the slave robot that
executes the command (Biswas et al., 2023). Surgical robots are
composed of articulated instrumentation that accurately reproduces
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surgeons movements, overcoming the limitations imposed by the
long and rigid instruments used in laparoscopic surgery. In addition
to this, they provide relevant benefits, such as precise movements
without tremors or improved visualization, which have contributed
to their increased use over the years (Meli et al., 2017; Goldberg and
Guthart, 2024; Mertz, 2022).

The ongoing engineering developments and applications of
surgical robots are reflected in the percentage of robotic surgeries
performed in the last years, which went from 1.8% in 2012 to
15% in 2020 (Sheetz et al, 2020). The most prevalent robotic
surgical system is the da Vinci robot (Intuitive Surgical Inc.),
created in 2000 with four different generations developed over
the last 20 years, and the first to have FDA approval for surgical
applications (Hamdi et al., 2024).

Other robot-assisted surgical systems are: the Arthrobot,
developed in 1983 and considered the first robot to assist a surgical
procedure in history (The Medical Post, 1985); the Puma robot,
developed in 1985, used to perform a brain biopsy (Kwoh etal., 1988)
and a transurethral prostate resection (Davies et al., 1991); and the
ROBODOC, developed in 1991, and involved in assisting in implant
positioning (Taylor et al., 1999).

However, although in laparoscopic surgery, the tactile
perception, or “haptic feedback,” is severely limited by the
interaction between laparoscopic instruments and the patient, in
robotic surgery, the telemanipulation and the physical isolation of
the surgeon from the patient worsen even more this sensory loss
since direct contact between these is nonexistent (Meccariello et al.,
2016). Therefore, the lack of haptic feedback is currently the
main limitation of robotic surgical systems, especially since it
is considered a key element to increase performance in a wide
variety of tasks, such as robotic catheter insertion, palpation,
or microneedle positioning (Meli et al, 2017; Najafi et al,
2023). In addition to this, the lack of haptic feedback also leads
to excessive force application when using robotic systems for
inexperienced surgeons (Jourdes et al., 2022).

Haptic feedback can be divided into kinesthetic and cutaneous.
While the first one is related to the forces applied to joints and
muscles, the latter is focused on tactile sensations associated with
the skin. Tactile haptics refers to the stimulation of tactile sensing
through haptic devices, which evokes the real feeling when touching
an object (Selim et al., 2024; Abiri et al., 2019a).

Under the term “haptics”, several magnitudes are included, such
as pressure, forces, texture, temperature, or vibrations (Shi and
Shen, 2024). In humans, the sense of touch requires a combined
activation of both tactile and kinesthetic force feedback through
mechanoreceptors in skin and muscles, respectively. However,
contrary to what happens in open surgery, in minimally invasive
interventions, sensory perception is limited to the interaction
between the tissues and the instrumentation used (Jourdes et al.,
2022). While in open surgery surgeons rely on their fingertips’
sensations, in minimally invasive surgery all the sensory feedback
comes from the tip of the tool that the surgeon uses.

Most minimally invasive devices lack haptic feedback, and
physicians deal with an absent touch perception that difficult
crucial tasks, such as tissue manipulation (Selim et al., 2024;
Abiri et al,, 2019a) since surgeons make use of their sense of
touch to locate hidden structures and to distinguish abnormal
tissues based on their altered mechanical properties in comparison
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to the healthy adjacent ones. Many researchers have focused on
developing tactile feedback systems using vibrational or pneumatic
stimuli to activate skin mechanoreceptors to improve surgical
performance (Abiri et al., 2019a). Therefore, it is critical to dispose
of devices capable of delivering haptic feedback during training, in
the case of simulators, and intraoperatively, in the case of robotic
surgeries (Abiri et al., 2019b).

Furthermore, considering that tactile sensations are essential in
surgical fields, the archetype of a surgical simulator should provide
an immersive experience, with the same stimuli and sensations that
are encountered in the operating room (Di Vece etal., 2021). Current
simulators come with some degree of feedback for the trainee. This
feedback can be augmented feedback, referring to the information
or total score that the users receive according to their technique
(patterns, incorrect movements...), or intrinsic feedback, related to
the sensorial stimulation that the trainees experience while using the
simulator (haptics, audiovisual...) (Nassar et al., 2021). In addition
to this, the main components responsible for haptic feedback are
sensors and actuators. While sensors act by detecting the forces that
the user applies to the tissues through the instrumentation, actuators
transmit this information to surgeons’” hands (Abiri et al., 2019b).

Surgeons usually compensate for this lack of haptic feedback
by increasing their training level and experience, and by focusing
on intraoperative visual cues. However, this may lead to longer
interventions and increased risk of complications than if haptic
feedback were perceived similarly to in open surgery (Pinzon et al.,
2016). Considering that the perception of an object’s mechanical
properties requires a combination of visual and haptic information,
motor task performance can be greatly improved by integrating
haptic feedback that complements the already existing visual
information (Pinzon et al., 2016).

In light of the above, this review aims to provide insights
into the benefits and limitations of laparoscopic simulators and
robotic surgery, the recent bioengineering developments in haptic
feedback integrations, and their potential impact on training and
procedure outcomes.

2 Benefits of laparoscopic simulators
in medical training

Several authors have explored the utility of simulators for
medical training. For instance, the impact of computer simulators
on surgical skills was evaluated on a 3-week training program on a
LapMentor™ simulator that included residents and medical students
with basic to no laparoscopic experience (Kim et al., 2009). The
authors showed that residents with some laparoscopic background
initially benefited the most from the program, with faster acquisition
and accuracy of the learned techniques, evaluated according to each
task’s total transit time and accuracy. However, in the last stages of
the interventional program, medical students improved significantly
to almost reach the residents’ level of proficiency (Kim et al,
2009). These findings seem to indicate that, regardless of initial
laparoscopic experience, computer-based simulators can help in
a substantial acquisition of surgical techniques within a short
time frame.

In addition to this, another study carried out a 4-week
training intervention on 21 surgical residents using a LapMentor™

Frontiers in Robotics and Al

03

10.3389/frobt.2025.1567955

simulator (Andreatta et al., 2006). Once the program was completed,
they evaluated participants’ improvement by putting into practice
some laparoscopic skills in male pigs. The author reported a
more accurate and precise 30° camera navigation in comparison
to the control group as well as better ambidexterity abilities.
The clinical consequences of this improved performance were
less peripheral organ injury and decreased rates of untargeted
electrocautery damage.

Important aspects of these simulators are their predictive
validity, which refers to how reliably the real-life proficiency can
be predicted according to the surgeon’s score and performance
on the simulator, and their construct validity, which appropriately
distinguishes experienced from inexperienced surgeons according
to their score on the simulator. These parameters were evaluated
by some authors, who correlated motion analysis data obtained
from the LapMentor™ with the outcome of video assessments
and the surgeon’s experience. They reported that the LapMentor™
distinguishes novices from experienced laparoscopic surgeons, and
also that those with accurate performances on the simulator also
executed safe laparoscopic procedures (Matsuda et al., 2012).

Some authors compared the efficiency of the LapMentor™ in
comparison to a box trainer [Large Body MITS (TRLCDO5)]. After
3 h of training for each group, the authors described an increased
safe performance in both groups, which was higher in the group
trained with the LapMentor™ simulator. The authors evaluated path
length, tissue handling, and how the trainees were able to maintain
the surgical instruments within the field of vision, and suggested
that a combination of both methods may lead to a reduction in the
learning curve and better laparoscopic training (Vitish-Sharma et al.,
2011). In addition to this, simulators provide additional benefits
lacking in box trainers, such as personalized feedback or complex
procedure simulations (Vapenstad et al., 2013).

A more broad-ranging study was performed of three different
simulators: LapSim® (Surgical Science Sweden AB, Gothen ®burg,
Sweden), LAP Mentor III® (Simbionix, Tel Aviv, ®Israel), and
LaparoS® (VirtaMed AG, Zurich, Switzer land). The authors showed
faster task completion and a reduced path length in tasks such
as bimanual handling, clip application, and tissue dissection.
Moreover, they also reported that remarkable improvements can be
achieved in virtual laparoscopic training regardless of the type of
simulator employed (Sparn et al., 2024).

3 Value of haptic feedback technology
in simulators for surgical training

In addition to appropriate training, touch sensations are also
extremely important for surgical performance. It has been reported
in the literature that better performance and higher learning rates are
observed in trainees who were exposed to haptic feedback during
their training stages than those who were not trained using haptic
feedback. This improvement is especially remarkable in the early
stages of learning (Zhou et al., 2012).

Since the haptic feedback in current simulators is not yet well
developed, most of the laparoscopic learning process is spent on
adapting to the loss of physical cues and their replacement with
visual ones (Trute et al, 2024). Surgeons are already so used to
this sensory substitution that some studies reported that when
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experienced surgeons undergo laparoscopic training without haptic
feedback, their performance does not seem to be greatly affected.
This is a consequence of their vast experience, which allows them
to replace the haptic feedback with visual cues learned during
their careers (Pinzon et al., 2016).

Nevertheless, many bioengineering studies are working on
mimicking tactile feelings using haptic devices and on simulating
as realistically as possible both the appearance and the interactions
between the different instruments and the tissues involved (Table 1).

To achieve this, some authors focused their efforts on gathering
information about this tissue-tool interaction and how it is
perceived by surgeons to develop an accurate model. They evaluated
surgeons perception of tissue stiffness when using laparoscopic
instruments and compared their subjective opinions with laboratory
measurements (Pinzon et al., 2016). The authors reported that
the bigger the amount of tissue held in the grasper, the more
accurate their stiffness assessment. Moreover, they also proposed
four parameters responsible for the differentiation among several
tissue types, which are the mass of the tissue, the mass of the tissue
held by the laparoscopic instruments, tissue stiffness, and the degree
of attachment to the abdominal wall (Pinzon et al., 2016).

Regarding the value of haptic feedback, previous work proposed
suturing as a surgical task that benefits greatly from the tactile
sensation of the tissue tension and suture thread tightness.
Since the interactions between the different elements (needle,
tissue, thread, instruments...) were so important, trainees did not
benefit from the available simulations at that time without any
haptic feedback, and participants reported a preferred use of box
trainers instead (Botden et al., 2008).

However, a posterior study showed that haptic feedback is
more relevant in some force-related tasks than in orientation-based
procedures that require precise gestures and instrument control,
such as suturing or knot-tying (Zhou et al., 2012). This reinforces
the results of a recent publication, in which haptic feedback is
presented as especially relevant for some crucial laparoscopic tasks,
such as the abdominal insertion of the needle (Di Vece et al,
2021). This procedure heavily relies on tactile perception as the
needle is inserted across the layers of the abdominal wall. The
authors developed a simulator called OpenHapticsTM to evaluate
the combined benefit of the combination of virtual simulations and
haptic feedback for an appropriate insertion of the Veress needle
without internal organ damage (Figure 1) (Di Vece et al,, 2021). In
this line of thought, some authors also explored the influence of force
feedback on the amount of exerted force during dissection tasks
using a master-slave device. They found a decrease in the applied
forces when haptic feedback was present (Pinzon et al., 2016).

Considering the importance of haptic feedback, to further
enhance training using devices with this property, a very recent work
aimed to develop a dual-user simulator and achieve haptic feedback
transfer from one user (e.g., an experienced surgeon) to another
(e.g., a trainee), and guide novices’ hand movement based on the
maneuvers executed by the expert surgeon. The authors of this work
reported improved learning when haptic feedback between users
was involved, and when trainees were assisted in simple executive
tasks with laparoscopic tools, although further studies are required
for more complex procedures (Figure 2) (Zhang et al., 2023).

In addition to this, recent improvements are being made in
the development of new haptic laparoscopic tools. For instance, a
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haptic laparoscopic grasper called the Force Reflecting Operation
Instrument (FROI) was created using optical fiber Bragg grating
technology and provides some resistance at the level of the
tool trigger, as well as an audio warning and a mechanical
brake that is activated when excessive forces are exerted over
the tissue (Alleblas et al., 2019).

In this line of thought, some authors have previously explored
the ergonomic aspects of laparoscopic handle design. They reported
a considerable number of physical complaints from experienced
surgeons associated with the use of laparoscopic instruments (i.e.,
the standardized size of the tools), which can lead to excessive
force application and unfavorable postures (Alleblas et al., 2016).
This highlights the importance of ergonomically designed handles
that may optimize the implementation of laparoscopic tools with
haptic feedback.

The value and significance of simulators have been enhanced
in the last years, after the COVID-19 pandemic. A few years
ago, the Royal College of Surgeons of England (RCSE) published
a report after the pandemic about how technology may help to
identify trainees’ needs and enhance surgical training, especially in
those situations (i.e., a pandemic) where the number of surgical
interventions is reduced to the bare essentials and no real practice
is possible. The RCSE reported that virtual solutions may help
assess surgical competence and involvement in surgical training.
Furthermore, they stated that although haptic feedback may increase
the applicability of simulation technologies, further research is still
required for its optimization (Adebayo et al., 2022).

In light of the above, it is evident that laparoscopic simulators
are a potent tool to refine surgical competence outside of the
operating room and achieve a proper transfer of the learned skills
to real-life clinical scenarios. However, the application of this
technology in clinical frameworks may be cost-prohibitive, and open
centralized training centers may help to overcome this limitation. In
addition to this, the implementation of haptic feedback in simulation
technologies is challenged by the need for realistic modeling of
the elements involved in a surgical intervention (i.e., tools, organs)
and the interactions between them, as well as the computational
costs that these calculations require (Jourdes et al., 2022). Moreover,
tissue simulations are often based on laboratory measurements
from cadaveric samples, which makes the biomechanical properties
simulated (Young’s modulus and Poisson’s ratio) unrealistic, and
require more in vivo measurement approaches.

4 Robotic surgery and haptic
feedback integration

Robotic surgery arose as a technology aimed at overcoming
some of the limitations of laparoscopic surgery, such as hand
tremors, poor depth perception, or the impossibility of telepresence.
However, while laparoscopic techniques provide surgeons with some
extent of haptic feedback, robotic surgery suffers from a complete
loss of it. In addition to this, robotic surgical systems are more
complex and entail some costs related to their acquisition and
maintenance (Bergholz et al., 2023), as well as others associated
with disposable supplies, such as trocars or drapes (Feldstein et al.,
2019). This makes robotic surgery considerably more expensive
than conventional minimally invasive surgery (Hamdi et al., 2024;

frontiersin.org


https://doi.org/10.3389/frobt.2025.1567955
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

10.3389/frobt.2025.1567955

Laga Boul-Atarass et al.

(a8ed Surmor(oy a1y} uo panunuoD)

soueurroyrad

JO UOTeN[BAD [BQO[D) *

jou Jo (y3Suams) Areny) «

pea1yy oy Jo 1ysn Suyng «
12p[oy

e punode peaIt) wgwgohﬁ .
Surmns Surmp ‘ped Surmins

a1 jo $331q 1odod Sunyey, «
ped Surmns

ySnoxyy ofpaou Suruuny «
19p1oy

1) UI 3[Paall Y} JO UONISOJ *

JoWwy 221J 1SN
armn)ns pajdnrIayur onsIeay
Jowy sU0adIns onsieay

sjouy ordossoredey uonoen} syrod Idures} Xog SPUBLIAYIIN
[euty aY) JO SIa)oWeIe] M [DITIS PIPURY-OM], ELON JUAWNISUT J.LH 108X 1ojeurs £1a8mgurg S)uapISal [ed13Ins Gf saeIuy qery pajun 8002 (8007) ‘e 32 uapjog
SURIOTUTDI)
SIUAWNIISUT YOeqPad) [edtpawr pue suoafins
Yoeqpaay ondey sndey spremo) suoneydadxo S[oISIJ sunjerpad ‘sysiojoan
Juawssasse draSpuer] pue suStsap afpuey SurpreSox sa[puey dul[-uf ‘suoagims [erouaf
:Burssasse sarreuuonsang) suorurdo 31adxs ureyqQ paymadsun SI0SSIOS s[003 ordoosorede “s351301000u4S 67 SPUBLIYIIN 910T (9107) 'Te 32 Se[qR[[V
SUOT}3sSIp 193210 [enaed 9
SIIUWOJILIBAO T (104d)
(xopu] peo SATWI0)D2IISAYIUAY 9 juswnxsuy uoneradQ
Yse], VSYN) 2ITeuuonsang) SUO1)29531 [omoq rented o1 paywadsun 1adserd ordoosorede Sunpayay 20107 suoagins 11 SPUR[IYION 610C (6102) T 9 SB[qa[TV
SOYBISTUI JO JOqUINN] * RUVSERIVEI
[se) 31 Jo uoneIn(J * 201M} sndey e £q pajonuod Lsondepyuadp sjuapn)s SaJeIS pajun)
JIO1Id UOTIISU] o Ayaed [euriropqe Yy $s320y J[moe], S[PIIN] SSAIA ASIVHD pue sysidojorn 1 Arey 1202 (1207) ‘T8 32 2997 1Ia
SIOLIY o
SSOUY[JOOLWS JUIUINI)SUT
red Juswnnsuy e AA-LSIN
uona[dwod yse) 03 dwry, « Surky-jowy pue Surming paymadsun s100) ordossorede| SINOId SIOTAOU ()7 $a1eIS pajun) 102 (2107) T8 12 noyz
sa[puey 2y} jo uondasrad Surdsesd pue Suryry d.LI 108X (gV 2ouaDg
31} 0} PaJe[aI SATRUUOTISANY) UOT}IISSIP AUL] 20107 JHI ey [ear8img) wrgde suoadns (g AemioN €102 (£107) 'Te 12 peasuadep
Aoemooe Jumny) «
saoue)sul
ypeqpasy ondey jo raquny e
s Surnd J0sSHS [810], ©
aUIT) 0SSTOS [BI0], (sarBojourpay,
swmn Surdsesd [eof, « xoq Sururen s10ss10s ordoosorede J[qeasuag)
awiT) Yse) [el0], ¢ © aprsut syse) Sumno-urajeq paymadsun Jadsein uwQ wojueyq SITAOU (O] epeue)) €207 (£207) e 12 Sueyy

Sjuswiainsealy

2dAy ondeH

syuswinAsu|

adINap
Bbulissuibuly

‘sioje|nwiis Ul 32eqpady oidey JnOge MIIASI SIL} Ul PapN|dul SAIPN)S JUeAddy T 379V.L

syuedidiyed

Jeap

ERIEIETEN|

frontiersin.org

05

Frontiers in Robotics and Al


https://doi.org/10.3389/frobt.2025.1567955
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

10.3389/frobt.2025.1567955

Laga Boul-Atarass et al.

aseafar
juerduur 10§ [0} [eroadg
(dny wonoo qadreos)
A1aarp Snip syuownysur JySreng
[eanyiaenur 1oy juerdwr a4 a8urifg S31BIS PAIUN)
— Ue JO [[J31 pue UONIIsu[ [ensip sdao1og (swra)s4S (1€) Xyonoy, — Aueurron 120C (1202) 'Te 32 uuewWIoy
[003 3]} JO UOTBIA[IDY o
A0[aA paag o £1981ns
ssaooxd [BIDRJO[[IXRUIOTURID
1)) Jo 520103 drydey] « 10§ S[00} IO (uorsuawi(y SIOTAOU 9
awmn aanerddQ « ampadsoxd Suimes-auog 0107 Mmeg 2107) 9'eSowr suoafins pasuarradxa ¢ iitiie) $10T (¥107) Te 32 ury
UOTJeAT)OR
Tepad 1005 Jo Aouanbarg «
uonoe
Surdseis jo Aouanboaxyg
S[00] [eN)IIA JO YIed *
uonajdwod
3[se1 JO Sy [eiey, »
PaAOWIDI aNSST)
Jown) pue Ayipeay 9 « Jowm) [eprouaydssuer) s18ewoan) 0’1 S)uAPISaI [ed1Ins 11 uede(
y10da1 jutod woIsSIO)) JO [eAOWIRY 0107 sdoorog WNIANTId WO.LNVHA suoadmsomoau j1adxa ¢ OOTXIN 6102 (6107) 'Te 32 Z219J-BIPAISH]
ampadoid oty
Jo Aoemodoe pue paadg Jusuraoerd 2010, saA0[3
aIreUTONSaNY) « UTRIP Je[NOLIJUIA [BUIDIXF 3[MOBI0IqIA [TuIp [es1ding sndey YAQN 240[Daswag SJuapIsaI [ed13Ins ¢ epeue)) $202 ($207) T8 32 unnog
UOT)RULIOJUT [EDTI)IWOIL) o
324> uonenuIIs [eAowax 20109 SI0SSIOS yonoy,
31} JO 1500 UL, * rewdyouared onedspy [ensip sdaorog s18ewoan) — 'UIYD 1202 (1202) T2 %@ NM.
(sdao10y
TaAT] Surdserd puerdreiy
a1 03 parjdde sad10g « “adserd yoooqegq (sarSojouyoay, $31BIS PaTUN
SaITRUUONSINY) * uoneded 1oAry 20109 “8'9) uonjedred 105 sjoo], 9[qeasUag) TUW () WOIURYJ — BIURWOY (404 (2107) 'Te 32 dnp-ezwepy
sdwrep wnrueny,
S[2SS9A JO UONOUN(SIT sao10§ Surdsern yonay,
days yoea Jo 3500 owm Ay, ampadoxd Surddip 0104 Yooy uorjenseo) s18ewoan) — 'UIYD 20T (2207) Te 3 N
SJUSWINIISUL
swmn uonenduwo) [eAOWII JappPe[q[eD 2210 srdoosorede] euonuasuo)) 251A9p pausisap-woysny) — ©AIOY INOS €10T (£107) Te 32 Wy
0107 dueI]
soum) unndwoy sansst) Jos jo Surreq], [ensip 1adsesd ordoosorede y[00], sondequadQ — uredg 810C (8107) 'Te 32 epesand)

Sjuswainseaiy

ad/y ondeH

sjusWINIISU|

aoInop

Burissuibuz ERIIEYETEN|

's103e|NWIS Ul }2eqpaay ondey 3noge MalAaJ SIY} Ul papn)oul S3Ipn3s JUBAR)Y (Panuiuo)) T 319Vl

frontiersin.org

06

Frontiers in Robotics and Al


https://doi.org/10.3389/frobt.2025.1567955
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Laga Boul-Atarass et al. 10.3389/frobt.2025.1567955

b a. Anatomical realism

b. Interaction with anatomy

2 c. Realistic haptic feedback

h —_ 1 ¢ d. Intuitive use for trainees

e. Measurements of training outcomes
f. Reproducible results

e K 4 d g. Non-invasiveness

h. Commercial viability and relevancy

i. Adaptability

[ OpenHaptics™ Toolkit m CHAI3D

Application Application
*hkk Fkdk Fedkk 3.5 A
1
43 dokkk 4 ) 3
= s =
E 45 % 25
2 3 o s 2 ;
g 25 e & B
w 2 ° = 1.5
5 ¢ - B |
© o5 05 l
0 s 0
(a) Separate groups (surgeons and students) (b) Merged groups

FIGURE 1

Qualitative features of two simulation platforms, the OpenHapticsTM and the CHAI3D (upper panel). Boxplots showing performance of surgeons and
students at two different attempts, using the simulation platforms (lower panel). Image modified from Di Vece et al. (2021). (a) Seperate groups
(surgeons and students). (b) Merged groups.
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FIGURE 2
Time measurements over six training sessions. Image obtained from Zhang et al. (2023).
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El Rassi and El Rassi, 2020). The technical complexity, the economic
costs, and the need to modify current instrumentation are the
main limitations of haptic feedback integration with current robotic
technologies in surgical settings (Hamdi et al., 2024). Table 2 shows
the most relevant works on robotic surgery and haptic feedback
included in this section.

The lack of haptic feedback in robotic surgery, along with the
inherent capacity of surgical robots to exert strong compressive
and shear forces, has led to an increased risk of surgical mistakes
during blunt dissection tasks and intraoperative tissue injuries. In
the absence of haptic feedback, previous studies have reported that
forces of only 1.25 N can cause tissue damage (Abiri et al., 2019a). In
this regard, some authors have presented design frameworks aimed
at providing an adjustable and constant force to ensure safe tissue
maneuvering during minimally invasive robotic interventions in the
absence of haptic feedback (Cheng et al., 2023; Sun and Lueth, 2023).

In addition to this, the importance of haptic feedback in tissue
handling was also evaluated in a study in which haptic feedback was
incorporated in a Parallel Robot Assisted MIS System (PRAMISS)
that measured tissue interaction forces at the tooltip and achieved
a proper attenuation if these were excessive (Moradi Dalvand et al.,
2014). Moreover, authors of a recent evaluation reported 22.7% more
force application by novices than experienced surgeons. They also
showed that trainees benefit from feedback mechanisms, leading to
a47.9% decrease in the exerted forces (Golahmadi et al., 2021).

In a similar study, authors developed a robotic master-slave
system called FLEXMIN to evaluate the effect that tactile perception
has on the forces applied using the surgical robot. In this work, the
authors also reported a significant reduction in the exerted forces
when haptic feedback was present (Figure 3A) (Miller et al., 2021).

Considering that the actuators transmit information to surgeons’
hands according to what the sensor in the robotic instruments
detects, the conversion process of the information from the sensor
to the actuator is the main factor to address to provide natural haptic
feedback that consists of more than just vibration or pressure. Some
authors aimed to develop bioinspired algorithms that convert the
information received by the sensors in a similar way that rapidly
adapting type 1 neurons and Pacinian corpuscles do in the skin to
increase performance. With this approach, they achieved less force
exertion and better localization of soft tumors (Ouyang et al., 2021).

In addition to this, other recent works have been reported
progressing towards the development of haptic sensations in robotic
surgery. For instance, some authors are developing a wearable
glove (Figure 4A) with robotic surgical fingers that use vibrational
amplitude differences to help surgeons distinguish between hard,
firm, and soft surfaces (Hamdi et al, 2024). Additionally, they
also report a good correlation between the surgeons and the
robotic finger’s movements (Figure 4B). On the other hand, other
studies propose alternative mechanical feedback approaches, such
as pneumatic balloons for the da Vinci robot that stimulate
surgeons mechanoreceptors (Abiri et al., 2019b). This is an example
of how some authors are also exploring the incorporation of
analog or hybrid haptic solutions to avoid adding complexity to
the already complex robotic devices. Additionally, these hybrid
implementations (Abiri et al, 2019b; Ueda et al, 2023) are
potentially less expensive than fully digital haptic systems, which is
one of the main limitations of the acquisition of surgical robots.
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However, despite the extensive research focused on the
development of haptic feedback in robotic surgery in the last
few years, current technologies still fail to replicate the natural
touch feelings. This is a consequence of the current unimodal
technologies, which focus on a single modality of feedback
(tactile or kinesthetic) (Amirabdollahian et al., 2018). This
approach is not well interpreted by the human brain, which is
accustomed to receiving and integrating sensory signals from
both pathways.

Therefore, multimodal haptic feedback systems that target skin
and muscle mechanoreceptors constitute a promising approach
to the current haptic feedback challenge in minimally invasive
surgeries, both robotic and laparoscopic. Nevertheless, this line
of action has not been widely explored, due to the technical
limitations associated with the integration of several sensing and
feedback modalities. Some authors explored this approach by
developing a multimodal haptic feedback system that combined
tactile and kinesthetic force feedback. In this study, the authors
evaluated this multimodal system through the performance of
two-handed peg transfer tasks and recorded the users’ grip
force. With this multimodal system, authors reported greater
benefits, especially in novice surgeons, in comparison with single
modality systems. Among the observed advantages, authors
described 50% less grip force than when haptic feedback is absent
(Figure 3B) (Abiri et al., 2019a).

Additionally, the introduction of haptic feedback systems in
robotic surgery is limited due to the requirements for modification
in robotic instrumentation. Some authors have proposed employing
multimodal haptic feedback sensors as add-ons to robotic tools,
therefore allowing some degree of versatility and compatibility
with several robotic systems available on the market. They
evaluated the ability of this approach to accurately discriminate
soft tissues and discern underlying structures through force
and vibrotactile feedback and found that multimodal haptic
feedback significantly increased the effectiveness of artificial
palpation devices (Abiri et al., 2019b).

Since haptic feedback in robotic surgery is still far from
developed, many studies have focused on understanding how
robotic surgeons rely on visual cues to evaluate and interpret
the surgical field, and how their expertise also may impact the
interpretation of this visual information and therefore, the surgical
outcome, when haptic feedback is nonexistent (Green et al., 2022;
Hagen et al., 2008). In addition to this, some authors have also
performed some comparisons between visual and haptic feedback
in virtual reality environments, where users were found to perceive
better the interactions when both modalities coexist, although
haptic feedback alone was more effective than visual feedback alone
(Gibbs et al., 2022). On the other hand, a different study performing
a similar comparison using a robotic arm found that visual feedback
modalities reduced the most the grasping force during object-
grasping tasks (Haruna et al, 2021). Therefore, appropriate and
comprehensive communication of visual information is key to
robotic surgery training so that future surgeons can interpret
visual signals of force application when working with insensitive
surgical robots (Miller et al., 2021).

In addition to this, when haptic feedback is not possible,
sensory substitution arises as a compensatory approach to provide
surgeons with a different sensory modality to represent, for instance,
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FIGURE 3

(A) Graphs showing force exertion (left), and error rates (right) with and without haptic feedback. Image obtained from Miller et al. (2021). (B)
Performance in terms of average and peak grip force under different feedback situations: no feedback (NF), tactile, kinesthetic, and hybrid feedback.
Image obtained from Abiri et al. (2019a). (C) Stress gradients representation on thread and tissue when excessive force is applied. Image

obtained from Jourdes et al. (2022).
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FIGURE 4

the wrist. Figure modified from Hamdi et al. (2024).
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(A) Master glove and robotic finger. (B) Master and slave motion at the proximal interphalangeal (PIP) joint, the metacarpophalangeal (MCP) joint, and

the force applied by the surgical instruments (Meccariello et al.,
2016), through graphical or audio feedback (Okamura, 2009). An
example of this is a work in which, to replace haptic feedback in
simulators, some authors developed a training approach in which
as the users perform tasks related to suturing and knot-tying,
they receive color-based feedback according to the stress fields
computation performed in real-time (Figure 3C). This approach
may help trainees acclimate to the lack of tactile feedback and
prevent excessive force application (Jourdes et al., 2022). However,
for other authors, sensory substitution is counterintuitive and
unnatural, may worsen the learning curve, and does not provide
any information related to hidden structures in the subsurface
(Miller et al., 2021).

To sum up, future studies are still needed to tackle some
important limitations of haptic feedback implementation in robotic
surgery. One of them is the standardization and magnification of the
force feedback perceived through the device (Pinzon et al., 2016).
In addition to this, there is a pressing need for feedback systems
that encode information in a way that emulates the human nervous
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system. A stable implementation should also be achieved without
time delays and communication latency during processing and
transmission tasks to minimize the risk of instability of the haptic
loop and compromise the surgery, especially for intercontinental
applications.

5 Case studies of novel haptic
feedback developments for
simulations and surgical robots

5.1 Abdominal surgery

Nowadays, the core problem that prevents current simulation
technologies from adopting haptic feedback is the feedback rates,
which need to be extremely fast (from 500 to 1kHz) to achieve
a realistic feeling. This implies a huge computational cost since
nonlinear mechanics equations must be solved around 1,000
times per second. In surgical simulations, the cutting steps that
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FIGURE 5

(A) Simulation of the clipping procedure during a cholecystectomy. Image modified from Wu et al. (2022). (B) Liver model illustration, showing the
mesh and physical particles of the liver surface (left), and intrahepatic vessels (right). Image obtained from Wu et al. (2021).

require big changes in the mesh topology are especially hard
to represent. For this reason, some authors have focused on
the simulation of interventions for the cutting steps that are
minimal, such as laparoscopic cholecystectomies, where only one
step is properly considered as cutting, and where tissue tearing
is a more frequent procedure. In a study, authors reported the
development of a novel algorithm for simulating the tearing of
the fat tissue that usually takes most of the intervention time,
with reduced computation times, and is compatible with haptic
implementations (Quesada et al., 2018).

There three procedures
cholecystectomy: 1) Calots triangle dissection, 2) cystic artery

are basic in laparoscopic
clipping, and 3) gallbladder separation. Some authors used finite
element methods to simulate the step related to gallbladder removal

that consists of the separation from the liver by burning the

Frontiers in Robotics and Al

surrounding connective tissue (Figure 5A) (Kim et al, 2013).
On the other hand, another study went further and tried to
simulate all three of them. Their approach facilitates both soft
deformation and haptic rendering and uses a position-based
dynamics method that overcomes the real-time limitation posed
by the high computational cost of finite element methods, but with
shortcomings related to the graphics and unrealistic visual results
(Wu et al., 2022).

In liver surgery, preoperative palpation is an important task that
can reveal multiple pathological conditions. With this in mind, some
authors presented a simulation system in which these palpation
skills can be learned, implementing a force feedback hardware
interface and a deformable liver model (Hamza-Lup et al., 2012). A
similar attempt was reported by authors who tried to simulate liver
parenchymal transection (Figure 5B) (Wu et al,, 2021).
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Surgical forceps with haptic technology for brain tissue stiffness measurement. Image modified from Ezaki et al. (2024).

measurement

In robotic interventions, the Senhance Surgical System (SSS) is
an alternative to the da Vinci robot. It has been tested for robotic
cholecystectomies, and some authors report good haptic force
feedback perception. The SSS also offers additional benefits, such
as eye-tracking camera control and high configuration versatility
(Aggarwal et al., 2020; Melling et al., 2019).

In addition to this, some authors are working on novel robotic
systems. For instance, a recently published study presented a
surgical-assisting robot (Riverfield Inc., Japan) with bimanual haptic
devices placed in the surgeon’s console. The device was tested in
animal models to evaluate its impact on force reduction in cases with
a high risk of intestinal damage (Ota et al., 2024).

5.2 Brain surgery

In brain surgery, the placement of a ventricular drain
to relieve intracranial pressure is a common procedure that

must be mastered by neurosurgical trainees. To help with
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this  task,
with haptic gloves, the SenseGlove NOVA gloves, which
incorporated vibrotactile feedback. The feedback
increased as the skull was penetrated by the surgical drill,

some authors developed a simulator combined
intensity

and then dropped to indicate that the drill must be stopped
immediately (Boutin et al., 2024).

Moreover, other complex surgical brain interventions
also benefit from virtual simulators, such as the resection
of pituitary tumors through a transsphenoidal procedure.
A study reported the development of an intuitive simulator
with haptic feedback that helped achieve finer movements
with less undesired contact with healthy tissue (Heredia-
Pérez et al., 2019).

In addition to this, during real-life brain surgery, it is of
utmost importance to distinguish between tumor tissue and normal
brain tissue according to stiffness differences. For this purpose,
some authors developed a haptic forceps prototype and aimed to
determine their clinical utility on mouse models of brain tumors

(Figure 6) (Ezaki et al., 2024).
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(A) Surgical grill and control unit representation. (B) Plots showing the time required for penetration detection and the distance traveled during that

time. Image modified from Yamanouchi et al. (2023).

5.3 Bone surgery

In bone surgery, bone sawing in maxillofacial surgery is a
complex procedure where surgeons must be sensitive to the force
they apply in the operating room. Due to the relevance of this
procedure, some authors aimed to develop a haptic simulation
platform where bone-sawing skills can be assessed and validated.
They employed multi-point collision detection methods to simulate
tool-bone interactions, and considered bone density (cortical and
trabecular), feed velocity, and spindle speed to simulate the
haptic feedback (Lin et al., 2014).

On the other hand, in robotic spine surgery, a recently published
study reported the development of a promising surgical drill that
integrates a haptic interface (Figure 7A). The authors performed
an evaluation test on female pigs to detect the penetration of
the posterior lamina. They found that in the absence of haptic
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feedback, the reaction time until surgeons perceived that they had
penetrated the lamina with the drill was 0.10-0.22 s, while in the
presence of haptic feedback, this reaction time was reduced to
0.01-0.02 s (Figure 7B). Therefore, the integration of these haptic
technologies may provide more safety and accuracy in spinal robotic
surgeries (Yamanouchi et al., 2023).

5.4 Cardiovascular surgery

In cardiovascular surgery, controlling the amount of pressure
exerted on the blood vessels is key for a successful intervention.
For this reason, cardiovascular interventions constitute another
category in which robotic approaches may be beneficial. For
instance, some authors developed a master-slave robot for
vascular interventions where catheters and guidewire insertions
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are needed. They aimed to create a steerable catheter with haptic
feedback to minimize the risk of vessel damage and the time of
radiation exposure (Woo et al., 2019).

5.5 Ophthalmological surgery

Intraocular surgery is one of the disciplines of microsurgery
and requires precise motor skills for safe outcomes since many
small and delicate structures are involved. To master some fine
maneuvers, some authors developed a virtual reality simulator in
which surgeons were able to train tasks such as the insertion
and refill of an eye implant for intravitreal drug delivery. The
system was also equipped with haptic resistance during the implant
insertion (Heimann et al., 2021).

Moreover, the absence of tremors in robot surgery is a
factor extremely beneficial in these interventions. Some authors
developed an eye surgery robot that would allow for to safe
The
haptic feedback using the Phantom Premium devices (Sensible

performance of micromanipulations. incorporation of
Technologies, 3D Systems) made it more intuitive and ergonomic
(Barthel et al., 2015).

6 Future directions of haptic feedback
systems in robotic surgery

Despite the great advances that have been witnessed in the field
of haptic feedback devices, there are still many areas that require
further development and research. For instance, some authors
support the idea that coupling haptic systems and current surgical
robots may lead to diminished surgical performance and heightened
physical fatigue during interventions. In this regard, ergonomics is a
concern when the surgical team is presented with large devices that
might interfere with usual hand movements, either because of their
dimensions or their weight (Colan et al., 2024).

Furthermore, in some clinical applications in which the
appropriate distinction between the different layers of tissue is
needed, such as needle insertions, current challenges rely on the
integration of haptic feedback systems for the identification of
changes in force measurements with reduced time delay and less risk
of tissue damage (Selim et al., 2024).

In addition, further research is still required to recreate
tactile sensations more accurately through haptic feedback systems.
Multimodal approaches combining kinaesthetic and tactile feedback
seem promising, but the determination of the best combination of
these modalities is still a challenge to be tackled in the future to
achieve a natural palpation feeling (Abiri et al., 2019b; Colan et al.,
2024). All these technological advances should be coupled with
training programs to teach and improve robotic surgical skills
among residents and surgeons.

Recent artificial intelligence (AI) developments can also
be applied to haptic feedback systems. The integration of AI
models with robotic surgical systems would not only improve
efficiency and accuracy by being involved in tasks such as the
identification of anatomical structures or path planning through
tasks, but also magnify the user’s sense of touch according
to the mechanical properties of the tissues (Kella et al, 2025;
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Sun et al,, 2022). In addition to this, some authors are currently
working on machine learning models that can also be used to
interpolate and infer the magnitude of haptic forces according
to measured deformations (Sun and Martius, 2019) and achieve
stable haptic rendering in real time for teleoperation applications
(Sun et al., 2024).

7 Conclusion

Laparoscopic simulators constitute an interesting resource for
medical training and preoperative rehearsal. Current bioengineering
approaches aim to improve training programs and surgical
outcomes, especially with the integration of haptic feedback systems,
contributing to more realistic interaction and training. Although
novel studies are being carried out to develop haptic feedback
integrations for both laparoscopic simulators and surgical robots,
further research is still needed to achieve bioinspired artificial
palpation that is both affordable and realistic.
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