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Consideration of communication
in human–machine interaction
for cooperative trajectory
planning

Julian Schneider*, Balint Varga and Sören Hohmann

Institute of Control Systems (IRS), Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

Interactive human–machine systems aim to significantly enhance performance
and reduce human workload by leveraging the combined strengths of humans
and automated systems. In the state of the art, human–machine cooperation
(HMC) systems are modeled in various interaction layers, e.g., the decision
layer, trajectory layer, and action layer. The literature usually focuses on the
action layer, assuming that there is no need for a consensus at the decision
or trajectory layers. Only few studies deal with the interaction at the trajectory
layer. None of the previous work has systematically examined the structure
of communication for interaction between humans and machines beyond
the action layer. Therefore, this paper proposes a graph representation based
on a multi-agent system theory for human–machine cooperation. For this
purpose, a layer model for human–machine cooperation from the literature is
converted into a graph representation. Using our novel graph representation, the
existence of communication loops can be demonstrated, which are necessary
for emancipated cooperation. In contrast, a leader–follower structure does
not possess a closed loop in this graph representation. The choice of the
communication loop for emancipated cooperation is ambiguous and can take
place via various closed loops at higher layers of human–machine interactions,
which open new possibilities for the design of emancipated cooperative control
systems. In a simulation, it is shown that emancipated cooperation is possible
via three variants of communication loops and that a consensus on a common
trajectory is found in each case. The results indicate that taking into account
cooperative strategies at the trajectory layer can enhance the performance and
effectiveness of human–machine systems.

KEYWORDS

communication, human–machine cooperation, shared control, cooperative trajectory
planning, human–machine interaction

1 Introduction

By using human capabilities synergistically with automation, interactive
human–machine systems promise to improve performance and reduce human workload,
leading to a symbiotic statewhere human cooperation seamlessly integrateswith automation
(Inga et al., 2022). Such interactive human–machine systems have been studied and
developed in the past in the context of driver assistance systems (Marcano et al., 2020)
and teleoperation systems (Li et al., 2023; Grobbel et al., 2023) under the term shared
control. Interactive wheelchair applications are another frequently considered application
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in this field (Carlson and Demiris, 2012). A common assumption
in these works is the existence of a trajectory for the cooperative
system and the knowledge of both agents about this trajectory. In
the context of assisted driving, for example, this is the center of the
lane as a known reference for both agents (Claussmann et al., 2020).
According to Schneider et al. (2024), however, this assumption
cannot generally bemade. To establish a common reference between
humans and automation, a cooperation process must take place at
the trajectory layer (TL) in advance. For this purpose, an approach
for cooperative trajectory planning is proposed in the form of an
agreement process, which aims to reach a consensus on a common
trajectory (Schneider et al., 2022).The application considered in this
context is accompanying a patient to examination rooms.

Efficient and human-centric cooperation requires a
communication channel (Lunze, 2019, p. 13). The communication
between humans and automaton proposed by Abbink et al. (2018)
and applied by Rothfuß et al. (2020) should take place as directly
as possible and within a single layer via a separate communication
interface. According to this design rule, a dedicated communication
interface must be provided to agree on a common trajectory.
Humans would, therefore, have to communicate their desired
trajectory via an additional communication interface. However,
an additional communication interface is rather unfavorable for
two reasons: first, the constant communication of the desired
trajectory represents an additional task for the person parallel to
the execution of the movement, which can result in performance
costs in the form of higher response latency or higher error rates
in task execution (Fischer and Plessow, 2015). Second, according
to Todorov and Jordan (2002), trajectory planning and execution
in humans are often intuitive and combined, which can make
it difficult for them to explicitly communicate their trajectory.
Based on these limitations, the authors of this paper propose a
communication method that occurs intuitively via the action layer
(AL) and does not require a separate communication interface.
Therefore, measured variables (state and control variables) from the
action layer can be used to estimate the trajectory intentions of both
agents. This approach represents an alternative communication
pathway between humans and automation, differing from the
approach recommended by Abbink et al. (2018).

In contrast to leader–follower approaches, an emancipated
interaction should take place for the investigated cooperation at
the trajectory layer as this offers advantages in the synergetic
interconnection of humans and automation, e.g., in information
gathering and sharing, where humans and automation can
complement each other in the sensor perception of the environment
in order to be able to react better to environmental influences as a
result of the combination (Pacaux-Lemoine and Makoto, 2015). The
underlying definition of emancipated cooperation is taken from
Rothfuß (2022, p. 9), according to which humans and automation
possess equal control authority.

Building on the state of the art in communication for
human–machine interactions (Section 2), this paper introduces
a graph-based taxonomy for describing different communication
paths in Section 3. To comparatively evaluate three proposed
communication paths, we conduct a simulative analysis within
a cooperative positioning application of a coupled human–robot
system (Section 4). Finally, Section 5 provides a summary of our key
findings and concludes the work.

2 Related works on communication in
human–machine systems

Communication is one of the central aspects of human–machine
cooperation (HMC) systems. Abbink et al. (2018) established the
link between shared control and communication from the Latin
word “communicare,” which means “to share.” Pacaux-Lemoine and
Vanderhaegen (2013) described communication between humans
and automation as a necessary element of the know-how-to-
cooperate (KHC) framework. This KHC, in turn, is central to
keeping humans in the control loop and thus avoiding potential
dangers that can arise when humans move out of it (Pacaux-
Lemoine and Trentesaux, 2019). Marcano et al. (2020) stated
that bidirectional communication is a necessary condition for
shared control systems. Bidirectional communication is generally
understood in such a way that signals can be transmitted in both
directions via a communication interface. However, bidirectional
communication does not necessarily have to take place via the
same channel, but the signal flow only has to represent a circular
structure between the sender and the receiver (Marko, 1973).
The layer models of human–machine cooperation proposed by
Flemisch et al. (2016), Flemisch et al. (2019), Abbink et al. (2018),
and Rothfuß et al. (2020) are rather generic in character and
draw general signal paths between humans and automation at all
layers (Pacaux-Lemoine and Flemisch, 2019). Abbink et al. (2018)
specify that communication between humans and automation
should be as direct as possible and without detours, e.g., via
delaying system dynamics. Losey et al. (2018) discussed different
concepts of this direct haptic communication channel (kinesthetic
and tactile) and the combination of channels (audio, visual,
and haptic).

In the multi-agent theory, communication is also a central
aspect. Lunze even stated that “cooperation needs communication”
(quote from Lunze). In contrast to the classic, single-player
automation design, it is not only the controller design that forms
the synthesis problem, but the communication concept (which agent
exchanges which information with which agent?) is also part of
the synthesis problem (Lunze, 2019; Barrett and Lafortune, 1998).
Individual agents that consist of controllers and corresponding
actuators are modeled as nodes in a graph. When modeling a
decentralized system using a graph, the immediate question that
arises is which nodes are connected to each other and what type
of energy and/or information is exchanged between them. The
matrix that indicates which node communicates with which node
is referred to as the adjacency matrix. One advantage of modeling
multi-agent systems via a graph is the analysis and calculation of
a consensus value, i.e., the agreement on a previously unknown
common reference state (Lunze, 2019, p. 57f). Depending on
the choice of the exact consensus protocol, the consensus value
depends, among other things, on the initial state x0 of the nodes.
Leader–follower structures, with respect to the consensus value,
are characterized in such a graph by an arrangement in which at
least one node has no incoming edges, thus representing a root
node of the graph (Lunze, 2019, p. 78). On the other hand, in a
strongly connected node arrangement, a path can be found from
each node to each other node. Each node has at least one input edge,
which means that each node contributes to the formation of the
consensus value.
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The graph representation of multi-agent systems thus enables
the description and analysis of a consensus process of an unknown
reference state and the representation of different communication
structures via different edge connections between nodes. This
exactly fulfills the two requirements for the development of
cooperation at the trajectory layer, as described in Section 1. The
graph representation also enables system analysis using graph
theory tools (e.g., identifying loops) and easy extensibility to
integrate additional agents, e.g., when a coupled HMC system
interacts with another human or agent in the environment (e.g.,
indicating the evasive direction to another vehicle or human
or obtaining information from another robot). Therefore, a
graph representation for cooperative human–machine systems
will be introduced in the following section, with which three
different communication paths will then be proposed in Section 4,
and a simulative comparison between the communication paths
will take place.

3 Graph-based taxonomy for the
representation of communication in
human–machine cooperation

From the perspective of multi-agent theory, the combination of
humans and automation in the HMC context can be described as a
multi-agent system consisting of two agents that communicate with
each other using a respective edge configuration. In the context of
haptic shared control, this is bidirectional haptic communication
at the action layer via the actuator in the form of the steering
wheel (Abbink and Mulder, 2010; Flad et al., 2014; Ludwig et al.,
2017; Marcano et al., 2020). Communication between humans and
automation can also take place symbolically via a tablet input in
the case of cooperation at the decision layer (Rothfuß et al., 2020).
These two examples clearly demonstrate that in HMC systems,
cooperation and, thus, communication take place at different levels
of task abstraction.

First, a brief clarification of the terminology used in this paper,
particularly the distinction between level and layer, is necessary. As
mentioned in Section 2, various layer models have been proposed
in the literature for the description of HMC. These models differ
in their focus mainly in three dimensions: first, the inclusion of
the perception–action cycle, the degree of task abstraction, and the
level of consciousness. What all models have in common is that
the behavior of humans and automation is described in hierarchical
levels and that these levels aremirrored across both agents.This leads
to the following two definitions.

Definition 1: A level is a hierarchical component of the description
of human or automation behavior.

Definition 2: A layer comprises a certain level of human behavior
and the corresponding mirrored level of automation behavior
together. Optionally, the layer also includes a communication
interface for interactions within the layer between the two
corresponding levels of the human and automation.

The butterfly model presented by Rothfuß et al. (2020) is one
form of an HMC layer model that focuses on the dimension of
the task abstraction level. It integrates decision-making and action

implementation aspects at the same time. This butterfly model was
used as the underlying layer model for the present work because of
its generic, application-independent character as well as its lack of
restrictions with regard to authority contributions (Rothfuß, 2022,
p. 26). These features make it suitable for emancipated cooperation.
Taking into account Definition 1, Definition 2, the model has four
layers, namely, the decomposition layer, decision layer, trajectory
layer, and action layer (see Figure 1, left). In the decomposition layer,
an overall task is broken down into subtasks, the sequence of which
is determined in the decision layer below. In the trajectory layer, the
trajectory is determined for each subtask, which is executed in the
lowest layer, i.e., the action layer.

In contrast to general multi-agent systems, the two agents,
humans and automation, are not each modeled as only one node
for the proposed taxonomy; rather, the levels from the butterfly
model are each modeled as a node (see Figure 1 right: four nodes
for each agent; one node for each level). There is also a system node
and a further node for each additional communication interface
on the individual levels (Figure 1, center). In the general case,
there are edges in both directions between all neighboring nodes.
A node can only ever be connected to the node from the layer
above and/or below it and to a communication interface node.
Edges that run across another layer node are not permitted in the
HMC graph. Figure 1 shows the general case of all possible existing
nodes and edges of the graph representation of the HMC model.
An instantiation of the model for a specific application generally
includes only a subset of nodes and edges. An HMC graph can thus
be defined as follows:

Definition 3: A human–machine cooperation graph G is a
directed graph consisting of a node set V =H,A,S and an edge set
E = P ,I . The node subset H denotes all human levels contained
in an HMC system. The node subset A denotes all levels of
automation contained in an HMC system. The node subset S
denotes all subsystems of the extended system contained in anHMC
system. This includes both the system as such and all included
communication interfaces. The edge subset P denotes directed
physical edges between two nodes, where energy flows. The edge
subset I denotes directed edges between two nodes, indicating the
exchange of information between them. A directed edge from node
i to node j is represented by (j→ i) ∈ E . A node in the HMC graph
G generally does not have a self-loop, i.e., an edge (j→ j).

Directed graphs can possess the property that every node can
be reached from every other node, which is referred to as strongly
connected [Lunze, p. 31]:

Definition 4: A directed HMC graph is said to be strongly
connected if there are directed paths fromanode i ∈ G to every other
node j ∈ G.

3.1 Definition communication loop

Emancipated cooperation, as described in Section 1, is
characterized by equal interaction between agents (Rothfuß, 2022,
p. 9), which is the opposite of a leader–follower structure. A
leader–follower structure is represented in the HMC graph as a
path-like structure with a root node, i.e., one (or more) node that
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FIGURE 1
Conversion of the butterfly model (left) as a representation of an HMC model into a graph representation (right). (a) Butterfly model (Rothfuß et al.,
2020). (b) HMC graph of the butterfly model.

has only outgoing edges and no incoming edges (Lunze, 2019, p.
78). For emancipated cooperation to exist, no node should only have
outgoing edges without any incoming edges. This is the case for a
strongly connected graph (see Definition 4), which is a necessary
condition for emancipated cooperation. Whether emancipated
cooperation takes place at a layer or not can be verified in the HMC
graph by identifying a loop that contains the respective level nodes
of both agents.

Definition 5: Communication loop for emancipated
cooperation: Emancipated cooperation is characterized by a closed,
circular signal flow from the node of one agent to the corresponding
node of the other agent in the same layer and back. In the HMC
graph, this represents a cycle, i.e., a closed path from node i back
to the same node i, with the condition that the path runs through
the corresponding node j of the other agent in the same layer. A
necessary condition for this communication loop is that the graph
must be strongly connected. Depending on the application, there
may be several possible communication loops.

Remark: the communication loop can occur either directly
between two nodes via a communication interface on the same layer
(intra-layer communication) or across several layers (inter-layer
communication). The special case of intra-layer communication
is the widespread concept of bidirectional communication, which
enables the signal flow via one channel in both directions.

In the following section, the presented definition of a
communication loop for emancipated cooperation is applied to
three examples of possible cooperation at the trajectory layer.

3.2 Application of the taxonomy to
cooperative approaches from the literature

Bidirectional communication plays a central role in the field
of haptic shared control (Abbink et al., 2018; Marcano et al.,
2020). Figure 2a shows the concept of haptic shared control in an
automotive application for lateral control, represented as an HMC
graph; the edge designations are taken from the haptic shared control
system structure described by Marcano et al. (2020). In this case,
the human and automation act simultaneously on the steering wheel
as an actuator with their steering torques TH and TA, respectively.
The human senses the feedback torque TF, and the automated
system measures the resulting steering angle δ as feedback. From
the steering wheel actuator, the steering angle δ acts on the vehicle
dynamics. This, in turn, acts as feedback on the steering wheel
actuator via the restoring torque Tal. There is a communication
loop at the action layer, with the steering wheel as the actuator
representing the communication interface.

Huang et al. (2022) presented a cooperative human–machine-
RRT approach that uses a safety assessment and classification of
the human driving style to carry out trajectory planning, which is
intended to guide the vehicle back into a defined safe space in the
event of a detected unsafe driving style of the human. In the case of
a detected unsafe driving style, it provides a corrective control input
uA on the vehicle movement. Figure 2b shows the corresponding
HMC graph for the lateral movement of the vehicle (longitudinal
movement not shown, but it works analogously). Interaction with
the human does not take place via a common communication
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FIGURE 2
Different communication pathways in HMC graphs of cooperative approaches from the literature. (a) HMC graph of Marcano et al. (2020). (b) HMC
graph of Huang et al. (2022). (c) HMC graph of Rothfuß et al. (2020). (d) HMC graph of Varga et al. (2020). (e) HMC graph of Benloucif et al. (2019). (f)
HMC graph of Losey and O’Malley (2018).
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interface. Nevertheless, there is a closed communication loop via the
action layer as the control variable uH of the human is evaluated
in order to determine the error to the safe space—noted here as
Δwsafe—and generate a corrective control input uA from this (loop
shown in yellow). The human’s trajectory request wH is not taken
into account, which means that there is no communication and,
thus, no cooperation at the trajectory layer (TL) between the human
and automation. The communication of the human’s trajectory
shown in green is, therefore, only a path from the trajectory node
to the system node. In contrast, the graph shows cooperation at
the action layer, where the communication loop is closed via the
system node. It has the special feature that the determination of the
corrective control signal uA includes trajectory planning. Based on
the leader–follower structure at the trajectory layer, with the human
as the leader (green path), and the determination of the corrective
control signal uA using a defined safe space, a control conflict is
assumed during the phases of automation intervention.

Rothfuß et al. (2020) developed a model that describes
emancipated cooperation between humans and automation at the
decision-making layer in an automotive application. It examines
the interaction between a human and an automated system,
where both must agree on a common turning direction at a
road junction (maneuver m ∈ {right, straight, left}, Figure 2c). The
interaction takes place via a tablet. Once an agreement has
been reached, the vehicle plans the trajectory wA of the agreed
maneuver to be driven fully autonomously and also executes it fully
autonomously. Figure 2c shows the HMC graph. In this case, the
communication path is a loop at the decision layer, with the tablet
as the communication interface.

Varga et al. (2020) presented a cooperative approach for vehicle-
manipulators, in which the vehicle (automation) and the human
(as the manipulator operator) cooperate. The special feature of
the system dynamics is the unidirectional coupling between the
vehicle and manipulator nodes (Figure 2d). The presented limited-
information shared control approach results in a communication
loop at the action layer, which is closed via the system of vehicle and
manipulator (yellowpath).Thehuman specifies the trajectory for the
manipulator (left green path). Automation estimates its reference ŵA
based on the human’s control variable. Both communication paths
at the trajectory layer are not closed, resulting in a leader–follower
structure with the human as the leader.

Benloucif et al. (2019) presented an approach that either takes
into account the reference of the human (in the case of σ = 1,
σ represents the driver attention state) or does not take it into
account (σ = 0) based on the measurement of a defined driver
attention state σ ∈ [0,1] (Figure 2e). For 1 > σ > 0, an additive
compromise is formed from both references. At the trajectory layer,
this results in a leader–follower structure for σ = 1 and σ = 0. A
compromise is found for 1 > σ > 0, but this is controlled by the
automation (Schneider et al., 2024).

Losey and O’Malley (2018) presented a trajectory deformation
approach, which, in addition to impedance control for the
movement of a robot-end effector (the yellow communication loop
in Figure 2f), enables humans to deform the reference wA of the
automation. If a force FH is measured, this leads to a deformation,
which is referred to as ΔwH in Figure 2f. The roof indicates that
this is an estimated value. If the human exerts a force FH and is,

therefore, ΔŵH ≠ 0, the human is the leader. If ΔŵH = 0, automation
is the leader.

Based on the HMC graphs shown in Figure 2, it can be observed
that communication paths are found in all works, which is a
characteristic of cooperation (Lunze, 2019, p. 13).Themost common
form of cooperation occurs at the action layer (Marcano et al.,
2020; Varga et al., 2020; Losey and O’Malley, 2018), with a special
feature in Huang et al. (2022), where cooperation at the action layer
includes the trajectory planning layer of automation. Rothfuß et al.
(2020) is the only work to present a cooperative approach at the
decision layer. Intra-layer communication, as defined in Section 3.1,
is present in Marcano et al. (2020) and Rothfuß et al. (2020). At
the trajectory layer, leader–follower structures are present. A closed
communication loop at the trajectory layer is not present in any of
the works presented.

The following chapter presents three different communication
loops at the trajectory layer and simulates each using the same
application example.

4 Simulative comparison of
communication loops for cooperation
at the trajectory layer

4.1 Description and motivation of the
simulation system

As an application example, a positioning task involving a heavy
object is considered, performed jointly by a human and robot at
the action layer. The robot is modeled as a robot arm with three
degrees of freedom, which can manipulate its end effector’s position
in three Cartesian dimensions: a, b, and c1. For this simulation,
the orientation of the end effector is neglected. Furthermore, the c-
component of the positioning task is neglected, reducing the task to
a planar problem in the dimensions a and b. It is assumed that the
robot carries the heavy object and compensates for the weight force.
The human and robot are coupled via the end effector of the robot
arm (see visualization in Figure 3). The robot is operated by means
of admittance control, i.e., the human can move the robot arm by
exerting a two-dimensional force FH = [FH,1FH,2]T. The admittance
GA of the robot is preset, but it is not analyzed further in this study.
The robot can also adjust the position of the end effector by applying
a two-dimensional force FA = [FA,1FA,2]T.

4.2 System model

The system dynamics result in a double integrator system of a
mass-damper system, in which the force applied by the human FH
and that applied by the robot FA add up and serve as input variables
to the system. The state vector x consists of four state variables,

1 The denotations a, b, and c are used instead of x, y, and z for the three

spatial directions in order to avoid confusion with the system states x and

system outputs y.
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FIGURE 3
Visualization of the application example.

defined as x = [a ȧb ḃ]T, and the system dynamics are described by
the state-space model

ẋ =

[[[[[[[

[

0 1 0 0

0 −kdm 0 0

0 1 0 0

0 −kdm 0 0

]]]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
A

x +
[[[[[[

[

0 0

0 1
m

0 0

0 1
m

]]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
BH

FH +
[[[[[[

[

0 0

0 1
m

0 0

0 1
m

]]]]]]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
BA

FA, (1)

y = [
1 0 0 0
0 0 1 0

]
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

C

x. (2)

The matrix A shows integrating behavior in both the dimensions a
and b. The term − kd

m
denotes the damping behavior of oscillations.

For the matrices BH and BA, it is assumed that BH = BA, which
models the same force effect on the system for both the human and
the robot.The two position states x1 and x3 result in the output y.The
mass of the object to be moved is m = 100kg, and the initial state is
x0 = [2040]T.

4.3 Cooperation on the action layer

The interaction of the human and the robot on the action layer is
modeled as a cooperative process, according to Flad et al. (2014) and
Varga (2024), and it is described and solved using game theory. In
this model, the human and the robot are each modeled as predictive
MPCs (Flad et al., 2014), whose optimization problems are coupled.
For the simulation, it is assumed thatQ and Rmatrices are mutually
known to both agents. In a practical application, these could be
determined using the method described by Inga et al. (2017). In
addition, both agents know the control value of the partner, which
can be justified via the end effector as a haptic interface: both agents
feel or measure the force of the other agent on the end effector at all
times. However, the output state references wH ∈ ℝ

2 and wA ∈ ℝ
2

of both agents are not known to the respective partner and differ.
With ΔxH = x − xH,ref, ΔxA = x − xR,ref, and xi,ref = [wi,1 0wi,2 0], the
cost functions of the two agents for the prediction horizon with N

time steps are, therefore, as follows:

JH =
N

∑
k=1

ΔxTHk
QHΔxHk

+ uTHk
RHuHk
+ uTAk

RAuAk
, (3)

JA =
N

∑
k=1

ΔxTAk
QAΔxAk

+ uTAk
RAuAk
+ uTHk

RHuHk
. (4)

Q and R matrices have the following entries:

QH =
[[[[[

[

500 0 0 0
0 0.1 0 0
0 0 500 0
0 0 0 0.1

]]]]]

]

,

QA =
[[[[[

[

1000 0 0 0
0 0.1 0 0
0 0 1000 0
0 0 0 0.1

]]]]]

]

,

RH = [
0.8 0
0 0.8
],

RA = [
0.3 0
0 0.3
].

It is assumed that the human penalizes deviations in state less
than the automation does. At the same time, the human assigns a
higher penalty to the control variable, which should lead the robot
to take on a greater share of the load.

The solution for the control variables uH and uA results
from the Nash equilibrium. The solutions of the coupled MPC
optimization problems are calculated using the iterative best
response method, according to which each agent solves its own
coupled MPC optimization problem and that of its partner
at each time step. In one iteration, the control variable of
the partner is kept constant, and its own control variable is
calculated. In the next iteration, this control value is kept
constant for the partner’s optimization problem, and the partner’s

FIGURE 4
HMC graph showing the communication loop for cooperation on the
action layer.

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1568402
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schneider et al. 10.3389/frobt.2025.1568402

FIGURE 5
Simulation results for state and control values on the action layer with human and robot having the same reference wH =wA for the output states.

FIGURE 6
Simulation results for state and control values on the action layer with the human and robot having different references.
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control variable is updated. This update process continues
until the control values converge to the Nash equilibrium. The
optimization problems were solved in this paper using CasADi
(Andersson et al., 2019) and an IPOPT solver. According to the
receding horizon strategy, only the first element of the control
variable trajectory is fed into the system (Kwon and Han, 2005).
The described modeling of the action layer can be depicted using
the graph shown in Figure 4. forces FH and FA serve as the
communication variables.

Figure 5 shows a simulation in whichwH andwA initiallymatch:
wH = wA = [50100]T. In the state progression, it can be observed
that the states x1 and x3 converge to the references w1 and w3 in
the steady state, respectively. In addition, it can be observed in
the control variable curve that both control variables uH and uA
disappear for t→∞.

Figure 6, on the other hand, shows a simulation in which wH
and wA differ (wH = [510]T and wA = [108]T), and it can be seen
that for the outputs y1 and y2, there is a constant steady state value
for t→∞. However, this constant steady state value lies between the
two references of the human and the robot. It can be observed that
it is closer to the reference wA in each case. This can be explained
by the higher control values of the robot during 0s < t < 8s, which
are also shown in the diagram in Figure 6. The higher control values
of the robot result from the lower penalty of the control variable in
the RA matrix compared to the RH matrix (see (4)), whereby higher
control values are permitted for the robot. In this simulation, this
corresponds to the intention that the robot takes on a higher load
of the weight to be moved than the human. When examining the
control values uH,1 and uA,1 as well as uH,2 and uA,2, it is noticeable
that these do not disappear in the steady state for t→∞; instead,

FIGURE 7
Communication variants 1, 2, and 3 for emancipated cooperation and a leader–follower structure in (d). (a) Communication variant 1. (b)
Communication variant 2. (c) Communication variant 3. (d) Leader–follower structure.
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FIGURE 8
Simulation results for state and control values with cooperation on the
trajectory layer in communication variant 1.

they settle atthe following values:uH,1 ≈ 10.7NanduA,1 ≈ 10.7Nand
uH,2 ≈ 4.3N and uA,2 ≈ −4.3N. This is the control conflict between
the robot and the human described in Section 1.This arises from the
Nash equilibrium of the interaction at the action layer, which results
in constant steady-state values y1 and y2. However, these constant
steady-state values are based on the force equilibrium uH = − uA
between the human and the robot. This force equilibrium can be
explained by the fact that ΔxH and ΔxA do not become 0, whereby,
according to (3) and (4), a non-vanishing control value results for
both agents. This control conflict is to be resolved by reaching
a consensus on a common reference so that the control error e
disappears for t→∞. This requires cooperation at the trajectory
layer, which is introduced and simulated in the following subsection.

4.4 Cooperation on the trajectory layer

To achieve consensus at the trajectory layer, the graph from
Figure 4 must be extended to the trajectory layer. From a
development perspective, there are several options for selecting
the communication loop, as required in Definition 5. Three such
options are shown in Figure 7, which are compared in the following
subsections. In addition, a leader–follower simulation is carried out
for comparison (see Figure 7d).

In all cases, a simple consensus protocol from Lunze (2019)
(p. 58) is used, whose model dynamics are integrating and
take the estimated error Δŵ = wi −wj as input. This consensus
protocol can deviate from real human behavior; however, it is
suitable for demonstrating the working principle of the proposed
communication loops. For a practical application, a human
consensus protocol would first have to be identified in a study. The

consensus protocol at the trajectory layer for an agent in the present
case is defined as follows:

ẇi = −aij (wi (t) − ŵj (t)) , i, j ∈ {H,A} . (5)

For both agents, aij = 0.12 was chosen. The reference values of the
human and the robot for the following simulations are as follows:

wH = [510]T, (6)

wA = [108]T. (7)

In both dimensions of the reference vectors, there is, therefore,
a disagreement between the human and the robot. Due to the
symmetry of the inertia in both dimensions of the heavy object to be
moved and the fact that the two dimensions are not coupled, only the
first output y1 is considered below for reasons of space. The results
for the second output y2 are analogous to the output y1.

4.4.1 Communication variant 1
As the first option, the communication variant proposed

by Abbink et al. (2018) is simulated, in which a separate
communication interface is established at the trajectory layer. In
practice, this can be achieved via a tablet or a second joystick. For
this simulation example, it is assumed that the human and the robot
communicate their references wH and wA directly and explicitly via
an unspecified interface. The estimated value ŵj(t) in the consensus
protocol (5) thus becomes the true value wj(t). Figure 8 shows the
output y1 and the consensus for the references wH,1 and wA,1. The
selected consensus protocol (5) leads, according to equation (3.18)
in Lunze (2019), p. 66),

w̄ = 1
N

N

∑
i=1

wi, (8)

to a consensus with the value w̄ = 7.5 with N = 2, wH = 5, and wA =
10. It can be observed that at the action layer, the output y1 takes
the found consensus in the reference value as its steady-state value.
This, in turn, means that the control values disappear as desired in
the steady-state case (see Figure 8).

4.4.2 Communication variant 2
The second communication variant is based on the

communication loop presented by Schneider et al. (2022), as shown
in Figure 7b for this simulation example. Humans communicate
their reference to the robot via an interface. The automation in turn
responds to its reference request by executing a movement, i.e., via
the action layer. Reasons for choosing this communication loop
can be safety aspects, as is the case described by Schneider et al.
(2022): for safety reasons, the robot arm, as the communication
interface from automation to the human, must not be moved. The
reference value ŵA of the automation has to be reconstructed from
the control variables of automation at the action level. For this
purpose, a heuristic was applied that controls the error ΔuA to 0.
This control error is the difference between the measured control
variable of automation uA and a control variable ûA calculated using
the known QA and RA matrices of automation with an estimated
reference ŵA. The error

ΔuA = uA − ûA (9)
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is added to the current estimated value ŵA at each time step after
multiplication with a constant gain PuA

as follows:

ŵA (t = (k+ 1)T) = ŵA (t = kT) +PuA
ΔuA. (10)

With the new estimated value ŵA(t = (k+ 1)T), a new input
ûA(t = (k+ 1)T) is calculated in the forward simulation via the MPC
solution of automation, and this allows the new control error ΔuA to

be measured. The parameter PuA
is chosen as

PuA
= [

0.05 0
0 0.05

]. (11)

Figure 9 shows (the two diagrams on the left) the corresponding
resulting curves for the estimation of ûA,1 and ŵA,1. It shows
that the estimate ûA,1 after t ≈ 8s corresponds approximately to
the true manipulated variable uA,1. The estimate of the reference
ŵA,1 corresponds to the true reference wA,1 after t ≈ 10s. The

FIGURE 9
Simulation results for the control value and state estimation of automation (left) and state and control values with cooperation on the trajectory layer in
communication variant 2 (right).

FIGURE 10
Simulation results for the control value and state estimation of automation (left) and state and control values with cooperation on the trajectory layer in
communication variant 3 (right).
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FIGURE 11
Simulation results for the control value and state estimation of the human (left) and state and control values (right) with leader–follower
communication on the trajectory layer.

estimation of ŵA,1 results, according to the consensus Formula 5,
in the reference curves for wH,1 and wA,1, as shown in the
right top of Figure 7b. The resulting control variable curves uH,1
and uA,1 are shown on the bottom right. It can be observed that the
control variables for t→∞ disappear as desired, and the output y1
converges to the steady-state value, which corresponds to the found
reference consensus.

4.4.3 Communication variant 3
The third alternative is the communication shown in Figure 7c.

Compared to communication variant 2, humans also communicate
their desire to move via the direct execution of their movement.
Both agents use the variables from the underlying action layer as
input variables for cooperation at the trajectory layer, and each
agent reconstructs the reference variables of the partner from
the feedback of the error ΔuA = uA − ûA and ΔuH = uH − ûH,
respectively. The automation also estimates the reference of the
human according to (Equation 10). Here, the control error ΔuH is
multiplied with the gain.

PuH
= [

0.01 0
0 0.01

]. (12)

The estimated values for ûH,1 and ŵA,1 are shown in the two
diagrams in the left in Figure 10. After t ≈ 10s, the estimated
control value follows its true value. For reference, the estimation
closely follows the true value after t ≈ 4s. Using these estimated
reference values, the consensus at the trajectory layer, along with
the resulting state and control values, is shown on the right side
of Figure 10.

4.4.4 Leader–follower communication
Compared to emancipated cooperation approaches and

associated communication variants 1–3, the graph in Figure 7d

FIGURE 12
Simulation results for references and output y1 for all three
communication variants.

shows a leader–follower structure in which the human is the leader
for the reference. The communication path from the human to
automation corresponds to that of communication variant 3, in
which automation estimates the desired reference of the human
from the state and control variables of the action layer. Figure 11
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shows the estimation curves for ûH,1 and ŵH,1. Based on the
estimated reference ŵH,1 of the human, the consensus protocol
for consensus finding at the trajectory layer with aHA = 0.25 results
in the two trajectories for wH,1 and wA,1, as shown in Figure 11
(right). The reference of automation matches the reference of
the human as the leader until they align with each other after
t ≈ 20s. The output y1 follows the human reference and is adjusted
after t ≈ 25s.

4.5 Comparison of the consensus values in
communication variants 1, 2, and 3

As it can be observed in the simulation results in Sections 4.4.1,
Section 4.4.2, and Section 4.4.3, a consensus between the human
and automation is found in all three communication variants using
the consensus protocol (5). According to Equation 3.18 from Lunze
(2019), the consensus w̄ = 7.5 exists for the references for output
y1 in the case of the exchange of the true reference values wH
and wA. However, the estimation ŵi from the control variables
ui generates an estimation error at the beginning of cooperation
for small t:

eestim,j = wj − ŵj. (13)

As a result, the estimation error (Equation 13) applies to the
consensus protocol:

ẇi = −aij (wi (t) − ŵj (t)) , i, j ∈ {H,A} , (14)

ẇi = −aij (wi (t) − (wj (t) − eestim,j (t))) . (15)

As shown in Figures 9, 10 for the estimation of references, the
estimation error eestim,j disappears for t→∞. However, in the
comparison of consensus values of all three communication
variants, a difference can be observed according to the existent
estimation error eestim,j. Figure 12 shows the reference wH,1 of the
human, the reference wA,1 of the automation, and the output y1
for all three communication variants. It can be observed that in
the first communication variant, in which the true references wH,1
and wA,1 are exchanged, the consensus w̄comm.1 = 7.5m is reached
according to (Equation 8). In the second communication variant,
w̄comm.2 = 7.40m is reached, and in the third communication
variant, w̄comm.3 = 7.32m is reached. Compared to the first
communication variant, the third communication variant, therefore,
shows a difference of 0.18m to w̄comm.1. At the same time, it
must be said that this difference is the result of the present
simulation of the human behavior. In practice, it is expected
that humans will continue to apply a control variable |uH| >
0 if they have not yet agreed with the consensus reached
with automation.

4.6 Discussion

The simulation results show that for emancipated cooperation
at the trajectory layer, a consensus for the common reference
is found in all three cases shown, each involving a variation of

the communication loops. It should be noted that the selected
consensus protocol (Equation 5) from Lunze (2019) represents a
model that does not always align with human behavior. In practice,
this consensus behavior of humans must first be identified since it
may vary between human groups, e.g., concerning age and gender.
Second, for the first communication variant in Section 4.4.1, a
perfect exchange of information about the true references between
the two agents was assumed. In practice, however, this always
happens via some type of communication interface. Depending
on the communication medium used and the ability of humans
to communicate their true reference via this, an error in the
true reference is expected in a practical setup. Finally, it was
assumed for all simulations that all necessary parameters are known,
particularly the entries of the Q and R matrices, are known
to both agents. These parameters would need to be identified
first in practical use. Despite these limitations and simplifications
mentioned, the simulations provide a successful proof of concept for
variants of communication loops for emancipated cooperation at the
trajectory layer.

5 Conclusion

In this article, a graph representation for a human–machine
cooperation system was presented. For this purpose, the butterfly
layer model from Rothfuß et al. (2020) was converted into a graph
representation. The graph representation offers several advantages:
on one hand, human–machine cooperation systems can easily
be extended to cases involving interactions with other agents.
On the other hand, the graph can be examined for closed-loop
communication between the human and automation by checking
for loops in the form according to Definition 5. For practical
application, a human consensus protocol must first be identified
through a study. In addition, the next step is to conduct a
study to test the proposed communication loops with humans
in practice.
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