
TYPE Original Research
PUBLISHED 06 May 2025
DOI 10.3389/frobt.2025.1569476

OPEN ACCESS

EDITED BY

Fares J. Abu-Dakka,
New York University Abu Dhabi, United
Arab Emirates

REVIEWED BY

Chao Zeng,
University of Liverpool, United Kingdom
Adrian Prados,
Universidad Carlos III de Madrid, Spain

*CORRESPONDENCE

Daniel Schäle ,
dasc@hvl.no

RECEIVED 31 January 2025
ACCEPTED 26 March 2025
PUBLISHED 06 May 2025

CITATION

Schäle D, Stoelen MF and Kyrkjebø E (2025)
Learning computer-aided manufacturing
from demonstration: a case study with
probabilistic movement primitives in robot
wood carving.
Front. Robot. AI 12:1569476.
doi: 10.3389/frobt.2025.1569476

COPYRIGHT

© 2025 Schäle, Stoelen and Kyrkjebø. This is
an open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Learning computer-aided
manufacturing from
demonstration: a case study with
probabilistic movement
primitives in robot wood carving

Daniel Schäle*, Martin F. Stoelen and Erik Kyrkjebø

HVL Robotics, Western Norway University of Applied Sciences, Førde, Norway

Computer-Aided Manufacturing (CAM) tools are a key component in
many digital fabrication workflows, translating digital designs into machine
instructions to manufacture physical objects. However, conventional CAM
tools are tailored for standard manufacturing processes such as milling,
turning or laser cutting, and can therefore be a limiting factor - especially
for craftspeople and makers who want to employ non-standard, craft-
like operations. Formalizing the tacit knowledge behind such operations
to incorporate it in new CAM-routines is inherently difficult and often not
feasible for the ad hoc incorporation of custom manufacturing operations in
a digital fabrication workflow. In this paper, we address this gap by exploring
the integration of Learning from Demonstration (LfD) into digital fabrication
workflows, allowing makers to establish new manufacturing operations by
providingmanual demonstrations. To this end, we perform a case study on robot
wood carving with hand tools, in which we integrate probabilistic movement
primitives (ProMPs) into Rhino’s Grasshopper environment to achieve basic
CAM-like functionality. Human demonstrations of different wood carving cuts
are recorded via kinesthetic teaching and modeled by a mixture of ProMPs to
capture correlations between the toolpath parameters. The ProMP model is
then exposed in Grasshopper, where it functions as a translator from drawing
input to toolpath output. With our pipeline, makers can create simplified 2D
drawings of their carving patterns with common CAD tools and then seamlessly
generate skill-informed 6 degree-of-freedom carving toolpaths from them,
all in the same familiar CAD environment. We demonstrate our pipeline on
multiple wood carving applications and discuss its limitations, including the
need for iterative toolpath adjustments to address inaccuracies. Our findings
illustrate the potential of LfD in augmenting CAM tools for specialized and
highly customized manufacturing tasks. At the same time, the question of how
to best represent carving skills for flexible and generalizable toolpath generation
remains open and requires further investigation.

KEYWORDS

digital fabrication, learning from demonstration (LFD), computer-aided manufacturing
(CAM), robot wood carving, probabilistic movement primitives (ProMPs),
grasshopper/rhino integration, skill-based toolpath generation, human-robot
collaboration in fabrication

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1569476
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1569476&domain=pdf&date_stamp=2025-05-05
mailto:dasc@hvl.no
mailto:dasc@hvl.no
https://doi.org/10.3389/frobt.2025.1569476
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

1 Introduction

Digital fabrication has transformed manufacturing by enabling
makers to turn complex digital designs into physical objects, but its
potential can sometimes be limited by the rigidity of conventional
computer-aided manufacturing (CAM) tools. CAM comprises
software tools that translate digital designs (e.g., CAD-models) into
machine-readable instructions (e.g., G-Code) for manufacturing,
and is an integral part of digital fabrication. Yet, most CAM tools are
tailored for standard manufacturing processes such as milling, 3D-
printing and laser cutting, where the machines, tools and materials
involved, and their interactions, are well understood. Thus, machine
instructions can be inferred from geometries based on (formalized)
manufacturing expertise and rule-based computational logic that
are embedded into CAM software.

For craftspeople and makers that want to employ a non-
standard, handcraft-like manufacturing process, existing CAM
tools are therefore of little avail. At the same time, writing new
CAM routines ad hoc is not straightforward, since not all CAM
practitioners can program, and it is often tedious and difficult to
formalize the tacit knowledge behind such manufacturing processes
into a set of rules - even for expert craftspeople it can be challenging
to express such knowledge in other means than by doing the
actual craft. A way to bypass this difficulty is to record an expert
during their manual fabrication process and then make a machine
replicate the actions of the maker. Such record-and-play techniques,
as discussed in Tian et al. (2019), date back as far as the late
1940s in the context of CNC machining and are still relevant
today. For instance, Wölfel et al. (2021) demonstrate how manual
fabrication processes can be replicated with a collaborative robot
(cobot) using a record-and-play-like approach. Record-and-play
drastically simplifies the programming pipeline, even for more
intricate operations, and typically results in a repeatable but static
fabrication process.

In robotics, Learning from Demonstration (LfD) denotes
techniques related to record-and-play, though with an emphasis on
generalization,meaning that the goal is to learn amodel of a task that
can be adapted to variations in the task’s parameters (Billard et al.,
2016). The human expert provides multiple demonstrations of a
task to generate data that ideally covers most of the variety in
the task parameters. A model is trained on the demonstration
data to learn relationships between the task parameters during
successful executions of the task. During execution, the model is
used to generate robot controllers adjusted to the task parameters
at hand, and variations in the task can be handled without recording
further demonstrations. In this context, the models that are learned
from demonstration are often referred to as movement primitives,
as they represent a certain motor skill and function as building
blocks of motion.

In this paper, we explore the use of LfD to achieve CAM-
like functionality in a digital fabrication workflow for wood
carving with hand tools (Figure 1). To this end, we integrate
probabilistic movement primitives (ProMPs) (Paraschos et al.,
2013) into Grasshopper, which is the node-based programming
environment for parametric and algorithmic modeling in
Rhinoceros 8 (Rhino) (Robert McNeel and Associates, 2024), a
CAD package popular in the maker community.

For wood carving with chisels or gouges, it is not obvious how
to compute all the aspects of a toolpath from a digital design,
for example, the orientations of the gouge with respect to the
wood surface and cutting direction. The non-homogeneous and
anisotropic properties of wood also play a role in how a cut is
performed in the best way.Thus, we try to capture the essence of, and
the tacit knowledge behind, carving motions by observing a human
doing sample cuts and learning (a mixture of) ProMPs to capture
the joint distribution of the degrees of freedom (DoFs). We then
expose the learned ProMPs as custom nodes in Grasshopper, where
they can be referenced to user-created geometries, and output the
according carving toolpath that can be simulated and saved to a file
to be executed by a robot. Our approach allows the maker to both
specify designs and generate toolpaths based on human craft skills in
the same familiar CAD environment. We evaluate our approach on
four basic wood carving applications, and investigate in more detail
the effect of two types of toolpath adjustments that were required to
achieve the presented results.

2 Related work

Leveraging human craft skills to inform machine-driven
manufacturing processes has been explored before in both research
and industry. The various ways and applications in which the
topic has been approached highlight both its potential for diverse
manufacturing scenarios and the ambiguity surrounding the best
methods to transfer tacit knowledge from humans to machines.

The approaches in the literature can be broadly categorized into
three main groups: 1. Manual analysis of human demonstrations
to identify characteristic rules and parameters, which are then
incorporated into machine instructions. 2. Record-and-play
techniques, which take a single human demonstration, perhaps
apply some manual or automatic processing to optimize and adapt
the toolpath to the embodiment of the machine, and then replay the
demonstration as accurately as possible. 3. LfD techniques, which
use multiple human demonstrations to learn a generalized model
of the operation. This model can then be used to generate toolpaths
based on specific task parameters.

An example of the first group is presented in Steinhagen et al.
(2016), which aims to recreate traditional stone surface structuring
with an industrial robot. The authors record chisel poses and
hammer velocities with a high speed camera during demonstrations
of different surface structuring techniques performed by expert
craftspeople. Instead of using these recordings as training data
in a machine learning based approach, they analyze the different
techniques together with the expert craftspeople and try to identify
the most important process parameters manually. The identified
parameters are then exposed in a custom toolpath programming
interface such that the maker can easily experiment with the effect
of these parameters and iterate on their design. In a more recent
paper, Shaked et al. (2021) follow a similar approach. The authors
analyze stone surface structuring techniques of craftspeople in a
motion capturing setup, tracking the chisel pose during sessions
consisting ofmultiple strokes.They analyze the chiselmovement and
manually extract process parameters that characterize three different
techniques. Informed by the extracted parameters, a parametric
toolpath consisting of multiple strokes is created manually in

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 1
Overview of the pipeline for learning Computer-Aided Manufacturing from demonstration presented in this paper. The pipeline consists of a learning
part and an application part. In the learning part, the maker provides demonstrations of manufacturing skills and a probabilistic model representing
these skills is learned from the data. The learning part only has to be done once for a set of skills. In the application part, the maker specifies their
design input as a 2D drawing made in Rhino with conventional CAD drawing tools for lines and curves, or in Grasshopper as a parametric curve
definition, or both. The drawings are discretized and passed as observations to the learned model which is exposed in Grasshopper through custom
components. The model uses the observations to adapt the most probable learned skill to the drawings and returns a corresponding 6
degree-of-freedom toolpath that can be executed by the robot.

Rhino/Grasshopper and executed by an industrial robot fitted with
a pneumatically actuated stone carving tool. The resulting stone
surface is captured with a 3D camera and imported back into Rhino
in order to adapt the subsequent processing passes to the new surface
structure. How exactly these adaptations are done remains unclear
from the paper. Ma et al. (2021) adopt a comparable strategy for
robotic clay sculpting. The authors also identify process parameters
that have a strong influence on the aesthetic quality of the physical
result and expose these parameters to the maker in a custom user
interface. The computation of the toolpath is then treated as an
optimization problem, where the desired geometry and the chosen
process parameters are taken into account.

An example for the second group, record-and-play techniques,
is the work by Wölfel et al. (2021). The authors propose a system
for reproducing handcraft with a cobot to enable makers to mass
produce objects they created with hand-held tools. The system
consists of a marker-based motion capture setup to record the
motion of the tool while the maker produces a workpiece manually,
a graphical user interface that remaps the recorded motions to
robot configurations and allows the user to simulate, modify and
verify the toolpath, and a KUKA LWR IV collaborative robot
to reproduce the operation. To modify the toolpath, the user
can click-and-drag waypoints in the simulated robot environment.
The replicated handicraft operations presented in the paper are
drawing/painting on 2D- and 3D-surfaces and carving in soft
modeling clay. Tian et al. (2019) explore new interactive fabrication

patterns by leveraging shared machine control and computationally
defined haptic feedback.Their work can be considered as an example
for the second group, as the presented custom desktop lathe is able
to record and replay all manual control inputs. However, the transfer
of tacit knowledge from man to machine is not the main focus
of the paper.

The third group are LfD-related techniques. LfD is a wide-
spread technique in robotics and robot learning, but has seen
less application in the context of digital fabrication and CAM.
Nevertheless, some relevant examples of the third group can be
found in the literature. For instance, Park et al. (2022) explore the
use of LfD to learn brush strokes for digital painting, with a focus on
reducing the gap between simulated and real-world robotic painting.
To this end, they collect human demonstrations of brush strokes
and the corresponding painting outcomes on a digital canvas in a
teleoperation setup.This dataset is used to train a deep latent variable
model that encodes the joint distribution of low-level robot controls
and painting outcomes.The learnedmodel is then used to infer robot
controls given a target image. The target image is recreated on a
digital canvas by executing the control commands on a 4DoF robot
featuring a digital stylus and force control.

Another example is found in Rossi and Nicholas (2019), which
investigate the use of convolutional neural networks (CNN) as
a design tool for forming sheet metal with an English Wheel
operated by an industrial robot. They use the CNN to learn a
mapping between the tracking pattern of the wheel on the sheet

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

metal surface and the resulting double curved topology of the sheet
metal. As training data, not a human craftsperson is observed, but
manually generated tracking patterns are executed with the robot.
The resulting sheet metal topologies are recorded with a 3D scanner.
The trained network can then be used to infer the tracking pattern,
a fundamental aspect of the toolpath, based on the topology of the
digital model of the sheet metal. However, it remains unclear from
the paper how the full 6DoF toolpath required to control the robots
end effector is computed from the tracking pattern.

Highly relevant to this paper is the work by Brugnaro andHanna
(2017), which introduces an LfD approach to train an industrial
robot to do wood carving using traditional gouges, though assisted
by an electric reciprocating tool. The reciprocating tool generates a
small amplitude, high frequency movement of the blade along the
tool axis which reduces the force necessary to cut through the wood.
The authors argue that such reciprocating tools are commonly used
by professional craftspeople and do therefore not alter the way in
which craftspeople use traditional carving tools. The authors use a
neural net as a regression model to capture the relationship between
parameters characterizing toolpaths and parameters describing
carved geometry. The parameters characterizing a toolpath are the
feed rate, the tool angle with respect to the wood surface and
grain direction, as well as the cutting force estimated from the
current drawn by the reciprocating tool. The parameters describing
the geometry of the resulting cut are the cut length and depth
profile. The training data for the neural network is collected in two
stages. At first, a series of human demonstrations of straight cuts
is recorded in a motion capture setup and the network is trained
on the extracted parameters. The resulting network is then used to
generate toolpaths that make up a second, bigger data set consisting
of interpolations between the toolpath parameters found in the
human demonstrations. The toolpaths in the second data set are
executed by the robot without human intervention, the carving
results captured with a 3D camera and a new network is trained
with the extracted parameters. This network is used to predict the
tool angle with respect to the wood surface and the depth profile
of a cut, given a straight reference toolpath of a certain length. Real-
world usage of the network is demonstrated by carving three circular
patterns consisting of such straight cuts into lime wood with the
robot. However, it remains unclear from the article how exactly
these patterns were composed in the digital design space to achieve
apparently curved depth profiles and material removal that exceeds
the depth of single cuts. By including the cutting force as well as the
tool angle with respect to the grain direction in the training data, the
system can take into account some of the anisotropic properties of
wood. But if and how force feedback and the grain direction were
utilized during the robotic carving of the circular patterns is not
apparent from the article.

A direct example of force feedback integration in robot
wood carving is the dynamic toolpath adaptation scheme
proposed by Nakamura and Hirasawa (2021), though it does not
follow an LfD approach. The authors manually generate an initial
toolpath, which is modified during execution when the load on the
tool exceeds a threshold. To this end, they use a force sensor between
the tool and the robot flange to measure the cutting force along the
tool axis. When the threshold is exceeded, an adaptation routine is
triggered and the toolpath is re-planned to first relieve the stress on

the tool by moving backwards, and then to continue a shallower cut
by moving the toolpath closer to the wood surface.

Contrary to Wölfel et al. (2021), which focuses on replicating
specific manufacturing operations for mass production, we aim
to learn more generalized manufacturing skills, giving the maker
greater freedom in the digital design space and a more CAM-like
user experience. Since we want to avoid the manual analysis of
carving skills we chose to adopt an LfD approach. While Brugnaro
and Hanna (2017) learn a relationship between toolpath parameters
and certain parameters characterizing the geometry of straight cuts,
we choose a purely trajectory-based modeling approach for this
initial study, as it allows us to demonstrate arbitrarily shaped cuts
to the robot without needing to first identify a suitable method for
parametrizing the geometries of such cuts. Moreover, the model
naturally represents the temporal correlations and dynamics, which
can be relevant properties of carving motions.

3 Materials and methods

The materials and methods section is divided into five
subsections: First, we outline our robot setup for wood carving.
Second, we review the mixture model formulation of ProMPs
that we use to represent wood carving skills. Third, we detail
our data preparation approach to learn carving skills in local
coordinate frames. Fourth, we describe how we use the ProMP
model to retrieve 6 DoF toolpaths from two-dimensional input
drawings with the proposed integration of ProMPs into the CAD
software Rhino. And fifth, we provide additional details on our
software implementation.

3.1 Set-up and hardware

In this paper we use a Franka Emika FR3 collaborative
robot arm for learning and reproducing wood carving. The
use of a collaborative robot allows us to record demonstrations
via kinesthetic teaching, which means the operator provides
demonstrations with the gouge while it is mounted to the robot.
A traditional handheld gouge (Pfeil 9/15) is mounted to the robot’s
flange with a custom-made fixture (Figure 2). The tool center point
is calibrated to the center of the cutting edge.

The robot is controlled with an task space impedance controller.
During kinesthetic teaching, we set the rotational and translational
stiffness gains to zero, which renders the robot compliant while
compensating for gravity. When the robot is carving wood, we in
increase the stiffness gains to 4000 N

m
and 50 N

rad
for translational and

rotational DoFs, respectively, which are the highest values we could
set before the controller became unstable.

3.2 Bayesian Gaussian mixture model of
probabilistic movement primitives

For the representation of wood carving skills learned from
demonstrations, various models can be considered. Some of
the related papers discussed in Section 2 use representations
based on neural networks. Also different movement primitive

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 2
Left: Wood carving setup with Franka Emika FR3. Right: Custom made fixture for a Pfeil 9/15 gouge. The tool is only hinted at in the CAD model.

formulations such as Dynamic Movement Primitives (DMPs)
(Ijspeert et al., 2013), Task-Parametrized Gaussian Mixture
Models (TP-GMMs) (Calinon, 2016) and Kernelized Movement
Primitives (KMPs) (Huang et al., 2019) are viable alternatives to the
ProMPs chosen in this paper.

Recent adaptations of DMPs (Vedove et al., 2025) appear to
be a promising approach to representing manufacturing tasks that
involve in-contact movements with complexly shaped workpieces,
such as those required for wood carving. TP-GMMs and KMPs
allow for learning of skills in local coordinate frames, a desirable
property for our application. Additionally, KMPs have shown
good generalization capabilities without requiring large amounts of
demonstrations (Huang et al., 2019).

In this paper, we use ProMPs to represent the wood carving
skills learned from demonstrations, as they provide the best balance
in integrating three key properties critical to our work: 1) ProMPs
conveniently facilitate the learning of skill libraries. 2) ProMPs
have shown good performance in terms of skill recognition and
adaptation to multiple via-points (Maeda et al., 2014; Maeda et al.,
2017). 3) Recognition and adaptation of ProMPs have simple
closed-form solutions. The last point is especially important
in consideration of our desired Grasshopper integration. In
Grasshopper, each time a parameter or referenced geometry
is modified, the whole program is re-executed to give the
user immediate feedback of how the change in the input data
affects the output. To maintain this swift and reactive user
experience also when using skill models to create toolpaths,
the adaptation of the skills to drawing inputs by the user
must be fast.

A ProMP represents a distribution over trajectories learned
from a set of N demonstrations (Paraschos et al., 2013). In this
paper, a trajectory D = {yt}

T
t=1 is a time-series of state vectors yt

of dimension D = 6, as defined later in Equation 1. For a more
concise representation, trajectories are approximated by a linear

regression model

yt =Φtw + ϵy.

Aweight vectorw ∈ ℝLD is related at time t to the state yt through
a time dependent, block diagonal basis function matrixΦt ∈ ℝD×LD.
The matrix Φt

Φt =
[[[[

[

ϕ⊺1,t ⋯ 0

⋮ ⋱ ⋮

0 ⋯ ϕ⊺D,t

]]]]

]

contains on its diagonal a row vector ϕ⊺d,t ∈ ℝ
L for each DoF, which

again contains the values of L normalized, evenly spaced, Gaussian
basis functions ϕl(t) evaluated at time t. The weight vector w is a
vertical concatenation of D column vectors wd ∈ ℝL, representing
the weight vectors of each individual degree of freedom of the state.
The last term ϵy ∈ ℝD is a vector containing the observation noise
which is assumed to be independent and identically distributed
and to follow the normal distribution N (0,Σy). The weight vectors
{wn}

N
n=1 representing theN demonstrations are computed with ridge

regression.

wn = (Φ⊺Φ+ λI)−1Φ⊺τn.

Similar to Kulak et al. (2021), we model the distribution of
the demonstrations by learning a Bayesian Gaussian mixture model
(BGMM) from the weight vectors. An advantage of the BGMM
over a conventional GMM is that it effectively chooses the number
of mixture components in the model by assigning mixture weights
close to zero to unnecessary components that would result in over-
fitting of the data. A BGMM is a mixture of K multivariate normal
distributions (MVN).

p (w|π,μ,Σ) =
K

∑
k=1

πk N (w|μk,Σk)

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

where, in respective order, π = {πk}Kk=1,μ = {μk}
K
k=1,Σ = {Σk}Kk=1 are

the mixture coefficients, mean vectors and covariance matrices
parametrizing the distribution. Uncertainty about these parameters
is expressed through a Normal-Inverse Wishart prior on the mean μ
and covariance Σ

p (μ,Σ) =
K

∏
k=1

N (μk|m0,
1
β0

Σk) IW(Σk|S0,ν0) ,

and a Dirichlet process prior on the mixing coefficients π.
We will not detail the estimation process of the parameters in

this paper. We implemented all required ProMP functionality as
Python classes, and use the default BGMMimplementation in scikit-
learn (Pedregosa et al., 2011) and refer the interested reader to
documentation and [Bishop (2006), Ch. 10.2]. The Python classes
are later used in script components in Grasshopper.

3.3 Data preparation for learning in local
frames

Often when learning movement primitives from end effector
trajectories, the end effector poses are represented in the robot’s
base frame - which makes sense for movements that are somewhat
concentrated within a region of the workspace. Of course, it
is possible to record demonstrations in different locations and
later use conditioning to adapt the movement primitive to the
location required for the imminent execution, but it requires more
demonstrations to learn primitives that can generalize over a wide
range of locations.

In this paper, we want to draw patterns composed of movement
primitives at any location and orientation in the horizontal drawing
plane in Rhino and execute the patterns somewhere in the robot’s
work space, and we assume no correlation between the pose of
the cut and the way the cut is performed. Thus, we learn the
primitives in local frames instead of the robot’s base frame, enabling
us to align, learn, recognize and execute primitives anywhere in the
dexterous workspace of the robot arm. The acquired demonstration
data consists of homogeneous transformation matrices describing
end effector poses in the robot’s base frame (Figure 2) at each time
step t

{baseHtool,t}
T
t=1
∈ SE(3).

We exploit common characteristics of all the cutting
demonstrations to compute a local frame for each demonstration.
From the recording process, we know that in all demonstrations
the tool penetrates the surface of the wood at some point, and after
that, is laterally constrained by cutting through the wood such that
we can expect displacement in the direction of the tool axis only.
We also know the height of the wood surface in the robot’s base
frame from measuring it with a caliper towards a common reference
plane (e.g., table where robot is mounted on to), and we can assume
that the wood surface is plane and parallel to the reference plane
due to jointing and planing when preparing the wood. Given these
characteristics, we use the following heuristic to compute a local
frame for each demonstration:

1. Detect the time step s at which the trajectory crosses the wood
surface plane and remains beneath it for at least the duration of

a windowwavg. The position coordinates at this time step mark
the start of the cut and will be the origin of the local frame
Olocal. The time step e and the position at the end of the cut
is computed equally, but looking for a crossing of the surface
plane in inverted direction.

2. Compute the y-axis of the local frame Ylocal by computing
the average of the unit vectors pointing from Olocal to the
samples in thewavg andprojecting it to the xy-plane of the robot
base frame.

3. Define the z-axis of the local frame Zlocal to be parallel to the
z-axis of the robot base frame.

4. Compute the x-axis of the local frameXlocal as the cross product
of Ylocal and Zlocal.

5. Define homogeneous transformation matrix from robot base
frame to local frame baseHlocal fromOlocal,Xlocal,Ylocal and Zlocal.

An example of a demonstration and its local frame plotted in the
robot base frame are shown in Figures 3a, b.

Once the local frame is computed for a demonstration, the
demonstration can be expressed with respect to the local frame at
time step t with

localHtool,t =
baseH−1local

baseHtool,t ∀t

With all demonstrations represented in local frames, we can
align them temporally based on the start and end of cuts. Our
alignment process is as follows:

1. Trim off samples where the tool stands still at the start and end
of each demonstration. Account for the trimming in s and e,
the start and end index of the cut.

2. Compute a phase signal z = {zt}
T
t=0 for each demonstration by

normalizing its time signal by the last time value.
3. Retrieve the phase values zs and ze at start and end index of the

cut for all demonstrations.
4. Compute the mean phase values μzs and μze for start and end of

the cut across all demonstrations
5. Do a linear interpolation to map the original time signal of the

demonstrations to a phase signal, while ensuring that the cut
segments align with the mean phase values μzs and μze at the
cut start and end times.

6. Resample the demonstration such that the previously
computed phase signal is evenly spaced between 0 and 1 with
a given number of samples.

We have now obtained phase-aligned, locally represented
demonstrations that we use as training data for the ProMP model.

To encode the orientations of the end effector in our ProMP
model, we first compute the equivalent unit quaternions qt ∈ S

3,
with S3 denoting a unit sphere in ℝ4, from {localHtool,t}

T
t=0

. Then,
we compute rotation vectors θu ∈ ℝ3, vectors parallel to the axis of
rotation whose lengths are the rotation angles θ, by applying the
quaternion logarithm at each time step.

(θu)t = log(qt) =
vt
‖vt‖

arccos(st) ∀t.

v is the vector part and s the scalar part of the quaternion. Before
computing the logarithm, we ensure that all unit quaternions lie in
the positive hemisphere of S3. Finally, the state vector yt which we

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 3
Example of local frame computed for a demonstration of a counterclockwise arc cut. All distances are in meters. (a) shows a side view of the recorded
toolpath together with its local frame. The blue parts represent approach and retract, the orange part cutting. The hatched region indicates the wood.
(b) shows a top view of the toolpath over a photo of the carved wood. (c) shows the position coordinates of the toolpath in its local frame plotted over
the phase (normalized time). Cutting happens between the dashed orange lines.

use in our ProMP model is composed of the positions and rotation
vectors, leading to demonstrations D of the form

D = {yt}
T
t=1 = {pt, (θu)t}

T
t=1. (1)

Unit quaternions can be retrieved from the rotation vectors by
applying the quaternion exponential

exp((θu)t) = qt = st + vt = cos(‖vt‖) +
vt
‖v‖

sin(‖vt‖) ∀t. (2)

3.4 Inferring toolpaths from CAD drawings

Once we have learned a BGMM of ProMPs to capture the
relations of the DoFs during different carving motions, we want
to use the model to generate 6DoF Cartesian toolpaths from
two-dimensional CAD drawings. We follow a similar approach as
Ewerton et al. (2015) used to infer robot trajectories from human
motion input during human-robot interaction. This approach has
two steps: First, given sparse observations of a subset of the modeled
DoFs, determine which mixture component (MVN) explains the
observations best. Second, condition the previously identified MVN
on the observations to adapt the full movement, including the
unobserved DoFs, to the observations. In Ewerton et al. (2015),
the observations are Cartesian wrist positions of a human coworker
recorded with a motion capturing system, and the unobserved
DoFs are the joint positions of a 7DoF robot arm. In our case, the
observations are the Cartesian x- and y-coordinates sampled from
drawings in the horizontal drawing plane in Rhino. The unobserved
DoFs are the remaining coordinates describing the pose of the
tool frame: Cartesian z-coordinate and orientation. The process is
illustrated in Figure 4.

For the conditioning on CAD drawings, the sketch lines in
Rhino are first discretized intom samples connected by equal length

segments. A corresponding phase signal zO = {zO,t}
T
t=0 evolving

from zO,0 = 0 to zO,T = 1 in T =m+ 1 time steps is computed. With
the xy-coordinates of the samples, a local frame is computed for each
line. The procedure is similar to that described in Section 3.3, with
the difference that Olocal is always placed at the beginning of the
line, since we only draw the part of the toolpath where the robot
will actually carve and thus, start and end index of the cut align
with the start and end point of the line. Typically, wavg is shorter for
CAD-drawn lines, since they are sampled more coarsely than the
demonstrations.

The state vector representing the CAD lines merely contains the
position coordinates along x- and y-axis of the local frame leading
to observations of the form

O = {pxt ,p
y
t ,0,0,0,0}

T
t
.

To make predictions with our model based on these
observations, we have to modify the basis function matrix Φt such
that it only contains basis functions for the first two, observed DoFs.
The basis functions for all other DoFs that are not extracted from the
CAD drawings are replaced by zeros, resulting in new basis function
matrix Φ̂t

By using Φ̂t, we exclude the inputs from all DoFs except
the first two. This allows us to recognize and adapt mixture
components based solely on the first two DoFs. However, all DoFs
are still indirectly adapted due to the correlations present in the
covariance matrices.

To identify the most probable mixture component k
∗

given
observations O, we compute the posterior probability p(k|O) for

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 4
Left: An arc shaped cut is specified by a line arc drawn by the user in Rhino. The black dots indicate the observations O extracted from the line. The
dashed coordinate frame is the local frame of the observations. Middle: Mean trajectories of a BGMM with K = 3 components. The blue sections
indicate approach and retract and the orange sections cutting. The green ellipsoids represent one standard deviation of the positions. The blue
numbers are the log prior probabilities log p(k) of each component, the purple numbers are the log Gaussian likelihoods log p(O|k) of the observations
and the green numbers are (proportional to) the log posterior probability of the components given the observations log p(k|O). Right: The most
probable mixture component is adapted to the observations by conditioning.

each component and then find the component that maximizes this
probability. Formally.

p (k|O) ∝ p (O|k)p (k) (3)

k∗ = argmax
k

p (k|O) .

In Equation 3, p(k) is the prior probability or mixing weight
of component k, and p(O|k) is the Gaussian likelihood of the
observations given component k and is computed by

p (O|k) = ∫p (O|w)p (w|k)dw

= ∫N (w|μk,Σk)
T

∏
t=1

N (Ot|Φ̂tw,Σy)dw

=
T

∏
t=1

N (Ot|Φ̂tμk,Φ̂tΣkΦ̂
⊺
t +Σy) .

(4)

To evaluate the likelihood of the observations at the
correct phase values, we embed the phase of the observations
zO (encompassing only the actual cut) into the phase
signal of the model components z (encompassing approach,
cut and retract) such that zO aligns with the cutting
segment of the model components. This is done by linear
interpolation.

̂zO = zsk + zO (zek − zsk) .

The phase values zsk and zek at the start and end of cut of the
mean trajectories of the K MVNs in the BGMM are computed
similarly as described in Section 3.3. Thus, Φ̂t in Equation 4
means we evaluate the basis function matrix at the t-th time
step of the phase ̂zO computed for component k. The same
phase signals are also used in the following conditioning step
(Equations 5–8).

Once we have obtained k
∗
, we can adapt this component

N (w|μk∗ ,Σk∗) to the observations. To this end, we compute the

posterior distribution of w conditional on the observations O with
recursive updates for each time step. Ot

p (w|k∗,O) =N (w|μ+k∗ ,Σ
+
k∗) (5)

μ+k∗ = μk∗ +K(Ot − Φ̂
⊺
tμk∗) (6)

Σ+k∗ = Σk∗ −K(Φ̂
⊺
tΣk∗) (7)

K = Σk∗Φ̂
⊺
t (Σy + Φ̂

⊺
tΣk∗Φ̂t)

−1, (8)

where the posterior parameters μ+
k∗
,Σ+

k∗
computed at time step

Ot serve as the prior parameters μk∗ ,Σk∗ for the update at
Ot+1. The full toolpath adapted to the CAD drawings is then
obtained by computing the conditional probability distribution
over the trajectories D given the observations O from the
CAD drawings

p (D|O) = ∫p (D|w)p (w|k∗,O)dw

Which can be evaluated at any time zt ∈ [0,1] with

p(yt|O) =N (Φtμ
+
k∗ ,ΦtΣ

+
k∗Φ
⊺
t +Σy) .

Prior to execution on the robot, the rotation vectors in D are
converted into unit quaternions using Equation 2.

3.5 Implementation in rhino and
grasshopper

In this paper we use the CAD software Rhino due to its
popularity in the digital fabrication community and its integrated
visual programming environment Grasshopper. In Grasshopper, we
can use scripting nodes to run Python code that interacts with
geometries in Rhino. As shown in Figure 5, we use two custom

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 5
Geometries are sampled from Rhino, divided into n observation samples, the local frames are then computed for the observations, and the
observations are passed to a ProMP model for predicting and adapting the most probable mixture component. The mean trajectory is returned, used
for plotting, simulation and controlling the robot.

script components to infer toolpaths from drawings as described
in Section 3.4: One to transform the observations to local frames
and convert them from Rhino point format into our own data type.
And a second one that loads a trained BGMM of ProMPs, takes the
observations and predicts and conditions mixture components of
the BGMM.The resulting toolpath can then be used for simulation
within Grasshopper via the “Robots” plug-in (Soler, 2023), which
allows us to ensure that the toolpath is collision-free and the robot
stays within its joint limits. For controlling the real robot, we save the
toolpath as a text file which we then use as reference values for the
Cartesian impedance controller. Note that alternatively to exporting
an explicit toolpath, the distribution parameters of the adapted
mixture component could be exported and used in the robot control
loop to evaluate the reference values online based on the current
sample time.

The sketching environment in Rhino can be connected
continuously to Grasshopper with a “geometry pipeline” which
samples Rhino for new geometries and makes them available as
a list in Grasshopper. All Grasshopper components process each
geometry in the list and output their results as corresponding lists.
Any change in the geometry pipeline or any other parameter in
Grasshopper triggers a re-computation of the components. This
makes for a short iterative loop from design input to toolpath output
and enables the user to quickly prototype and experiment with
skills learned from human demonstration in a CAD environment.
The toolpaths returned for each individual geometry are with
travel movements generated in Grasshopper: The end and start
of subsequent individual toolpaths are connected with Bezier spans,
and the orientations are blended smoothly with spherical linear
interpolation (SLERP). One option to sampling the drawings from

Rhino is to generate them programmatically in Grasshopper. This
gives the user less of a “manual drawing experience” but enhanced
parametric control over the geometries.

The integration of ProMPs into Grasshopper leads to what
can be seen as a hybrid programming interface that allows the
user to combine precise and parametric CAD tools with complex,
human-like skills.

4 Results

We conducted two types of experiments using the methodology
presented in this paper. We first show different carving results to
illustrate the typical design workflow, and point out limitations
of our approach. And then we provide further details on the
effect of two types of toolpath adjustments we used to achieve the
previous results.

4.1 Data acquisition

For the experiments in this paper we recorded 129 human
demonstrations of different wood carving cuts in limewood:
25 short (approx. 30 mm long) straight cuts, 25 long (approx.
60 mm long) straight cuts, 39 counterclockwise arcs and 35
clockwise arcs (approx. 90° with radii from 15 to 60 mm). The
demonstrations were performed by a hobbyist wood carver and
recorded with kinesthetic teaching (Figure 6). In addition to the
trajectories, we recorded point clouds of the demonstrated cuts
with a Zivid One+ 3D-camera. A video of the demonstration

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 6
Recording wood carving demonstrations. (a) Recording woodcarving demonstrations with kinesthetic teaching (b) 25 short straight cuts (c) 39
counterclockwise arcs with different radii. (d) 35 clockwise arcs with different radii. (e) 25 long straight cuts.

recording process can be found in the Supplementary Materials
(Supplementary Video 1).

4.2 Wood carving applications

Wehave chosen wood carving applications that involve different
types of cuts learned fromdemonstration and different digital design
workflows in Grasshopper and Rhino. These are two versions of
“Naguri,” a rope shape, and a flower shape, and are described below.

4.2.1 Naguri
“Naguri” is a traditional Japanese surface texturing technique

that is among other things applied to beams, wall paneling and
furniture. Typically, naguri is a labor-intensive process where gouges
or other special tools are used to carve grooves into awooden surface
in regular or random patterns. The resulting surface plays with light
and shadow, making it visually dynamic, and is interesting to touch.
We created a naguri style texture with straight cuts (Figure 7d) in a
regular order and another variation with curved cuts (Figure 8d).
Being a regular, repetitive pattern where the arrangement of cuts
needs to be finely tuned tomake the grooves overlapwhile remaining
clearly defined, the naguri patterns are cases where parametric
pattern definitions done in Grasshopper are particularly well-suited
(Figures 7a, b). The pattern parameters such as length of cut,
numbers and offsets of rows and columns are easily adjusted with
number sliders, and the resulting toolpath adapts automatically on
any parameter change. The grooves can be simulated by subtracting
the volume created by the intersection of the gouge edge with the
wood fromamodel of thewoodplank (Figures 7c, 8c).However, this
method of simulating cuts does not account for material properties
or the physical interaction between the tool and the wood, making
it a rather idealized representation. In practice, the carved results
came out less pronounced than expected. To account for this, we

lowered the XY-plane, where the cuts are planned, below the wood
surface by −5.15 mm for the straight naguri pattern and −5.35 mm
for the pattern with curved cuts. This adjustment increased the
tool’s pressure on the wood, resulting in more pronounced cuts.
For further details on the adjustments see Section 4.3. With the
adjustments the simulated carvings and the final results match well
under visual comparison. A video illustrating the designworkflowof
the naguri pattern with straight cuts (Supplementary Video 2) and a
video of the robot carving the pattern (Supplementary Video 3) can
be found in the Supplementary Materials.

4.2.2 Rope
Rope-shaped moldings are also traditional decorative elements

in wood carving. For creating the twisted rope effect in Figure 9c,
one carves a clockwise arc which is continued by an overlapping
counterclockwise arc. The next set of arcs is shifted such that it is
barely touching the previous set to create a sense of depth.Thedigital
design in this examplewas drawnmanually in Rhino using arc,move
and copy commands. Comparing the drawings in Figure 9a and the
simulated carving in Figure 9b with the final result in Figure 9c,
we see that there are differences between the digital and physical
designs. And indeed, the drawing in Figure 9a is the result of an
iterative process of doing test cuts and toolpath adjustments tomatch
the desired outcome, rather than an intuitive 2Ddrawing of the rope.
Besides adjusting the drawing in the 2D plane, we steepened the tool
angle by applying a constant 4° rotation around the x-axis of the tool
frame to make the cuts more pronounced. We observed differences
in how the cuts turned out across the pattern, even between identical
copies of arcs thatweremerely placed at different locations in theXY-
plane. To address this, we adjusted the location (height) of the XY-
plane for the individual cuts in the robot’s base frame, within a range
of 4.4–7.1 mm. Otherwise, some of the cuts would come out too
deep, eventually making the robot stop, or too shallow and therefore
too short, making them differ from the drawing input. The need

Frontiers in Robotics and AI 10 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 7
“Naguri pattern” with straight cuts. (a) Grasshopper definition of the pattern of straight cuts. (b) Pattern of straight cuts used as observations. (c)
toolpath generated from observations using the ProMP model. Simulated carving result exposed in the circular cut-out. (d) Carving result produced by
the robot in lime wood.

for such iterative adjustments hints at inaccuracies in our carving
pipeline, and potentially in the way we simulate carving in Rhino.

4.2.3 Flower
In this example, we carved a flower to demonstrate a less

repetitive and more freehand-like design that combines straight
and arc-shaped cuts of different directions and radii. Similar to the
rope in Section 4.2.2, the flower drawing (Figure 10a) was manually
drawn in Rhino and had to be slightly adjusted based on test cuts to
get to the desired result. As it can be seen in the drawing, we had to
shift the petals slightly to the right with respect to the stem for them
to appear centered above the stem in the carved result. To optimize
the cuts and make them roughly equally strong marked, we adjusted
the location of the XY-plane in the robots base plane in a range from
−11.7 mm to 5.2 mm.

4.3 Comparison of toolpath adjustments

In the applications in Section 4.2, we had to do slight
adjustments to the toolpath to achieve the desired result. For the
most part, the adjustments were necessary because the cuts done
by the robot were not as pronounced as expected, being too short,
narrow and shallow. And when the cuts come out too short and
narrow, they can also appear to bemisplaced, since they do not align

properly or extend to the intended boundaries. To better understand
the effect of the adjustments, we conducted a series of straight test
cuts with different parameters. We first did a manual cut to have
a basic reference. We measure the length of this cut, and aim to
recreate it with the robot by drawing a straight line of the same length
in Rhino and apply our pipeline. Before executing the toolpaths on
the robot, we do two types of adjustments with different intensity:
The first adjustment is to lower the location of the XY-plane of the
toolpath, which means performing the toolpath slightly beneath the
measured height of the wood surface. The second adjustment is to
make the tool angle steeper by rotating the tool frame (see Figure 2)
slightly around its x-axis in positive direction. To compare the cuts,
we record a point cloud of the carved wood with a Zivid One+ 3D
camera, which we used to measure the geometries of the cuts. In
addition, we looked at how the executed toolpaths compare to the
planned toolpaths andwhat forces and torques act on the tool during
execution.

Table 1 shows adjustments and the most relevant dimensions
of the different cuts. The manual cut has a length of 36.8 mm and
the greatest width, depth and volume. In general, we can only
expect the robot’s reproduction of an arbitrary manual cut to match
in length but not exactly in width, depth and volume, since we
inform our ProMP model only with a 2D line drawing and a cut
of similar length can be executed in many different ways. Such
a difference in execution is visible in Figure 11 when comparing

Frontiers in Robotics and AI 11 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 8
Variation of the “Naguri pattern” with curved cuts. (a) Grasshopper definition of the pattern of arcs. (b) Pattern of arcs used as observations. (c) toolpath
generated from observations using the ProMP model. Simulated carving result exposed in the circular cut-out. (d) Carving result produced by the robot
in lime wood.

FIGURE 9
“Rope pattern” made from alternating curved cuts. (a) Rope pattern drawn in Rhino using arc and move and copy commands. The drawings are
imported into Grasshopper with a geometry pipeline (Figure 5). (b) Toolpath generated from observations using the ProMP model. Simulated carving
result exposed in the circular cut-out. (c) Carving result produced by the robot in lime wood.

Frontiers in Robotics and AI 12 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 10
A flower made from straight and curved cuts. (a) The flower is manually drawn in Rhino using arc and line commands. The drawings are imported into
Grasshopper with a geometry pipeline (Figure 5). (b) Toolpath generated from observations using the ProMP model. Simulated carving result exposed
in the circular cut-out. (c) Carving result produced by the robot in lime wood.

TABLE 1 Measurements of the manual and adjusted cuts. “Manual” is the manually done reference cut and Rep 1–10 are the cuts done by the robot. Rep
1 is the reproduction without adjustments, executed in measured XY-plane that was found to be at z = − 18.2mm in the robot base frame. Rep 2–6 are
the cuts where the XY-plane was lowered below the measured XY-plane. Rep 7–10 are the cuts where the tool angle was steepened. In Rep 10 the same
toolpath was executed twice. The XY-plane for Rep 7–10 was at the measured height of −18.2 mm.

Cut Adjustments Measurements

XY-Plane Tool Angle Length Max. Width Max. Depth Volume

[mm] [°] [mm] [mm] [mm] [mm3]

Manual — — 36.8 8.9 1.16 159.5

Rep 1 — — 24.1 5.6 0.41 15.2

Rep 2 −2.8 — 26.2 6.2 0.52 26.2

Rep 3 −3.8 — 27.2 6.9 0.61 35.3

Rep 4 −4.8 — 25.4 6.3 0.48 23.5

Rep 5 −5.8 — 25.5 6.3 0.47 23.7

Rep 6 −6.8 — — — — —

Rep 7 — +2 30.8 7.5 0.76 54.1

Rep 8 — +3 32.8 8.1 0.88 75.9

Rep 9 — +4 33.9 8.2 0.84 79.9

Rep 10 — +4 34.0 8.2 0.86 79.2

Rep 1 to Rep 10 - both cuts have roughly the same length, but
are shaped differently. The reproductions by the robot come out
shorter than the manual cut, even though we aimed for a cut of the
same length.

Rep 10 and 9 come closest to the manual cut in terms of
length, but also width, depth and volume. Rep 1, without any
adjustments, is the shortest, narrowest, shallowest and has least
volume. The appearance of the cuts done by the robot is rather

consistent across the adjustments. Lowering the XY-plane seems
to make the cuts more pronounced, up to a certain point. While
there is a noticeable difference between the unadjusted cut (Rep 1)
and Rep 2 and Rep 3, both visually and in primary dimensions,
lowering the XY-plane further (Rep 4–6) does not seem to be
effective. Rep 6 could not be completed; the robot stopped after a
few millimeters cutting (Figure 11b) because the end effector forces
exceeded the safety limit.

Frontiers in Robotics and AI 13 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 11
Reproductions of a manual cut with different parameter adjustments. (a) Depth map of the cuts generated from a recorded point cloud of the carved
wood. (b) Photo of the carved wood.

Steepening the tool angle also makes the cuts more pronounced,
and seems to be more effective than lowering the XY-plane.
Small positive rotations around the x-axis of the tool frame lead
to longer, wider, deeper and more voluminous cuts. In Rep 10,
the same toolpath as in Rep 9 was used, but was executed
twice to see if a second pass would carve away more wood.
However, the differences both in appearance (Figure 11) and
measurements (Table 1) are small.

Looking at the forces acting on the tool in Figures 12, 13 it
can be noticed that both lowering the XY-plane and steepening
the tool angle increase Fztool, i.e., increase the force acting along
the tool shaft. However, comparing the forces in the local frame
of the cut, Fylocal along the direction of cut and Fzlocal normal to
the wood surface, we notice that adjusting the tool angle leads to
higher force along the cut Fylocal, while the force pressing down on
the wood Fzlocal remains constant. Lowering the XY-plane leads to
higher forces normal to the wood surface and less of an increase of
force along the cut.

The observed forces indicate that the reproductions do not lack
downward force, but rather have a sub-optimal tool angle. And
indeed, the tracking accuracy of the rotations around the x-axisRotX
is rather low and the executed tool angle shallower than planned,
especially at the beginning of the cut. We repeated the execution
of the unadjusted toolpath without any contact with the wood and
observed a similar tracking behavior, where the executed tool angle
is about 5° shallower than the referencewhen the cutting is supposed
to start. Considering the maximum depth the tool reaches in PosZ
in Figures 12, 13, we notice that the tool makes contact with the
wood in a higher region on the z-axis than we expected based
on our measurements in the setup. This means that there have to
be inaccuracies in our setup. For example, in our measurement of
the wood surface, the calibration of the tool frame in the flange
frame of the robot, or somewhere else in the robot. As a result, the
reproductions, including the unadjusted one, were executed slightly
below the measured height of the wood surface, increasing the

downward force (Fzlocal) of the tool on the wood. This also means
the tool made contact with the wood, and potentially began cutting,
before reaching the planned position and orientation, resulting in
unintended deviations in the process.

5 Discussion

The applications presented in Section 4.2 demonstrate that our
framework can be used for carving applications. However, there
are several issues that need further investigation and improvement.
Although the approach in general is functional, the resulting
toolpaths require adjustments to match the desired output in wood
carving. Possible reasons include too fewor bad demonstrations, bad
modeling of the data, unsuitable robot and controller or inaccuracies
in TCP calibration.

We observed throughout the experiments that the cuts come
out less marked than expected when the toolpaths generated by
our approach are executed by the robot. However, with slight
adjustments to the toolpaths, the cuts come close to the intended
outcome. For the carving applications in Section 4.2, we gave an
offset on the XY-plane in which the toolpaths are planned, such
that it lays lower than the wood surface measured in the robot’s
base frame and/or adjusted the tool angle, such that the tool
cuts into the wood at an steeper angle. Both of these corrections
lead to more marked cuts, but it appears from the comparison
experiment in Section 4.3 that, in our case, steepening the tool angle
is the preferable option since it leads to higher forces in direction of
the tool shaft rather than higher forces normal to the wood surface.
We presume that loading the tool axis is a better use of the forces
available at the robot’s end effector since it increases the pressure
on the cutting edge, leading to more pronounced cutting without
overloading the robot. However, a more in-depth investigation of
the cutting mechanics of handheld wood carving tools would be
necessary to provide more definitive answers.

Frontiers in Robotics and AI 14 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

FIGURE 12
Comparison of tool poses and forces during cuts with different XY-plane adjustments as specified in Table 1. The first row shows the tool position in
the robot base frame. The second row shows the tool orientation in Euler angles (ZYX convention) in the robot base frame. The third row shows the
forces along the y-axis and z-axis of the local frame of the cuts, and along the z-axis of the tool frame.

FIGURE 13
Comparison of tool poses and forces during cuts with different tool angle adjustments as specified in Table 1. The first row shows the tool position in
the robot base frame. The second row shows the tool orientation in Euler angles (ZYX convention) in the robot base frame. The third row shows the
forces along the y-axis and z-axis of the local frame of the cuts, and along the z-axis of the tool frame.

Frontiers in Robotics and AI 15 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

In this paper, we assessed the generated toolpaths based on
the quality of the wood carving results. We have not done a
separate validation of the learned ProMP model and can therefore
not fully rule out that our model produces suboptimal toolpaths
that make the adjustments necessary. There are multiple factors
during learning and application that can affect the quality of trained
model and carving results, such as the number and quality of the
demonstrations and their alignment, the number of observations
that each drawing input is discretized into and the hyperparameters
of the BGMM.With a relatively small set of demonstration data used
in this paper, the generalization capabilities of the model will be
limited. We noticed that if we drew curves that were far away from
the demonstrated cuts, the toolpaths degenerated by, for example,
tilting too much to one side. However, since we trained a small
model representing only a few skills and we did the demonstrations
ourself, we could gain some intuition for the range of drawings we
could use in our applications based on visual inspection and robot
simulation of the toolpaths in Rhino. The toolpaths generated for
the applications in Section 4.2 appeared plausible, and we suspect
that the robot and controller we used have a rather large impact on
the quality of the carving results and may be the main cause for the
adjustments.

Considering that we use a low payload collaborative robot
which runs a task-space impedance controller, we cannot expect
the trajectory tracking performance of a calibrated industrial robot,
especially when interacting with a relatively stiff material such as
wood. This is one possible explanation why the cuts come out less
marked than expected when we do not apply any adjustments. The
impedance controller does not build up enough force to perform the
full cut that, without any adjustments, only leads to small deviations
from the reference path. Lowering the XY-plane pre-loads the tool,
such that the small deviations evoked by the contact between wood
and tool lead to enough force to cut the wood.

Steepening the tool angle per se does not pre-load the tool as
lowering the XY-plane does, but it causes the cutting edge to more
easily catch in the wood, which, over the course of the execution,
leads to an increasing deviation from the reference toolpath and
results in a stronger cutting force. Considering the low tracking
performance of rotations around the x-axis of the tool, which results
in a shallower tool angle than planned, manually steepening the
tool angle acts less as a modification and more as a correction that
brings the executed movement closer to the toolpath planned by
our pipeline.

When creating the rope (Section 4.2.2) and flower
(Section 4.2.3), we had to draw some of the cuts at counterintuitive
locations in the XY-plane, making the drawings look slightly
distorted. For example, the petals of the flower had to be shifted
slightly to the right of the stem in the drawing, and the transitions
where the arcs change direction in the rope had to have a gap
between even though the pattern should be continuous there. Such
modifications were necessary because the cuts carved into the wood
ended up at slightly different locations than in the drawing, thus not
exactly matching the desired design. We have no definitive answer
to why modifications in the XY-plane are necessary, but we suspect
that the precision and strength of the overall robot setup is just not
sufficient.We assume that as soon as the robot comes in contact with
the wood, the tracking accuracy declines and the shape and length
of cuts change. Also, as we noticed in Section 4.3, the boundaries

of the cuts change substantially when the robot does not manage to
cut as deep as intended. And while our adjustments help to make
more fully formed cuts, they could lead to misalignment in the
XY-plane since they may change the point of the toolpath at which
the tool touches the wood and the cut starts. For example, when
lowering the XY-plane, the tool will touch the wood earlier, during
the approach movement, and since the approach is not necessarily a
straight downward move, the starting position of the cut changes.

Another hint at the setup as a major source of imprecision is
that we had to use different correction parameters for identical
cuts at different locations. In the rope, for instance, we had to use
other XY-plane offsets for the cuts at the end and the beginning,
even though the toolpaths for the cuts are identical, just placed at
different locations on the wood. This shows that it is at least not
only shortcomings of the carving skills represented by our model
that require adjustments.

In general, it is unfavorable that we had to adjust the toolpaths
generated by our pipeline further to achieve the desired carving
results with our robot setup, but at the same time it demonstrated an
important quality of our approach from a fabrication/user interface
perspective: Our integration of ProMPs in Rhino/Grasshopper
enables iterative design workflows and rapid prototyping with
toolpaths generated fromhumanmotor skills. In future applications,
the user should ideally not have to iterate over adjustments to
make the toolpaths work but rather iterate over their design - to
experiment, refine and generate variation.

We could show that our approach, on a basic level, provides
CAM-like functionality by converting a digital design into machine
instructions based on human craft skills. The chosen trajectory-
based skill representation enables the teaching of cuts that follow
arbitrary, uniquely shaped paths while capturing correlations
between the path shape and other parameters, such as tool
orientation. In contrast, adopting a shape-agnostic representation,
such as the one used for straight cuts in Brugnaro and Hanna
(2017), results in the loss of relationships between path shape
and other parameters. For example, such a representation assumes
that the tool angle with respect to the wood surface at 80% of a
straight cut is identical to the angle at 80% of an s-shaped cut.
At the same time, a shape-agnostic approach is a more general
skill representation that has the potential to offer greater design
freedom without having to demonstrate cuts for all geometries the
maker wants to use in their digital design. Our current approach
does not generalize well over large variations in the shapes of cuts,
which limits the maker in the design process to geometries that are
relatively similar to the provided demonstrations. As a result, our
approach falls short of being equivalent to traditional CAM tools,
where it is expected to be able to generate machine instructions for
all geometries that are technically possible to make with the selected
tools and machines. Demonstrating cuts for all possible geometries
is impractical. Therefore, the proposed system is better suited
for computing machine instructions for specific, tailored/maker-
defined manufacturing operations (e.g., carving unique decorative
elements) rather than for producing diverse 3D objects from a block
of material, as is typical in CAM for milling.

In conclusion, we have demonstrated how LfD can be utilized in
digital fabrication through an integration of movement primitives
in CAD software. Our approach enables users to program toolpaths
corresponding to intricate human craft skills by defining geometries

Frontiers in Robotics and AI 16 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

in a CAD environment. However, for the carving applications
in this paper, some manual adjustments to the toolpaths were
necessary, indicating that the model’s generalization is still limited
and highly dependent on calibration and user expertise. Our
approach functions in principle similar to a CAM tool but where
the user can add new machining/manufacturing operations by
demonstrating the operation to the robot. Additionally, the user
interface seems to be suitable for supporting an iterative workflow.

However, the presented approach is not yet ready for most
real world applications. We consider future work in two directions:
First, in the context of robot wood carving, we plan to investigate
alternative representations for carving skills. Is carving technique
inherently tied to the shape of cut, or is it possible to find a more
general, underlying representation that can be utilized for a diverse
range of cuts? In addition, how can the change in geometry of
a workpiece caused by a cut be modeled effectively for use in
machine learning algorithms? Furthermore, we aim to incorporate
other task parameters in addition to the tool pose into the learned
model to make the learned skills more adaptive to the anisotropic
properties of wood. The direction of the grain with respect to the
cut could be a relevant factor, but also the wrenches at the tool
tip present during demonstration and reproduction. Measuring the
tool wrenches during kinesthetic teaching is not straightforward
and requires modifications to the conventional hand tools used
in this paper. However, including the wrenches in the model
would allow for hybrid force-position control strategies which
we deem more appropriate than our current implementation of
an impedance controller that we consider as a major weakness
of our results. Additionally, to address the inaccuracies observed
in our experiments, we plan to use an industrial robot arm
for future reproductions of wood carving cuts, ensuring greater
consistency and more conclusive findings. And second, in the
context of a hybrid LfD-CAM interface, we intend to do an in-
depth evaluation of our approach of using LfD in manufacturing
by conducting a user study involving hobbyists or professionals
and perhaps other manufacturing techniques like painting or
clay molding.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Author contributions

DS: Conceptualization, Investigation, Methodology, Software,
Visualization, Writing – original draft. MS: Conceptualization,
Writing – review and editing. EK: Conceptualization, Funding
acquisition, Writing – review and editing.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. This work was
partially funded by the Norwegian Research Council under grant
number 22071.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations,
or those of the publisher, the editors and the reviewers. Any product
that may be evaluated in this article, or claim that may be made by its
manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frobt.2025.
1569476/full#supplementary-material

References

Billard, A. G., Calinon, S., and Dillmann, R. (2016). “Learning from humans,” in
Springer handbook of robotics. Editors B. Siciliano, andO.Khatib (Springer International
Publishing), 1995–2014.

Bishop, C. M. (2006). “Pattern recognition and machine learning,” in Information
science and statistics. New York: Springer.

Brugnaro, G., and Hanna, S. (2017). Adaptive robotic training methods for
subtractive manufacturing. In Proceedings of the 37th annual conference of the
association for computer aided design in architecture (ACADIA), eds. T. Nagakura, S.
Tibbits, M. Ibanez, and C. Mueller (ACADIA), ACADIA proceedings, 164–169.

Calinon, S. (2016). A tutorial on task-parameterized movement learning and
retrieval. Intell. Serv. Robot. 9, 1–29. doi:10.1007/s11370-015-0187-9

Ewerton, M., Neumann, G., Lioutikov, R., Amor, H. B., Peters, J., and Maeda, G.
(2015). “Learning multiple collaborative tasks with a mixture of interaction primitives,”
in 2015 IEEE international conference on robotics and automation (ICRA), 1535–1542.

Huang, Y., Rozo, L., Silvério, J., and Caldwell, D. G. (2019). Kernelized movement
primitives. Int. J. Robotics Res. 38, 833–852. doi:10.1177/0278364919846363

Ijspeert, A. J., Nakanishi, J., Hoffmann,H., Pastor, P., and Schaal, S. (2013). Dynamical
movement primitives: learning attractor models for motor behaviors. Neural Comput.
25, 328–373. doi:10.1162/neco_a_00393

Kulak, T., Girgin, H., Odobez, J.-M., and Calinon, S. (2021). Active learning
of bayesian probabilistic movement primitives. IEEE Robotics Automation Lett. 6,
2163–2170. doi:10.1109/lra.2021.3060414

Frontiers in Robotics and AI 17 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frobt.2025.1569476/full#supplementary-material
https://doi.org/10.1007/s11370-015-0187-9
https://doi.org/10.1177/0278364919846363
https://doi.org/10.1162/neco_a_00393
https://doi.org/10.1109/lra.2021.3060414
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schäle et al. 10.3389/frobt.2025.1569476

Ma, Z., Duenser, S., Schumacher, C., Rust, R., Bächer, M., Gramazio, F.,
et al. (2021). Stylized robotic clay sculpting. Comput. and Graph. 98, 150–164.
doi:10.1016/j.cag.2021.05.008

Maeda, G., Ewerton, M., Lioutikov, R., Ben Amor, H., Peters, J., and Neumann,
G. (2014). “Learning interaction for collaborative tasks with probabilistic movement
primitives,” in Humanoid robots (humanoids), 2014 14th IEEE-RAS international
Conference on: IEEE-RAS international Conference on humanoid robots, eds. I. o. E.
Engineers, electronics, I. R. Society, and automation (IEEE), 527–534.

Maeda, G. J., Neumann, G., Ewerton, M., Lioutikov, R., Kroemer, O., and Peters, J.
(2017). Probabilistic movement primitives for coordination of multiple human–robot
collaborative tasks. Aut. Robots 41, 593–612. doi:10.1007/s10514-016-9556-2

Nakamura, Y., and Hirasawa, G. (2021). “Dynamic path generation via load
monitoring with a force sensor for robot processing using a chisel,” in Proceedings of
the 38th international symposium on automation and robotics in construction (ISARC).
Proceedings of the international symposium on automation and robotics in construction
(IAARC). Editors C. Feng, T. Linner, I. Brilakis, D. Castro, P.-H. Chen, Y. Cho, et al.
((International Association for Automation and Robotics in Construction (IAARC)).

Paraschos, A., Daniel, C., Peters, J. R., and Neumann, G. (2013). “Probabilistic
movement primitives,” in Advances in neural information processing systems 26. Editors
C. J. C. Burges, L. Bottou,M.Welling, Z. Ghahramani, andK.Q.Weinberger (NewYork,
NY, USA: Curran Associates, Inc), 2616–2624.

Park, Y., Jeon, S., andLee, T. (2022). “Robot learning to paint fromdemonstrations,” in
2022 IEEE/RSJ international conference on intelligent robots and systems (IROS) (IEEE),
3053–3060.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al.
(2011). Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830.
doi:10.5555/1953048.2078195

Robert McNeel and Associates (2024). Rhinoceros. Available online at: https://www.
rhino3d.com/(Accessed: 2024-08-09.

Rossi, G., and Nicholas, P. (2019). “Re/learning the wheel: methods to utilize
neural networks as design tools for doubly curved metal surfaces,” in Acadia//2018:
recalibration. On imprecisionand infidelity: proceedings of the 38th annual conference of
the association for computer aided design in architecture, 146–155.

Shaked, T., Bar-Sinai, K. L., and Sprecher, A. (2021). Adaptive robotic stone
carving: method, tools, and experiments. Automation Constr. 129, 103809.
doi:10.1016/j.autcon.2021.103809

Soler, V. (2023). Robots. Available online at: https://github.com/visose/Robots
(Accessed October 22, 2024).

Steinhagen, G., Braumann, J., Brüninghaus, J., Neuhaus, M., Brell-Cokcan, S., and
Kuhlenkötter, B. (2016). “Path planning for robotic artistic stone surface production,”
in Robotic fabrication in architecture, art and design 2016. Editors J. Burry, D. Reinhardt,
and R. Saunders (Springer International Publishing and Imprint: Springer), 122–135.

Tian, R., Saran, V., Kritzler, M., Michahelles, F., and Paulos, E. (2019). “Turn-by-
wire: computationally mediated physical fabrication,” in Proceedings of the 32nd annual
ACM symposium on user interface software and technology. Editors F. Guimbretière, M.
Bernstein, and K. Reinecke (New York, NY, USA: ACM), 713–725.

Vedove, M. D., Abu-Dakka, F. J., Palopoli, L., Fontanelli, D., and Saveriano, M.
(2025). Meshdmp: motion planning on discrete manifolds using dynamic movement
primitives

Wölfel, K., Müller, J., and Henrich, D. (2021). “Toolbot: robotically reproducing
handicraft,” in Human-computer interaction – interact 2021. Editors C. Ardito, R.
Lanzilotti, A. Malizia, H. Petrie, A. Piccinno, G. Desolda, et al. (Springer International
Publishing), 470–489. 12934 of Lecture Notes in Computer Science.

Frontiers in Robotics and AI 18 frontiersin.org

https://doi.org/10.3389/frobt.2025.1569476
https://doi.org/10.1016/j.cag.2021.05.008
https://doi.org/10.1007/s10514-016-9556-2
https://doi.org/10.5555/1953048.2078195
https://www.rhino3d.com/
https://www.rhino3d.com/
https://doi.org/10.1016/j.autcon.2021.103809
https://github.com/visose/Robots
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	1 Introduction
	2 Related work
	3 Materials and methods
	3.1 Set-up and hardware
	3.2 Bayesian Gaussian mixture model of probabilistic movement primitives
	3.3 Data preparation for learning in local frames
	3.4 Inferring toolpaths from CAD drawings
	3.5 Implementation in rhino and grasshopper

	4 Results
	4.1 Data acquisition
	4.2 Wood carving applications
	4.2.1 Naguri
	4.2.2 Rope
	4.2.3 Flower

	4.3 Comparison of toolpath adjustments

	5 Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

