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Versatile kinematics-based
constraint identification applied
to robot task reproduction
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Identifying kinematic constraints between a robot and its environment
can improve autonomous task execution, for example, in Learning from
Demonstration. Constraint identification methods in the literature often require
specific prior constraint models, geometry or noise estimates, or force
measurements. Because such specific prior information or measurements are
not always available, we propose a versatile kinematics-onlymethod.We identify
constraints using constraint reference frames, which are attached to a robot
or ground body and may have zero-velocity constraints along their axes.
Given measured kinematics, constraint frames are identified by minimizing a
norm on the Cartesian components of the velocities expressed in that frame.
Thereby, a minimal representation of the velocities is found, which represent
the zero-velocity constraints we aim to find. In simulation experiments, we
identified the geometry (position and orientation) of twelve different constraints
including articulated contacts, polyhedral contacts, and contour following
contacts. Accuracy was found to decrease linearly with sensor noise. In robot
experiments, we identified constraint frames in various tasks and used them
for task reproduction. Reproduction performance was similar when using our
constraint identification method compared to methods from the literature. Our
method can be applied to a large variety of robots in environments without prior
constraint information, such as in everyday robot settings.

KEYWORDS

constraint identification, physical constraints, constraint frames, contact modeling,
robot manipulation, learning from demonstration, imitation learning

1 Introduction

Autonomous robotic manipulation has the potential to improve human lives by
alleviating physical effort. Robots may offer advantages over human labor regarding
consistency, endurance, strength, accuracy, and/or precision in fields such as healthcare,
logistics, exploration, and the manufacturing industry. However, autonomous robots are
typically designed for one specific task in one specific environment, hence they lack
versatility. Tasks in different environments therefore often require different robots, which
may be expensive and impractical.

It may therefore be beneficial to develop robots that are versatile in their task
execution, allowing a single robot to deal with a variety of tasks and environments.
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Manipulation tasks may include pick-and-place tasks (e.g., order
picking), contact tasks (e.g., wiping, polishing, contour following,
and opening/closing compartments) and tool-use tasks (e.g.,
hammering and screwing). Common environments may include
moveable objects such as tools, as well as (immovable) physical
constraints.

Models of the physical environments may assist in versatile
task execution. For example, door opening is a common everyday
task involving similar articulation mechanisms across most
doors. If the interaction mechanisms (e.g., hinges and slides)
can be modeled, a robot may apply the same control to all
environments that have the same mechanisms, thereby improving
robot versatility. However, manually creating such models may be
cumbersome due to many possible variations in the environment,
such as object positions, orientations, shapes, and dynamics.
There is therefore a need for automatic modeling of physical
environments (Kroemer et al., 2020).

Automatically modeling physical environments may occur in a
Learning fromDemonstration (LfD) context (Kroemer et al., 2020).
In LfD, robots learn to perform tasks from human demonstrations,
for example, by manually guiding a robot, rather than by
explicit programming. From the demonstration data, the physical
interactions throughout the demonstrationmay bemodelled, which
in turn may be used in autonomous task reproduction.

Physical environments typically contain kinematic constraints
that restrict movement. In everyday settings numerous constraints
may be encountered, including articulated/mechanism contacts,
such as prismatic (drawers) and revolute joints (doors), polyhedral
contacts such as pin-plane contacts (pen drawing) and plane-plane
contact (box sliding), and contour-following contacts (dusting).

Constraint awareness can benefit task execution in several
ways. First, tasks can often be simplified when expressed in the
constraints (Bruyninckx and De Schutter, 1996). Second, choosing a
suitable control method, e.g., position, velocity, force, or impedance
control can improve both task performance and stability by keeping
undesirable interaction forces low (Conkey and Hermans, 2019;
De Schutter et al., 1999). Third, planning to avoid constraints can
simplify some tasks because there are fewer state transitions to
consider, such as in reaching tasks (Oriolo and Vendittelli, 2009).
Alternatively, planning to introduce constraints can simplify some
tasks by reducing the free space of the robot, for example, during
object alignment (Suomalainen et al., 2021). Fourth, differentiating
between constrained states in a task provides meaningful, tractable
building blocks, which can improve task planning (Ureche et al.,
2015; Jain and Niekum, 2018; Holladay et al., 2021) and facilitate
learning (Simonič et al., 2024). Fifth, some constraints are common
in many robot tasks and can therefore be a basis for generalization
between tasks (Li and Brock, 2022; Li et al., 2023).

Kinematic constraints consist of a (i) constraint class, e.g., a type
of joint or contact, and (ii) constraint geometry, e.g., the orientation
and position of a rotation axis or surface normal (De Schutter et al.,
1999). Identifying constraints from data therefore requires (i)
classifying the constraint class and (ii) identifying the constraint
geometry, both are the topic of this work.

In this work, we make three assumptions about robot
manipulation to limit our scope. First, we assume that robots are
rigidly attached to a constrained mechanism or object in contact
with the environment, and thus leave grasping and environmental

compliance out of our scope. Second, we assume that there is a single
maintained contact between a robot and the environment, such as
a contact point, line, plane, or other continuous contact area. Third,
we assume that all unconstrained degrees of freedom are excited,
to prevent ambiguity between true physical constraints that do not
allow motion and non-observed motions.

Bruyninckx and De Schutter defined kinematic constraint
classes based on contact (Bruyninckx and De Schutter, 1993a;
Bruyninckx et al., 1993b). They proposed to identify constraints by
twomethods: first, based on the absence of mechanical power in the
direction of constraints, requiring position and forcemeasurements.
Second, based onwhether velocities or forces separately fit candidate
constraint models.They used bothmethods in a Kalman filter with a
candidate constraint model of a specific class to estimate constraint
geometry, such as contact points, axes of rotations, and polyhedral
contact normals (De Schutter et al., 1999).

Several authors extended the methods of Bruyninckx and
De Schutter, mainly on multi-contact polyhedral contacts
(Meeussen et al., 2007; Cabras et al., 2010; Lefebvre et al., 2005).They
identify, classify, and segment data containing arbitrary contacts
between two uncertain polyhedral or curved objects using pose
and wrench measurements. Where previous methods required
approximate geometricmodels of the polyhedra, Slaets et al. identify
arbitrary unknown polyhedra at runtime (Slaets et al., 2007).
Although polyhedrons are useful to approximate many tasks, these
methods are fundamentally limited in modeling rotations.

Alternative methods omit noise models, and fit constraint
models of a specific class directly to data, identifying the constraint
geometry in the process. Such models are specified manually,
and when several candidate models are proposed, the best-fitting
model is chosen. For example, several authors identify one of
three candidate models (fixed, prismatic, and revolute joints) using
kinematic measurements (Sturm et al., 2010; Niekum et al., 2015;
Hausman et al., 2015). Subramani et al. identify six candidatemodels
using kinematic measurements (Subramani et al., 2018). They later
expand their method with force information and identify eight
candidate models (Subramani et al., 2020).

Somemethods do not require specific constraint models but use
more versatile representations to capturemultiple constraints. Sturm
et al. fit Gaussian processes in configuration space, but the identified
Gaussian process kernel parameters are not straightforward
to interpret (Sturm et al., 2011). Mousavi Mohammadi et al.
identify “task frames” instead of identifying constraints explicitly
(Mousavi Mohammadi et al., 2024). Such frames conveniently
describe contact tasks and thereby often align with constraint
geometry, but lack constraint classification (Bruyninckx and
De Schutter, 1996). They use velocities and/or forces in a multi-
step decision process to identify frame properties that result in low
or constant velocities and forces with minimal uncertainty. Van
der Walt et al. identify constraints from kinematic data by fitting
points, lines, planes, and their higher dimensional equivalents in
six dimensional linear and angular velocity space, after which they
select the best fitting model (Van der Walt et al., 2025).

Because kinematic constraints occur often in robot
manipulation tasks, we believe more versatile constraint
identification is an important step to advance the applicability
of robots in the real world. However, the literature on constraint
identification shows two common limitations. First, methods in
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the literature often require specific prior constraint models and
estimates of geometry and noise. In everyday robot settings where
many constraints can be encountered, it may be challenging to
exhaustively define such models and estimates. Second, various
methods require force measurements, which may not be available.
This work overcomes both limitations by identifying constraint
frames from kinematic data. First, the method can identify a wide
variety of constraints without specific prior constraint models, or
estimates of geometry or noise. The method is used to identify
articulated/mechanism contacts, polyhedral contacts, and contour
following contacts. Second, the method only requires kinematic
measurements. Therefore, our method can be applied to various
robots in everyday settings, without prior information about the
environment or task.

The method offers two more useful features. First, the identified
constraint frames can be used directly for task reproduction since
the constraints are expressed in a task-relevant reference frame.
Second, the number of identified parameters is fixed, in contrast
to methods that use an increasing number of parameters for each
added candidate model.

This paper is organized as follows: Section 2 discusses
preliminaries on rigid body kinematics. Section 3 proposes to
specify constraints using constraint frames. Section 4 proposes an
optimization problem to identify constraint frames from kinematic
data. Section 5 evaluates the method on experimental data from
simulation and real robot task demonstrations. Section 6 reproduces
robot tasks using the identified constraint frames. Section 7
discusses the results and draws conclusions.

2 Preliminaries on kinematics

This section contains preliminaries for rigid bodies
kinematics (Lynch and Park, 2017). Motion between two rigid
bodies can be represented by the transformation between two
reference frames, one frame rigidly attached to each body. Such
reference frames have a position and orientation in space, which
can change with body motion. The transformation between two
reference frames in three-dimensional space can be parameterized
by a distance between their positions p ∈ ℝ3 and a rotation matrix
R ∈ SO(3) between their orientations. These components can be
combined in a homogenous transformation matrix

T = [

[

R p

01×3 1
]

]
∈ SE(3),

which represents the pose (orientation R and position p) of one
frame relative to the other.

The velocity between two rigid bodies can be represented by a
twist V = [ωT,vT]T ∈ ℝ6, which contains an angular velocity ω ∈
ℝ3 and a linear velocity v ∈ ℝ3. The twist must be expressed in a
reference frame, denoted by a superscript, e.g.,Vb = [(ωb)T, (vb)T]

T

for reference frame {b}. If T describes the pose of a body frame {b}
with respect to a ground frame {g}, the twist Vb of a body with
respect to the ground expressed in frame {b} is related to T by:

T−1Ṫ = [Vb]
×
= [

[

[ωb]
×

vb

01×3 0
]

]
∈ se(3), (1)

where [ω]× is the skew-symmetric representation of ω =
[ω1,ω2,ω3]

T:

[ω]× =
[[[[

[

0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

]]]]

]

∈ so(3).

Expressing the twist Vb in a frame other than {b} requires the
pose matrix of {b} with respect to the new frame. For example, if R
and p again represent the pose of body frame {b} with respect to the
ground frame {g}, the transformation

Vg = [

[

R 03×3
[p]×R R

]

]
Vb. (2)

expresses the twist Vb in frame {g}.

3 Constraint frames

This section introduces a method to specify constraints that
result in constrained kinematics. This method is used in Section 4
for the inverse problem: identifying constraints fromkinematic data.

3.1 Degrees of freedom

Kinematic constraints limit a robot’s motion. We consider
Pfaffian constraints on the end effector twist V of a robot with
respect to the ground. The form of such constraints is

A(T)V = 0h, (3)

where A(T) ∈ ℝh×6 defines h ≤ 6 constraint equations (Lynch and
Park, 2017).

We restrict A(T) to be coordinate transformations of
the form of Equation 2 that transform velocities ω and/or v to
one or more axes of some to be determined frame {ξ}. For example,
the i-th constraint equation Ai(T) may restrict the j-th axis of ω
when expressed in {ξ}, such that Ai(T)V = ω

ξ
j = 0. Constraints can

similarly be applied to v.
We also allow constraints on ω and v to be described from

different frames, respectively. We denote the frame for ω as {ξ} = {ϕ}
and for v as {ξ} = {ψ}.Therefore, we consider constraints of the form:

ωϕ
n = 0,

vψm = 0.
(4)

Here, axis n of ω is constrained in {ϕ}, and axis m of v is
constrained in {ψ}. For either velocity, the number of constraints
can be none, one, two, or three. We thus consider bilateral zero-
velocity constraints along one or more axes of ω expressed in {ϕ} and
v expressed in {ψ}. Although most contact constraints are unilateral,
they can be modeled as bilateral if contact is kept, which we assume
in this work.

To specify whether the axes of ωϕ are constrained according
to (4), we use an associated binary degree of freedom vector dϕ ∈
{0,1}3. Here, 0 indicates the associated axis is constrained and 1
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indicates it is unconstrained. The analogous situation applies to v
with dψ ∈ {0,1}3.

By summing the degree of freedom vector ∑3n=1d
ϕ
n ∈ {0,1,2,3},

we obtain the physical degrees of freedom of ω in frame {ϕ}.
When adding units, dϕ rads−1 = span(ωϕ) gives a basis for ω, which
represents all possibleω being either zero, lying on a line, on a plane,
or in a volume.

Constraints can be thus defined by specifying dϕ and dψ. For
example, a revolute joint can be specified by dϕ = [1,0,0]T if the
first axis of {ϕ} aligns with the rotation axis, and dψ = [0,0,0]T if the
position of {ψ} is on the rotation axis.

3.2 Frame type and geometry

So far, the frame {ϕ} in which to express constraints
on ω, and frame {ψ} in which to express constraints on
v, have not been specified. Here, we require the frames to
be attached to the ground body G or the robot body B,
similar to Mousavi Mohammadi et al. (2024).

The v frame {ψ} must have its orientation constant in G or
B, and its position constant in G or B. This results in four frame
types denoted by {ψ} ∈ {{GG}, {GB}, {BG}, {BB}}. For example, {BG}
indicates that the frame’s orientation is constant in ground body B
and its position is constant in bodyG. Figure 1 visualizes these frame
types during motion.

Because the frames’ orientations and positions are constant in
either one of the bodies, they can be parameterized by a constant
rotation matrix Rψ and position vector pψ. For example, RBG

denotes the constant rotation matrix between {BG} and a frame {b}
on body B (Figure 1).

For the ω frame {ϕ}, only two types of constraint frames have to
be considered because ω is independent of the position of the frame
it is expressed in, that isωGG = ωGB andωBG = ωBB.Therefore, the
dependence on frame position can be omitted. The two frame types
are {ϕ} ∈ {{G}, {B}}, which are parameterized solely by a constant
rotation matrix Rϕ. Because frames {ϕ} do not have a position, they
are shown at convenient positions in figures.

3.3 Applied constraint frames

In summary, degrees of freedom dϕ and dψ specify
whether axes are constrained; types {ϕ} ∈ {{G}, {B}} and {ψ} ∈
{{GG}, {GB}, {BG}, {BB}} specify what the frames are attached
to; and Rϕ, Rψ , and pψ specify the geometry of the constraints.
The combination of degrees of freedom and frame types can
be considered the class of a constraint. Table 1 summarizes
these properties and the constant parameters that specify them.
Figure 2 and Table 2 show twelve (not exhaustive) example
constraints that can be specified using this method.

The presented method does not uniquely define constraints
for three reasons. First, the ordering of the axes is undefined. For
example, d = [1,0,0]T and R = [r1,r2,r3] define the same constraint
as d = [0,1,0]T and R = [r2,r1,r3]. Second, the positive or negative
directions of the axes are irrelevant because we consider bilateral
constraints. Therefore, the basis vectors in R = [±r1,±r2,±r3] can

FIGURE 1
Constraint frame identification following a two-dimensional task
demonstration, e.g., by a human guiding the robot. The behavior of
the constraint frame types {ψ} ∈ {{GG}, {GB}, {BG}, {BB}} is shown at
two instants (solid and dashed) during a demonstration of robot body
B with respect to ground body G. Frames {GG} and {BB} are rigidly
attached to their respective bodies. Frames {GB} and {BG} have
constant orientation in one body, but constant position in the other.
Only the transformations between ground {g} and body {b} are
measured (black), and the method identifies the unknown (gray)
constraint between the tool and ground. In this example, the optimal
frame is {GB} at tip of the tool, because the linear velocities along one
of its axes are always zero, which is not the case for velocities
expressed in the other frames. In practice, the method performs a
continuous optimization in three-dimensional space to find the frame
position and orientation, and also identifies the angular velocity
constraint frame.

have either sign. Third, (parts of) R are always free to choose,
as shown in Table 2.

In addition, two types of redundancies can occur depending on
the constraint. First, (parts of) the frame {ψ} positions pψmay be free
to choose. For example, the frame {ψ} of a cylinder joint (Figure 2C)
may lie anywhere on its rotation axis. Second, multiple frame types
may lead to the same constraints. For example, any of the four frame
types of {ψ} can be used to specify a revolute joint (Figure 2A).

For simplicity, we consider angular velocity constraints where
either type {ϕ} ∈ {{G}, {B}} leads to the same constraint, i.e., when
∑3n=1d

ϕ
n ≠ 2.

4 Constraint frame identification

Section 3 introduced a method to specify constraints that
result in constrained kinematics. This section considers the inverse
problem: identifying constraints from constrained kinematic data.
Constraint identification is first defined as an optimization problem
for angular velocity ω, followed by a second optimization problem
for linear velocity v.
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TABLE 1 Parameters of the proposed method.

Velocity ℝ3 Constraint frame

DOF Type Geometry

Binary {0,1}3 {const. pos. vector in,
const. rot. matrix in}

Rot. matrix SO(3) Pos. vector ℝ3

ω (angular) dϕ {ϕ} ∈ {{G}, {B}} Rϕ −

v (linear) dψ {ψ} ∈ {{BB}, {GB}, {GG}, {BG}} Rψ pψ

FIGURE 2
Visualization of twelve (not exhaustive) constraints that can be captured by the method. Each constraint (A–L) is described in Table 2. The left-hand
figures are planar, where the rotation axis (y-axis) is normal to the plane. Colors (Table 2) indicate the linear velocity constraint frame type
{ψ}, where {GG} is yellow, {GB} is green, {BG} is red, and {BB} is blue. For conciseness, angular velocity constraint frames {ϕ} overlap exactly with
the linear velocity constraint frames {ψ}, such that Rϕ = Rψ. If a frame at the second time instance (dashed) is not shown, it is the same as the first. The
linear velocity degrees of freedom dψ are marked along the frame axes by an arrowhead (unconstrained) or no arrowhead (constrained). The
unconstrained angular velocity degrees of freedom dϕ are marked by a rotational vector.

Section 3 specified constraints on ω through a constraint frame
{ϕ} with a degree of freedom vector dϕ. The inverse problem, given
measured ω, is to find some {ϕ} that results in some dϕ. To resolve
this ambiguity, we aim to find the {ϕ} in which ωϕ has the minimum
number of degrees of freedom and thus the maximum number of
constraints. Thus, we define our constraint frame identification as:

min
ϕ

3

∑
n=1

dϕn ∈ {0,…,3}. (5)

Thereby, a minimal representation of ω is found by expressing it
as ωϕ.

Measuring ω at samples k ∈ {1,2,…,K} yields a 3×K matrix Ω
with rows ωn, columns ω(k), and entries ωn(k). If the constraint
condition of Equation 4 holds for an axis n, then ωϕ

n(k) = 0 should
hold for all samples k. To assess the velocity magnitude in
measurement data we use the scaled 2-norm, or root mean square

(RMS), over all samples of an axis n:

λϕn = ‖ω
ϕ
n‖2,

as defined by the scaled p-norm with p = 2:

‖x‖p = (
1
K

K

∑
k=1
|x(k)|p)

1
p

,

for a signal x with samples x(k) (Bullen, 2003).
With noiseless measurements, the constraint condition

(Equation 4) can then be tested by dϕn = 0 if λ
ϕ
n = 0 and d

ϕ
n = 1 if λ

ϕ
n >

0.When noise is present however, noise is added to the zero-velocity
constraint and the constraint condition (Equation 4) becomes

ωϕ
n(k) ∼ N (0,σ2),
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TABLE 2 Parameters of the example constraints of Figure 2.

Figure 2 label Constraint name Constraint frame

DOF Type Geometry

dϕ {ϕ} Rϕ −

dψ {ψ} Rψ pψ

A Revolute joint
[0,1,0] − [−,ry,−] −

[0,0,0] − [−,−,−] [px,−,pz]

B Prismatic joint
[0,0,0] − [−,−,−] −

[1,0,0] − [rx,−,−] [−,−,−]

C Cylinder joint
[1,0,0] − [rx,−,−] −

[1,0,0] − [rx,−,−] [−,py,pz]

D Plane-plane contact
[0,0,1] − [−,−,rz] −

[1,1,0] − [−,−,rz] [−,−,−]

E Planar contour following
[0,1,0] − [−,ry,−] −

[1,0,0] {BB} [rx,−,−] [px,−,−]

F Planar contour rolling
[0,1,0] − [−,ry,−] −

[1,0,0] {GG} [rx,−,−] [px,−,−]

G Cart on a curved surface
[1,1,1] − [−,−,−] −

[1,1,0] {BB} [−,−,rz] [px,py,pz]

H Contour rolling
[1,1,1] − [−,−,−] −

[1,0,0] {GG} [rx,−,−] [px,py,pz]

I Planar pin-plane contact
[0,1,0] − [−,ry,−] −

[1,0,0] {GB} [rx,−,−] [px,−,pz]

J Planar plane-pin contact
[0,1,0] − [−,ry,−] −

[1,0,0] {BG} [rx,−,−] [px,−,pz]

K Pin-plane contact
[1,1,1] − [−,−,−] −

[1,1,0] {GB} [−,−,rz] [px,py,pz]

L Plane-pin contact
[1,1,1] − [−,−,−] −

[1,1,0] {BG} [−,−,rz] [px,py,pz]

“−” means that entry is not uniquely defined.

assuming normally distributed noiseN with variance σ2. Therefore,
the norm λϕn is not bounded from below by 0, but by the noise
variance σ2, which is the RMS of a normally distributed discrete
signal with zeromean. Because λϕn ≥ σ2 > 0, evaluating d

ϕ
n will always

lead to dϕn = 1, and an optimization of Equation 5 has no gradient.
Instead of minimizing over dϕn, we minimize λϕn directly as a

continuous measure of a signal’s degree of freedom. We aim to find
a frame {ϕ} in which the variance of each of the axes λϕn in λϕ ∈

ℝ3 are minimized. The values in λϕ are bounded from below by
σ2 if constraints are present, but are larger otherwise. Because we
are interested in finding those constraints, we prefer finding small
individual values in λϕ rather than larger values.

Therefore, we use a p-norm over the three axes of λϕ:

min
ϕ
‖λϕ‖

p
,
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TABLE 3 Kinematic variables to transform (Equation 8).

{ψ} Ω from (2) V from (2) R

{BB} Ωb Vb −[I3×3, I3×3,…]

{GB} Ωb Vb [R(0),R(1),…]

{GG} Ωg V g −[I3×3, I3×3,…]

{BG} Ωg V g [RT(0),RT(1),…]

but with −∞ < p < 1, for which the minimization is more sensitive
to small individual values in λϕ in contrast to p > 1. Some values of
p yield special simplified expressions (Bullen, 2003). For example,
p = 1 yields the mean of λϕ, which is equally sensitive to all values in
λϕ regardless of size. The limit p = −∞ yields the minimum of λϕ,
which is only sensitive to the smallest value in λϕ. Here we use p = 0,
which yields the following simplified expression:

min
ϕ
‖λϕ‖

p=0
=min

ϕ
(

3

∏
n=1

λϕn)
1/3

,

also known as the geometric mean (Bullen, 2003). This results in
a quasinorm, because not all conditions for a norm are satisfied. By
substituting the 2-norms (RMS) and 0-quasinorm (geometricmean)
into one entry-wise 2,0-quasinorm, we obtain

min
ϕ
‖Ωϕ‖

2,0
=min

ϕ
(

3

∏
n=1
( 1
K

K

∑
k=1
|ωϕ

n(k)|
2
)

1
2

)

1
3

. (6)

Section 3 proposed two options for {ϕ} ∈ {{G}, {B}}, both
parameterized by constant Rϕ, and thus two optimization problems.
The measurement matrixΩ can be expressed in frame {ϕ} using the
coordinate transformation of Equation 2, yielding

min
Rϕ
‖RϕΩ‖

2,0
, (7)

where the first optimization {ϕ } = {B} uses Ω =Ωb and the second
optimization {ϕ} = {G} usesΩ =Ωg.

This method can also be applied to linear velocity v, with a
measured 3×Kmatrix V :

min
ψ
‖Vψ‖2,0.

Section 3 proposed four options for {ψ} ∈ {{GG}, {GB}, {BG}, {BB}},
all parameterized by constantRψ and pψ , and thus four optimization
problems. The measured V can be expressed in frame {ψ} using the
coordinate transformation of Equation 2, yielding

min
Rψ,pψ
‖RψR(V + [pψ]×Ω)‖2,0, (8)

where Ω, V , R are given in Table 3, depending on which of the four
frame types they are expressed in.

Because the ground-truth constraint frame types {ϕ} and {ψ}
will not be known beforehand, both optimizations of Equation 7
and all four of Equation 8 must be done. Then, {ϕ} and {ψ} can
be classified by choosing the type with the lowest minimized

quasinorm. Furthermore, the binary degrees of freedom vectors d
can be classified by thresholding λ.

The inputs to the method are twists V(k) containing ω(k) in Ω
and v(k) inV , and poses T(k) containing R(k) and p(k).The outputs
are one set of the constraint frame parameters of Table 1: degrees of
freedom, type, and geometry.

5 Evaluation

To evaluate the identification method, we simulated kinematic
data for all twelve constraints of Figure 2 and gathered experimental
robot data for five constraints. For the simulation experiments we
used prior knowledge of the constraint frame types {ϕ} and {ψ}, to
test how identification accuracy is affected by noise added to the
posesT(k), and consequently twistsV(k). For the robot experiments
we used no prior knowledge of the frame type. We classified the
constraint frame types and identified the constraint geometry, with
real-life noise.

5.1 Simulation experiments

For the simulation experiments, we first generated
constrained end effector poses T(k) using Python 3.11
and NumPy 1.26. The velocities were ωϕ(k) = dϕ ∘ 0.5 ∘
[1+ sin (2kΔt),−1, cos (3kΔt)]T rads−1 and vψ(k) = dψ ∘ 0.1 ∘
[−1, cos (2kΔt), sin (3kΔt)]Tms−1 where ∘ is element-wise
multiplication and Δt is the sample time. Therefore, if dϕ and dψ

specify that an axis is constrained, the velocity along that axis
will be zero. Different {ϕ} and {ψ} then result in all constraints
of Figure 2. The end effector twist Vb(k) was calculated using the
transformation of Equation 2.

Poses T(k) were obtained using the discrete-time version of
Equation 1 for constantVb(k)between samples (Lynch andPark, 2017):

T(k+ 1) = exp([Vb(k)]
×
Δt)T(k). (9)

Discrete time ran for 5s with sample time Δt = 0.1s, an example
is shown in Figure 3A. To mimic real world experiments, we
introduced noise to T(k). Normally distributed noise with standard
deviation σp was added to the position p(k) in T(k).

Normally distributed noise with standard deviation σR was
added to the rotation vector representation θ(k) ∈ ℝ3 of R(k) in
T(k), related by [θ(k)]× = ln (R(k)). We assumed that the noise on
position σp and rotation σR components were the result of one noise
source with standard deviation σ, such that σp = σ and σR = 3σm

−1.
Therefore, varying σ affects both position and rotation components
in the noisy poses T̃(k). The three-times larger effect of σ on σR was
estimated by measuring noise on the robot pose in standstill.

5.2 Robot experiments

To test the method on real-world data, a Franka
Research 3 (Franka Robotics, Munich, Germany) was used
to collect constrained end effector poses T̃(k), an example
is shown in Figure 3B. The experimenter physically moved the end
effector through space in low-impedance guiding mode, which is
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FIGURE 3
(A) Constraint frame identification of a plane-plane constraint (Figure 2D) in simulation experiments. (B) Constraint frame identification of a revolute
joint (Figure 2A) in robot experiments. (C) Reproduction of motion in a prismatic joint (Figure 2B) by applying force f along the identified free axis of the
constraint frame containing error ΔRψ, the reaction forces f are due to the real-world constraint. The setup in (B,C) can be configured to constrain
specific axes. Measured end effector poses are shown as black dots with red-green-blue axes. Errors in the identified constraint frame geometry are
shown enlarged in red with respect to the purple ground-truth geometry: perpendicular axis in (A), rotation axis in (B), and translation axis in (C).

part of the robot’s default control options, while the end effector was
bolted to a constrained mechanical setup. While interacting with
a user in the guiding mode, the robot complied with the Franka
safety considerations. These consist of limits on all motor positions,
velocities, accelerations, jerks, torques, and torque derivatives. The
robot stops upon violation of these limits.

Poses T̃(k) of five constraints (Figures 2A, B, D, I, K) were
collected over ten trials per constraint for 5s at Δt = 0.05s. The
experimenter attempted to track the poses of the simulations.

5.3 Error metrics for evaluation

Section 3.3 noted that the geometric parameters Rϕ, Rψ, and pψ

may contain redundancies depending on the constraints. Therefore,
the error metrics reflect this.

Section 3.3 and Table 2 noted thatRϕ andRψ either have none or
one unique basis vector in Rϕ and none or one in Rψ. If there are no
unique basis vectors, the error is irrelevant. If there is one unique
basis vector l, the error metric is the angle ΔR = acos(r l · ̂r l) ∈ ℝ
between the ground-truth basis vector r l and the estimated basis
vector ̂r l. Angle ΔR was wrapped at ±90 deg, as the positive and
negative axes are irrelevant. For the error metric of pψ, the Euclidian
distance from the ground truthΔpψ = ‖pψ − p̂ψ‖2 was used. Only the
unique components of pψ − p̂ψ, as shown in Table 2, were used.

The ground truth constraint frame geometries were Rϕ =
Rψ = I3×3, with pψ = [0.1,0.3,0.1]Tm for simulation, and pψ =
[0.0,0.0,0.244]Tm for robot experiments.

5.4 Implementation

Given experimental poses T̃(k), noisy twists ̃Vb(k) were
computed from Equation 9 by solving for Vb(k). The optimizations
of Equation 7 and Equation 8 were implemented in Python using
NumPy and the SciPy 1.10 dual annealing global optimization

algorithm with 100 maximum iterations and default settings
otherwise (Xiang et al., 2013). Our code is available online1.

The rotation matrices Rϕ, Rψ were parameterized by their
rotation vector representations and bounded to ±180 deg. The
bounds on pψ were ±1m. Initial guesses were randomized. For
the simulation data, optimizations were done with added noise σ ∈
[10−6,10−4]m spaced exponentially at 10 values. For the robot data,
optimizations were donewith no added noise σ. One optimization of
Equation 7 or Equation 8 for a single frame type took approximately
2s on an Intel Core i5-6600 CPU with 8 GB RAM.

5.5 Simulation experiment results

The geometric errors (ΔRϕ, ΔRψ, Δpψ) relate to noise (σ) with
approximately unit slope (Figure 4) for all constraints except for I, J,
K, andL,whose errors (ΔRψ,Δpψ) are constantwith increasing noise.
Constraints with fewer degrees of freedom are generally identified
more accurately.

5.6 Robot experiment results

Identifying constraint frames in demonstrations resulted
in several candidate frame types (left, Table 4), each having
associated degrees of freedom (middle, Table 4) and geometry
(right, Table 4).

Section 4 noted that optimal frame types may be classified as
the one with the lowest norms of Equation 7 or Equation 8. For
constraints where any frame type is valid, norms are expected to be
similar between frame types. This holds for all {ϕ} and {ψ} in A, but
not for {ψ} in B, D which have lowest norm in {GB}. For constraints
where only one frame type is valid ({GB} in I, K) the norms of the
ground truth types are approximately half those of the other types.

1 https://github.com/ET-BE/ReFrameId
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FIGURE 4
Sensitivities of the geometric identification errors (ΔRϕ, ΔRψ, Δpψ) to noise (σ) in simulation experiments for all constraints of Figure 2.

TABLE 4 Identified constraint frames of robot demonstrations.

Figure 2 label Min.
norm (7) inframetype {ϕ}(mrads−1)

Degrees of freedom∗ Geometry error∗

Min.
norm (8) inframetype {ψ}(mms−1)

{G} {B} λϕ (mrads−1) ΔRϕ (deg ) −

{BB} {GB} {GG} {BG} λψ (mms−1) ΔRψ (deg ) Δpψ(mm)

A
108.2± 7.9 20.5± 10.8 37.9± 2.8 47.2± 3.8 863.7 ±46.7 0.19± 0.02‡ −

2.4± 0.2 3.6± 0.2 2.3± 0.1 2.3± 0.2 1.6± 0.2 1.8± 0.2 4.5± 0.2 − 6.46± 0.21

B
47.5± 3.7 47.5± 3.7 39.0± 3.5 50.0± 3.8 55.3± 4.4 − −

12.9± 1.1 7.9± 0.5 21.3± 1.5 23.3± 1.6 0.9± 0.1 1.8± 0.2 256.5 ±13.4 0.94± 0.18‡ −

D
144.3± 10.1 142.1± 9.2 50.5± 3.7 60.8± 3.5 958.2 ±115.6 2.59± 0.50 −

47.9± 7.2 35.1± 2.3 60.3± 7.2 58.4± 8.1 1.4± 0.2 156.4 ±25.3 185.7 ±14.2 0.52± 0.13 −

I
85.4± 5.0 86.3± 2.3 25.5± 1.7 30.3± 3.9 786.5 ±77.5 0.56± 0.15 −

18.0± 1.9 10.6± 1.2 23.1± 2.3 23.5± 2.1 2.4± 0.3 5.2± 0.9 93.9 ±7.3 1.64± 0.18 3.53± 1.12‡

K
428.3± 2.1 495.3± 4.0 260.2 ±30.3 430.8 ±78.8 716.1 ±71.6 − −

54.2± 10.8 30.3± 4.9 56.4± 8.1 59.8± 11.0 4.2± 1.4 68.3 ±17.8 99.4 ±14.6 2.45± 1.43 7.69± 2.32

∗In frame type with lowest minimized norm (bold). Italic: corresponds to ground-truth free axis. ‡Error used in reproduction (Figure 5).

Therefore, frame types were classified correctly by the framewith the
lowest minimized norm.

After classifying the optimal frame type, the associated degrees
of freedom and geometry can be evaluated (middle, right, Table 4).
If any threshold between [60,260]mrads−1 is applied to all λϕ, and
any between [6,68]mms−1 to all λψ, the degrees of freedom of all
five constraints (Table 2) are classified correctly. Suitable thresholds
may be chosen at the midpoint of these ranges: 160mrads−1 for
λϕ and 37 mms−1 for λψ. These midpoint thresholds are at least 5
standard deviations away from the means of λϕ and λψ. The errors
of the identified geometry are within ΔRϕ < 1 deg, ΔRψ < 2.5 deg and
Δpψ < 8mm.

6 Application to robot task
reproduction

This section illustrates how robot tasks can be reproduced
using control expressed in the identified constraint frames of
Section 4, and how their identification errors (ΔRϕ, ΔRψ, Δpψ) may
influence task performance. The Franka robot reproduced three
straightforward endstop-to-endstop tasks involving constraints
A, B, and I enforced by the mechanical setup from Section 5.2.
An experiment is visualized in Figure 3C. We collected five
trials for each task at a 0.05s sample time and clipped
each trial to 5s.

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1574110
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Overbeek et al. 10.3389/frobt.2025.1574110

6.1 Reproduction control

To reproduce the tasks, we used simple control based on
the identified constraint frames from the experiments of Table 4,
thereby illustrating simple LfD. We sent desired motor torques
τ ∈ ℝ7 to the Franka torque controller based on constant desired
wrenches (moments m ∈ ℝ3 and forces f ∈ ℝ3) expressed in
the identified constraint frames. The torques and wrenches are
related by τ = JT[f TmT]T, where J ∈ ℝ6×7 is the robot pose-
dependent Jacobian (Lynch and Park, 2017).

Desired motor torques were sent to the robot using Robotic
Operating System (ROS, version Noetic Ninjemys) from Ubuntu
20.04 with the franka_ros package. During operation, the user
and bystanders were outside the workspace of the robot, and the
user monitored the task reproduction with the robot’s emergency
stop in hand.

Desired wrenches were set to constant values (3.5Nm and 7N)
along the free axes of the identified constraint frames, and to zero
(0Nm and 0N) along the constrained axes. Therefore, the control
for constrained task A applied a pure moment using the identified
Rϕ. The control for constrained task B applied a pure force using
the identified Rψ. The control for constrained task I applied a
moment and a force using the identified Rϕ, Rψ, and pψ, but for this
experiment we set ΔRϕ = ΔRψ = 0 to isolate the effect of Δpψ.

6.2 Effects of identification accuracy

During constrained task reproduction there will be reaction
wrenches along the constrained axes, whichwe consider undesirable
in these experiments. Such reaction wrenches can be caused
by, among other factors, the control applying wrenches based
on imperfect constraint identification. Therefore, we compared
the reaction wrenches in case the constraint frames used in the
controller contain no errors (ΔRϕ = ΔRψ = Δpψ = 0), identification
errors from methods in the literature that use prior knowledge
(De Schutter et al., 1999; Niekum et al., 2015), and identification
errors from our method without prior knowledge of the
constraint (Table 4).

From the measured interaction wrenches (m(k) and f (k)) we
determined the reaction wrenches (moments m(k) and forces f (k))
along the ground-truth constrained axes (Figure 2), and determined
their peak magnitudes m

∗
and f

∗
with m

∗
= max ‖m(k)‖2 ∈ ℝ.

Thereby, we obtain a metric of how constraint identification accuracy
influences undesirable reaction wrenches in task reproduction. The
results are shown in Figure 5. Larger identification errors (i.e., from
ourmethod)were expected to cause larger reactionwrenches, but this
is not necessarily the case. In all reproductions, the physical endstops
of the setup were reached.

7 Discussion and conclusion

This work identifies constraints from kinematic data using
constraint frames, consisting of a frame type that determines what
body the frame is attached to, geometry that determines the
orientation and position, and the degrees of freedom of velocities in
that frame. First, frame geometries are identified by minimizing a
norm on velocities in all frame types. Second, the optimal frame
type is classified as the one with the lowest norm. Third, the
degrees of freedom can be classified by thresholding the velocities
in that frame.

7.1 Advantages

The method does not require force measurements, and can
therefore be applied to any system that measures positions and
orientations of constrained objects or manipulators. Examples
include other (mobile) robotic arms with different kinematic
chains, humanoid robots, and mobile robots constrained by
their environments. Besides robotics, the method may also be
applied to motion tracking systems, for example, to monitor
human movement or estimate human joints (Ancillao et al.,
2022). While impedance control was used to collect pose data
and reproduce tasks, the constraint identification itself does not
depend on force measurements. Because force measurements can
improve identification accuracy it is the topic of future work
(De Schutter et al., 1999; Subramani et al., 2020). Moreover,
correct kinematics-based constraint identification requires that
all true degrees of freedom are excited. Otherwise, there is no
discernible difference between, e.g., a prismatic joint constraint and
unconstrained but straight line translation, which will have the same
apparent degrees of freedom.

The method requires no specific prior constraint models, nor
estimates of geometry. Hence, there is no need to manually estimate

FIGURE 5
The peak magnitude reaction wrenches ( f

∗
, m
∗
) and their means and standard deviations over five reproductions of the tasks containing constraints

(A–C). Colors represent the source of the errors in the constraint frame used in the control.
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or define constraints, which may be challenging to do exhaustively
for all constraints that can be encountered in everyday settings.
The method can identify a wide variety of constraints, of which
twelve common examples were shown. However, many more
can be identified by enumerating over all possibilities, including
constraints where the angular and linear velocity frames are not
orthogonal.

The method identifies a fixed number of intuitive
parameters (Table 1). Methods that fit specific constraint models
must identify and choose from multiple candidate models, each
with their own parameters. Therefore, our method may be more
efficient when many different constraints must be considered, such
as in everyday settings.

Our identified constraint frames can be directly interpreted as
“task frames” from the literature since both frames conveniently
describe contact tasks (Bruyninckx and De Schutter, 1996;
Mousavi Mohammadi et al., 2024). Although recent work on
task frame identification by Mousavi Mohammadi et al. (2024)
also has the above advantages, in this work we also classify
constraints by discerning the degrees of freedom associated with
our frames. Although we reproduced simple tasks, such frames
can also be used to reproduce more complicated contact tasks with
hybrid position and force control applied to the task frame axes
(Conkey and Hermans, 2019; Ureche et al., 2015). Alternatively,
impedance controller stiffness may be varied based on the identified
constraints.

7.2 Limitations and future work

In this work, we applied our method to a window of kinematic
data which we assume contains a single constraint. In future work,
wewill investigate howourmethod can be applied to data containing
sequential constraints. Furthermore, we only considered single-
contact constraints which can be modeled using a single constraint
frame. Multiple-contact constraints, such as the two ends of a
stick contacting separate planes, cannot be fully modeled using a
single instance of the current method, since only one of the two
contact points will be identified. However, a second instance of our
methodmay identify a second contact point, if the second solution is
(forced to be) distinct.Therefore,multiple contactsmay be identified
with multiple instances of our method, which is the topic of
future work.

We defined constraint identification as a minimization
problem and applied a general global-local optimization method.
Improvements in accuracy and time efficiency may be achieved
in several ways: by more efficient optimizer implementations, by
choosing a different optimization method suited for our specific
problem, or by tuning the optimization parameters. Furthermore,
prior information may be useful for initialization. For example, a
vision systemmay be used to identify a tool tip as prior information
on constraint geometry.

Identifying constraint geometry does not require any parameter
choice, but classifying the degrees of freedom requires two
thresholds on RMS velocities, which can be chosen heuristically
or empirically. Heuristically, thresholds may be chosen based on
prior information, such as expected noise and expected velocities,
which may differ between applications and measurement systems.

If such prior information is available, classification may perform
as expected without the need for threshold tuning. Empirically,
thresholds may be chosen following demonstrations with known
ground-truth constraints (Section 5). If such demonstrations are
available and representative of future tasks, no explicit prior
information about noise and velocities are needed, which may be
more convenient depending on the application.

Geometric identification errors were found to scale linearly
with noise in simulation experiments, and the exact scaling varies
with the underlying constraints. Errors in robot experiments were
larger than those in simulation experiments, which may be due to
unmodeled factors such as structural compliance. Classification of
the ground-truth constraint frame type was successful in all robot
experiments. An analysis of factors that influence identification and
classification performance is outside the scope of this work, such as
the constraint, the optimizer, the relative direction and magnitude
of motion, and the sample size.

Constraint identification methods in the literature report
geometric identification accuracies using different metrics. In our
method, we report the geometric parameter errors between points,
lines, and planes. Methods that use similar metrics report similar
errors: within 1–7.5 mm and 0.5–5 deg for point-on-plane contacts,
prismatic, and revolute joints (De Schutter et al., 1999; Sturm et al.,
2011; Mousavi Mohammadi et al., 2024). Other methods report the
fitness between observations and their candidate constraint models
(Sturm et al., 2011; Subramani et al., 2018; Subramani et al., 2020;
van der Walt et al., 2025). Of suchmethods, themost accurate report
sub-millimeter mean fit errors (Subramani et al., 2018). While such
sub-millimeter mean model fit errors are not directly comparable to
geometric parameter errors, they may correspond to sub-millimeter
geometric errors.

While our method may be more versatile, it may yield larger
geometric identification errors than methods that fit specific
constraint models to data. Regardless, such larger errors (e.g.,
5 mm instead of 0.5 mm) did not lead to substantially larger
reaction wrenches in simple reproduction experiments with the
default Franka controller (Section 6). Furthermore, similar errors
have been shown to lead to acceptable performance in more
complicated tasks in related work (Mousavi Mohammadi et al.,
2024). The obtained accuracy may therefore be sufficient for
such tasks, and other factors may have a greater effect on task
performance, such as the task definition, environment, robot,
controller, and definition of success. For example, control methods
that are designed for compliant contact, such as impedance
control, may be more robust to misidentified constraint geometry
than non-compliant control. We aim to apply such compliant
control methods to reproduce constrained tasks through LfD in
future work.

7.3 Conclusion

This work identified constraint frames in robot tasks
without prior knowledge of the constraints or tasks
and without force measurements. Automatically modeling
such robot-environment interactions, for example, in the
context of Learning from Demonstration, may support
versatile autonomous robot applications.
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