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Precision farming in aquaculture:
non-invasive monitoring of
Atlantic salmon (Salmo salar)
behaviour in response to
environmental conditions in
commercial sea cages for health
and welfare assessment
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Hemang Rishi2, Trevor Telfer1 and Sonia Rey Planellas1*
1Institute of Aquaculture, University of Stirling, Stirling, United Kingdom, 2Observe Technologies,
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Studies show that Atlantic salmon in captivity adjust their distribution in sea cages
based on environmental gradients like temperature, waves, and photoperiod.
This study used a computer vision algorithm at three marine farms to analyse
fish group swimming behaviour termed “activity” (measured in percent), which
includes fish abundance, speed, and shoal cohesion. The activity metric inferred
the depth distribution of the main fish group and was analysed with respect
to environmental conditions to explore potential behavioural drivers and used
to assess changes in fish behaviour in response to a stressor, a storm event.
During winter conditions, Farms A and B showed distinct thermal stratification,
with fish activity demonstrating preference for the warmer lower water column
(39.6 ± 15.3% and 27.5 ± 10.2%) over the upper water column (16.3 ± 5.7%
and 18 ± 3.3%; p < 0.001). At Farm C, with thermally homogenous water,
fish activity was similarly distributed between the upper (18.2 ± 6.9%) and
lower (17.7 ± 7.6%) water column. Severe weather increased wave heights,
influencing fish horizontal distribution differently at Farms B and C. At Farm
B, a deeper site, fish remained in the warmer lower water column and
avoided surface waves, while at Farm C, with shallower cages, they moved
toward the side of the cage nearest the centre of the farm, presumably
less exposed due to nearby cages. Understanding fish behavioural responses
to environmental conditions can inform management practices, while using
cameras with associated algorithms offers a powerful, non-invasive tool for
continuously monitoring and safeguarding fish health and welfare.
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1 Introduction

The study of animal behaviour has been of interest since the
time of Aristotle, and has long been used in agricultural settings
to enhance animal welfare (Fraser and Broom, 1997). However, in
recent decades, technological advancements have greatly improved
the aquaculture industry’s capacity to study and monitor aquatic
species (Colgan and Salmon, 1986; Feng et al., 2024). The inherent
challenges associated with monitoring underwater animals has
pushed the development of innovative underwater technologies.
Most commonly, fish tagging and acoustic telemetry have become
essential tools for tracking fish movements and distribution to
monitor ecosystem health and for conservation purposes (Lopez-
Marcano et al., 2021).

In sea cage aquaculture systems, the challenges of poor visibility
(e.g., fromwater turbidity, fish density, variable lighting conditions),
and restricted access, due to the remote location of many farms,
further emphasise the need for arrays of sophisticated technologies
to monitor fish effectively under farming conditions (Føre et al.,
2018). There are many technologies that can be employed for
farmers to monitor their fish such as biosensors, fish telemetry,
hydroacoustic sensors (echosounders) and cameras, with the latter
two being the most prominent in commercial sea cages (Føre et al.,
2018; O’Donncha et al., 2021; Georgopoulou et al., 2021). Atlantic
salmon (Salmo salar) producers are at the forefront of technological
advancements in this domain. It has become increasingly important
to monitor the behaviour of salmon in production cages, as it
plays a crucial role in ensuring good welfare practices (Føre et al.,
2017). For example, fish exhibit behavioural responses to various
environmental stimuli, such as light, water quality, stocking density,
and current flow. These responses can manifest as changes in
swimming activity, feeding patterns, or aggressive interactions with
conspecifics, providing farmers with valuable insights into fish
welfare and stress levels (An et al., 2021; Barreto et al., 2022).
Monitoring fish distribution throughout the cage, as a behavioural
parameter, in relation to various environmental and health-related
parameters also allows formore effective and informedmanagement
practices, ultimately contributing to the sustainability and success
of aquaculture operations. The distribution of Atlantic salmon
within production cages is influenced by a variety of factors, with
temperature playing a pivotal role. Fish are ectotherms and display a
high sensitivity to even slight temperature variations (Pankhurst and
Munday, 2011). Adult Atlantic salmon prefer temperatures between
13°C–18°C and position themselves in the warmest available waters
when temperatures are below14°C (Oppedal et al., 2011; Korus et al.,
2024). Ectotherms, like fish, use behavioural thermoregulation, to
seek out preferred thermal environments as they are mostly unable
to regulate their body temperature internally (Johansson et al., 2009).

Other forms of behavioural thermoregulation are emotional and
behavioural fever in fish, wherein fish may respond to stress or
illness by physically seeking warmer temperatures (Boltaña et al.,
2013; Rey et al., 2015; Huntingford et al., 2020), similar to the
endotherms physiological or emotional fever (e.g., stress induced
hyperthermia; Olivier et al., 2003; Oka et al., 2018). Additionally,
there is evidence of fish showing thermal preferences associatedwith
their circadian rhythm, with zebrafish and Nile tilapia preferring
higher temperatures in the second half of the light phase and lower
temperatures at the end of the dark phase (Vera et al., 2023).

Similarly, studies have found that in general, salmon show a diurnal
depth preference with a tendency to swim deeper during the day to
avoid high light intensity (negative phototaxis), while at night they
swim closer to the surface (Huse and Holm, 1993; Oppedal et al.,
2001; Oppedal et al., 2007; Johannesen et al., 2022).

At the individual level, differences in stress coping style also
influence salmon behaviour in sea cages and will likely impact
their position in the cage. Fish exhibit two stress coping styles:
proactive and reactive. Proactive fish will take risks, explore and
have high feed motivation. In contrast, reactive fish are shyer and
tend to exhibit behaviours opposite to their proactive counterparts
(Castanheira et al., 2017). There are also intermediate fish, often
the most abundant group within the populations, that are not as
consistent and may change preferences depending on the external
and internal conditions (Ferrari et al., 2020). In the context of fish
distribution, proactive fish have been observed to actively avoid
hypoxic regions compared to reactive fish which tend to persist in
these areas rather than escape from it to move to a novel, better
oxygenated environment (Damsgård et al., 2019). Proactive animals
also tend to be more dominant and prefer higher temperatures
probably due to higher metabolic rates (Cerqueira et al., 2016).

Other oceanographic processes may impact fish distribution in
sea cages, such as current speed, direction and wave height. Salmon
in cages tend to swim in a circular pattern around the cage, following
the net shape (Juell and Westerberg, 1993; Oppedal et al., 2011) or
show positive rheotaxis swimming against the current and holding
position (Webb and Cotel, 2011). For example, Johannesen et al.
(2022) observed that salmon in their study exhibited positive
rheotaxis, moving toward the region of the cage most exposed
to currents, possibly as a form of environmental enrichment that
simulates natural swimming behaviours and helps reduce stress.
Cage deformation plays a role in fish distribution as well, as strong
water velocities can change the shape of the nets reducing cage
volume and thus reduces space for salmon to occupy (DeCew et al.,
2013). Recently, the effects of waves on salmon behaviour and
welfare in sea cages has gained attention with the growing interest in
offshore aquaculture and more dynamic environments (Hvas et al.,
2021; Morro et al., 2022; Szewczyk et al., 2024). Studies have
shown that while fish tend to prefer areas of the cage exposed
to higher currents, they typically avoid the near-surface when
waves are high (Johannesen et al., 2020; Johannesen et al., 2022;
Klebert et al., 2023). However, exposing fish to turbulence similar
to the effects of waves under laboratory conditions show no major
effects on the final welfare or growth of salmon (Barbier et al.,
2024; Athammer et al., 2024). It is also important to recognise the
significance of the farm orientation, as cage blocks are typically
aligned with the longer side in the streamwise direction. This
can lead to significant variations in water flow, with some cages
experiencing highly variable or more consistent flow patterns
depending on their location within the cage block relative to the
tidal cycle (Klebert et al., 2013; Burke et al., 2021). Feeding regime
also influences fish distribution, as fish tend to ascend to the surface
and centre of the cage with increased appetite and while feeding and
subsequently descend and move towards the periphery of the cage
when satiated (Juell et al., 1994; Oppedal et al., 2011).

Stress-related behavioural responses are also evident in aquatic
species. Notably, fish tend to congregate in response to predator
or environment-related stressors. In these cases, the fish will
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shoal, forming a tightly grouped and cohesive unit, as a stress-
defence mechanism (Järvi and Uglem, 1993; Hoare et al., 2004).
Understanding the factors driving shoaling in cultured fish species
is important, as this behaviour can create hypoxic conditions
in areas where fish cluster within the cage. Moreover, close
proximity among fish can lead to physical injury and may
also facilitate the transmission of diseases or parasites among
conspecifics (Bui et al., 2019).

Precisionfish farming, a concept defined as the use of technology
and automation to improve decision making in aquaculture,
has come to the forefront of the industry (Føre et al., 2018).
This is improving farmers’ capabilities to observe, monitor and
increase control over their fish and surrounding environment. More
sophisticated and reliable sensors are available for aquaculture
purposes that can measure water quality parameters like
temperature, oxygen, nitrogen, salinity and turbidity. With the
advent of computer vision techniques, there has been an increase
in studies using cameras and imaging-base systems with algorithms
to extract and analyse the data procured as a non-invasive, cost-
effective means for tracking and monitoring fish in aquaculture
(Zion, 2012; Qian et al., 2016; An et al., 2021; Barreto et al., 2022;
Georgopoulou et al., 2021; Vo et al., 2021).

In the present study, underwater cameras were deployed,
and the real-time videos were analysed using a machine-learning
algorithm that converts the videos into a numerical format as a
proxy for fish abundance and shoal cohesion. The aim of this
study was to understand fish distribution patterns related to the
environmental conditions within the sea cages. The hypothesis
was that fish would follow vertical thermal gradients and change
horizontal distribution based on hydrodynamics. Gaining a more
profound insight into the distribution patterns of fish under typical
conditions provides farmers with a valuable baseline to then
discern whether deviations in these behaviours can be attributed
to stressors of environmental (e.g., storm events or hypoxic
conditions) or health origins (e.g., sea lice or gill health issues;
Sadoul et al., 2014).

2 Materials and methods

2.1 Study sites

Three commercial Atlantic salmon farms in Scotland were used
for this study, one was located within a small bay in a sea loch
on the west coast of Scotland (Farm A), while the other two were
located on the outer (Farm B) and inner (Farm C) coasts of the
Western Isles (Figure 1A). All farms consist of 16 circular cages
arranged in two parallel rows. Farms A and B contained cages with
a circumference of 90 m and a cylindrical depth of 15 m (mesh size:
18 mm, volume: 11, 915 m3), transitioning into a conical bottom
that extends to a total depth of 18 m, and are each equipped with
predator nets. Farm C consisted of cages with a circumference of
120 m and a cylindrical depth of 10 m (mesh size: 18 mm, volume:
11, 460 m3), tapering into a conical bottom that extends to a total
depth of 12 m. The farms contained adult post-smolt salmon with
an average weight of 3.7 kg, 2.1 kg, and 1.8 kg for Farm A, B, and C,
respectively. The fish were sourced from two different broodstocks,
Farms A and B were from the same stock, which differed from

Farm C. All fish had been transferred into their respective farms in
October 2021, February 2023 and May 2023, as ∼100 g smolts from
the two hatcheries.

Farm A has a seabed depth of 25–30 m (I-
Boating: Marine Charts and Gps, 2024) and dominant semi-diurnal
tides with a 2 m range. The water temperatures range from an
average of 14.4°C ± 0.4°C in the summer to 7.2°C ± 0.5°C in winter
(average values for the period 2014–2023 from seatemperature.info).
Farm B has a seabed depth of 23–27 m, with semi-diurnal tides of
2.5 m range. The temperatures range from 13.8°C ± 0.5°C in the
summer and 7.6°C ± 0.5°C in the winter. Farm C is the shallowest of
the three sites, with a depth of only 15–20 m, and semi-diurnal tides
of 3 m range.The temperatures at this site range from 14.7°C ± 0.4°C
in the summer and 7.2°C ± 0.5°C in the winter. Dominant currents
relevant to the cage depth occur in parallel to the orientation
of all farms.

2.2 Data collection

There were 5 and 4 video camera modules (Sony model:
IPCM-3516DS385-D29-AZ3611) installed by AKVA group (www.
akvagroup.com) in a single, randomly allocated cage for farms
A/B and C, respectively. The five camera systems were positioned
facing upwards with three down the centre (approximately 4 m,
9 m, 14 m), and 2 at 9 m on the inner and outer areas of the
cage, respectively, while the 4-camera system did not have the
14 m camera (Figure 1B). While the cameras were deployed at
predetermined depths, their actual depths varied due to routine
removal for cleaning procedures. Each camera was equipped with a
pressure sensor to verify its depth upon redeployment and ensure
consistent spacing between cameras. This pressure data was also
used to determine fish depth preference.

The camera system used in this study was optimised to
focus on objects within a range of 20–30 cm up to 200 cm.
Beyond this distance, the image extends to infinity but without
maintaining sharp focus. This focal range was selected to balance
close-range behavioural observations with broader spatial coverage.
Therefore, the cameras positioned 5 m apart along the centre
were unlikely to have overlapping fields of view, given the limited
underwater visibility and fish density typical of aquaculture systems.
The cameras recorded during daylight (8:30–16:30 in January,
7:00–19:00 by May) at 25 frames per second, with a resolution of
1920 × 1,080 pixels and a video bit rate of 16 Mb per second. The
photoperiod was accessed from Time and Date AS (timeanddate.
com). Continuous temperature was recorded by RDO PRO-X
sensors (accuracy of ±0.1°C and resolution of 0.01°C) attached to
each camera.

Innovex (https://www.innovex.cl/) current sensors and weather
stations were deployed at Farms B and C between January and
May 2024, collecting data every 5 min to capture environmental
conditions, including a storm event (Storm Isha: January 21–22,
2024). Farm A was excluded from this deployment as the fish had
been harvested prior to this period. The current sensor was placed
at 5 m depth off the barge to gather current speeds and directions,
while the weather station collected wind speed and direction, wave
height, and air pressure. As an additional fish performance and
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FIGURE 1
(A) Study sites: A map of Scotland showing the locations of the Atlantic salmon aquaculture farms in western Scotland. Satellite images (from Google
Earth) depicting the layouts of Farms A/B (B) and Farm C (D), where red circles indicate the study cages. (C) Schematic showing the layout of the
cameras within the study cages.

welfare indicator, daily Specific Feeding Rate (SFR) was extrapolated
by farm staff daily as the % body weight fed:

feedgiven
fishbiomass

× 100

where biomass was determined through sample and mortality
weights and number of fish in each cage.

Health-related parameters were not factored into this study as
it was undertaken during the winter months, a period when gill
health issues and other parasitic burdens are relatively low. In this
case, there was no disease outbreak, as confirmed by farm staff.
Treatments can also affect fish behaviour, as they are a source
of stress (Lieke et al., 2020). Distribution data on the rare occasions
treatments were administered were excluded from the analysis.

2.3 Data analysis

The video recordings were analysed via an algorithm developed
by Observe Technologies (www.observe.tech). The algorithm
processes the video footage and outputs behavioural data useful
for farmers. Observe Technologies uses a patented (EP3644717)

convolutional neural network for the heuristic estimation of
fish activity. The approach leverages various discrete features
characterising fish behaviour, including but not limited to, cohesive
schooling, average distance from camera, number of fish on
screen, and fish speed. The model is trained globally rather than
tracking individual fish, learning patterns from labelled data. Since
all features share the same network architecture up to the final
layer, their individual contributions to the final activity score are
not explicitly defined. The model iteratively adjusts its weights
using standard deep-learning optimisation techniques, producing
a normalised relative activity score (0%–100%). Comprehensive
model evaluations are performed using training, validation and
test sets, in line with best practices in deep learning. Additionally,
domain experts in aquaculture continuously validate the model’s
outputs to ensure real-world applicability (Table A1). Separately,
for this study, the real-time output was also examined by experts to
verify its accuracy before it was provided for analysis. An example
of the algorithm's output, illustrated as screenshots from analysed
videos, is provided in the Appendix (Figure A1). The algorithm
was independently validated by two observers from the University
of Stirling, using videos recorded using the same AKVA feed
cameras. For this study, the algorithm’s abundance estimation
component was specifically validated. Fish abundance in video
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frames was quantified and correlated with the algorithm’s ‘activity’
output using Pearson correlation (α = 0.05) across 55 randomly
selected video stills. Interobserver reliability was assessed using the
Intraclass Correlation Coefficient (ICC). While the full algorithm
incorporates additional behavioural features (e.g., shoaling patterns
and swimming speed), abundance is the key component relevant to
this study, as it determines depth and location preferences.

Statistical analyses were conducted to examine the variations in
activity throughout the 5 months sampling period, spanning from
winter to spring in 2023 and 2024 (from 13th January to 1st May
2023 [FarmA] and 1st January – 1stMay 2024 [Farms B andC]).The
algorithmderived data (activity, a) was originally sampled at 5 s then
averaged hourly to reduce excess noise. Additionally, fish activity
during feeding was excluded from the analysis to prevent potential
bias. At each time point, the camera detecting the highest activity
level was identified, and its corresponding depth, as measured by
pressure sensors, was recorded as the depth of maximum activity.
This depth was used to infer the preferred depth of the majority of
the fish population.

Non-parametric Kolmogorov-Smirnov (K-S) tests were used
to assess significant differences in temperature between the upper
and lower water column, based on temperature data recorded by
sensors attached to the cameras. Similarly, variations in fish activity
across depths were analysed using differences in activity recorded
by the vertically positioned cameras, with depth determined by their
integrated pressure sensors. Additionally, anOrdinary Least Squares
(OLS) regression was utilised to examine the relationship between
photoperiod and fish depth. For the oceanographic conditions,
K-S tests were also employed to test the significance in wind,
current, and wave heights around storm Isha, and how these affected
the fish distribution (fish activity levels) horizontally across the
cages at Farms B and C. All statistics were conducted in Python
programming language. Raw data is available throughDataSTORRE
(http://hdl.handle.net/11667/242).

3 Results

3.1 Validation of the activity algorithm

Results of the algorithm validation show that there was a
strong correlation (R2 = 0.70, p < 0.001) between the abundance
of fish counted in the feeding cameras by human observers to
the still images from the same videos used to calculate activity
by the algorithm. The ICC was calculated to determine both the
absolute agreement (ICC = 0.99) and the consistency (ICC = 0.98)
between the two observers. Both reflect strong agreement between
the observers that was statistically significant (p < 0.001). While the
other specific components of the algorithm could not be separately
validated, it is assumed that the remaining 30% of unexplained
variation is associated with these components.

3.2 Vertical fish distribution in stratified
waters

The vertical distribution of fish during daylight hours was
explored through the differences in fish activity levels observed by

cameras at different depths, primarily through the cameras placed
at approximately 14 m depth (heinafter referred to as “lower water
column (LWC)” of the cage) and the camera at 4 m depth (“upper
water column (UWC)”). At Farm A, there was a notable shift in
the fish distribution between January and May 2023. Initially, there
was significantly higher activity in the LWC (a = 39.6% ± 15.3%)
in contrast to the UWC (a = 16.3% ± 5.65%; D = 0.99, p < 0.001;
Figure 2A). The mean fish depth of maximum activity was 14.9 ±
4.7 m until March 10th 2023, at which point there was a significant
decrease in the mean depth of maximum fish activity to 7.5 ± 5.3 m
(D = 0.78, p < 0.001; Figure 3A). This shift coincided with changes
in seawater temperature. Before March 10th, the LWC maintained
a higher temperature compared to the UWC (9.4°C ± 0.45°C and
9.1°C ± 0.49°C, respectively). However, post-March 10th, the UWC
warmed notably to an average of 9.2°C ± 0.6°C (with a maximum
of 10.4°C), surpassing the average temperature of the LWC (9.0°C ±
0.1°C). Consequently, the fish adjusted their distribution, favouring
theUWC andmid-depth zones for the remainder of the study period.
Additionally, while the maximum activity was located in the LWC,
there was an intermediate level of activity (a = 21.5 ± 10.2%) in the
centreofthecage,andthisremainedfortheentiretyofthestudyperiod.

Photoperiodhadanaccompanying effect onfishdepthpreference,
as an OLS regression analysis revealed a significant relationship
between photoperiod and fish depth (β = −1.4, R2 = 0.47, p < 0.001).
As the length of day increases to equal or greater than length of night
(>12 h) the fish tended towards shallower depths.

At Farm B, waters were stratified for the duration of the study
period, with LWC warmer than UWC. At the beginning of the
study period in January 2024, the UWC temperature was 9.3°C ±
0.1°C while the LWC temperature was 9.6°C ± 0.1°C. These then
decreased on January 19th and over the following 10 days to 6.9°C
and 7.4°C for UWC and LWC, respectively. Subsequently, there was
a consistent increase in both temperatures up to 9.2°C ± 0.2°C and
9.3°C ± 0.2°C for UWC and LWC waters respectively, by the end of
the study period, narrowing the difference between the two water
layers.Themean fish activity was significantly higher at the bottom-
most camera (a = 27.5 ± 10.2%) compared to that nearest the surface
(a = 18 ± 3.3%; D = 0.52, p < 0.001), with the depth of maximum
activity recorded at 11.0 ± 1.7 m. Additionally to note, as in Farm A,
while themaximumactivitywas located in the LWC, an intermediate
level of activity (a = 21.5 ± 9.1%) was observed on the inner side
of the cage. This pattern remained stable until March 6th, 2024,
when the average activity levels at both 4 m and 14 m converged
(a = 23.5 ± 7.7% and a = 21.3 ± 4.3%, respectively; D = 0.24, p =
0.08). Concurrently, the depth of maximum activity decreased to 8.4
± 1.7 m, and while it is significant (D = 0.75, p < 0.001), the fish
remained deeper than in Farm A.

The change in photoperiod between the beginning and end of
the study was higher in Farm B (9 h 10 m) compared to Farm A (7 h
47 m).While there was a statistically significant correlation between
photoperiod and fish depth, theOLS regression revealed an R2 lower
than Farm A at 0.27 (β = −4.0, p < 0.001).

3.3 Vertical fish distribution in mixed waters

At Farm C, the waters throughout the cage were unstratified
throughout the entire study period, exhibiting uniform temperature

Frontiers in Robotics and AI 05 frontiersin.org

https://doi.org/10.3389/frobt.2025.1574161
http://hdl.handle.net/11667/242
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Burke et al. 10.3389/frobt.2025.1574161

FIGURE 2
The daily average depth (m) of maximum salmon activity during daylight hours (blue) with temperature at 2 depths at Farm A [(A); grey: 4 m; black
dotted: 14 m] and Farm B [(B); grey: 5 m; black dotted: 10 m]. Yellow lines indicate the daily photoperiod (hours) on the secondary y-axis for each site.

in the vertical and horizontal dimensions of the cage, beginning
with 9.3°C January 1st, 2024 (Figure 3). The waters then cooled
to 8.5°C and 8.6°C for UWC and LWC, respectively, by February
20th 2024, and subsequently the whole water column increased
to 9.1°C ± 0.2 °C by the end of the study period. The average
depth of maximum activity was 5.0 ± 0.8 m until February 23rd,
2024, and subsequently there was a significant increase of maximum
depth to 5.4 ± 2.3 m for the remainder of the study period (D
= 0.36, p < 0.001), though the fish were well spread throughout
the water column as indicated by the increased standard deviation.
Fish activity was similar between the UPW and LWC throughout
the study period (a = 18.2 ± 6.9% in UWC and a = 17.7 ± 7.6%
in LWC) prior to February 23rd, increasing slightly (a = 20.1 ±
11.2% and a = 20.6 ± 9.4%, respectively) for the remainder of the
study period.

As the photoperiod lengthened, the fish increasingly utilised
more of the water column, with this effect becoming more
pronounced when daylight duration equalled or exceeded
nighttime. The increased standard deviation of fish depth

(0.8 m before compared to 2.3 m after February 23rd)
indicates greater cohesion during darker periods, whereas
as the photoperiod lengthened, fish dispersed more evenly
throughout the cage, utilising a larger portion of the available
space. In contrast to Farms A and B, there is no statistical
correlation between fish depth and photoperiod, as the fish
both descend and ascend with more daylight hours ((β = −0.5,
R2 = 0.01, p = 0.3).

3.4 Storm effects on horizontal fish
distribution

3.4.1 Fish response to conditions at farm B
Fish activity differed between the two sides of the cage under

observation. At the start of the study there was little activity on
either side of the cage (a = 16.3 ± 3.8% and a = 16.5 ± 3.0% for
outer and inner regions of the cage, respectively; Figure 4A). At
this point, the fish were primarily located it the LWC and centre
regions of the cage, with average activities of 31.5% ± 10.9% and
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FIGURE 3
The daily average depth (m) of maximum salmon activity during daylight hours (blue) at Farm C, with temperature at 2 depths overlaid (grey: 4 m; black
dotted: 9 m) and daily photoperiod (hours) shown in yellow on the secondary y-axis.

25.8% ± 9.6%, respectively. The fish remained in these locations
throughout a storm event (Storm Isha) which was indicated by a
drop in air pressure from a maximum of 1,046.4 hPa to a minimum
of 953.3 hPa (Figures 4D, I). The wind exhibited relatively high
speeds at the beginning of the study (16.6 ± 11.4 km h−1) increasing
to 24.7 ± 10.9 km h−1 in the south-southwest direction during the
storm event (January 22–23; Figure 4B). The current speeds were
also relatively high due to the storm event at 0.07 ± 0.03 m s−1 in the
south-southeast direction (Figure 4C). Finally, the wave height was
relatively high in the period during and after the storm (between
January 22 and February 3) at 0.1 ± 0.4 m (Figure 4E). SFR was
monitored throughout this time period, and it was similar the
month prior to and during the storm at 0.81 ± 0.3 and 0.80 ± 0.01,
respectively.

3.4.2 Fish response to conditions at farm C
In Farm C, at the start of the study period, fish activity was high

on both sides of the cage (a = 38.0 ± 7.3% and a = 34.2 ± 9.8%,
for inner and outer farm regions respectively; Figure 4F). There was
then a movement of fish to the region of the cage closest to the
inner farm on January 22, when Storm Isha occurred, indicated
by a significant increase in fish cohesion and activity in the inner
area (a = 41.1 ± 7.2%; D = 0.13, p < 0.001) and a significant
decrease in activity in the outer area (a = 17.9 ± 5.7%; D = 0.66,
p < 0.001). This co-occurred with a significant increase in wind
speeds from 19.4 ± 10.9 km h−1 in the southwest direction to 26.8 ±
15.3 km h−1 in the south direction (D = 0.27, p < 0.001; Figure 4G).
Moreover, the fish at Farm C experienced a drop in their SFR from
0.66 to 0.29 during the storm, which is below the average from
the 3 weeks prior (0.55 ± 0.13). This change to feeding rate was
not observed in Farm B. Following February 25, the activity on
both sides of the cage became similar for the remainder of the
study period.

4 Discussion

4.1 Vertical distribution

Fish, like other ectothermic animals, possess a unique
physiological characteristic – their internal body temperatures
closely mirror the temperatures of the water they inhabit.
Unlike endothermic animals (such as mammals and birds) that
generate and regulate their own body heat, most fish rely on the
ambient water temperature to govern their internal temperature
(Abram et al., 2017; Clarke, 2017). This dependency on external
thermal conditions evolved a behavioural adaptation known as
behavioural thermoregulation (Mortensen et al., 2007; Abram et al.,
2017; Clarke, 2017). This is the active and directed movement of
fish to specific water temperatures that align with their internal
physiological demands. During winter, the loch and bay of Farms
A and B exhibit typical winter thermal stratified conditions with
cooler waters above the thermocline and warmer, saltier waters
below (Johnsen et al., 2020). As the air temperatures increase, the
upper water column warms and this results in convection, mixing
of the water column and de-stratifying the waters during the spring
(Cannon et al., 2019; Cherif et al., 2023). Farm C however, located
in a large shallow bay, was well mixed and remained unstratified
throughout the study period.The present study shows that there was
higher activity and thus density of fish in the LWC compared to the
UWC during winter conditions at Farms A and B. At Farm C, there
was no difference in temperature throughout the cage, resulting
in the fish preferring the central region of the cage. Though the
temperature gradients throughout the cages were minimal, fish can
detect very slight changes in temperature, as low as 0.03°C (Beitinger
and Fitzpatrick, 1979; Bartolini et al., 2015). Previous studies have
shown thatAtlantic salmonprefer temperatures between 14°C–18°C
(Oppedal et al., 2011; Gamperl et al., 2021; Korus et al., 2024).
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FIGURE 4
Fish behaviour and associated oceanographic conditions at Farms B (left) and C (right) including: 3-h averaged fish activity (%); (A, F), wind speed (km
h−1) and direction (B, G), current speed (m s−1) and direction (C, H), atmospheric pressure [hPa; (D, I)] and wave height [m; (E, J)]. Arrows indicate
direction, with north at 0°.

Therefore, in the presence of temperature gradients within the
cage, they are likely to preferentially occupy the warmest available
region. This is further corroborated by studies that salmon did
appear to prefer the warmest available region of a cage (up to
16°C) while avoiding the high light intensities during the day
(Oppedal et al., 2011; Johnsen et al., 2020). Though most studies
on this topic explore more extreme temperatures than have been
presented here, these are representative of temperatures that Atlantic
salmon are exposed to in Scottish waters.

When temperatures warmed to spring conditions and the water
mixed, there was no longer a warmer depth, and the fish distributed
themselves primarily in the centre of the cage. This is likely due
to the trade-offs that animals contend with, among environmental
and internal motivators such as perceived threats (Hoare et al.,
2004; Oppedal et al., 2011). If the salmon perceive threats from
above and below the cage, their natural inclination is to seek safety
within the central area of the cage, where they can shoal with their

cohort. This behavioural pattern implies that given temperature
stratification within the cage, salmon tend to prioritise temperature
preference, over safety from perceived threats. However, while the
majority of fish were located in the deeper regions in Farms A
and B, there were smaller sub-groups of fish occupying space in
the centre region of the cage, seemingly preferring safety over
temperature. These fish may be “reactive,” or shyer, choosing
lower predation risk compared to the “proactive” fish that forego
safety to swim in warmer waters (Castanheira et al., 2017). Fish
which show reactive traits tend towards regions of safety within
the cage while those with proactive traits may actively choose
regions more exposed but have other benefits such as access to
food or preferred temperatures. Moreover, laboratory studies have
indicated that fish with different coping styles also show differences
in temperature preferences, with proactive fish preferring higher
temperatures compared to reactive fish, likely due to differences
in basal metabolic rates (Cerqueira et al., 2016). An additional
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possibility is suggested by results from Johansson et al. (2006), that
while salmon may all prefer the deeper waters, space constrains
them, and a subsect of the population must inhabit other regions
of the cage. If not, fish congregating in the warmer bottom waters
where the net funnels can cause crowding and may have adverse
effects for the fish. Basrur et al. (2010) examined the effects of weekly
crowding on salmon and found that this stressor increased plasma
cortisol and negatively affected growth rate and feed conversion
ratio, though the magnitude of this impact was reduced over time,
either implying habituation or a chronic stress effect. Alternatively,
it is possible the fish shift from one area to the other based on
different environmental and social interactions. However, as this
study did not involve tagging the fish individually it is unknown
whether it is the same fish choosing the bottom or the centre,
thus further research on site fidelity should be done to clarify
this point.

Photoperiod is an important behavioural driver to consider as
well, as it is related to temperature. These two factors often exhibit
a natural correlation, especially in temperate regions, where longer
daylight hours during spring and summer coincide with rising water
temperatures. As air temperatures increased to spring conditions,
the thermocline dissipated in Farm A and the fish moved towards
the centre and upper regions of the cage, towards the warmer
UWC. However, the fish in all the farms began to ascend around
the same time (early March), consistent with previous studies that
suggest this may be linked with increased appetite in the spring
due to the longer daylight hours, possibly influenced by changes
in the circadian rhythm (Fernӧ et al., 1995; Oppedal et al., 2001;
Oppedal et al., 2011). When examining the photoperiod, while
Farm A had warmer UWC temperatures towards the end of the
study period, the fish ascended with the length of the photoperiod.
Farm B, however, had a higher range in photoperiod throughout
the study, however the fish remained deeper compared to Farm
A, indicating that temperature may have more of an effect on fish
distribution compared to length of daylight hours. Fish in Farm
C, which had no temperature gradients, used more of the water
column when daylight hours increased, moving both up and down
in the water column rather than shoaling towards the centre of
the cage. This may be due to the general increase in metabolism
and swimming activity that occurs when daylight hours expand
(Al-Emran et al., 2024).

4.2 Horizontal distribution

At FarmsB andC in January–May 2024, fish periodically showed
significant higher activity levels on one side of the cage compared to
the other indicating a preference for this location. The likely causes
for this preference appear to relate to the wind and wave conditions
at this time and differed between the farms that experienced the
same storm event.

In both farms B and C, weather and current meters were
deployed for the duration of the study. At the end of January
2024, Storm Isha passed over northwestern Scotland, characterised
by a drop in atmospheric pressure to 953 hPa. This resulted in
higher wind speeds and wave heights at the two farms on the
Outer Hebrides. Subsequently, there were differing behaviours likely
dependent on the site location and corresponding cage depth. It has

been shown that salmon prefer to use the entire water column, only
choosing specific regions as a response to temperature, currents,
cage deformation, waves and daylight (Johannesen et al., 2022). At
Farm B, the fish were located at the bottom of the cage, with warmer
temperatures, avoiding the high wave heights. There is evidence
that fish can experience motion sickness when in storm events,
thus likely avoid regions of high wave heights (van de Vis et al.,
2020). However, in Farm C, where the fish were in a shallower
cage, they relocated to the area that was likely more sheltered due
to the proximity to the other cages at the farm. There may have
been slight cage deformation on the more exposed side of the
cage as well. However, current speeds at these sites were relatively
low (<0.2 m s−1), which has been shown to have only moderate
changes in net deformation (5%; Lader and Enerhaug, 2005). This
study corroborates a previous study by Johannesen et al. (2022)
that demonstrated a 50-percentage point increase in the median
proportion of time salmon were observed in the sheltered regions
when wave heights were elevated, compared to the exposed side.
Overall, this may constrain the usable space within the cage,
potentially leading to overcrowding and negative impacts on oxygen
levels. Moreover, during the storm event, a decline in SFR was
observed, suggesting higher stress levels compared to Farm B, where
no such change in SFR was detected. At these sites, feeding was
remotely controlled from land, with feed operators monitoring fish
behaviour and excess falling feed pellets via video feeds to determine
when to stop feeding. This difference in feeding response may
indicate that salmon in shallower cages, which offer less vertical
space to avoid higher wave heights, are more prone to stress.
However, more research is needed into this change in feeding
response due to storms and whether this may be alleviated with
deeper cages where fish can avoid these higher wave heights and
associated stress.

4.3 Study limitations and considerations

This study was conducted using non-infrared cameras, thus
further research is needed to investigate how environmental
factors influence fish distribution during nighttime. Additionally,
a limitation is the size of the cages relative to the number of cameras
deployed. In large aquaculture cages, achieving full coverage is
challenging, as complete observation with consistent illumination
throughout the day is rarely feasible. Consequently, some
behavioural data are inevitably missed. Alternative technologies,
such as sonar, provide broader spatial coverage but lack the
resolution of cameras. Combining both cameras and echosounders
could offer a more comprehensive understanding and confirm the
findings presented here. However, in practice, the current industry
standard relies on a single camera per cage, using a subsample to
infer population-level behaviour. By utilising four to five cameras,
this study significantly extends the observed range, offering a more
comprehensive assessment than is typically achieved in commercial
settings. Lastly, a potential concern is that, given the upward-facing
orientation of the cameras, fish frommultiple depths could be visible
in the footage, potentially influencing the interpretation of depth-
specific behaviour. However, the cameras’ field of view is such that
fish are only capturedwithin the designated area of thewater column
where they are deployed (e.g., upper or lower water column). While
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some overlap in visibility may occur, the focus range of the cameras
ensures that the observed activity is representative of the respective
depth strata.

5 Conclusion

This study provides insight into the thermal preferences
of Atlantic salmon in Scottish aquaculture, offering valuable
information to farmers. Through extensive data collection utilising
camera systems with an associated machine learning algorithm,
a comprehensive baseline for fish distribution in relation to
temperature was established, making it easier to identify a stress-
related change, in this case due to a storm. In this study,
winter temperature stratification resulted in heterogenous Atlantic
salmon distributions, with fish preferring warmer temperatures
in the LWC compared to the cooler UWC. As spring emerged,
and photoperiod increased, the fish ascended and distributed
themselves evenly throughout the cage. Unlike previous studies
which have large temperature fluctuations, the findings of the study
highlight salmon temperature preference under typical Scottish
conditions, with minor temperature variations, depicting fish ability
to discern slight changes inwater temperature.These preferences can
guide farmers in understanding salmon behaviour across different
environmental conditions, offering critical insights for farmers who
cannot continuously monitor all fish, ultimately improving fish
welfare. Recognising depth preferences also serves as an indicator
of stress, as deviations from normal patterns may signal distress.
This was highlighted during a storm event, which appeared to
influence the horizontal distribution of the fish. Fish response
differed between the site with deeper cages compared to the
shallower site. In the deeper cages, the fish were able to escape
higher wave heights due to their position in the warmer waters in
the LWC, while in the shallower cages, the fish moved towards the
more sheltered side of the cage, closer in proximity to the other cages
at the site. To enhance fish welfare, future research could consider
designing cages that can be moved both vertically and horizontally
to align with fish preferred temperatures and oceanographic
conditions, while also considering management strategies that
account for the behavioural differences between reactive and
proactive fish.
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Appendix

TABLE A1 Mean and median errors between the AI algorithm and human
labellers.

Metric Activity (%)

Mean error −2.6

Mean average error 9.81

Median error 7
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FIGURE A1
Screenshots of three different camera views, with associated AI-generated activity level (red fish in bottom left of each panel, and a time series in green
on the top right of each panel). Each panel increases in activity from (A) (16%), (B) (26%) and (C) (36%).
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