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Unmanned surface vehicles (USVs), as a type of marine robotic systems, are
widely used in various applications such as maritime surveillance, environmental
monitoring, and cargo transportation. This article addresses the trajectory
tracking control issue for an USV subject to model uncertainties and actuator
faults. A logarithm barrier Lyapunov functions based predefined tracking control
scheme is proposed to regulate the position error of the USV into predefined
performance region. Then, to ensure the predefined transient and steady
state tracking performance of the USV in the presence of actuator faults, we
propose an adaptive fuzzy fault-tolerant controller to address the actuator
faults. Additionally, to deal with the uncertainties arising from the USV system
model, fuzzy logic systems are utilized to estimate the unknown hydrodynamic
parameters. Based on the Lyapunov stability criterion, it can be demonstrated
that all the closed-loop signals are bounded. Finally, the validity of the developed
control scheme is demonstrated from simulation results.
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1 Introduction

Motivated by their substantial commercial and military importance, unmanned
surface vehicles (USVs) have become a focal point in the domains of control theory
and engineering (Su et al., 2025b; Shan et al., 2024; Ye et al., 2024; Martinsen et al.,
2020; Berman et al. 2020; Wang W. et al., 2024). The commercial worth is manifested
in areas such as ocean data acquisition, resource prospecting and construction, as
well as bathymetric and environmental assessments (Su et al., 2022b). The military
utilizations encompass intelligence gathering, surveillance activities, reconnaissance
missions, countermine operations, and submarine hunting (Wen et al., 2022). In
general, a dynamic positioning system pertains to the control mechanism of an USV
operating in a fully actuated, low-velocity mode (Gao and Li 2024). Its objective is
to uphold the USV’s position and orientation at a stationary location or a designated
point along its intended path (Gao et al., 2023). The purpose of path-following
control is to guide an USV along a prescribed trajectory, often functioning in an
underpowered state, navigating it independently through the designated course while
maintaining an optimal velocity profile (Wei et al., 2023). Trajectory tracking entails
an USV adhering to a precise spatial and temporal path with stringent timing
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constraints, holding immense importance in marine operations
for ensuring safe navigation, minimizing emissions, and
conserving energy (Zhang et al., 2024c; Su et al., 2025a).
In contrast to path-following, in addition to the steering
control algorithm, a defined velocity regulation is now required
(Shan et al., 2023).

Currently, a multitude of difficult problems pertain to the
control of trajectory tracking for underpowered USVs, with two
of these challenges being tackled in this paper.The primary concern
revolves around tracking efficacy. Swift and precise trajectory
tracking is indispensable for the progression of autonomous
capabilities in marine settings and the operational excellence of
USVs, particularly in the occurrence of faults (Hu et al., 2016).
Relying on the premise of an accurate dynamical representation
of the USV, convergence to zero of the tracking deviations was
ensured in (Jiang 2002). Accounting for modeling inaccuracies
or external disruptions, the boundedness of closed-loop signals
was upheld in (Yang et al., 2014; Park et al., 2017). Although
adjustable, the predefined values cannot be set for either the
convergence rate of the tracking errors or the extent of the residual
set, as they are contingent upon uncertain system parameters.
The motion control of surface vehicles, particularly focusing
on user-specified transient and steady-state performance, was
highlighted in (Dai et al., 2016; He et al., 2019; Wang G. et al.,
2024). Assurance was given that the tracking errors would
enter a predetermined zone at a specified speed. However,
because of the exponential convergence performance, the closed-
loop errors ultimately approach and settle within the residual
set over an indefinite period. In practice, precise trajectory
tracking must invariably be accomplished within a specific time
and resist the occurrence of failures (Zhang and Yang 2020a).
Fortunately, the fault-tolerant prescribed performance control is
an effective method. The authors in (Zhang and Yang 2020b)
firstly develop a new fault-tolerant prescribed tracking control
method for unknown Euler–Lagrange systems, where a novel
fault compensation strategy is proposed to ensure the prescribed
tracking accuracy and time even if facing the actuator failures.
In Zhang et al. (2024a), a challenging fault-tolerant prescribed
performance control problem is solved for wheeled mobile
robots by designing a novel mixed-gain adaption technology.
The work inWu et al. (2024) develops a novel finite-time prescribed
performance control for stochastic systems subject to actuator
faults.

As the complexity of modern USVs continues to rise, faults
have become virtually unavoidable, potentially causing a decline
in performance, system instability, or, in the worst-case scenario,
catastrophic accidents (Hao et al., 2021; Andreotti et al., 2024;
Wu et al., 2025). Among all potential fault types, actuator
faults pose a particularly grave threat, as they can directly
alter the behavior of the system through erroneous actuator
actions (Li 2019). Motivated by these observations, a fault-
tolerant trajectory tracking for an USV to counteract actuator
faults was developed in (Wan et al., 2022). The authors in
Liu et al. (2024) proposed a leader-following fault-tolerant
tracking control method for multiple USVs. In Li et al. (2024),
the problem of fuzzy adaptive tracking control for USVs
subject to actuator faults has been addressed. To realize the
predefined transient performance tracking, an event-based

intelligent fault-tolerant control approach was developed in
(Su et al., 2022a).

Driven by these observations, this article investigates the
adaptive predefined performance trajectory tracking control issue
for anUSV in the presence of actuator faults.Themain contributions
of the article are summarized as follows: (1) By fusing the fuzzy logic
system into adaptivemechanism, an adaptive fuzzy tracking strategy
is developed for an uncertain USV system. The proposed control
laws for kinematics and kinetics of the USV can accommodate
significant model uncertainties. In this article, we dispense with
the assumption concerning the availability of precise or partial
information on the dynamic model parameters of the USV; (2) by
designing the intermediate control laws in surge and yaw in the
kinetic layer design, an adaptive fault-tolerant controller is proposed
to address actuator faults and create controllers that do not rely on
any prior information about the unknown system parameters or
actuator malfunctions; (3) a position error constraint mechanism
is employed to solve the underactuation of the USV. By managing
the shifted tracking variable, the proposed method allows the
user to predetermine both the convergence time and the control
precision.

2 System description and preliminaries

2.1 System model

From Xu et al. (2024b), the USV model with kinematics and
kinetics is given by

ẋ =u cos ψ− v sin ψ

ẏ =u sin ψ+ v cos ψ

ψ̇ = r

u̇ = 1
M1
(M2vr−D1u+Tu +Hu)

v̇ = 1
M2
(−M1ur−D2v+Hv)

̇r = 1
M3
((M1 −M2)uv−D3r+Tr +Hr)

(1)

where x and y are the displacement in surge and sway, and ψ is
the yaw angel; u and v are the linear speeds in surge and sway,
and r is the yaw rate; M1, M2, and M3 represent the USV’s inertia;
D1, D2, and D3 denote the damping terms; Tu and Tr are the
surge force and yaw moment; Hu, Hv, and Hr are the external
disturbances.

2.2 Actuator faults

In practice, it is preferable for the controlledUSV to possess fault
resistance. The paper considers the following actuator failures as

Tu = λuQu + pu,Tr = λrQr + pr (2)

where Qu and Qr denote the designed control laws, acting as the
actuator inputs; λu and λr are the multiplicative faults; pu and pr
are the additive faults. When λu = λr = 1 and pu = pr = 0, the USV’s
actuators are fault-free.
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2.3 Problem statement

The article concentrates on the trajectory tracking control issue
for the USV in a desired reference (xr,yr). We define the following
coordinate transformations as

e1 = √z21 + z
2
2,e2 = ln(

ηψ + σ1
ηψ − σ1
),e3 = ua − u,e4 = ra − r (3)

where e1 is the position error; z1 = xr − x and z2 = yr − y are surge
and sway displacement errors; e2 is a barrier function to manage
the control coefficient in sway σ1 =

1
e1
(z1 sin ψ− z2 cos ψ), and ηψ =

√1−w2 is a design parameter withw > 0; e3 and e4 are the surge and
yaw speed errors.

To continue, we introduce the following assumptions.
Assumption 1. The unknown constants λu, λr, pu, and pr are

bounded. Then, there are unknown constants λu,inf, λr,inf, λu,sup,
λr,sup, pu,sup, pr,sup satisfying 0 < λu,inf ≤ λu ≤ λu,sup < 1, 0 < λr,inf ≤
λr ≤ λr,sup < 1, |pu| ≤ pu,sup, and |pr| ≤ pr,sup.

Assumption 2. The given reference trajectory (xr,yr) and its first
and second derivative are bounded.

Assumption 3. Zhang et al. (2024c) The sway speed v is passive-
bounded.

Assumption 4. The disturbance terms Hu, Hv, and Hr
are bounded.

3 Tracking control design

3.1 Kinematics design

Based on Equation 1, and differentiating e1 in
Equation 3, we have

̇e1 = σ1v− σ2u+U1 (4)

where σ2 =
1
e1
(z1 cos ψ+ z2 sin ψ) and U1 =

1
e1
(z1ẋr + z2ẏr). For the

sake of ensuring the controllability of the dynamics ̇e1 = σ1v− σ2u+
U1 Equation 4, we attempt to constrain σ2 such that |σ2| > w > 0,
where 0 < w < 1 is a design parameter. Note from the definition of σ1
and σ2 that σ21 + σ

2
2 = 1.Thus, |σ2| > w can be ensured by constraining

|σ1| < ηψ. Then, the variable e2 in the form of logarithm-type barrier
function is used.

Based on the prearranged time T > 0 and the prescribed
accuracy μ2 > 0, we employ the constraint function in Zhang et al.
(2024c) described as

ϑ (t) = μ1ι
g (t,T) + μ2 (5)

with

ι (t,T) =
{
{
{

0.5 cos(πt
T
)+ 0.5, t < T

0, t ≥ T
(6)

in which the design parameter μ2 > 0 is the specified steady-state
control accuracy; μ1 ≥ 0 is a constant and should meet μ1 + μ2 >
e1(0); g ∈ ℕ+ are the designed constants.Subsequently, utilizing the
aforementioned constraint mechanism for the position error, the
shifted error is defined as

e1 = ln(
e1

ϑ− e1
). (7)

Then, we employed the following Lyapunov function to manage the
shifted position error

V1 =
1
2
e21. (8)

Based on Equation 4, the time derivative of V1 in Equation 8 is

V̇1 = e1ηp (σ1v− σ2u+U1 −U3) (9)

where ηp =
ϑ

e1(ϑ−e1)
and U3 =

e1ϑ̇
ϑ
.

Next, the virtual surge speed signal can be proposed as

ua =
1
σ2
(l1e1ηp + σ1v+U1 −U3) (10)

where l1 > 0 is a design parameter.
By invoking Equation 10 into Equation 9, one has

V̇1 = −l1η
2
pe

2
1 + σ2ηpe1e3. (11)

By differentiating e2 in Equation 3, we get

̇e2 =
ϕψ
2ηψ
(σ2r+

1
e1
(uσ1σ2 + vσ22) +U2) (12)

where ϕψ =
1

η2ψ−σ21
and U2 = U1 −U3 −

1
e1
σ1U1.

Define the following Lyapunov function as

V2 =
1
4ηψ

e22. (13)

Based on Equation 12, differentiating V2 in Equation 13
gives that

V̇2 = ϕψe2(−σ2e4 + σ2ra +
1
e1
(uσ1σ2 + vσ22) +U2). (14)

Design the virtual yaw rate control law as

ra = −
l2ϕψ
σ2

e2 −
1
e1
σ1u−

1
e1
vσ2 −

U2

σ2
(15)

where l2 > 0 is a design parameter.
By substituting Equation 15 into Equation 14, one obtains that

V̇2 = −l2ϕ2ψe
2
2 −ϕψσ2e2e4. (16)

3.2 Kinetics design

Due to the unknown fault parameters, we define

ku = λu inf,qu =
1
ku
,ωu = pu sup

kr = λr inf,qr =
1
kr
,ωr = pr sup

(17)

and q̂u, q̂r, ω̂u, and ω̂r are the estimates of qu, qr, ωu, and ωr,
respectively. ̃qu,r = qu,r − q̂u,r and ω̃u,r = ωu,r − ω̂u,r.

By differentiating e3 and e4 in Equation 3, it yields that

̇e3 =Wu −
1
M1
(M2vr−D1u+Tu +Hu)

̇e4 =Wr −
1
M3
((M1 −M2)uv−D3r+Tr +Hr) .

(18)
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where Hu =Hu +
σ1
M1

Hv nd Hr =Hr −
σ1

e21M1
Hu −

σ2Hv
e21M2

are disturbance

terms. Wu =
1
σ21
[σ̇1σ2v− σ1σ̇2v+

1
M1

σ1σ2(−M1ur−D2v)] +

[ 1
σ2
(l1e1ηp +U1 −U3)]

′ and Wr =
1
e21
[σ̇1u−

σ1
M1
(M2vr−D1u+Tu)] +

vσ̇2
e21
− σ1

e21M2
(−M1ur−D2v) + [−

l2ϕψ
σ2

e2 −
U2
σ2
]
′
are residual terms about

derivatives of the virtual control laws ua and ra. The symbol [⋅]′ is
the derivative calculation.

Select the following Lyapunov function as

V3 =
M1

2
e23 +

M3

2
e24 +

1
2
Θ̃T

um
−1
u Θ̃u +

ku ̃q
2
u

2su
+

ω̃2
u

2γu
+ 1
2
Θ̃T

rm
−1
r Θ̃r +

kr ̃q
2
r

2sr
+

ω̃2
r

2γr
(19)

where mu,r ∈ Rn×n are the designed positive definite matrixes; ku,r,
su,r, and γu,r are the positive constants; Θ̃u,r = Θu,r − Θ̂u,r.

From Equations 17, 18 differentiating V3 in Equation
19 results in

V̇3 = e3 (Fu (Xu) + λuQu + pu + hu − hu +Hu)

+ e4 (Fr (Xr) + λrQr + pr + hr − hr +Hr)

− Θ̃T
um
−1
u
̇̂Θu −

ku ̃qu ̇̂qu
su
−
ω̃u
̇̂ωu

γu
− Θ̃T

rm
−1
r
̇̂Θr −

kr ̃qr ̇̂qr
sr
−
ω̃r
̇̂ωr

γr
(20)

where Fu(Xu) =
1
M1

Wu −M2vr+D1u and Fr(Xr) =
1
M3

Wr −
(M1 −M2)uv+D3r are unknown nonlinearities since M1,2,3,
D1,2,3 are the uncertain parameters. Therefore, from
Du et al. (2022); Su et al. (2024a), for given parameters εu,r > 0,
there are the fuzzy logic systems such that

Fu (Xu) =ΘT
uou (Xu) + ϵu (Xu) , |ϵu (Xu) | ≤ εu

Fr (Xr) =ΘT
r or (Xr) + ϵr (Xr) , |ϵr (Xr) | ≤ εr

(21)

where Θu,r ∈ Rn are the ideal weights; ou,r ∈ Rn are the fuzzy basic
functions; n is the number of fuzzy rules.

Design the following control laws as

hu = l3e3 + 0.5e3 + Θ̂
T
uou + ω̂u tanh(

e3
κu
)+ σ2e1ηp (22)

hr = l4e4 + 0.5e4 + Θ̂
T
r or + ω̂r tanh(

e4
κr
)−ϕψσ2e2 (23)

Qu = −
e3q̂

2
uh

2
u

√e23q̂2uh
2
u + ju

(24)

Qr = −
e4q̂

2
rh

2
r

√e24q̂2rh
2
r + jr

(25)

where l3, l4, ju,r, and κu,r are positive constants to be designed.
Design the following adaptive laws as

̇̂Θu =mu (oue3 − ξu1Θ̂u) (26)

̇̂Θr =mr (ore4 − ξr1Θ̂r) (27)

̇̂qu = sue3hu − ξu2q̂u (28)

̇̂qr = sre4hr − ξr2q̂r (29)

FIGURE 1
Tracking control performance.

̇̂ωu = e3γu tanh(
e3
κu
)− ξu3ω̂u (30)

̇̂ωr = e4γr tanh(
e4
κr
)− ξr3ω̂r (31)

where ξu1,r1, ξu2,r2 and ξu3,r3 are positive constants to be designed.

3.3 Stability analysis

3.3.1 Theorem 1
With the virtual control laws Equations 10, 15, actual control

laws (Equations 24, 25), and adaptive laws Equations 26–31, the
USV control system (1) under Assumptions 1 and 2 has two
properties:

1) The position error can be managed into the prescribed area
Ω = {e1 ∈ R:e1 < μ2} within the predefined time T.

2) All closed-loop signals are bounded.
From Equations 24, 25, and Lemma 5 in (Liang et al., 2021), one

can get

e3λuQu =−
λue

2
3q̂

2
uh

2
u

√e23q̂2uh
2
u + ju

≤−
kue

2
3q̂

2
uh

2
u

√e23q̂2uh
2
u + ju

≤ku√ju − kue3q̂uhu

e4λrQr =−
λre

2
4q̂

2
rh

2
r

√e24q̂2rh
2
r + jr

≤−
kre

2
4q̂

2
rh

2
r

√e24q̂2rh
2
r + jr

≤kr√jr − kre4q̂rhr.

(32)
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FIGURE 2
Position error.

Based on the Young’s inequality, one has

e3Hu ≤
1
2
e23 +

1
2
H∗2u (33)

e4Hr ≤
1
2
e24 +

1
2
H∗2r (34)

where H
∗
u and H

∗
r are bounded due to the bundedness of

disturbances.
By invoking Equations 21–25, Eqautions 26–32, and

Equations 33, 34 into Equation 20, we have

V̇3 ≤ −l3e23 − σ2e1ηpe3 +ωu(|e3| − e3 tanh(
e3
κu
))+ 1

2
e23 +

1
2
H∗2u

− l4e24 +ϕψσ2e2e4 +ωr(|e4| − e4 tanh(
e4
κr
))+ 1

2
e24 +

1
2
H∗2r

+ ξu1Θ̃
T
uΘ̂u +

kuξu2
su
̃quq̂u +

ξu3
γu

ω̃uω̂u + ku√ju

+ ξr1Θ̃
T
r Θ̂r +

krξr2
sr
̃qrq̂r +

ξr3
γr

ω̃rω̂r + kr√jr + 0.5ε
2
u + 0.5ε2r . (35)

Employing the inequality 0 ≤ | ̆θ| − ̆θ tanh (
̆θ

κ
) ≤ 0.2785κ (κ > 0, ̆θ ∈ R)

gives

ωu(|e3| − e3 tanh(
e3
κu
)) ≤0.2785κuωu

ωr(|e4| − e4 tanh(
e4
κr
)) ≤0.2785κrωr.

(36)

Using the Young’s inequality Su et al. (2024b); Teng et al. (2024a);
Xu Y. et al. (2024); Li et al. (2025), we have

ξu1Θ̃
T
uΘ̂u ≤−

ξu1
2
Θ̃T

uΘ̃u +
ξu1
2
ΘT

uΘu

ξr1Θ̃
T
r Θ̂r ≤−

ξr1
2
Θ̃T

r Θ̃r +
ξr1
2
ΘT

rΘr

kuξu2
su
̃quq̂u ≤−

kuξu2
2su
̃q2u +

kuξu2
2su

q2u

krξr2
sr
̃qrq̂r ≤−

krξr2
2sr
̃q2r +

krξr2
2sr

q2r

ξu3
γu

ω̃uω̂u ≤−
ξu3
2γu

ω̃2
u +

ξu3
2γu

ω2
u

ξr3
γr

ω̃rω̂r ≤−
ξr3
2γr

ω̃2
r +

ξr3
2γr

ω2
r .

(37)

By substituting Equation 36 and Equation 37 into Equation 35, it
follows that

V̇3 ≤ −l3e23 − σ2e1ηpe3 + 0.2785κuωu + 0.5ε2u +
1
2
e23 +

1
2
H∗2u

− l4e
2
4 +ϕψσ2e2e4 + 0.2785κrωr + 0.5ε

2
r
1
2
+ e24 +

1
2
H∗2r

−
ξu1
2
Θ̃T

uΘ̃u −
kuξu2
2su
̃q2u −

ξu3
2γu

ω̃2
u + ku√ju +

ξu1
2
ΘT

uΘu

+
kuξu2
2su

q2u +
ξu3
2γu

ω2
u −

ξr1
2
Θ̃T

r Θ̃r −
krξr2
2sr
̃q2r −

ξr3
2γr

ω̃2
r

+ kr√jr +
ξr1
2
ΘT

rΘr +
krξr2
2sr

q2r +
ξr3
2γr

ω2
r . (38)
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FIGURE 3
Speed errors in surge and yaw.

Design the total Lyapunov function as

V = V1 +V2 +V3. (39)

From Equations 11, 16, 38, the time derivative of V is

V̇ ≤ −l1e
2
1 − l2e

2
2 − l3e

2
3 − l4e

2
4 −

ξu1
2
‖Θu‖2 −

ξr1
2
‖Θr‖2 −

kuξu2
2su
̃q2u

−
ξu3
2γu

ω̃2
u −

krξr2
2sr
̃q2r −

ξr3
2γr

ω̃2
r +

ξu1
2
ΘT

uΘu +
kuξu2
2su

q2u

+
ξu3
2γu

ω2
u + kr√jr +

ξr1
2
ΘT

rΘr +
krξr2
2sr

q2r +
ξr3
2γr

ω2
r

+ 0.5ε2u + 0.5ε2r +
1
2
H∗2u +

1
2
H∗2r (40)

where l1 =
16(l1−0.5−0.5σ22)
(μ1+μ2)2

, l2 = l2 − 0.5− 0.5σ22, l3 = l3 − 1, and l4 = l4 −
1.

Then, Equation 40 can be further written as

V̇ ≤ −G1V+G2 (41)

where G1 = min{2l1,4ηψl2,2l3/M1,2l4/M3,ξu1/λmax(mu−1),ξr1/
λmax(mr−1),ξu2,ξr2,ξu3,ξr2} and G2 = +

ξu1
2
ΘT

uΘu +
kuξu2
2su

q2u +
ξu3
2γu

ω2
u + kr√jr +

ξr1
2
ΘT

rΘr +
krξr2
2sr

q2r +
ξr3
2γr

ω2
r + 0.5ε2u + 0.5ε2r +

1
2
H
∗2
u +

1
2
H
∗2
r .
Integrating both sides of Equation 41, we have

V̇ (t) ≤ exp−G1TV (0) +
G2

G1
(1− exp−G1t) (42)

Therefore, closed-loop signals e1, e2, e3, e4, Θu, Θr, qu, qr, ωu, and ωr
are both bounded.

Because 0 < e1(0) < μ1 + μ2 is met, and ϑ(t) smoothly and
momtonically reduces from μ1 + μ2 to μ2 on [0,T]. e1(t) < μ2
on [T,∞]. Then, the position error can be managed into

FIGURE 4
Linear speeds and yaw rate.

FIGURE 5
Control inputs in surge.

the prescribed area Ω = {e1 ∈ R:e1 < μ2} within the predefined
time T.

4 Simulation verification

The validity of presented control method is demonstrated by the
numerical simulation.

The system parameters are chosen as M1 = 40.76, M2 =
55.2, M3 = 2.72, D1 = 24.33, D2 = 77.76, D3 = 9.64. The reference
trajectory is selected as (xr,yr) = (10 sin (0.1t),−10 cos (0.1t) + 10).
The disturbances are set as Hu = 3 sin (0.1t), Hv =
2 sin (0.5t)cos (0.03t), and Hr = 0.5 cos (0.4t)2 The initial conditions
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FIGURE 6
Control inputs in yaw.

FIGURE 7
Adaptive parameters.

are chosen as x(0) = 0.6, y(0) = 1.5, ψ(0) = − 2.1, u(0) = 0, v(0) = 0,
r(0) = 0.

It is assumed that the actuators in surge and yaw simultaneously
undergo multiplicative faults and additive faults at t = 30s, such that

{
Tu = Qu,Tr = Qr, t < 30s
Tu = 0.5Qu + 10,Tr = 0.5Qr + 5.5, t ≥ 30s.

(43)

The adjusting parameters are given by l1 = 1, l2 = 2, l3 = 10, l4 =
10, ju = jr = 1, κu = κr = 1, ξu1 = ξr1 = 0.1, ξu2 = ξr2 = 0.01, and ξu3 =
ξr2 = 0.8. The control objective is that the position error can be
managed into the prescribed area Ω = {e1 ∈ R:e1 < 0.5m} within the
predefined time 10s.

Fault-tolerance performance: To show the advantage and
effectiveness of the proposed fault-tolerant control method, a

FIGURE 8
Tracking control performance under actual ocean disturbances.

FIGURE 9
Position error under actual ocean disturbances.

comparison between the classical prescribed performance tracking
controlmethod in (Zhang et al., 2024c) and ourmethod is proposed.
In order to ensure the fairness of the comparison, all design
parameters are the same. The tracking performance is described in
Figure 1, from which it is observable that the control performance
is well guaranteed even subject to faults based on our method.
Figure 2 describes that the position error can be regulated into the
prescribed area Ω = {e1 ∈ R:e1 < 0.5m} within the predefined time
10s under ourmethod. Although the performance constraint cannot
be violated by using the method (Zhang et al., 2024c), the steady-
state tracking accuracy is lower than that our method since actuator
failures occur 30 s later. Figure 3 shows that the errors of surge speed
and yaw rate approach zero. Figure 4 shows that the speed curves
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in surge, sway, and yaw. Figures 5, 6 show that the control inputs
and outputs of the surge and yaw actuators. The parameter adaptive
laws are shown in Figure 7. FromFigures 2–7, it can be observed that
closed-loop signal are bounded.

Robustness Test: In order to demonstrate the robustness
of the developed control strategy against actual disturbances,
the ocean disturbances resulting from waves, winds, and
currents are considered from a simulation testing. In simulation,
the ocean disturbances are mimicked as a Gaussian random
process. Specifically, a second-order bandstop filter is employed
to mimic the high-frequency wave motion and a first-order
transfer function is used to denote the slow-varying disturbance
resulting from wave drift, ocean currents, and winds in the
yaw channel. Thus, the disturbance terms are shown as Hu =
sin (ψ)y(s), Hv = cos (ψ)y(s), and Hr = y′(s), where y(s) and y′(s)
denote the high-frequency wave motion and the slow-varying
environmental disturbances, respectively. For comprehensive
details, please see the result in Zhang and Yang (2018). The
following trajectory is selected as [xd,yd]

T = [8 sin (t), t]T. The
control parameters in simulation are the same as the previous
simulation. Figure 8 describes that the trajectory tracking task is
achieved with the presented control method. Figure 9 describes
that the position error can be regulated into the prescribed
area Ω = {e1 ∈ R:e1 < 0.5m} within the predefined time 10s under
our method. Since the actual disturbances are considered in
this test, the control performance is slightly reduced, which is
acceptable.

5 Conclusion

This article has investigated the fuzzy adaptive fuzzy predefined
performance tracking control issue for the USV subject to
actuator faults. By integrating the logarithm barrier Lyapunov
functions with adaptive control strategy, the position error is
managed into predefined performance region and closed-loop
signals are all bounded. Moreover, the proposed adaptive fault-
tolerant controller can realize desired control performance even
with actuator faults. Future work will focus on the security
control problem of the USV with cyber attacks (Teng et al.,
2025; Teng et al., 2024b). Considering that all the closed-loop
signals are semiglobally uniformly ultimately bounded in this paper,
future work also will devote to realize a globally stable result
(Zhang et al., 2024b).
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