AUTHOR=Huertas NiƱo Maria Paula , Boutayeb Mohamed , Martinez Dominique TITLE=A hybrid tendon-driven continuum robot that avoids torsion under external load JOURNAL=Frontiers in Robotics and AI VOLUME=Volume 12 - 2025 YEAR=2025 URL=https://www.frontiersin.org/journals/robotics-and-ai/articles/10.3389/frobt.2025.1576209 DOI=10.3389/frobt.2025.1576209 ISSN=2296-9144 ABSTRACT=Tendon-driven continuum robots usually consists of several actuators and cables pulling a flexible backbone. The tendon path alongside the backbone allows to perform complex movements with high dexterity. Yet, the integration of multiple tendons adds complexity and the lack of rigidity makes continuum robots susceptible to torsion whenever an external force or load is applied. This paper proposes a reduced complexity, hybrid tendon-driven continuum robot (HTDCR) that avoids undesired torsion under external load. Bending of the HTDCR is achieved from a single tendon with lateral joints alongside the backbone acting as mechanical constraint on the bending plane. A rotary base then provides an additional degree of freedom by allowing full rotation of the arm. We developed a robot prototype with control law based on a constant curvature model and validated it experimentally with various loads on the tip. Body deviation outside the bending plane is negligible (mm range), thereby demonstrating no torsional deformation. Tip deflection within the bending plane is smaller than the one obtained with a 4-tendon driven continuum robot. Moreover, tip deflection can be accurately estimated from the load and motor input which paves the way to possible compensation. All together, the experiments demonstrate the efficiency of the HTDCR with 450 g payload which makes it suitable in agricultural tasks such as fruit and vegetable harvesting.