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Tasks in the meat processing sector are physically challenging, repetitive, and
prone to worker scarcity. Therefore, the imperative adoption of mechanization
and automation within the domain of meat processing is underscored by its
key role in mitigating labor-intensive processes while concurrently enhancing
productivity, safety, and operator wellbeing. This review paper gives an overview
of the current research for robotic and automated systems in meat processing.
The modules of a robotic system are introduced and afterward, the robotic
tasks are divided into three sections with the features of processing targets
including livestock, poultry, and seafood. Furthermore, we analyze the technical
details of whole meat processing, including skinning, gutting, abdomen cutting,
and half-carcass cutting, and discuss these systems in performance and
industrial feasibility. The review also refers to some commercialized products
for automation in the meat processing industry. Finally, we conclude the review
and discuss potential challenges for further robotization and automation inmeat
processing.

KEYWORDS

meat processing system, automated equipment, meat production automation, meat
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1 Introduction

Meat consumption is widely acknowledged as an indispensable source of vital nutrition
for individuals worldwide. Technician’s market research report indicates the meat market
is for substantial expansion, with a projected value reaching USD 1210.97 billion by 2027.
During the forecast period, an anticipated compound annual growth rate of approximately
7% is foreseen (Technavio, 2023). To address the heightened demand for meat, an estimated
80 billion animals undergo slaughter annually, which has significantly increased the
meat processing workload (Ritchie, 2017). This accelerated growth motivated the meat
industry’s increasing need for heightened efficiency and productivity, which has expedited
the automation market’s growth within the entire meat industry.

Meat processing poses safety and contamination risks (Hamid et al., 2016; Das et al.,
2019). There is a strong demand for automation to solve these problems, but it
is still challenging in the whole meat process automation due to the high product
variability (Romanov et al., 2022), dexterous manipulation, harsh environment, and space
constraints (Singh et al., 2012).
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Compared with other industries, the meat industry’s working
environment is not very conducive to robotics. Meat processing
automation is constrained by equipment sensitivity to size variations
(Barbut, 2014) and material deformability, necessitating adaptive
robotics. The depiction of meat distinctiveness and diversity,
together with themechanization and automation of processes, poses
a formidable trial for Meat Industry 4.0. The initiative’s overarching
objective is to secure superior quality, safety, and traceability in
the meat sector through the application of advanced industry 4.0
technologies such as artificial intelligence, big data, robotics, smart
sensors, and blockchain (Echegaray et al., 2022; Wang et al., 2024).

Due to the complexity of meat processing, which requires
balancing efficiency with operational precision, meat processing
automation faces several inherent challenges. Meat, being a typical
non-standard flexible material, imposes high demands on robotic
manipulation.Thevariation in themechanical properties of different
meat parts, such as its viscoelasticity, necessitates sophisticated
control systems that can adapt to these inconsistencies. For
instance, the automation system should manage multi-module
coordination, integrating path planning for cutting with real-time
force control. The system must be capable of adjusting forces
dynamically based on the varying elasticity and stickiness of
the meat at different points, ensuring both precision and safety.
Moreover, when processing large livestock such as pigs, cows, and
sheep, the scale of the equipment required becomes even more
significant. These larger animals demand heavier and more robust
machinery, which also has to accommodate the increased range
of motion necessary for efficient processing. Robotic arms, in
particular, must possess greater degrees of freedom to effectively
plan and execute complex movements during the cutting and
processing stages.

In this review, a comprehensive summary of recent progress in
automatic and intelligent meat processing systems is presented, as
depicted in Figure 1. The organization of the paper is structured
as follows: In Section 2, a concise overview is provided of the
key modules that make up a robotic system for meat processing.
Additionally, a comprehensive analysis of relevant literature on this
subject matter will be provided. The subsequent three sections
are dedicated to discussing specific robotic tasks involved in meat
processing, focusing on livestock (Section 3), poultry (Section 4),
and seafood (Section 5) respectively. Section 6 delves into recent
research trends in meat processing and analysis, presenting insights
from recent studies. Finally, Section 7 brings the paper to a
conclusion by summarizing the main findings and outlining future
directions for research in this area.

2 Methodology

In principle, a meat-processing robotic system requires three
major modules including a sensing and perception module, a
control module, and an actuation module. In meat processing,
sensing plays a crucial role in ensuring accurate execution.
Effectively utilizing pertinent sensor information constitutes a
pivotal factor in expanding the system’s functionality. As per the
varying sensing requirements, the tasks to be performed before
meat processing can be segregated into three primary categories:
external features, internal features, and tissue boundaries. There

has been some research on the practical application of different
sensing systems including beef ear tag detection using color
cameras (Kumar et al., 2017), pig organ grasping with force and
torque sensors (Takács et al., 2021), laser profiling for sheep
head removal (Condie et al., 2007), the feather bone detection along
the beef carcass spine.

In meat processing, the main usage of the control component
is producing cutting routes by utilizing the extracted outline of the
animal body. The path derived from the contour may be highly
intricate (Meng et al., 2024). Hence, the process involves discretizing
it into multiple points, followed by fitting a seamless curve
through these points. Additionally, the control module involves
the alignment process among the robot tool coordinate systems
(TCS), user coordinate systems (UCS), and camera coordinate
systems (CCS).

The actuationmodule is deployed to execute the predefined tasks
along the trajectory generated by the control module. Typically, the
terminal actuator employed in meat processing is equipped with
highly specialized functionalities. Robotic manipulators provided
by reputable companies such as Motoman, KUKA, FANUC, and
ABB are commonly employed as actuators. Robotic hands exhibit
a versatile capacity to perform a diverse array of tasks facilitated by
a variety of end manipulators.

Thus far, within the agri-food sector, scholars have provided
valuable insights regarding the implementation of meat
processing robots. In this study, we analyze selected academic
papers. Furthermore, the interdependent relationship between
equipment development automation and intelligent technologies
is also obvious.

3 Livestock

Livestock production is a vital component of sustainable food
systems. It provides animal protein crucial for proper health,
implements environmentally sustainable production methods
prioritizing conservation efforts, and fosters the growth of rural
communities worldwide. The livestock industry holds a unique
position as a leader and substantial contributor to global food system
discussions. As the human population and incomes increase, there
has been a notable increase in the volume of meat production on a
global scale (Godfray et al., 2018; Liu et al., 2023). It is anticipated
that by the year 2029, the aggregate growth rate of red meat
production will soar by 80% (Schmidhuber et al., 2020). Facing
this situation, extending meat processing automation is imperative.

Modern livestock meat processing can be divided into several
main steps: livestock handling, primary processing, secondary
processing, packaging, and labeling (Esper et al., 2021). In Table 1,
recent research on the identification and classification of livestock
has been listed. In this section, we provide an overview of the
recent advancements in automation within the meat processing
industry. This includes abdomen cutting and half carcass cutting
in primary processing, and ham deboning, brisket cutting, and
carcass image segmentation in secondary processing. Furthermore,
current commercialized processing machines and some quality
assessment techniques for pork, beef, and mutton are also
mentioned.
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FIGURE 1
Flowchart of the technology demonstrated in this review.

TABLE 1 Summary of automatic and robotic cutting of livestock segment processing.

References Country Technique Purpose Hardware Software and
algorithms

Livestock

Fortin et al. (2003) Canada Machine vision
Ultrasound imaging
system

Pork carcass grading Aloka SSD 1100
ultrasound machine
Charge-coupled device
camera

Computer vision system Pork

Condie et al. (2007) Australia Machine vision Sheep brisket cutting CV-3200 camera Prototype automated
system

Sheep

Liu et al. (2017) China Machine vision Porcine abdomen cutting 2D camera Global optimization
algorithm
Genetic algorithm

Pork

Mu et al. (2020) China Machine vision Half-Sheep cutting Kinect camera Deeplab v3+ networks Sheep

Cong et al. (2019) China Machine vision Porcine abdomen cutting Binocular camera Image recognition
algorithm

Pork

Cong et al. (2021) China Machine vision Porcine abdomen cutting Individual RGB-D
camera

Kernel principal
component analysis
Binocular vision
techniques

Pork

Bao et al. (2022) China Machine vision Sheep carcass cutting Azure Kinect camera - Sheep

3.1 Primary processing of livestock

Primary livestock processing is an extremely crucial step that
demands high hygiene, quality, and accuracy standards to ensure
proper subsequent operations (Cong et al., 2021). It concerns
activities within a slaughterhouse including stunning, dressing,
viscera removing abdomen cutting, and so on (Longdell, 1996).

With the increasing application of machine vision related to
meat analysis and livestock identification, vision-based robots have
been studied. Based on a genetic algorithm, Liu et al. (2017)

proposed a flexible robotic cutting system based on a genetic
algorithm that utilizes trajectory planning a 2D camera captures
the pig’s side view, and MATLAB extracts the abdominal curve,
which is fitted with a fifth-order spline. The path is then optimized
using a genetic algorithm (GA), minimizing cutting segments and
errors. The optimized path is discretized into six segments, with a
maximum cutting error of 1.6 mm, ensuring accurate cuts through
the skin andmusclewhile avoiding internal organ damage.However,
the recognized accuracy is still low. The abdominal cutting curve
obtained through the image binarization shows limited alignment
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with the actual carcass, resulting in constrained cutting success rates.
(Figure 2a) (Esper et al., 2021). Computer version techniques such
as deep learning and 3D modeling could provide higher accuracy
compared to machine vision (Kang et al., 2022), they bring more
and better opportunities to meat processing systems. Deeplab v3+
networks used for a half-sheep cutting Robotic 3D Vision-Guided
System acquire the key cutting points and the system stability is
acceptable. As is one of the most complicated operations in meat
processing. The result indicates the automation feasibility even for
the hardest step in meat production and indicates the application
potential for 3D versions in carcass cutting (Mu et al., 2020).

The 3D vision system is a kind of method with the ability
to record the 3D features of the carcass in both coordinates and
vectors. Grounding on the New Zealand sheep body segmentation
specification, Mu et al. (2020) developed a segmentation robot
for half-sheep cutting (Figure 2b). The 3D camera was used to
obtain the depth image of the sheep carcass, and the deep image
processing algorithms were employed to acquire the key cutting
points. The cutting robot trajectory is planned according to the
spatial coordinates of processed point clouds. While the system
excels in cutting path planning, it still relies on open-loop control
and does not incorporate force sensors for feedback, limiting its
ability to detect sudden changes in cutting resistance. Additionally,
the pre-defined cutting paths may struggle to adapt to the variability
in carcass structure, posing a challenge to the system’s overall
flexibility and precision. Another method of cutting sheep carcasses
based on a 3D vision system with a dual-robot system was
proposed by Bao et al. (2022). Compared to traditional robotics
systems, the dual-robot system has the advantage of large operating
space and is suitable for sheep carcass processing. A fixed device is
designed to prevent the carcass swing in the cutting process, and
the dual-robot system performs precision cutting according to the
trajectory calculated by the point cloud spatial coordinates. These
methods have shown promising results that can improve processing
efficiency, accuracy, and consistency while reducing labor costs and
improving worker safety.

The reviewed vision-based robotic systems demonstrate
progressive advancements inmeat processing automation.While 2D
machine vision (Liu et al., 2017) struggles with alignment accuracy
(70%–80% success), 3D vision systems (Mu et al., 2020; Bao et al.,
2022) achieve superior precision (85%–92%) through point-cloud
spatial mapping and dual-robot coordination. Deep learning-
enhanced methods (Kang et al., 2022) further improve robustness
against anatomical variability but require higher computational
resources. Collectively, 3D vision and AI integration represent
the most viable path toward fully automated, high-throughput
carcass processing, though cost-effectiveness remains a challenge
for small-scale operations (Liu et al., 2024).

3.2 Secondary processing of livestock

Secondary processing mainly involved primal brisket cutting
and deboning. These tasks currently are performed manually other
than automation due to the challenges of complicated manipulation
and soft tissue characteristics. Examining manual tasks aids
in gaining a comprehensive understanding of the prototype
specifications. Brisket cutting is the operation after the processing

of the viscera. Hence, the brisket-cutting process demands a
heightened level of precision, labor expertise, and uniformity to
ensure the attainment of superior meat quality (Singh et al., 2012).

By investigating the manual task of brisket cutting, Condie et al.
(2007) developed a brisket-cutting robot with a laser profile analysis
system. The sensing system, comprising image acquisition and
laser profiling equipment, was controlled via a Labview interface
and communicated with the PC and robotic system through an
RS232 serial interface. The execution module utilized a commercial
industrial robot integrated with a pneumatically actuated shear
end-effector. However, any unexpected carcass movement during
scanning may increase the error rate of 3D mapping, and contact
with the ground can lead to organ contamination. It is crucial
to address these issues for brisket cutting in meat industrial
production. Singh et al. (2012) reported another method for sheep
brisket cut (Figure 2c). With this method, the problems in the above
research have been improved to some extent. It obtains an offset
of the carcass entry point by optical and ultrasonic sensors and
calculates the cutting path based on the statistical method. The
system accuracy would be limited by utilizing a fixed profile for a
certain breed type, which may be incapable of detecting different
types of carcasses. However, both of these brisket-cutting systems
relied solely on visual inputs and lacked capabilities for sensing
cutting forces. This made it difficult to adapt to changes during
cutting, often leading to damage to internal organs due to the
inability to adjust cutting forces in real time. Despite the process
of precise brisket cutting is still extremely challenging, the above
systems lay an essential foundation for future studies.

The automated systems for deboning specific livestock meat
sections are still limited to laboratory settings, and it is still a
long way from full automation. Thus, an alternative approach
is establishing a human-machine collaboration platform and
employing a robotic manipulator to assist with manual cutting
to enhance efficiency and mitigate the risk of human injury
(Sørensen et al., 1993). Longdell (1996) discussed various kinds
of beef deboning machines for different sections of the animal,
which are similar to primalisation pulling arms. Based on the above
research, promoting deboning process robotization and intelligent
systems is paramount to improving efficiency, scalability, flexibility,
and sustainability. Research has been conducted on replacing the
human handwith a robotic arm for deboning operations by learning
from the butcher during processing (Figure 2d) (Essahbi et al.,
2012; Friedrich et al., 2000; Guire et al., 2010a; Guire et al., 2010b;
Zhou et al., 2009; Zhou et al., 2007). Wei et al. (2014) developed
a dexterous robotic hand to replace the human operator’s hand
in ham deboning (Figure 2e). The robotic hand comprises a re-
configurable palm and four fingers to establish a hyper-flexible
human-robot co-working platform in meat processing, including
handing, pulling, pushing, and twisting. The four fingers perform
abduction as well as flexion and extension, with adjustments
made to the palm configuration for different tasks and changing
environments. Motion trajectories of the operator’s left hand were
captured via instrumented data gloves with appropriate force/torque
and position sensors for mapping the deboning operation task
workspace to the robotic hand joint space and performing human-
robot co-working deboning operation. However, some critical issues
such as reducing tendon-driven friction of the hand and increasing
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FIGURE 2
Livestock processing robot: (a) Feature identification with the profile moved (Liu et al., 2017); (b) FCN image segmentation model (Mu et al., 2020); (c)
The axis representation for carcass in operational space (Singh et al., 2012); (d) Beef preparation process and Z-cut (Guire et al., 2010a); (E)
Metamorphic hand integrated with ABB robot (Wei et al., 2014).
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contact point friction between the meat and the robotic hand still
need further investigation.

In recent years, there has been a focus on improving systems
adaption ability, flexibility, and cost-affectation. To achieve precise
cutting operations, current robotic brisket-cutting systems and
deboning systems integrate multi-sensor feedback mechanisms
to monitor cutting forces. However, the viscoelastic nature of
meat tissues imposes stringent requirements on force-control
accuracy during operation, significantly prolonging processing time.
Furthermore, the presence of blood and other fluids in the cutting
environment introduces additional challenges for sensor-based
recognition, ultimately limiting the system’s precision. The ongoing
development of artificial intelligence and machine learning is also
expected to lead to further improvements in deboning automation
technology in the coming years.

3.3 Commercial applications

Based on the technology mentioned above, there has been a
growing popularity in recent times concerning commercial practices
centered around the cutting of livestock (Xu et al., 2023).

Mayekawa Co. Ltd. from Japan has developed HAMDAS-RX,
the world’s first automated ham-deboning robotic system with a
maximum processing capacity of 500 hams per hour (Mayekawa,
2021). Upon the completion of pre-cutting processes, HAMDAS-
RX can perform automated deboning of pork ham which includes
effective extraction of hipbone and tailbone and differentiate
between the right and left legs automatedly. Another company,
SCOTT Automation Robotics Co. Ltd., employs a combination
of robotic technology, scribing saws, and sensing technologies to
accurately identify the position and shape of the beef (Scott, 2021).
This design can reduce workloads of two to three per shift, and
increase productivity remarkably.

The integration of advanced technologies, including robotics
and sensing, has resulted in diminished reliance on manual labor,
increased precision, and heightened productivity. Nonetheless,
there is still a long way to go for the wide promotion of meat
processing robots.

4 Poultry

In recent years, the escalating rise in the yearly production
of poultry necessitated the implementation of robotized and
mechanized approaches for the processing of poultry meat
commodities (Elahi E et al., 2022). When compared to other
meat processing industries, poultry processing is comparatively
automated, except for certain challenging operations. Poultry
processing consists of live-chicken stunning, slaughter, bloodletting,
feathers removal, fluff removal, evisceration, trimming, pre-
cooling, segmentation, and other processing operations
(Casnor and Gavino, 2022; Janssen et al., 2007; Ramírez-
Hernández et al., 2017). In Table 2, recent research on the
identification and classification of poultry has been listed. In this
section, we introduce the relevant techniques involved in poultry
processing sequentially.

4.1 Primary processing of poultry

The primary processing of poultry mainly includes de-
feathering and evisceration. The procedure of de-feathering has
been automated presently. In a friction-based process, dehairing
and defeathering are typically achieved through a rotary rubber
blade. Carcasses are subjected to plucking machines equipped with
specially designed rubber “fingers” that effectively remove feathers.

The subsequent stage following defeathering is evisceration,
which is a critical and challenging aspect of the process. As a
result, manual labor is often relied upon to carry out this particular
operation (Chen et al., 2021a). Currently, automated evisceration
systems provide superior industrial processing capabilities when
compared to manual evisceration (Li et al., 2021). Wang et al.
(2018) proposed a system of poultry slaughtering robots based
on a machine vision system, and then position the robot
hand for grabbing the viscera using position recognition. The
proposed control system incorporates dual operational modalities:
manual and automated control configurations. In manual control
mode, the robot arms and carcass conveyor can be controlled
independently to facilitate kinematic calibration of the end-effector.
In automated control mode, integrated with the vision-guided
motion synchronization module, the system implements a closed-
loop control architecture to maintain continuous and automated
evisceration cycles. However, internal organs are easy to damage
when machines perform consistent evisceration, most of them do
not consider the internal organ’s integrity in the robotic grasping.
Therefore, another machine-vision-based method was proposed
by Chen and Wang (2018). In this method, evisceration can be
executed by a multi-fingered robot hand mounted on the DELTA
robot, which simulates a human hand and is more flexible than
the previously designed manipulators. A threshold segmentation
method is applied for poultry carcass recognition. The camera
first takes poultry RGB (Red Green Blue) images on the conveyor,
and then the images are processed by using a computer vision
algorithm. The object positioning for internal organs can be
calculated which indicates that the relative position is significantly
changed between carcass and viscera with chicken size in the
longitudinal direction (Figure 3a) (Chen et al., 2021a). Therefore,
computer vision technology can be satisfactorily applied to predict
the chicken viscera position.

4.2 Secondary processing of poultry

In the field of poultry processing, an additional significant
concern pertains to secondary processing operations automation
such as sorting, deboning, and meat quality evaluation. Different
from other processing, manual sorting continues to be the
most prevalent method used for sorting poultry portions before
packaging. There are problems inherent with such manual sorting
methods including high error rate, andworker fatigue (Nyalala et al.,
2021). Based on the development of employing computer vision
technology and ANN (Artificial Neural Network), Teimouri et al.
(2018) proposed a new onlinemethod based on linear and nonlinear
classifiers to categorize chicken portions automatically (Figure 3d).
The geometrical features, color, and textural features were extracted
from the image and selected by the Chi-Square technique,
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TABLE 2 Summary of technical progress in poultry evisceration.

References Country Technique Hardware Software and
algorithms

Scenario Performance

Xiong et al. (2018) China Tactile perception STM32 - An experimental
slaughtering
machines

Residual rate 12.6%

Chen et al. (2020) China Machine vision Industrial cameras Morphological
operation method
Active contour
algorithm

An experimental
evisceration
machines

Residual rate
Breaking rate

6.2%
15%

Chen et al. (2020) China Machine vision Industrial cameras Active contour
method

An experimental
evisceration
machines

Positioning
accuracy

98.96%

Chen Y et al. (2023) China Machine vision Industrial cameras Active contour
algorithms
Image processing
method

An experimental
evisceration
machines

Positioning
accuracy

96.45%

Teimouri et al.
(2018)

Iran Machine vision Charge-coupled
device camera

Artificial neural
network

An experimental
evisceration
machines

Overall accuracy 93%

after which the classification was realized using ANN. This
is the first attempt made to implement a system capable of
sorting chicken portions in real-time practice using vision-based
intelligent modeling.

As for the deboning process, there have been some solutions
for deboning lines and cutting devices, but they still cannot
automatically adjust to the variability of the poultry size (Daley
et al., 1999; Heck, 2006; Guo and Lee, 2011; Woo et al., 2018). To
solve this problem, Hu et al. (2012) designed an intelligent poultry
shoulder deboning system by utilizing a knife equipped with a force
sensor attached to a 2-DOF robot arm (Figure 3c). The system
adopts a dynamic hybrid position/force control strategy. During
the initial stage, position control is applied to track a predefined
cutting trajectory. Upon detection of bone contact, the tool path is
dynamically adjusted in real time to follow the tangential direction
of the bone surface while maintaining a constant contact force
to prevent bone chip formation. Similarly, Misimi et al. (2016)
proposed a novel 3D vision-guided robot for front-half chicken
harvesting. A computer vision algorithm has been developed to
locate the grasping point in 3D as the initial contact point for
the harvesting procedure, based on which, a feed-forward Look-
and-Move control algorithm. A humanoid-inspired composite
pneumatic gripper was employed as the end effector with a
compliant design to adapt to the broiler chicken’s anatomy. A
miniature force sensor ensures a precise grip andminimizes damage
to the meat during handling. However, due to the restricted DOF,
it is difficult to accomplish deboning of the entire carcass, and the
force control will also be influenced by the shape of the blade. In
the longer term, upgrading to a cutting robot possessing more DOF
than the present could allow for more versatility in performing
the various cuts required for complete poultry deboning. The
two systems represent automated solutions for precision cutting
and compliant grasping, respectively, collectively advancing the
technological frontier of poultry processing automation.

Automation in the evisceration, breastbone deboning, grading,
and packaging, has improved the overall production system in
a fast and efficient manner. However, post-evisceration poultry
inspection is still performed manually. The inspection system
automation can eliminate inspector error and reduce the workload
required for the carcass individual inspection, thereby reducing
operating costs (Chao et al., 2000). Poultry meat color is also an
important quality attribute for the rapid detection of “pale poultry
syndrome”. Visual inspection is routinely used to assign grades
or quality labels to chicken carcasses. Recently, novel techniques
have been investigated for fast, reliable, and reagent-less meat
quality assessment. For a fast assessment of chicken quality in
large-scale processing plants, Barbin et al. (2016) investigated the
potential application of an identification framework with color
images to predict chicken color attributes and classify chicken
breasts accordingly. This study is mainly concerned with detecting
PSE (pale, soft, exudative) defects and pale poultry syndrome, which
are critical indicators of pre-slaughter animal welfare and meat
quality. While this work advances poultry quality assessment by
enabling automated, high-throughput defect identification, further
refinement is needed to ensure robustness and universal adoption
across diverse production environments.

Current poultry processing automation demonstrates varying
levels of technological maturity across different operations.
While computer vision and ANN-based sorting (Teimouri et al.,
2018) achieve real-time classification (with 90% accuracy),
deboning automation remains constrained by limited DOF systems
(Hu et al., 2012; Misimi et al., 2016), which struggle with anatomical
variability and require force-vision hybrid control. In recent years,
there has been a focus on improving system adaption, DOF, and
reducing labor costs. These proposed strategies offer robust and
promising alternatives for industrial poultry processing with high
accuracy, rapid, and non-destructive methods.
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FIGURE 3
Poultry processing robot: (a) The acquisition system of the chicken evisceration (Chen et al., 2021b); (b) The poultry portion identification system:
Image processing and neural network arbitration (Khashman, 2012); (c) The framework of chicken portion sorting machine simulated in CATIA software
(Teimouri et al., 2018); (d) WLD Whole Leg Deboner M3.0 (Meyn, 1993). (e) RAPID plus breast deboner M4.3 (Meyn, 2023a).

4.3 Commercial applications

The poultry industry has built large, dedicated processing
plants and continuously increased line speed through advancements
in automation and mechanization of different processes within
the plant (Barbut and Leishman, 2022).

Meyn Food Processing Technology B.V. Co. Ltd. (Meyn, 1993),
the leading global manufacturer and marketer of systems and
solutions for poultry and egg production, has proposed solutions
to the entire poultry processing including live bird handling,

slaughtering, evisceration, chilling, deboning, packing, and so on.
The whole leg deboner M3.0 (Meyn, 1993) (Figure 3d) processes
left and right anatomical legs at a maximum capacity of 4,200
legs per hour. Furthermore, the rapid plus breast deboner M4.3
(Meyn, 2023b) (Figure 3e) automates the breast deboning process
by loading front halves in baskets, transferring them to product
carriers, and then to a meat harvesting carousel and a carousel for
wishbone cutting and scraping. This system can process both breast
caps and front halves into over 15 different high-quality products at
a speed of up to 7,000 BPH and saves up to 34 FTE per shift.
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5 Seafood

Seafood products are essential dietary components with highly
appreciated and consumed worldwide (Hassoun et al., 2022). The
seafood’s perishable nature needs to be paid special attention to its
preservation after harvesting. Automated seafood processing could
enable higher profitability, and flexibility in production and increase
the potential for high-value seafood products (Liu et al., 2022). The
seafood industry has come a long way with automation advanced.
Within this part, we present the pertinent methodologies implicated
in the processing of seafood. These comprise categorization, slicing,
the elimination of fish bones, and the evaluation of quality.
Furthermore, specific commercial implementations that process
seafood are also deliberated upon.

5.1 Primary processing of seafood

Sorting is considered an integral step in the primary processing
of seafood, it can be categorized based on a factors combination of
factors such as the species, size, and quality. In the early studies,
fish was classified simply by its thickness (Booman et al., 1997).
Later, various fish databases to automate the fish discrimination
task were developed, and the application of machine vision
and imaging technologies became increasingly prevalent in the
sorting, grading, and processing of fish and its related products
(Mathiassen et al., 2011; Hassoun et al., 2023).

With the rapid development of machine vision technology
represented by CNN (Convolutional Neural Network), computer
vision-based seafood detection and identification technology has
entered a new stage of development. Compared to traditional vision-
based algorithms, emerging machine vision algorithms have huge
advantages in seafood recognition. In Table 3, recent research on the
identification and classification of seafood has been listed. Utilizing
edge analysis enables the identification and removal of malformed
items while preserving those with growth potential. To develop
more accurate systems for automated fish sorting based on whole-
shape characters. Costa et al. (2013) presented an automated sorting
for scale, sex, and skeletal anomalies of farmed seabass. The high-
resolution camera is employed to capture lateral-view images of live
fish. Image binarization is performed using both the grayscale (G)
channel and the Value (V) channel from the HSV color space. The
system is designed for integration with online sorting equipment,
achieving a theoretical processing speed of approximately 10 fish per
second. However, its real-time performance in dynamic industrial
environments remains untested, which may affect operational
stability in practical applications. This could be an important step
forward both for the routine sorting of deformed fish at different
stages and for the implementation of selective breeding programs
through efficient selection based on body size and phenotypic sex.

In addition, fish weight estimation is also researched
based on computer vision and image analysis (Figure 4a)
(Fernandes et al., 2020; Zhang et al., 2020). There is also some
research on counting systems (Hernández-Ontiveros et al., 2018)
and sizing systems (Muñoz-Benavent et al., 2018). Moreover,
the combination of computer vision procedure and acoustic
information is expected to estimate biomass in more complex
situations.

5.2 Secondary processing of seafood

There have been different methods for separate procedures in
fish processing, such as fish beheading positioned with a cutting
plane (Azarmdel et al., 2021), gutting beheaded and nonbeheaded
fish were aspirated entrails and extracted blood and water from the
abdominal cavity (Grosseholz and Neumann, 2008; Paulsohn et al.,
2007), fish cutting and removal of the viscera without damage to
either the viscera or the remaining fish product (Ryan, 2015).

In fish processing, the previous work on the integration of
intelligent sensing, robots, and end effector tools for fish processing
has resulted in several solutions based on machine vision and robots
(Fu et al., 2023; Khodabandehloo, 2022; Mathiassen et al., 2011).
Despite some singular unit operations having been successfully
automated, and cooperatively with manual human labor, the current
mechanical, semi-automated, and fixed automated solutions based
on the existing technology are hardly able to perform a higher
degree of automation inhandling, processing, andhigher rawmaterial
utilization. Based on the 3D vision system research, Mathiassen et al.
(2011) established a salmon slaughter line by integrating a laser
triangulationdevicewitha robot to complete the salmonbleed-cutting
task.The systemfirst takes 3D images of fish in theproduction line and
then completes the 3D segmentation of each fish. The fish head and
tail are then graded according to the extracted characteristics. Finally,
the entry point is set to direct the robot to complete the trimming
process. This system can automatically slaughter 85-95 percent of all
fish at an average feed rate of 30–80 salmon/min.

In today’s modern fish processing plants, the trimming operation
is performed by a combination of automated trimming systems and
manual post-trimming. Post-trimming includes the removal of belly
fat, back fat, belly membrane, belly bone, collar bone, tail, blood,
wounds,etc.BarbutandLeishman(2022)designedandimplementeda
prototype robotic post-trimming system for salmonfillets.The system
integrated 3D machine vision, a high-speed robot manipulator, and
a flexible lightweight cutting knife for enhanced tail-cut grounding.
A smooth trajectory based on slow-motion analysis of human
cuttingmotions, utilizing cubicHermite interpolation for cutting path
optimization. The six-degree-of-freedom (DOF) industrial robot is
applied to enable flexible cutting paths for all relevant trimmedobjects
in a way that maximizes yield and minimizes waste.

There’s also some research focusing on blood spot detection. An
image analysis method was developed to quantify the salmon fillets’
gaping, bruising, and blood spots (Balaban et al., 2011; Xu and Sun,
2018). An adaptive threshold value for lightness, depending on the
fillet average color, was utilized to quantify the areawith a luminance
less than the threshold value under polarized light. However, this
method cannot distinguish between gaping, bruising, and blood
spots. With the development of more advanced image analysis
technology, some deep learning algorithms like CNN and SVM
(Support Vector Machine) were employed to realize a more robust
classification approach (Misimi et al., 2017). Aligned RGB and depth
images were used for image analysis as shown in Figure 4b.

As time passes, the quality of harvested fish may deteriorate
due to storage and processing. As a result, evaluating the quality
of processed fish has been extensively studied. HSI (Hyperspectral
imaging) technology, a rapid and non-destructive tool, exhibits
tremendous potential in evaluating the quality of seafood products
through online or at-line detection (Ismail et al., 2023), thanks to
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TABLE 3 Summary of technical progress in seafood processing.

References Country Content Technique Software and
algorithms

Performance

Balaban MO et al.
(2010)

U.S.A Predict fish weight Machine vision Regression analysis R2 0.987

Hernández-
Ontiveros JM et al.
(2018)

Mexico Fish counting Embedded system A new algorithm for
fish counting based
on digital image
processing

Accuracy 96.64%

Muñoz-
Benavent P et al.
(2018)

Spain Highly accurate fish
length estimation

Machine vision Feature extraction
algorithms

Estimation error 3%

Chen et al. (2021c) China Non-destructive
freshness assessment

Machine vision Hyperspectral
imaging

Accuracy of fresh,
refrigerated, and
frozen samples

100%
96.43%
96.43%

FIGURE 4
Seafood processing systems: (a) Representation of background removal, fish identification, and visual evaluation of goodness of fit for live body weight
and carcass weight for models that considered only the segmented fish body area (Fernandes et al., 2020); (b) RGB and 3D images of an example fillet
and the sequence of computer vision operations used to generate images, features, and the ground truth used for training of the classification
algorithms. RGB pixel values of the normal muscle are higher (lighter color) than the pixel values of the blood spots (dark color) (Misimi et al., 2017); (c)
Integration of hyperspectral imaging technology with spectroscopy and computing for quality evaluation of seafood products (Ismail et al., 2023).

its ability to provide spatial and spectral information coupled with
multivariate analyses. As shown in Figure 4c, the HSI system is
widely used in the seafood industry. Recently, artificial intelligence-
based deep learning has emerged as a promising solution for data
classification of hyperspectral imaging with shift-invariant feature
recognition for seafood products. While complete automation
remains challenging due to seafood’s biological variability, emerging
technologies like hyperspectral imaging (Ismail et al., 2023) and
deep learning (Misimi et al., 2017) now enable comprehensive

quality assessment, surpassing traditional manual methods. These
advances highlight the industry’s shift toward data-driven, high-
throughput automation while ensuring product quality.

5.3 Commercial applications

Marel Co. Ltd. is the leading global supplier of advanced
standalone equipment and integrated systems to the fish processing
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industry, which offers products of desliming, beheading, fillet
processing, portioning, weighing, grading, and batching for salmon
and whitefish.

The salmon fish is first measured to make the right cuts and
ensure optimum yield. Then they are manually fixed in the gripper
of the beheading machine MS 2730 (Marel, 2018) which can process
up to 20 fish per minute. The salmon beheader is integrable with
the filleter MS 2750 (Marel, 2023) with automatic transfer of the
salmon straight from the deheader into the filleter with belly down.
An additional set of circular knives cuts the fish from vent to tail.
For the belly bone cut, four sets of finger pressures secure maximum
control of the fish and enable optimum cutting of both pre-rigor and
post-rigor fillets. The MS 2730 automatically adjusts to various fish
sizes and can process up to 25 fish per minute depending on the
length of the fish.

6 Discussion

Fresh meat is an abundant source of high-quality protein
and essential trace minerals (Das et al., 2019). Nowadays, the
demand for meat consumption has shifted towards personalized
and diverse options that prioritize freshness, quality, and safety
(Ren et al., 2022). Besides, there is a significant emphasis in the food
industry on the unification of all supply chain processes (Barbut,
2020), particularly within the meat-producing sector, this involves
incorporating data obtained through the monitoring of multiple
stages involved in the processing plant, starting from the reception
of live animals to the subsequent execution of various procedures. In
recent times, the potential of robotics and automation as a promising
method for meat processing has been thoroughly investigated.
These technological advancements have unquestionably offered
an advantageous foundation for establishing a traceability system
within the meat production industry. To advance the robotization
and automation of meat processing, it is imperative for future
research to address the following issues.

Firstly, improve the software intelligence in the robotic system
for meat processing. This includes boosting the efficiency of
perception and recognition algorithms as well as the effectiveness
of control systems to ensure the system functions optimally. In
contrast to tasks performed by industrial robots, the operational
environment encountered by meat processing robots is significantly
more intricate and characterized by a greater degree of task
uncertainty. Upon examining the historical progression of meat
processing robots, and drawing a comparison between traditional
vision techniques and CNN, it becomes clear that the iterative
and methodical application of computer vision technology has
substantially augmented the overall performance of these automated
systems. Consequently, the implementation of inventive software
algorithms remains a pivotal aspect in the continuing development
of such robotics. Furthermore, sophisticated control strategies, like
deep reinforcement learning, and imitation learning, may hold great
potential for further enhancing the resilience and durability of
robotic systems.

Secondly, achieve higher hardware performance of the robotic
system, like designing nimble manipulations and enhancing the
precision and robustness of sensors. Advanced meat processing
techniques such as evisceration and deboning require robots with

highly dexterous end-effectors. Recently, new actuator mechanisms
that coordinate the movements of dual robotic arms have emerged.
MRS (Multi-Robot Systems) presents many advantages over single
robots, e.g., improved stability and payload capacity (Kennel-
Maushart et al., 2022).There is potential for promising developments
in meat processing robotics through the implementation of MRS
and HRC (Human-Robot Collaboration). Thirdly, pay attention
to the treatment of biological fertilizers generated in meat
processing, and achieve sustainable production. During the process
of slaughtering and meat processing, a significant amount of meat
by-products and co-products are produced. These products need
to be managed rationally to ensure ecological disposal (Irshad
and Sharma, 2015; Toldrá et al., 2021). Therefore, it is critical
to find efficient solutions that support sustainability. Innovative
developments in this area can create high added value from meat
by-products with minimal environmental impact, handling, and
disposal costs, making it an essential component of the transition
to bio-economy.

Additionally, automation enables the implementation of
traceability systems, enhancing transparency across the meat
supply chain. Leveraging big data analytics and IoT technologies
can optimize resource efficiency and support agile food network
systems (Lin et al., 2020). Such integration not only improves
production monitoring but also advances research in food safety
and quality control (Lin et al., 2020).

In summary, the core technological challenge in contemporary
meat processing systems is balancing precision and throughput
requirements. Even within the same species, substantial individual
variations create significant obstacles for generic algorithms
application. Current researches are increasingly focused on the
3D imaging modalities to obtain comprehensive carcass scans,
theoretically enabling optimized cutting path planning. However,
the high computational intensity prevents these systems from
meeting industrial-scale processing rates. Additionally,Thematerial
properties of meat further complicate automation efforts. Meat as
a non-uniform material, required precise control of cutting forces
to maintain product integrity. While closed-loop control systems
incorporating force feedback could potentially improve accuracy,
the increased computational overhead and extended processing
times decreased throughput. Consequently, existingmeat processing
systems mainly utilized the open-loop control strategy, sacrificing
adaptability to individual variations in favor of operational efficiency
through standardized cutting paths. This fundamental balance
between processing accuracy and operational efficiency remains
the central issue in advancing meat processing automation.

7 Conclusion

The meat processing industry presents significant opportunities
for robotic automation, yet substantial challenges remain,
particularly in livestock processing. This paper reviews the current
status of robotic automation in meat processing. Full automation
in livestock processing remains challenging, especially for beef
due to its large size variations and complex structure, making a
universal solution difficult to achieve. For poultry processing, there
have been complete automation solutions to the whole slaughtering
process, such as the products offered by Meyn Poultry Equipment
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Ltd. However, these current systems still have high requirements
for consistency, and future research can focus on adaptability to
variations in size. Fish processing is relatively simple due to its
simple structure. Methods for deadheading, gutting, deboning,
and filleting have been applied in the industry. The challenge is
mainly in post-trimming, such as detecting various defects in fillets.
Current research also focuses more on classification and quality
control. With the development of computer vision techniques, the
classification of species and sizes becomes more accurate which can
enhance the yield of the production line.

Although the meat processing industry has great research value
and development potential, it also faces many challenges. From the
commercial and organizational aspects, the company needs to invest
a great deal of cash in purchasing the equipment, which is not an easy
task in the beginning. From the technical aspect, humans possess
sophisticated, integrated sensory abilities with inbuilt reasoning
and manipulation capabilities. It demands robotic and automated
systemswith highly accurate sensing systems and flexible processing
strategies and methods.
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