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Recent advances in few-shot learning have demonstrated the potential of
prompt-based techniques with pre-trained models, eliminating the need for
extensive fine-tuning. However, challenges such as obtaining optimal prompts
and addressing data scarcity in specialized domains remain challenging. We
introduce a novel framework incorporating a Global Attention Mechanism
(GAM) that effectively integrates features from multiple layers of pre-trained
language models, enhanced by Latent Dirichlet Allocation (LDA) generated
topic features for prompt optimization. Extensive experiments on four datasets
consistently show that our approach outperforms state of-the-art baselines. The
strategic integration of GAM with layer-specific features and LDA topics proves
particularly effective in extracting valuable latent information for few-shot
learning scenarios, yielding significant improvements in specialized domains,
as evidenced by enhanced performance in therapeutic dialogue classification
within a Applied Behavior Analysis clinical dataset.

KEYWORDS

few-shot prompt learning, multilayer fusion, LDA topic integration, human-robot
interaction, extracting valuable information

1 Introduction

Human-robot interaction (HRI) has been transformed by natural language processing
(NLP) technologies, enabling robots to comprehend complex linguistic inputs and
expanding their applications across industrial, healthcare, and educational settingsAtuhurra
(2024); Koubaa (2023). However, a critical challenge persists: acquiring sufficient labeled
demonstration data for model training, particularly in few-shot learning scenarios where
data availability is limited Hejna III and Sadigh (2023). This challenge is exacerbated
in real-world HRI applications, especially within sensitive domains like healthcare and
education, where data collection faces significant privacy constraints, high costs, and ethical
complexities Chen et al. (2022).

Current few-shot learning techniques largely rely on pre-training models with large-
scale multitask datasets, followed by fine-tuning on smaller, domain-specific datasets.
Although effective, fine-tuning these large models is complex and requires specialized
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expertise Bragg et al. (2021); Liu et al. (2024). Recently, the
use of specific prompts or instructions to guide large language
models (LLMs) has significantly enhanced their ability to perform
more intricate natural language processing (NLP) tasks. Prompt
learning, which focuses on the tuning of task-specific parameters
of pre-trained language models (PLM), has shown considerable
success, often outperforming traditional fine-tuning on low-
resource datasets Liu et al. (2024); Zhou et al. (2022). These
advances in prompt learning present compelling new opportunities
for enhancing HRI capabilities.

State-of-the-art prompt-based methods have demonstrated
effectiveness through various approaches: incorporating labeled
human feedback in prompt generation Bai et al. (2022);
Zhou et al. (2023), manually adjusting task-specific parameters
Rajeswaran et al. (2017), and employing performance enhancement
techniques to learn from high-quality demonstrations Wang et al.
(2023) and extract insights from ambiguous training data Zha et al.
(2021). However, adapting these techniques to HRI scenarios
presents significant challenges.The creation of high-quality prompts
requires substantial domain expertise and time investment Koubaa
(2023), while the inherently limited size of HRI datasets restricts
their coverage of the overall data distribution, resulting in pre-
training corpora that inadequately represent the diversity of
environments and tasks Xu et al. (2022). As a result, prompt-based
models often fail to capture sparse but essential information within
limited demonstration data, especially for high-level, abstract, or
ambiguous tasks, significantly compromising prompt effectiveness
in downstream applications Gu et al. (2022).

Given the inherent limitations of current methods, especially in
the HRI domain with scarce demonstration samples, it is essential
to explore approaches that effectively extract additional information
from limited demonstrations. To address this challenge, we propose
a novel methodology that enhances both prompt generation and
model performance. Our framework leverages multi-layer feature
vectors from pre-trained language models to capture information
that may have been overlooked during prompt generation, while
simultaneously incorporating external latent features through
the topic keywords derived from third-party models. Extensive
experimental validation demonstrates the efficacy of our approach
across multiple datasets, particularly in real-world HRI scenarios
with limited data availability.

Our key contributions include:

• AGlobal AttentionMechanism that enhances prompt learning
by integrating feature representations across multiple layers of
pre-trained language models.
• A novel integration method incorporating Latent

Dirichlet allocation topic features from external models to
enrich prompt generation.
• Comprehensive empirical validation across multiple datasets,

encompassing sentiment analysis tasks and real-world HRI
scenarios with constrained data availability.

2 Related work

This section explores approaches to prompt optimization
through two key aspects. First, we examine model architectures that

employ either direct language models (LM) for prompt generation
or combine reinforcement learning with language models (LM-
RL). Second, we investigate methods for maximizing prompt
optimization with limited data by extracting valuable information
from the different layers of languagemodel BERT and incorporating
supplementary information from external models.

2.1 Prompt optimization of few-shot
learning

Current prompt optimization methods focus mainly on
enhancing the model and fully exploiting the available data.
Architectural approaches like PTuning v2 Liu et al. (2021), Google’s
instruction tuning Wei et al. (2022), and Prompt-DT Xu et al.
(2022) optimizemodel structures for prompt generation.Alternative
methods, including APE Zhou et al. (2023), OPRO Yang et al.
(2024), and PromptBreeder Fernando et al. (2024), utilize larger
models from the PaLM2 Anil et al. (2023) and GPT model families
to propose and validate prompt candidates. Although AutoPrompt
Shin et al. (2020) employs gradient-based search for prompt editing,
it requires model gradient access.These LLM-based approaches face
challenges in interpretability, cross-model reusability, particularly
due to their dependence on fine-tuning dataset sizeWei et al. (2022).
This limitation restricts their application in scenarios like HRI,
where the demonstration data is limited.

Compared to typical prompt-tuning approaches, the pre-
trained language model and reinforcement learning (LM-RL)
frameworks offer an alternative by optimizing prompts without
expensive gradient computations. Recent applications Hao et al.
(2023) include aesthetic optimization in text-to-image generation
tasks and Prompt-OIRL Sun et al. (2023) that utilize offline
inverse reinforcement learning to optimize query-prompt pairs.
However, the approach requires substantial manually labeled
rewards for training its proxy reward model, which introduces
additional resource overhead and data dependencies. On the
other hand, merging LM-RL frameworks show promise in prompt
optimization. In Prewrite Kong et al. (2024), two prompt-rewriting
LLMs are trained using reinforcement learning to optimize
performance on a given downstream task based on large models.
RLPROMPT Deng et al. (2022) and TEMPERA Zhang et al.
(2023) propose prompt optimization approaches with pre-trained
LM and reinforcement learning (LM-RL) based on relatively
smaller language models. In particular, the LM-RL architecture
demonstrates robust performance regardless of prompt pool size
or few-shot example quantity, making it particularly suitable for
data-constrained scenarios.

In addition to model development, some studies have shown
that incorporating human feedback or expert demonstrations into
training optimization prompts can improve performance Bai et al.
(2022); Jung and Kim (2024); Zhou et al. (2023). These approaches
face significant limitations, including high resource requirements
for labeled feedback and demonstrations, substantial computational
and financial costs, and limited effectiveness in small datasets where
biases are more pronounced.

Beyond leveraging LM-RL model structures for optimal prompt
generation, a critical challenge in few-shot learning lies in
maximizing information extraction from limited available data.
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This requires innovative approaches to uncover crucial and latent
information that might otherwise be overlooked. The efficient
integration of such information into the prompt generation
process represents a promising research direction to improve the
performance of few-shot learning.

2.2 Leveraging different layers of LM and
supplementary information to LM

Manually selecting parameters Zhang N. et al. (2022) and
incorporating processed demonstrations Tang et al. (2024), can
result in loss of vital information due to the need for manual
parameter design, particularly when working with limited data.
The internals of the language model offer an alternative source
of valuable information. Research shows that the bidirectional
encoder representations from transformers (BERT) layers possess
distinct specializations Wolf (2019); de Vries et al. (2020), and the
earlier layers often contain crucial information. Studies suggest
incorporating fluency-related information into the LM, which
includes sparse features or abstract information that cannot be
easily extracted from the last layer of the LM Zhang N. et al.
(2022). Various approaches have demonstrated the benefits of
the performance boost from multi-layer integration, rather than
using only the BERT last layer Zhang et al. (2021). The dynamic
fusion mechanism on the encoder and the knowledge distillation
paradigm on the decoder attention Vaswani et al. (2017) provide
rich information for the model by integrating the multilayer
representations of BERT. These lower layers contain fluency-related
features and abstract information that are not readily available in
the final layer. Researchers suggest that selectively adding prompts
to specific layers of the model is more effective than applying
prompts to every layer Jia et al. (2022). Liu et al. (2021) highlights
the importance of focusing on key layers for prompt optimization
with LMs. However, indiscriminate combination of features from
all layers may introduce redundancy and noise, particularly in
small dataset scenarios where lower layersmight contain overlooked
but valuable information. Our method explores this approach to
enhance prompt optimization.

Alternative approaches explore LM fine-tuning with
supplementary models. For example, Venugopalan and Gupta
(2022) uses minimal aspect seed words from each aspect category
to guide the model, which is combined with BERT-based semantic
similarity. Peinelt et al. (2020) demonstrates that topic-informed
BERT (tBERT) achieves improvements in multiple semantic
similarity prediction datasets. Furthermore, Xiang et al. (2023)
proposes bidirectional encoder representations from transformers-
latent dirichlet allocation (BERT-LDA) in the context of online
health communities, achieving more accurate topic identification
and sentiment analysis. Zhang P. et al. (2022) proposes amethod that
combines weighted latent dirichlet allocation (LDA), Word2Vec,
and BERT vectors for text classification. Given the role of
supplementary models, our research explores efficient ways to
incorporate supplementary models for feature extraction within the
LM-RL framework, specifically targeting improved prompt learning
performance in small dataset scenarios.

In this paper, we extend the LM-RL framework by addressing
information loss inherent in final-layer-only approaches. Our

approach leverages feature representations from multiple layers
of the language model and implements a Global Attention
Mechanism to effectively synthesize cross-layer information.
Additionally, we incorporate a third-party model to provide
complementary implicit features, expanding the set of available
features for optimization. This comprehensive approach enhances
the information capture capabilities of the LM-RL network. We
validate our framework through extensive experiments on three few-
shot learning classification tasks, and we explored its applicability in
a specific HRI scenario involving autism patient treatment, where
the demonstrations are limited, the situation is more complex and
lacks the stable distribution present in the classification tasks of the
other three datasets.

3 Methods

To enhance prompt learning by effectively extracting additional
information, this paper builds upon the LM-RL framework
and addresses a key challenge: some essential information is
overshadowed when relying solely on features from the final layer of
a language model (LM) as input for reinforcement learning (RL). To
tackle this, we explore variousmethods for integrating features from
different layers of the LM, incorporating supplementary implicit
information to optimize prompt generation.The proposed approach
is detailed across three main subsections: Section 3.1 introduces the
foundational LM-RL framework; Section 3.2 describes the fusion
of multi-layer features from the LM; and Section 3.3 explores the
integration of Latent Dirichlet allocation (LDA) with LM-derived
representations.

3.1 Basic LM-RL framework

As illustrated in Figure 1, our network is built on the LM-RL
framework. In this framework, the LM is employed for tasks such as
classification, while the RL provides prompt feedback to the LM.The
last hidden layer vectors of the LM, along with the corresponding
logits values for each category in classification tasks, serve as the
reward source for RL-based prompt learning. Additionally, the last
hidden layer vectors, as well as vectors from other layers (H0, H1,
H2), undergo further integration using global attention mechanism
(GAM) and latent dirichlet allocation (LDA) for feature fusion.
This fusion process yields a more informative RL state tailored
for prompt optimization. Regarding the action space component
in reinforcement learning (RL), similar to Tempera Zhang et al.
(2023), the original prompts originated from Natural Instructions
Wang et al. (2022), while the prompt templates were chosen from
the Prompt Source Bach et al. (2022).

3.2 Fusion of multilayer features of
language model

Building on the insights from Section 2.2, which examines the
use of various layers within BERT, our goal is to recombine features
from different layers of the language model. Specifically, we aim to
preserve the general semantic information captured by the lower
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FIGURE 1
The LM-RL framework comprises three key components: LM for classification tasks, RL for prompt learning, and feature fusion outputs created by LDA
and GAM integrating input data and different layer features from LM. These fusion outputs serve as state inputs for RL-based prompt learning, while
LM’s classification logits provide reward. RL then generates prompt feedback to optimize the LM.

pre-trained layers, while also retaining the task-specific features
encoded in the higher layers closer to the output. To effectively
leverage this multi-layer information, our approach consists of two
main steps designed to explore and integrate features from different
levels of the language model:

Firstly, as the network depth increases, valuable sparse features
in the lower layers of LMmay persist, particularly when dealing with
small datasets. However, these features are often overshadowed or
diluted in intermediate layers. To address this, we extract distinct
hidden layers from the LM individually. We then leverage the
strengths of the Global Attention Module Song et al. (2022), which
operates on both spatial and channel dimensions, thus improving
the understanding of sequence representations. By applying GAM
to features from multiple hidden layers, we enable effective fusion
of representations from these different layers. Specifically, features
from three selected LM layers are treated as separate input channels
to GAM. This design helps mitigate information loss in low-
resource settings and strengthens the model’s ability to capture
global contextual interactions. As indicated in Figure 2, in this
context, the blue left inputs consist of features from different layers
of LM (as shown in H0, H1, Hn). In contrast to the hierarchical
sequence of layers in the language model, which is governed by the
attention mechanism, our layer features operate in parallel, with the
GAM enabling the exploration of interactions that span across these
diverse layers.

Following the application of GAM to various layers, we extract
additional features from these layers, which we refer to as ‘post-
GAM’ features. Although GAM features originate from the lower

and final layers, features derived from the lower layers may include
valuable information because of their sparsity and specificity.
However, these features might also introduce less valuable elements,
such as noise, which can dilute the utility of the shared features in
the original output of the language model’s final layer. To address
this, instead of directly using the post-GAM features from different
layers, we concatenate these features (referred to as GAM(LH) in
Figure 2) with the output vectors from the language model’s last
layer (H). For example, we extract features from both the first
hidden layer (L) and the final hidden layer (H) of the language
model (LM), each with a shape of [32, 1, 1024]. These two vectors
are first added to form a fused representation, LH, which is then
processed using the GAM, as illustrated in Figure 2, resulting
in GAM(LH) (Shape: [32, 1, 1024]). The output is subsequently
added to the final-layer features (H) of LM, resulting in the multi-
layer fused representation GAM(LH)+H (Shape: [32, 1, 1024]).
In the enhanced approach (GAM(LH)+H), both GAM(LH) and
H are treated as equal contributors to the fusion process, this
ensures that the common features of the last layer of the LM are
reinforced. This strategy not only integrates additional information
from the post-GAM, but also mitigates the risk of significant
noise existing in the post-GAM features, which could otherwise
dilute the impact of the common features from the language
model’s last hidden layer. The concatenation here is intended
to integrate richer feature information, and a simple addition
operation is used, which introduces virtually no computational
overhead. More complex methods for combining features from
different layers could be applied here instead of simple addition;
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FIGURE 2
GAM fusion of features from multi-layers. GAM performs feature fusion across multiple layers of LM (H0, H1, Hn) to create GAM(LH). The final
representation is formed by concatenating GAM(LH) with the LM’s last hidden layer output H.

however, they would significantly increase computational overhead.
As the goal of this study is to validate that further processing of
features combined from different layers of the LM can provide
more effective information. Therefore, prior to applying GAM
to the multi-layer features—and before further enhancing the
representation by integrating the post-GAM output with the H-
layer—we adopt a simple addition of features as a lightweight
fusion strategy, allowing us to validate the effectiveness of our
proposed method. As such, more computationally intensive fusion
methods are left for future work. The structure of this approach is
illustrated in Figure 2.

3.3 Latent dirichlet allocation (LDA) fusion
with LM

Considering the advantages discussed in Section 2.2 on the
integration of LM and LDA, the results of LDA can serve as a
foundation for various applications, such as document classification,
similarity calculations and clustering. In this paper, the topics
generated by LDA provide complementary information that differs
from the features typically captured by LM tasks. To leverage this,
LDA is employed as a feature extraction technique, enabling the
integration of latent semantic features (topic features) into the output
layer of the language model.

The implementation process primarily involves training the
LDA model to generate topic outputs and integrating these features.
To determine the optimal number of topics for the LDA model, we
first train the LDAmodel on the training portion of each dataset.We
then calculate the coherence of the topic, as described in Röder et al.
(2015), which has been shown to correlate well with human
judgment. In particular, Gensim provides several measures to

evaluate topic coherence, enabling a more robust assessment of
model performance.

To enhance the integration of output from LM and LDA,
it is essential to begin with feature normalization. Directly
combining their outputs can lead to significant differences in scale,
overgeneralization, and convergence challenges Peinelt et al. (2020).
For semantic NLP tasks, merging LDA and LM output layers can
be considered as the integration of distinct channels representing
the same input. Layer normalization (LN) Lei Ba et al. (2016) is
commonly recommended for such tasks. However, when working
with small datasets, preserving the fine-grained details of both
feature sets becomes critical. In such cases, instance normalization
(IN) Ulyanov (2016) offers a better alternative. Given the limited
data considered in this study, we opted for IN while also testing both
LN and IN during the LDA topic fusion process in our experiments.
This approach improves the integration of information between
LDA and LM, resulting in substantial and valuable features for
the subsequent RL network. As shown in Figure 3, the features of
different layers of the LM are subjected to GAM. These are then
combinedwith the last hidden layer’s features to producemulti-layer
fusion features (e.g., GAM(LH)+H), which are further integrated
with LDA topic features before being fed into the RL network.
Specifically, due to the difference in shape between these two types
of features (e.g., the former has a shape of [32, 1, 1024], while the
latter is [1, 32]), the LDA features are first embedded using the
language model (to obtain a shape of [32, 1024]). After reshaping
both sets of features (to [1, 64, 1024]), they are concatenated to form
the final fused representation. Then, Layer Normalization (LN) or
Instance Normalization (IN) is applied to the fused representation.
This combined feature, as illustrated in Figure 1, serves as the
state for the RL network, preparing it for the subsequent prompt
generation step.
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FIGURE 3
Multi-layer GAM fusion with LDA Integration. The multi-layer fusion features are combined with LDA topic features to form the final input for the
RL network.

4 Experiments

In this section, based on the LM-RL framework, we investigated
two key aspects: first, the impact of incorporating specific language
model layers into the GAM fusion, and second, the effects of
adding LDA fusion to GAM. Subsequently, we compared the
performance of our method with eight state-of-the-art baseline
models. In Subsection 4.3, we conducted an additional experiment
to evaluate how our approaches perform on a particular dataset with
limited real-world data from the HRI scenario.

4.1 Datasets, baseline, and experiment
setup

4.1.1 Datasets
Our objective is to validate the effectiveness of our method

across different datasets by evaluating few-shot text classification
tasks. Our assessment includes sentiment analysis tasks on single-
sentence datasets (SST-2 Socher et al. (2013), MR Pang and Lee
(2005)) and multichoice datasets (AG_News Zhang et al. (2015)).
Beyond semantic analysis, we also explored the method’s utility in a
specific HRI scenario. We evaluated a dataset capturing interactions
between behavior technicians (BT) and children with Autism
Spectrum Disorder (ASD) during wh-question teaching sessions at
a university-affiliated Applied Behavior Analysis (ABA) clinic. This
task is unique, differing from standard classification or generation
approaches due to its specialized context and limited dataset, as
detailed in Section 4.3.

4.1.2 Baseline
We evaluated the effectiveness of our methods by comparing

them with a set of representative methods, which serve as the
baseline. These methods include.

• Finetuning Devlin et al. (2019);
• Continuous prompt: Black-Box Tuning, AutoPrompt

Shin et al. (2020); Devlin et al. (2019);

• Discrete prompt: Manual Prompt Bach et al. (2022), and In-
Context Demonstration Min et al. (2022);
• RL prompt: RLPrompt Deng et al. (2022), Tempera

Zhang et al. (2023).

4.1.3 Experiment setup
We conducted text classification tasks using consistent

configurations based on Tempera, ensuring a fair comparison.
Our approach utilized RoBERTa-large as the language model and
a Proximal Policy Optimization (PPO) reinforcement learning
framework. The initial instructions came from Natural Instructions
Wang et al. (2022), and the prompt templates were selected from
PromptSource Bach et al. (2022). Each task used 16 randomly
selected training samples per category, creating a small-sample
dataset for prompt learning. We used the standard test set from the
baseline methods for performance reporting. Regarding the topic
generation part of LDA, we employed the LDA algorithm from the
Gensim library to train and extract topics for each dataset, following
an evaluation of topic coherence.

For the HRI dataset, we maintain consistent language and
reinforcement learning models. However, the unique nature of
the dataset and the extremely limited data risked overfitting with
the standard 16-sample approach. To address this, we adapted
our methodology by modifying input data format, PromptSource
templates, and LDA topic design, as detailed in Section 4.3.

4.2 Experiments on few-shot learning
classification tasks

4.2.1 GAM on single layer experiments
In this section, we systematically investigated the performance

implications of utilizing different hidden layers of LM for RL
network input. Our preliminary exploration of the lower layers (L0,
L1, L2) revealed minimal variability, leading us to focus on three
critical layers: the first hidden layer (L, closest to input), the middle
hidden layer (M, 12th layer in RoBERTa) and the final hidden
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TABLE 1 GAM on different layers (Accuracy %) of four datesets.

SST-2 AG_News MR Clinic Notes

Single Layer

L 59.1 65.1 80.7 21.9 Single layer L

M 81.2 68.3 83.2 31.3 Single layer M

H 90.6 80.3 88.5 53.1 Single layer H

GAM(L) 74.2 68.7 83.5 28.1 GAM on single layer L

GAM(M) 85.0 73.2 86.8 40.6 GAM on single layer M

GAM(H) 83.8 77.9 88.4 46.9 GAM on single layer H

Two Layers

LH 64.6 80.0 86.9 37.5 Direct combination of two layers LH

GAM(LH) 85.9 73.1 87.4 50.0 GAM-enhanced fusion of two layers LH

GAM(LH)+H 91.6 82.4 88.9 56.3 Concatenating H with GAM(LH)

Bold indicates the highest accuracy result achieved on the dataset in that column.

layer (H, closest to model output). As illustrated in Table 1 in the
single layer section, layers L and M demonstrated consistently lower
performance compared to layerH.This performance disparity stems
from the inherent information architecture of deep neural networks:
Lower layers contain more redundant information, rendering them
less effective for nuanced classification tasks.

Analysis of GAM Integration Across Network Layers: Our
systematic evaluation of GAM application across different network
layers revealed distinct performance patterns. When applied to
the lower layer (L), which contains rich, unprocessed information,
GAM demonstrated significant effectiveness, improving accuracy
from 59.1 to 74.2 (as an example, on the SST-2 classification
task). The middle layer (M) showed moderate improvement under
GAM, with performance increasing from 81.2 to 85.0. However,
applying GAM to the final layer (H) resulted in performance
degradation from 90.6 to 83.8. This result stems from the final
layer’s pre-existing feature refinement through the language model’s
hierarchical processing; applying GAM creates a double-filtering
effect that potentially obscures critical features. These findings
suggest that GAM’s effectiveness is inversely proportional to the
layer’s position in the network hierarchy, with optimal results
achieved when applied to information-rich lower layers rather than
pre-filtered higher layers.

4.2.2 GAM on two layers and enhanced fusion
experiments

Our investigation into multi-layer fusion revealed complex
interactions between lower and higher layer representations. We
evaluated two fusion approaches: direct combination of Lower
and Higher layers (LH) and GAM-enhanced fusion with softmax
(GAM(LH), in Table 1). The experimental results (LH = 64.6,
GAM(LH) = 85.9) demonstrated performance inferior to the use of
a single higher layer (H = 90.6). This unexpected outcome can be
attributed to two key factors: first, the inherent noise in lower layer
representations potentially degrading the refined features from the
final layer, and second, the fusion mechanism’s implicit bias toward

higher layer features. Despite the theoretical advantage of combining
complementary information from multiple layers, the direct fusion
approaches failed to effectively leverage the lower layer’s rich feature
space while maintaining the higher layer’s discriminative power.
These findings suggest that more sophisticated fusion strategies may
be necessary to optimally combine multi-layer representations.

Subsequently, we improved the fusion methodology that
leverages both GAM-processed layer combinations and pure
higher-layer representations. This architecture, denoted as
GAM(LH)+H in Table 1, implements a two-stage fusion process:
first applying GAM to the combined lower and higher layers
(GAM(LH)), then concatenating the original higher layer
vector (H) with the GAM output. This enhanced approach
achieved superior performance (GAM(LH)+H: 91.6) compared
to previous configurations, suggesting the successful integration of
complementary features across network depths. The performance
improvement demonstrates that our architecture effectively
preserves the higher layer’s refined features while incorporating
valuable information extracted by GAM from the lower
layer, resulting in a more robust and comprehensive feature
representation.

4.2.3 Fusion of LDA features experiments
We conducted a comprehensive analysis to optimize the Latent

Dirichlet allocation (LDA) topic configuration, evaluating topic
counts ranging from 10 to 200. Our selection criteria prioritized
model parsimony while maintaining topic coherence, utilizing the
leftmost inflection point on the coherence value smoothing curve
as the optimal parameter. For example, in the case of the SST-2
dataset, we selected 32 topics as the optimal number, even though
the highest coherence value is achieved at 35. In our experiments,
we found that 30 to 50 topics worked well for all three datasets.
After selecting the number of topics for each dataset, training was
performed on different datasets to obtain their respective topic
generation models. Since the results generated by LDA may contain
a significant number of zeros, this could consume a substantial
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TABLE 2 Fusion of LDA (accuracy %).

SST-2 AG_News MR Clinic Notes

H 90.6 80.3 88.5 53.1 Single layer H

H + LDA 90.2 79.4 85.8 53.1 Direct integration of final layer with LDA

(GAM(LH)+H)+LDA: LN 91.8 84.6 88.7 56.3 GAM-based multi-layer fusion with LDA

(GAM(LH)+H)+LDA: IN 93.1 86.2 89.3 59.4 GAM-based multi-layer fusion with LDA

Bold indicates the highest accuracy result achieved on the dataset in that column.

amount of memory. The results of LDA calculations were stored in
the form of sparse matrices.

After topic features were generated, our experimental
investigation of LDA feature incorporation followed a two-
phase approach. Initially, we evaluated the direct integration
of LDA-generated topic vectors with the final layer output of
the language model (H + LDA in Table 2). Building on this
foundation, we implemented an enhanced fusion architecture
that combined our GAM-based layer fusion (GAM(LH)+H)
with LDA topic features ((GAM(LH)+H)+LDA in Table 2). To
account for the heterogeneous nature of data distributions and
varying sample sizes, we implemented dual normalization strategies:
Layer Normalization (LN) and Instance Normalization (IN). This
comprehensive approach enabled systematic evaluation of LDA
feature contributions while maintaining robustness across diverse
data characteristics.

4.2.4 Comparison with the baseline
Our experimental results, presented in Table 3, demonstrate

consistent performance improvements in all four datasets. Our
method achieves accuracy gains over the best baseline values: 0.6%
on SST-2, 0.7% on AG_News, 1.3% on MR, and 6.3% on Clinic.
Evaluation metrics also include standard deviations calculated
across multiple prompt sets (four distinct prompts for the clinic
dataset and three for each of the remaining datasets).This systematic
evaluation framework provides strong empirical evidence for the
effectiveness of our approach in few-shot text classification tasks,
while the inclusion of standard deviations offers insights into the
method’s stability across different prompting strategies.

4.3 ABA clinic dataset experiment

Building upon our LM-RL methodology, we evaluated our
approach on a specialized HRI dataset from therapeutic sessions
at the ABA Clinic, where behavior technicians (BTs) interact
with children during structured teaching tasks. The interaction
typically begins with a wh-question from the BT, followed by
the child’s response, which can trigger at least four types of BT
responses: (1) positive reinforcement through social praise for
a correct response, (2) error correction for incorrect answers,
(3) prompts for no response, and (4) addressing other situations
like a distracted or unresponsive child. This task presents unique
challenges, combining both response assessment and strategic
response generation, where BTs must evaluate the child’s response

TABLE 3 Comparison with the baseline (Accuracy %). Evaluation on
four datasets.

SST-2 AG_News MR Clinic

Finetuning 80.6 (3.9) 84.9 (3.6) 67.4 (9.7) 43.8 (2.6)

AutoPrompt 75.0 (7.6) 65.7 (1.9) 62.0 (0.8) 40.6 (4.4)

Black-Box Tuning 89.1 (0.9) 93.2 (0.5) 86.6 (1.3) -

Manual Prompt 82.8 76.9 80.9 53.1

In-Context Demo 85.9 (0.7) 74.9 (0.8) 80.6 (1.4) 40.6 (1.7)

RLPrompt 92.5 (0.8) 80.2 (0.7) 87.1 (0.4) 46.9 (2.3)

Tempera 91.9 (2.0) 85.5 (1.5) 88.0 (1.1) 46.9 (2.8)

Ours 93.1(0.8) 86.2(1.0) 89.3(0.7) 59.4(1.8)

Bold indicates the highest accuracy result achieved on the dataset in that column.

within the conversational context and formulate appropriate
responses based on teaching objectives and historical progress.
There are several challenges, including a very limited number of
demonstrations available and inconsistencies in the decomposition
of dialogue tasks. Humans rarely complete tasks in a single
static step; even for the same task, conversations between BT
and children can vary significantly. As a result, directly fine-
tuning existing models or adding prompts—such as employing
powerful language models for generative tasks—proves ineffective.
Moreover, the closest pre-training dataset available Xie et al. (2021)
focuses on causal relationships between sentence pairs, with topics
largely centered around network blogs and photography-related
encyclopedic content. This dataset has minimal relevance to the
clinic context, where the objective is to generate the next sentence
based on historical dialogue to advance the therapeutic session,
rather than to address simple causal relationships.

In response to the absence of suitable pre-training datasets,
we developed an approach inspired by the SWAG dataset
architecture Zellers et al. (2018). In SWAG, a context (a question
or a description) is given and the task is for the model to predict
the most likely option from the four provided choices. To validate
our approach, we reshaped the clinic data. Our methodology
reformulates each dialogue instance as a concatenated sequence
pair (‘current sentence +4 choices of next sentence’), enabling
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the language model to perform feature extraction and multi-
class classification. Given the limited dataset size (118 training
sentences and 32 test sentences), we implemented a hybrid
prompt engineering approach combining SWAG-derived templates
(‘appropriate continuation’, ‘how ends’, ‘first then’, ‘first then key’)
with custom templates (‘next sentence’, ‘after this sentence’, ‘first
then predict next’), while utilizing LDA features trained on all
four datasets to enhance contextual understanding and model
performance.

The experiments were divided into a few parts: direct LM
implementation (Finetuning), various prompt-based methods
(AutoPrompt, Manual prompt, In-Context Demo), and LM-
RL approaches (RLPrompt, Tempera, and our proposed LM-
RL architecture). Initial LDA feature integration experiments
utilizing topics generated solely from the clinic training dataset
showed minimal improvement, attributed to limited data size and
insufficient topic diversity. In such cases, what themodel needsmost
is greater topic diversity, not just different topicmodeling techniques
applied to the same limited data. Simply switching models while
keeping the dataset unchanged does not address the diversity issue.
To address this, we conducted further experiments using LDA topics
generated from larger, external datasets. Specifically, we applied the
same LDAmodel to the combined content of the four datasets as the
source for topic extraction. Since these datasets come from different
domains, they do not introduce task-specific overlap with the clinic
dataset, while still enriching the diversity of topic words. This
study primarily aims to validate the effectiveness of incorporating
LDA-derived topics. With access to more datasets, broader cross-
dataset comparisons could be conducted in future work to further
optimize topic selection. These results showed clear performance
improvements, highlighting the effectiveness of supplementing
low-resource datasets with richer topic representations for limited-
data scenarios. Performance metrics, detailed in Tables 1–3 and
illustrated in Figures 4–6, include confusion matrix analysis
(accuracies: 0.541, 0.552, 0.553, 0.589), F1-weighted scores,
and precision scores, providing comprehensive validation of
our approach.

5 Discussion

Our GAM(LH)+H configuration demonstrates superior
performance in few-shot learning scenarios (Table 1), treating
the H-layer vector and GAM(LH) output as equal contributors.
This approach enables the capture of valuable features that
might be overlooked in traditional hierarchical processing,
particularly beneficial for prompt learning in few-shot
scenarios.

Further analysis of feature integration (Table 2) reveals that
while direct H + LDA fusion showed minimal improvement
over baseline, our GAM-enhanced architecture with Instance
Normalization fusion (G (LH)+H)+LDA achieved significant gains.
This architecture successfully incorporates features beyond the
representations of the standard language model, as evidenced by
the comprehensive metrics. Combining the results from Tables 1,
2, we observe that the output from the final layer alone (H: 90.6)
serves as a strong baseline. The enhanced approach (GAM(LH)+H)
achieves superior performance (91.6 in Table 2), demonstrating the

benefit of integrating features from multiple layers using the GAM
mechanism. In contrast, directly combining LDA-generated topic
vectors with the final layer output (H + LDA, 90.2 in Table 2)
does not surpass the performance of using the final layer alone.
However, when we implemented an advanced fusion architecture
that combines GAM-based layer fusion with LDA topic features
((GAM(LH)+H)+LDA in Table 2), further improvements were
achieved. This is because both modules contribute complementary
strengths: GAM enhances the capture of hierarchical information
from the language model, while LDA provides topic-level semantic
cues. Their complementarity enables more informative features
to be incorporated into training, leading to improved overall
performance.

The analysis of the ABA clinic dataset (Figures 4–6)
shows consistent improvements in accuracy and F1_weighted
scores, particularly in the ‘Prompts’ category classification. The
confusion matrix (Figure 4) reveals that the model performs well
in the ‘Praise’ and ‘Prompt’ categories when using GAM-based
multi-layer fusion with LDA. However, the ‘Correction’ and ‘Other’
categories exhibit noticeable misclassifications. The F1-weighted
scores reinforce this trend, with GAM-based multi-layer fusion
with LDA achieving the highest scores, indicating a good balance
between precision and recall in ‘Praise’ and ‘Prompt’. In contrast,
precision analysis shows that ‘Praise’ and ‘Prompt’ benefit from
higher precision, while ‘Correction’ and ‘Other’ have significantly
lower precision. Category-specific performance varied: ‘Praise’
and ‘Prompts’ maintained strong baseline performance, while
‘Correlation’ remained limited by sample size, with fewer training
samples compared to the other two categories. And ‘Other’ faced
training data complexity challenges due to the complexity of the
training data. In this experiment, all data that did not belong to
the three categories were classified as ‘Other’, resulting in a highly
complex ‘Other’ category. This category essentially consisted of a
combination of various types, making it difficult for the model to
classify accurately.

All LM-RL-based methods outperform non-LM-RL baselines,
with our approach achieving higher accuracy and lower
standard deviations (Table 3). Although Black-Box Tuning
shows superior performance on ‘AG-News’ 4-class classification,
our method consistently outperforms prompting baselines.
As shown in Figure 7, the training speeds (measured in seconds
per epoch) of different methods across four datasets are presented.
Due to the relatively small size of the Clinic dataset, its values
were normalized to maintain consistency in scale within the chart.
It can be observed that applying GAM to different layers does
increase computational cost. However, the subsequent inclusion
of H-layer features does not expand the length of the feature vector,
and the number of topics (32) used in the added LDA features
is relatively small. These additions do not significantly impact
feature dimensionality or training speed. The training speeds of
various methods are fairly comparable on the SST-2, MR, and Clinic
datasets. The two notable exceptions occur on the AG_news dataset,
where the training times for (GAM(LH)+H)+LDA with LN and IN
differ more noticeably. We believe this is due to the text features in
AG_news being more sensitive to these normalization techniques,
highlighting the importance of deeper feature exploration tailored
to different types of data.
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FIGURE 4
Confusion matrix of four fusion features (H, GAM(LH)+H, H + LDA, (GAM(LH)+H)+LDA). Single final layer (H), concatenating the H layer with the two
layers (LH) GAM-enhanced fusion output (GAM(LH)+H), direct integration of final layer with LDA (H + LDA), GAM-based multi-layer fusion with LDA
(GAM(LH)+H)+LDA). Four categories of BT’s responses in the clinic dataset: Praise, Correction, Prompts, Other.

FIGURE 5
F1_weighted score of four fusion features of the clinic dataset.Single
final layer (H), concatenating the H layer with the two layers (LH)
GAM-enhanced fusion output (GAM(LH)+H), direct integration of final
layer with LDA (H + LDA), GAM-based multi-layer fusion with LDA
(GAM(LH)+H)+LDA).

6 Conclusion and future work

We present a novel framework integrating GAM with multi-
layer features and LDA topic incorporation, demonstrating
enhanced feature extraction in few-shot learning contexts. Our
approach’s effectiveness stems from strategic multi-layer feature
integration via GAM and feature space enrichment through LDA
topics; the robust performance across diverse datasets validates
our approach’s versatility and effectiveness in optimizing prompt
generation for few-shot learning applications.

Current limitations include the dependency on layer-specific
feature vectors, potentially constraining applicability to diverse
language model architectures. Future work will explore advanced
LDA metrics, enhanced topic generation with other models,
and expanded multi-layer information strategies. Automation of
task-specific feature selection for prompt optimization remains a
critical challenge, particularly for human intent, environmental
context, and engagement modeling.
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FIGURE 6
Precision score in four categories of BT’s responses in the clinic dataset: Praise, Correction, Prompts, Other.

FIGURE 7
Time(s) of each epoch in four datasets. Single final layer (H), two layers
(LH), GAM-enhanced final layer (G(H)), GAM-enhanced two layers (G
(LH)), concatenating the H layer with the two layers GAM-enhanced
fusion output (GAM(LH)+H), direct integration of final layer with LDA
(H + LDA), GAM-based multi-layer fusion with LDA
(GAM(LH)+H)+LDA), dual normalization strategies: LN and IN.

The ABA clinic dataset analysis reveals methodological
constraints in transforming therapeutic interactions into multiple
choice format, primarily in the ‘Other’ category classification. Future
developments will focus on granular data categorization and fine-
tuned generation models with ABA therapy scripts, aiming to
better capture therapeutic interaction complexity while maintaining
computational efficiency.
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