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Introduction: As social robots gain advanced communication capabilities, users
increasingly expect coherent verbal and non-verbal behaviours. Recentwork has
shown that Large Language Models (LLMs) can support autonomous generation
of such multimodal behaviours. However, current LLM-based approaches to
non-verbal behaviour often involve multi-step reasoning with large, closed-
sourcemodels-resulting in significant computational overhead and limiting their
feasibility in low-resource or privacy-constrained environments.

Methods: To address these limitations, we propose a novel method for
simultaneous generation of text and gestures with minimal computational
overhead compared to plain text generation. Our system does not produce
low-level joint trajectories, but instead predicts high-level communicative
intentions, which are mapped to platform-specific expressions. Central to our
approach is the introduction of lightweight, robot-specific “gesture heads”
derived from the LLM’s architecture, requiring no pose-based datasets and
enabling generalisability across platforms.

Results:We evaluate our method on two distinct robot platforms: Furhat (facial
expressions) and Pepper (bodily gestures). Experimental results demonstrate
that our method maintains behavioural quality while introducing negligible
computational and memory overhead. Furthermore, the gesture heads operate
in parallel with the language generation component, ensuring scalability and
responsiveness even on small or locally deployed models.

Discussion: Our approach supports the use of Small Language Models for
multimodal generation, offering an effective alternative to existing high-
resource methods. By abstracting gesture generation and eliminating reliance
on platform-specific motion data, we enable broader applicability in real-world,
low-resource, and privacy-sensitive HRI settings.

KEYWORDS

social robot, behavior generation, multimodal behavior, deep learning, generative
model, interactive behaviors

1 Introduction

The anthropomorphic nature of, e.g., virtual avatars and physically embodied
(social) robots simultaneously affords and generates user expectations for multimodal
interaction capabilities (Rosén, 2021). Unsurprisingly then, much prior work in Human-
Agent/Human-Robot Interaction (HAI/HRI) has been concerned, first, with the design
and evaluation of multimodal behaviour, and, second, with the development of methods
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that can (systematically) support its generation. Interest in
developing multimodal robot behaviours is driven by evidence
that multimodal communication is important in, and beneficial
for, HRI. For example, compared to speech alone, co-verbal hand
and arm gestures can boost anthropomorphism, likeability, sense of
shared reality and interest in future contact with humanoid robots
(Salem et al., 2013; 2011). Similarly, ‘empathetic’ (or not) robot facial
expressions, combined with speech, can influence users’ ratings
of robot friendship, companionship, alliance, in addition to their
own self-validation (Leite et al., 2013). Nevertheless, multimodal
behaviour generation remains an open topic of research. A recent
review of data-driven communication behaviour for HAI/HRI
indicates that the generation of semantically appropriate co-
speech behaviour—that is, bodily movements which match agent
speech content—remains a challenge (Oralbayeva et al., 2024). The
same review also notes that most existent multimodal behaviour
generation systems consider each modality in isolation, with
simultaneous generation of whole-body gestures, from and with
verbal cues, being an open research space of interest in this context.

Going beyond the literature on physical robots reveals a
large number of works that aim to generate gestures for, e.g.,
a generic agent skeleton (Mughal et al., 2024; Habibie et al.,
2021; Bhattacharya et al., 2021; Teshima et al., 2022) or virtual
face (Habibie et al., 2021) and avatars (Yi et al., 2023), often
relying on specialised datasets comprising 3D skeleton or joint
movement sequences. While it is sometimes possible to map the
gestures present in these datasets onto embodied robot gestures
(for example, Yoon et al., 2019 map joint movements to the
robot NAO), such mappings are limited in generalisability. Many
robotic platforms differ significantly from human morphology,
making direct translation of human-like gestures difficult or even
undesirable. Furthermore, these systems typically aim to generate
low-level pose sequences, which is a different problem space
from our focus. Our approach targets the generation of high-
level behavioural intents—semantically appropriate communicative
actions—rather than detailed motion trajectories. This abstraction
allows us to support a broader range of embodiment types,
including both facial and bodily gestures, and to remain agnostic to
specific kinematic configurations. By operating at a higher level, we
prioritise generalisability and reduce reliance on modality-specific
or platform-specific datasets, whichwould constrain the adaptability
of the system.

This challenge of creating natural and effective robot gestures
becomes even more complex when we consider the rising use
of Large Language Models (LLMs) in HRI. With their increased
performance and adaptability, their use in HRI studies has
skyrocketed—and with it, concerns about their use (Williams et al.,
2024). Whilst these concerns span a wide range of topics, we are
particularly interested in users’ perceptions and the projected agency
onto the robot. Recent studies have revealed that with increased
robot communication abilities comes an increase in its expected
multimodal behaviour (Kim et al., 2024).

Our research specifically addresses these concerns, with our
primary aim being to connect behaviour generation research
with LLM integration in Social Robots. To this end, we explore
and develop different techniques for end-to-end multimodal
robot generation of speech (textual output) and semantically
appropriate gestures.

Given that works to date overwhelmingly utilise or rely on
closed, high-resource models and/or high availability of data, we
specifically set out to investigate the extent we can leverage lower-
resource approaches. Here, our motivations are both ethical and
pragmatic. On the ethical side, questions have been raised about
representativeness and risks of bias associated with existent (large
scale) datasets (Bender et al., 2021; Kotek et al., 2023; Omiye et al.,
2023; Salinas et al., 2023) (one key reason why some in HRI
have explicitly cautioned against their direct deployment on robots
Williams et al., 2024). Identifying ways to work with open-source
and/or small-data approaches has been associated with increased
potential to make LLMs more ethical, and/or, e.g., contextually
appropriate/culturally specific (Klein and Ignazio, 2024). On the
pragmatic side, we are thinking about the computational resources
that might be available on a mobile robot system: it is the case
that not all real-world deployments, nor even experimental HRI
studies, can be conducted with a constant connection to a remote
server that can run large-sized models. For this reason, we push for
methods compatible with model sizes that can run “on-device.” In
this regard, works on LLMs (Abdin et al., 2024) suggest that 1–3B
models would fulfil this constraint if properly optimised (e.g., with
4-bit quantisation), while works in robotics (Nasrat et al., 2025)
show that it might be possible to deploy up to 8B models (still with
4-bit quantisation) on more powerful, but still compact, devices
such as the NVIDIA Jetson1. Finally, we want to draw attention to
privacy-constrained settings, such as robots in healthcare, where
sensitive data must be handled with great care. Laws such as
the General Data Protection Regulation (GDPR) in Europe and
the Health Insurance Portability and Accountability Act (HIPAA)
in the United States establish requirements for the protection,
storage, and sharing of personal health information (Voigt and
von dem Bussche, 2017; Act, 1996). These regulations highlight the
need for privacy-preserving techniques, especially in environments
where the risk of exposing personal information is significant. In
such contexts, locally-runnable models are not only a pragmatic
choice but also the ethical and socially sustainable one.

Therefore, our research aims to address these challenges
by exploring the simultaneous generation of text and gestures
using Small Language Models that, at the same time, minimise
computational overhead. We focus on developing an approach
that can operate efficiently on devices with limited computational
capabilities and comply with privacy constraints, thereby expanding
the applicability of social robots in various contexts.

We begin our work by analysing and evaluating (Section 3.1,
3.2) common strategies for multimodal (text–gesture) generation
(detailed in Section 2.1, Section 2.2) using a variety of language
models, highlighting the shortcomings of current methods in both
performance and computational needs (Section 3.4). To address
these limitations, we introduce the concept of “gesture heads”
(Section 2.3), robot-specific modules derived from a given language
model that function in parallel with the language modelling
head (Figure 1). These modules require minimal computational
overhead and no specialised training data. Next, we conduct
extensive computational experiments to evaluate the performance

1 https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/
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FIGURE 1
Our method, coupling text and gesture generation through LLMs with minimal overhead, for multiple robot platforms. We highlight the slow (er) text
generation process with a turtle and the (much) fast (er) gesture generation with lightning.

of our approach (Section 3.3) on two robot platforms with different
non-verbal capabilities: Furhat (facial expressions) and Pepper
(body movement). Finally, we demonstrate that our method is
effective even when using open-source, Small Language Models,
showing the potential for in-situ deployment and addressing
ethical considerations related to computational sustainability and
data privacy.

1.1 Related works

In order to position our system and its capabilities with respect
to the longstanding interest in and, understanding of/approaches to
non-verbal robot behaviours for HRI, we give a short overview of
research around non-verbal behaviour in HRI. Then, we identify
how LLMs can be used to generate behaviour (single modality)
before describing common tactics for LLMs and multimodality
outside of HRI. This is done in order to lay the foundations of our
method, with which we attempt to overcome current approaches by
fusing multimodality in LLMs.

We exclude any works that, whilst addressing
gesture/multimodal generation, cannot be easily incorporated into a
physical (robotic) body. This is the case for multiple works sitting at
the intersection of computer vision and robotics which specifically
exploit the high availability of specific data (Mughal et al., 2024;
Habibie et al., 2021; Bhattacharya et al., 2021; Yi et al., 2023). This
enables specific training routines and architectures, but such data is

generally unavailable for most specific robot platforms used in HRI.
Moreover, these approaches typically operate at the level of low-
level joint trajectories (e.g., 3D skeleton poses), which falls outside
the scope of our work. Instead, our focus is on generating high-
level communicative intents—abstract representations of behaviour
that are intended to be adaptable across different embodiments and
interaction contexts. This choice allows for greater generalisability,
including support for facial gestures (e.g., as in Furhat) and diverse
robot platforms, without being constrained by the availability of
specific low-level pose datasets.

1.1.1 Non-verbal behaviour in HRI
Dependent on a particular robot’s embodiment, typical non-

verbal behaviours we might expect to (coherently) accompany
robot speech may include gesturing and motion (Lim et al., 2011;
Bremner et al., 2011; Nguyen et al., 2023), facial expression (Rawal
and Stock-Homburg, 2022), proxemics (Mead and Matarić, 2015),
paralinguistics (e.g., speaking volume, rate, pitch) (Lim et al.,
2011), eye gaze (Admoni and Scassellati, 2017) and touch/haptics
(Hoffmann and Krämer, 2021). Numerous studies have indicated
the importance of such nonverbal robot behaviour, e.g., for
information communication and task performance (Bremner and
Leonards, 2015; Bremner et al., 2011; Admoni et al., 2014), for
robot persuasiveness (Chidambaram et al., 2012; Nakagawa et al.,
2011; Hoffmann and Krämer, 2021; Fischer et al., 2020), and/or
for influencing user perceptions of a particular robot platform
(Salem et al., 2013; 2011; Leite et al., 2013).
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Designing non-verbal behaviours for robots poses significant
challenges due to the diversity of embodiments and interaction
contexts. Traditional approaches often rely on predefined behaviours
or handcrafted rules (Oralbayeva et al., 2024), which can be
inflexible and labour-intensive to develop (Breazeal et al., 2005).
Examples of hardcoded behaviours can often be seen in studies
whose interaction is predefined and constrained (Winkle and
Bremner, 2017; Xu et al., 2015). Some works attempt to create more
generalisable rule-based systems, for example, Bremner et al. (2009)
provide a list of rules for the (hand-scripted) creation of human-
like beat gestures, based on a study of chat show hosts. However,
the nature of these approaches generally limits their applicability
in the context of generating speech-coherent nonverbal behaviour
in real-time, although some of them do include, e.g., dynamic
responses to users’ own nonverbal behaviours to generate socially
appropriate behaviour (Gonsior et al., 2011). Somewhat related
here are approaches for shaping or adjusting a pre-defined non-
verbal behaviour, e.g., in the context of changing robot affect or
personality. For example, Lim et al. (2011)’s DESIRE framework
posits the ability to extract generalisable, cross-modality parameters
(i.e., speed, intensity, regulation, extent) from one modality (e.g.,
speech) and apply them to others (e.g., movement) e.g., in order to
make it emotionally coherent (Lim et al., 2011).

A common limitation of these methods is their inability to
generalise well to dynamic interactions where context-specific
behaviours are necessary. Recent advances have explored the
use of Machine Learning techniques to generate multimodal
behaviours from speech or text input. For instance, gesture
generation models have been developed to produce co-speech
gestures based on audio features (Ahuja et al., 2020). However,
these models often require large amounts of specialised training
data, which may not be readily available for all robot platforms or
interaction contexts.

In contrast, LLM-based approaches do not generally rely on such
extensive specialised datasets. Thanks to their broad, embedded
knowledge, they can generate non-verbal behaviours in a more
flexible and adaptive manner. By leveraging this understanding,
LLMs can infer context-specific actions without explicit rules or
predefined behaviours, enabling robots to dynamically respond
to varied interaction contexts, thus reducing the need for
labour-intensive manual design and extensive data collection
processes.

1.1.2 LLMs and behaviour generation
Large Language Models (LLMs), such as GPT-3 (Brown et al.,

2020) and GPT-4 (Achiam et al., 2023), have demonstrated
remarkable capabilities in generating coherent and contextually
appropriate text. Their potential has been recognised in the
field of HRI for generating dialogue content and non-verbal
behaviours (Parada, 2024).

Mahadevan et al. (2024) develop GenEM and GenEM++ two
methods for expressive behaviour generation through in-context
learning (Brown et al., 2020) and Chain-of-Thought reasoning
(Wei et al., 2022) where GenEM++ improves on the other by
incorporating human feedback as the last step of the generation.
An interesting insight from their work is that GenEM++ (the
feedback-improved model) does not consistently outperform its
base version; the authors hypothesise this to be caused by

the ‘personal’ nature of feedback it received. Specifically: the
feedback loop originated from a single person, but the end results
were judged by multiple other people. Further, their method
goes through up to four stages of generations (and associated
feedback loops) before the final results, greatly hindering the real-
time applicability of the method. Liang et al. (2024) develop a
method that begins with a similar In-Context Learning-based
approach where the interactions are collected to be used for
fine-tuning the underlying language model and improve overall
‘teachability’ of future tasks (i.e., a faster adaptation from human
feedback). Xu et al. (2024) develop a GesTran, a method that
pairs LLMs with auto-encoders to generate full-body gestures
from speech.

To the best of our knowledge (and also according to
Oralbayeva et al. (2024)) there are no works that jointly produce a
text and non-verbal response to a user query, hence the motivation
for this work.

Wang et al. (2024) venture towards this direction with their
method that relies on GPT-4 function calling tools2. Here the
authors use the language model to produce a “function call”
following a high-level goal, e.g., assisting the user in pouring
a drink. Amongst the possible functions to be called there is a
“speak” function. In this particular work, the interaction is aided
by two other modules to translate the low-level input/output
into/from high-level ones that can be fed into/produced by the
language model. No particular analysis has been conducted
to assess if and how non-verbal behaviour relates to the
spoken text.

1.1.3 Multimodal LLMs outside HRI
Outside of HRI, there has been significant interest in integrating

multiple modalities into LLMs. Common approaches involve
augmenting pre-trained LLMs with separate encoders or generators
for new modalities, such as vision or audio (Zhang et al., 2024).
These methods enable the processing of multimodal input or output
but often require substantial computational resources and complex
training procedures.

Other approaches, like textual conversion (Song et al., 2023),
convert non-text modalities into textual representations that can
be processed by LLMs. While this method simplifies integration,
it may not fully capture the richness of the original modality.
Training LLMs from scratch with multiple modalities is another
possibility explored in works like Gato (Reed et al., 2022), but this
approach is computationally expensive and impractical for many
applications.

2 Materials and methods

In this work, we envision the deployment of a robot whose
conversational abilities are powered by an LLM for which having
paired gestures is highly desirable (as per our Introduction). In
such instances, having separate modules for gesture generation
may be difficult due to substantial overhead or loss of information
between modules.

2 https://platform.openai.com/docs/assistants/tools/function-calling
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TABLE 1 Model’s response to “Hello!” when prompted with In-Context Learning.

Hi! [GEST] < set of gestures to compose a greeting > [\GEST] Nice to meet you. [GEST] < set of gestures to signify happy response > [\GEST]

To achieve this, we explore four different possible paths of
gesture generation:

1. In-Context Learning (ICL).
2. Chain-of-Thought (CoT) with stepwise text-gesture

derivation.
3. Gesture Heads with In-Context Learning.
4. Gesture Heads alone.

In the first two, we explore the idea of generating gestures as
part of the text. Here, each possible gesture is encoded as text
(e.g., ‘NECK_TILT’) with its relative parameter (e.g., intensity ∈
[−50,50]).This represents themost naive approach and heavily relies
on the world knowledge embedded in the LLM. Further, the LLM
will have to be properly prompted with, among other descriptions, a
list of all the possible gestures.

While easy to implement, wewill showhow thesemethods easily
fall apart when decreasing the size of the language model, where
most of the generated gestures do not reflect those available to the
specific robot platform involved or are not semantically relevant to
the generated text.

As a patch to this problem, we introduce the concept of ‘Gesture
Heads’, which are small networks added at the end of the language
model, taking the last hidden state as input and processing it for
gesture generation. The head effectively acts as a classification head,
constraining the outputs to the possible parameters available from
the given robot platform. Specifically, we will design these heads to
be lightweight and easily trainable, taking a negligible amount of
parameters compared to the language model itself (≪ 0.01%).

2.1 In-context learning

We begin our tests by verifying the ability of LLMs on
simultaneous text-gesture generation. We prompt the language
model based on previous work’s guidelines on robot prompting
(Arenas et al., 2023) where the conversation begins with a
description of the robot embodiment, followed by its possible
movements and a few example interactions for In-Context Learning
(ICL) (Brown et al., 2020). In our case, the examples follow the
structure defined in Table 1.

Here, we make use of two special tokens to delimit the gesture
from the normal response and longer responses contain alternating
segments of texts and gestures. It is important to note the importance
of these delineating tokens, which prove useful not only for the
Language Model to understand the right place for the gesture but
also to aid the subsequent parsing of the string before its injection
into the robot.

Again, we will show this approach is not fit for complex
generations due to the compositionality of gestures (i.e., it is
not straightforward to combine different gestures to compose
another) or the decline in attention with the increase in length of
the context.

2.2 ICL and Chain-of-thought

Going one step further, we add Chain-of-Thought (CoT)
reasoning (Wei et al., 2022) for the gesture generation. Here,
we ask the language model to derive the gestures on a step-
by-step manner. First, the language model generates a plain text
response to the user query, then splits the response into single
text segments (one or multiple sentences). For each segment,
reasoning is done on what kind of gesture would be appropriate
for that segment. Here, the reasoning is unconstrained and done
on a high level, which may not reflect the particular robot
embodiment. The conversion to a specific robot platform is
instead done in the last step of the gesture extraction, where the
high-level gesture is converted into robot-specific gestures and
parameters. We keep giving examples as before but we change them
to reflect this new structure. We show the expected generation
in Table 2.

Compared to the previous approach this method is more robust
to complex generation and is able to combine multiple gesture in
a meaningful way. However, it does introduce substantial overhead
due to the length in generation.

2.3 Gesture head

As introduced previously, one common pitfall of smaller
models is the generation or use of non-existent gestures and/or
parameters that do not belong to the described robot platform.
To patch this problem, we introduce robot-specific gesture heads,
these heads act in a similar manner to classification heads
and constrain the output to only those available to the robot
platform. The head is initialised to mimic the language model’s
output when prompted with CoT (Section 2.2), but without
its overhead.

The gesture head can be utilised in two ways. One, by pairing
it with the textual gesture generations (Table 1), interpreting and
patching bad generations, we will refer to this as GH + ICL (Gesture
Head with In-Context Learning). In this case, at generation time,
the gesture head is applied upon encountering one of the gesture
delimiter(s) and matches the textual gestures, possibly non-existing,
with the ones available from the platform. We will show how, if
provided with proper training, the head can even improve on the
quality of the gesture generation.

The second way is to use the head on its own, acting similarly
to a separate classifier. Here the head takes the embedding of
the textual response and generates appropriate gestures. In this
case, at generation time, the gesture head operates in parallel with
the language modelling head. When the model generates text,
the gesture head processes the hidden states to produce gestures
corresponding to the text segments, without requiring special tokens
or additional prompting. We will refer to this approach as GH
(Gesture Head).
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TABLE 2 Model’s response to the user query “I”m feeling really down today. when prompted with In-Context Learning and Chain-of-Thought.

# Answer

I’m really sorry to hear that. It’s okay to feel sad sometimes, and I’m here if you want to talk about it

## Text split

I’m really sorry to hear that

### Gesture reasoning

The text conveys empathy and sympathy, typically associated with a gentle downward motion of the brows and a slight frown. This expresses understanding and concern

### Gesture

[GEST] < specific robot gestures > [\GEST]

## Text split

It’s okay to feel sad sometimes, and I’m here if you want to talk about it

### Gesture reasoning The tone of this text aims to provide comfort, but it acknowledges the sadness. A soft look downward with subtle squinting of the eyes can show
reflective compassion without overwhelming the recipient

### Gesture [GEST] < specific robot gestures > [\GEST]

2.3.1 Architecture
We experiment with different architectures for the gesture

head. We begin with a single linear layer, similar to traditional
classification heads. Generally, this approach is paired with
Supervised Fine-Tuning (SFT) of the whole language model or
through the use of Low-Rank Adaptation (LoRA) (Hu et al., 2022)
but both of these require extensive resources for training. Given our
goal of making the training as lightweight as possible3, we exclude
any fine-tuning solutions. We instead look at different architectures
for the gesture head. After extensive testing, we settle for using
two gated Multi-Layer Perceptron (MLP) with a simple Attention
block in the middle (shown in Figure 2). For the attention block, we
also add residual connections. More in detail, the first MLP block
also functions as a down-projection layer, reducing the embedding
space by a factor of 10 and reducing the overall parameter count.
Our chosen architecture ensures both ease of training and good
performance.

2.3.2 Training
Our goal is that the gesture head would mimic the output of

its language model when properly prompted (e.g., with CoT) whilst
avoiding the computational overhead this introduces and fixing the
errors due to bad generations. This is achieved through a short
training phase, using samples generated by the languagemodel itself.

During training the language model’s weights are kept frozen
and we only train the Gesture Head. Here, as we don’t have to back-
propagate through the whole model, the training toll is similar to
that of training a small MLP. During training, we do a grid search
on the learning rate with values in [1e− 4,1e− 5.

3 Our final solution only requires 5 min of training on consumer-grade

hardware with a similar memory footprint as that of inference-time.

2.3.3 Data augmentation
To improve real-world performance, we also augment the

samples with random gestures. For half of the training samples, the
correct gestures in the text are replaced with random ones (existing
and non-existing) which can also vary in number (can be more or
less than the ground truth). The gesture head is then trained to still
recognise the correct gesture from the random ones.

For testing, we simulate a real-world situation and adopt an
augmentation rate that matches the relative error rate. For example,
if a given model (without gesture head) has errors in 17% of its
generations, when testing the same model with the gesture head, we
introduce random samples in 17% of the samples.

2.4 Evaluation samples

In this work, we do not rely on a specific dataset or
benchmark because there is no obvious choice that supports the
level of generalisability we aim for. While existing datasets could
demonstrate the effectiveness of our method, they would not ensure
its applicability in real-world conditions.

Nevertheless, to assess the effectiveness of different methods,
we have to derive evaluation examples. To maintain our original
premise, we design this process so that it does not require human
expertise or intervention. Our evaluation examples consist of user
queries paired with corresponding gestures. These examples are
synthetically generated using a relatively large LLM, prompted
with Chain-of-Thought (CoT) reasoning to generate gestures
step-by-step. Based on prior work (Mahadevan et al., 2024;
Xu et al., 2024; Liang et al., 2024), we expect this approach to produce
reasonably accurate gestures. These are not intended to be optimal
gestures but serve as a reasonable baseline for comparing different
methods and models.
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FIGURE 2
Architecture of the Gesture Head: The input from the language model
embedding is passed through a downprojection MLP (reducing the
space by a factor of 10), followed by an attention block with residual
connections from the first MLP, and finally, another MLP block to
output the gestures.

This approach remains independent of human expertise,
except for defining a set of possible gesture parameters for
the model to generate. For the base interactions, we use the
SODA dataset (Kim et al., 2022), a publicly available collection
of everyday textual interactions that serves as a general-purpose
dataset representative of common conversational scenarios.
Crucially, this dataset is not specialised for any particular domain
or robot platform, ensuring that our method remains broadly
applicable without relying on domain-specific training data. This
generality supports privacy and inclusivity while also allowing easy
substitution with other general conversational datasets.

Notably, while this evaluation data is primarily used for
assessing performance, it can also be leveraged to train gesture
heads, as defined earlier. This effectively simulates a knowledge
distillation setting (Hinton et al., 2015), where outputs from a
larger model improve the performance of the smaller gesture head.
Importantly, this does not contradict our emphasis on using smaller
models for efficiency, privacy, and ethical considerations—–these
benefits apply once the gesture heads are trained. The use of
larger models at this stage is simply a means of bootstrapping
better gesture representations without requiring costly human
annotations.

2.5 Metrics

To evaluate and compare the different methods in this work,
we employ a set of metrics that account for both performance and
computational requirements.

For computational efficiency, we consider two factors:
generation time (wall-clock time) and memory usage (VRAM
consumption). In both cases, we focus on the additional cost
introduced by multimodal generation compared to plain text
generation. Rather than reporting absolute values, we express
results as relative overheads—for instance, if a multimodal
generation method takes twice as long as text-only generation,
we report it as × 2. This approach makes our evaluation inherently
hardware-agnostic.

For performance evaluation, we use four metrics: Accuracy,
F1 score, Overlap, and Error rate. The Error rate quantifies
mistakes in gesture generation when represented as text (e.g., using
methods described in Section 2.1 and Section 2.2). Errors occur
when a model generates an invalid or misspelt gesture name,
making the gesture unprocessable. The Error rate is defined as the
proportion of erroneous gesture segments over the total number
of segments.

Accuracy and F1 score are standard classification metrics and
are applicable only in the context of gesture heads (Section 2.3),
where gestures are predicted similarly to class labels. However, for
text-based approaches (e.g., ICL and CoT), these metrics cannot be
computed directly. Instead, we introduce Overlap, which measures
how many generated gestures match the ground truth. Given a
gesture segment, let Gg be the set of generated gestures and Gt the
ground truth set. The Overlap metric is defined as:

Overlap =
|Gg ∩Gt|
|Gt|

In our evaluation, we directly compare Overlap with Accuracy,
as both quantify the rate of correctly predicted gestures.

3 Results

To showcase our method, we select LLaMA 3.1 (Dubey et al.,
2024) as the family of models that we will use. In particular, we
use the 70B version as an example of LLM, and the 8B version as
an example of a language model runnable on consumer hardware.
Finally, we also test the 1B and 3B versions of LLaMA 3.2 (Meta AI,
2024) as an example of locally-runnable (on-device) SLMs. Whilst,
to the best of our knowledge, no robot commonly available to HRI
researchers is capable of using on-device language models, this is
likely to change in the upcoming years thanks to the progress in
processing units. With this in mind, the ability to deploy robots
in the wild that are capable of autonomous text processing and
generation becomes increasingly feasible, leading to an extension of
current robot application contexts.

With regards to the robot platform, we have worked to make
this method as platform-agnostic as possible. To showcase its
flexibility and effectiveness we work here with the platforms 1)
Furhat (Al Moubayed et al., 2012) and 2) Pepper (Pandey and
Gelin, 2018) as 1) an example of a robot capable of complex facial
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TABLE 3 Performance of gesture generation when using ICL and
generating gestures alongside text. Error rate refers to mistakes in
gesture parameters (e.g., non-existing gesture name, impossible
intensity, etc.) while overlap refers to the overlap with some
ground-truth gestures.

Model Size Error rate ↓ Overlap ↑

Furhat Pepper Furhat Pepper

70B 3% 2% 30.8% 25.1%

8B 27% 62.2% 32% 20.8%

3B 29.3% 35.7% 20% 19.2%

1B 42.5% 55.2% 13.7% 12.8%

The bold values represents the best value in each column.

expressions and 2) a robot capable of various hand gestures and arm
movements.4

3.1 ICL performance

As we introduced in the methodology section, we begin our
experiments by testing whether language models are capable of
generating textual gestures alongside their normal replies with just
In-Context Learning. By manually analysing the generations, we
notice that, as the size of the language model decreases, its tendency
to make errors in generations increases. We show in Table 3 the
error rate in generation when varying on the model size and robot
platform. As one might expect, the biggest model is the one with
the lowest error rate which gradually increases with the decrease of
model size.

In addition to error rate, we also consider an additional accuracy
metric. Error rates only give an idea of the usability of a certain
method/model but do not give any information on their quality. For
this, we collect a set of “ground-truth” gestures through the use of
CoT reasoning and our biggest model. In this case, the accuracy
assesses the overlap between the model’s own generated gestures
and the ground truth as defined above. Of course, language models’
generations are not deterministic so a perfect score is impossible
for any model, nevertheless, we consider this as the main metric of
generation quality.

3.2 CoT performance

We report in Table 4 the performance of various models on the
samemetric as Table 3 but when usingChain-of-Thought reasoning.
Looking at the accuracy, there is a general improvement (although
less consistent across models compared to the ICL-only case),
indicating CoT’s effectiveness in generating better gestures. The

4 We include in the Supplementary Material all the code for our method, the

deployment in these specific robot platforms and instructions on how to

expand it to other robot platforms.

TABLE 4 Performance of gesture generation when using ICL and CoT
and generating gestures alongside text. Accuracy for the 70B model is
not reported as it is taken as ground truth.

Model Size Error rate ↓ Accuracy ↑

Furhat Pepper Furhat Pepper

70B 12% 6% - -

8B 57.8% 49.3% 31.9% 24.7%

3B 35% 34.14% 33.64% 28.65%

1B 60.2% 41.5% 18.6% 16.5%

The bold values represents the best value in each column.

TABLE 5 Accuracy and F1 metric of the gesture head on the test set
across different model sizes.

Model Size Accuracy ↑ F1 ↑

Furhat Pepper Furhat Pepper

70B 32.1% 69.1% 30% 68.9%

8B 50% 71.2% 49% 71%

3B 45.8% 70.1% 44.8% 69.9%

1B 45.0% 66% 44% 65.7%

The bold values represents the best value in each column.

error rate is variable, increasing or decreasing depending both on
the model and robot platform. This may indicate the complexity in
generating a more structured output, where the model first needs
to split its response into single text segments, then reason on that
segment and finally generate the gesture.

3.3 Gesture head

From the previous analysis, we know that prompt engineering
is not enough to solve the task we have at hand. Where, e.g., in the
case of Pepper, almost one in two gesture generations (acrossmodels,
excluding the 70B version) contain errors, essentially infacilitating
their real-world deployment. To address this, we train a gesture head
to aid in the gesture generation process.

We report in Table 5 the test accuracy and F1 metric. Note
how the accuracy in this Table can be directly compared to that in
Tables 3, 4 as they are both assessing the number of correct samples
over the same dataset. Based on this, we can see a great increase in
performance, although varying on the robot platform.

3.4 Overhead analysis

Asmentioned in the beginning of ourmethodology section, one
of our goals is that of pairing textual response with gestures without
introducing additional overhead, or at least minimising it. For this
reason, it is important to minimise the length of the input sequence
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TABLE 6 Gesture generation overhead for In-Context Learning (ICL),
Chain-of-Though (CoT), Gesture Head (GH), GH and ICL. The overhead is
expressed as a multiplier of the time or memory needed for the
generation compared with just generating plain text.

Method Overhead ↓

Time Space

ICL × 3.3 × 5.8

CoT × 6.6 × 12.2

Only GH × 1.02 × 1.5

GH and ICL × 3.3 × 8

The bold values represents the best value in each column.

as the computational resources needed scale quadratically with its
length (Vaswani et al., 2017). In Table 6 we show the overhead
introduced by each method. We express the overhead as a multiplier
of the time or memory needed for the generation compared with
just generating a plain text response. Among all the methods we
tested, the gesture head is the only one with almost no overhead,
while Chain-of-Thought reasoning introduces the biggest one.

3.5 On-robot demonstration: Proof of
concept

To demonstrate proof of concept, we implemented our method
on the two robotic platforms: Furhat and Pepper. Reviewing the
output behaviours, we observed improvements in gesture accuracy
and coherence, particularly with the gesture head correction
mechanism. Whilst full human user evaluation is required to
comment concretely, we observed that the generated gestures
aligned well with the intended communicative goals of the robot
in several common HRI tasks, such as greeting and storytelling.
These demonstrations show the robots producing appropriate non-
verbal behaviours synchronised with their speech, enhancing the
naturalness of the interaction.

Theperformance, particularlywith the Furhat robot, highlighted
the need for further fine-tuning (as also suggested by our qualitative
metrics). In particular, we chose to manifest the gestures alongside
the speech and while this works well for Pepper, it creates weird
situations in Furhatwhere, e.g., it is trying to smilewhile also talking.
Nevertheless, our tests were overall promising and we are hence
optimistic about the potential of this method. Snapshots of this
interaction are shown in Figure 3 and we include a video of the
complete interaction in the Supplementary Material.

3.6 Edge devices performance

To show how our method may behave on edge devices, we have
deployed it on an NVIDIA Jetson Orin Nano (8 GB). Similar to
other works in robotics Nasrat et al. (2025), we report in Table 7
the number of tokens/s generated alongside varyingmodel sizes and
precision. Here, we notice that our method’s speed is comparable to
that of the plain LLM across various model sizes and quantisations.

Importantly, this finding highlights the efficiency of our
approach in resource-constrained environments. The differences
between the plain LLM and our method are negligible—never
exceeding 0.1 tokens/s—across all tested configurations, including
int4 quantised 8B models, which are among the most compute-
efficient. This validates our design goal: achieving high-level
multimodal generation without compromising inference speed. For
example, in the 1B and 3B int4 models, the gap between the plain
LLM and our system is less than 0.03 tokens/s, which is effectively
imperceptible during interaction. Notably, even the largest model
tested (8B, int4) runs above 5 tokens/s, which supports real-time
dialogue and gesture production on-device.

These results reinforce the claim that our system introduces
minimal overhead while enabling rich multimodal behaviour,
thus making it well-suited for deployment in social robots
operating in low-power or privacy-sensitive scenarios. Given that
many state-of-the-art multimodal systems require either large-scale
servers or multi-stage processing pipelines, our approach offers a
practical alternative that retains performance without sacrificing
responsiveness or adaptability.

3.7 Reflections

Our experiments demonstrate that the gesture head effectively
enables simultaneous text and gesture generation with minimal
computational overhead. The approach improves the performance of
smaller models, making them suitable for deployment in resource-
constrained environments.

Our results also highlight the limitations of relying solely on ICL
orCoT, particularly for smallermodelswhere error rates and accuracy
significantly hinder their real-world use. Our gesture head, obtained
with minimal resource requirements, addresses these limitations by
providing a specialised module that ensures compatibility with the
robot’s embodiment and improves the final accuracy.

4 Discussion

In this paper, we set out to achieve simultaneous generation of
text and robot-specific gestures through LLMs, with a particular
focus on producing high-level communicative behaviours rather
than low-level pose sequences. Our system is not designed to
operate at the level of precise joint trajectories, but instead to model
and predict appropriate behavioural intents in interaction contexts.
This design decision is central to the generality and modularity of
our approach.

To support this goal, we specifically choose to 1) use open
models and 2) avoid the collection of specialised datasets, based
on considerations ranging from ethical and privacy-related to
pragmatic. Instead, we employ a generic, platform-agnostic dataset
that does not constrain gesture representations to a specific robot or
modality. This allows us to leverage the embedded world knowledge
of LLMs and generalise to a wide range of platforms, including
those capable of facial expressions (e.g., Furhat), without requiring
dataset-specific adaptation.

We begin our exploration by taking inspiration from previous
works and experimenting with different prompting techniques,
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FIGURE 3
Snapshots of videos illustrating our proposed method when integrated into a robot.

TABLE 7 Edge device speed (tokens/s ↑) of our method vs. plain LLM for
different model sizes and precisions. ‘-’ indicates that a particular
model-precision combination did not fit in the device.

Model
Size

Text only Ours

bf16 int8 int4 bf16 int8 int4

1B 15.42 4.48 10.58 15.24 4.47 10.49

3B - 2.67 6.82 - 2.65 6.80

8B - - 5.54 - - 5.47

tested across various sizes of language models. Our results show
how smaller models exhibit a significant number of errors in their
gesture generation process. This is vastly mitigated in their larger
counterparts which, however, still present unsatisfactory results.
Further, our experiments on the computational requirements
show how these techniques add a significant overhead to the
generation—up to × 6.6 the time and × 12.2 the memory.

To patch the errors made by the language model, we introduce
the concept of gesture heads, a small network added at the end of
the language model to constrain and improve the gesture generation
process. The gesture heads are robot-specific but require minimal
training (a few minutes on consumer-grade hardware) and function
in parallel with the language modelling head. Our experiments
demonstrate that the gesture head significantly improves the
performance of smaller models, reducing error rates and enhancing
accuracy without introducing substantial computational overhead.

This makes it feasible to deploy our method on robots with limited
computational resources, expanding the applicability of social robots
in various contexts.

Finally, we test our method on Furhat and Pepper, two robot
platforms exhibiting complementary non-verbal behaviours. While
we do not conduct any human evaluation, initial tests show
promising results and demonstrate the effectiveness of our method
with improved speed and gesture coherence, especially thanks to the
gesture head mechanism.

4.1 Limitations and future work

While our method addresses several challenges in multimodal
behaviour generation, there are limitations to consider. Crucially,
our approach is not intended for low-level gesture reproduction,
such as precise joint control or pose sequence replication. As
such, methods and datasets designed for pose-level evaluation
(e.g., 3D skeleton datasets) are not aligned with our goals and
would not adequately capture the communicative behaviours we
seek to model.

Our approach focuses on gestures derived from text input.
Incorporating additional modalities, such as audio features
(e.g., prosody, intonation), could enhance the naturalness of
the generated behaviours but would require extending the
model to process multimodal inputs. Also, our evaluation relies
on the overlap with gestures generated by our largest model,
which we take as a proxy ground truth. While this aligns
with our focus on high-level behavioural intent, future human
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user studies would provide deeper insights into the perceived
naturalness and appropriateness of the generated behaviours.

Another promising research path is that of Adaptive Learning,
implementing online learningmechanisms to adapt the gesture head
based on user feedback during interactions. Compared to other
works that adapt or fine-tune the entire languagemodel, ourmethod
only involves small gesture heads.This is likely to reduce the number
of samples and computational resources required, enabling more
responsive, per-interaction adaptation.
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