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From text to motion: grounding
GPT-4 in a humanoid robot
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This paper introduces Alter3, a humanoid robot that demonstrates spontaneous
motion generation through the integration of GPT-4, a cutting-edge Large
Language Model (LLM). This integration overcomes the challenge of applying
LLMs to direct robot control, which typically struggles with the hardware-
specific nuances of robotic operation. By translating linguistic descriptions
of human actions into robotic movements via programming, Alter3 can
autonomously perform a diverse range of actions, such as adopting a “selfie”
pose or simulating a “ghost.” This approach not only shows Alter3’s few-
shot learning capabilities but also its adaptability to verbal feedback for pose
adjustments without manual fine-tuning. This research advances the field of
humanoid robotics by bridging linguistic concepts with physical embodiment
and opens new avenues for exploring spontaneity in humanoid robots.
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1 Introduction

Recent advancements in Large Language Models (LLMs), exemplified by
OpenAI’s GPT-4, have revolutionized machine capabilities in processing human
language and code (OpenAI, 2023). These developments offer unprecedented opportunities
for enhancing human-machine interactions. Beyond digital interfaces, LLMs present
transformative applications in the physical realm, particularly in humanoid robotics.
Integrating LLMswith humanoid robots signifies a paradigm shift in programming,moving
from traditional coding to intuitive, language-based interactions.This convergence not only
heralds a new era in robotics research but also fundamentally reshapes the trajectory of LLM
development by embedding them within embodied cognition.

In recent years, the integration of LLMs with robotics has marked a new frontier
in artificial intelligence. LLMs have enhanced human-robot interaction (Sun et al., 2024;
Zhang and Soh, 2023), task planning (Ding et al., 2023; Yu et al., 2023), navigation
(Zeng et al., 2023; Huang C. et al., 2023), and learning capabilities (Shafiullah et al., 2023;
Zhong et al., 2023). Additionally, there is growing interest in empathetic and socially aware
robots (Ahn et al., 2022; Brohan et al., 2023a; Liang et al., 2023; Driess et al., 2023).
Traditionally, these functionalities required extensive lower-level programming (Yu et al.,
2023; Ahn et al., 2022; Tang et al., 2023). In this paper, we argue that such programming
can be replaced with sophisticated natural language prompts. Humanoid robots, with their
human-like forms, can leverage existing language data for precise movements via few-shot
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learning. This paradigm highlights the need to reinvigorate
humanoid research, focusing on streamlined programming
approaches enabled by LLMs.

The significance of humanoid robots has evolved over
the past decades. Early milestones, such as HONDA’s ASIMO
(Hirai et al., 1998) and HRP-4C (Kaneko et al., 2009), focused
on humanoid appearance and basic motions. More recently,
research has centered on replicating human-like facial expressions
and dynamic physical movements. Androids like Ameca and
Disney’s eye-gazing humanoid (Pan et al., 2020) demonstrate
advancements in expressive communication, while robots like Tesla’s
Optimus and Boston Dynamics’ Atlas exemplify breakthroughs
in physical dexterity. However, despite these advancements,
foundational research on embodiment and autonomy remains
underdeveloped,making this an area of opportunity for LLM-driven
humanoid research.

The advent of GPT in 2023 has renewed interest in humanoid
robotics. While many current efforts focus on industrial and
household applications, our work addresses the fundamental
questions of embodiment and autonomy. Embodied AImodels such
as RT-2 and PaLM-E demonstrate strong planning and problem-
solving capabilities (Brohan et al., 2023a; Driess et al., 2023;
Collaboration et al., 2024; Brohan et al., 2023b;Huang W. et al., 2023;
Ahn et al., 2022). These models require extensive data collection
using real robots, typically lasting at least a year. This could be
considered a hybrid approach combining LLMs with existing robot
control theories. Much of the research in humanoid motion control
uses reinforcement learning in simulation and then transfers it
to real robots: Sim2Real (Cheng et al., 2024; He et al., 2024;
Peng et al., 2018b).There are alsomethods for acquiringmovements
through imitation learning from humans (Peng et al., 2018a;
Luo et al., 2024; Hasenclever et al., 2020). These require substantial
resources and time to learn a single movement. Additionally, even
when learning is completed in simulation, applicability to actual
robots remains a separate challenge.

In contrast, our approach takes a different direction by
directly connecting pre-trained LLMs to generate humanoid robot
movements. While many foundational models aim for multi-step
problem-solving or precise manipulation, our research specifically
examines LLMs’ potential for direct motion generation. Language
corpora contains descriptions of human movements, suggesting
LLMs possess an understanding of human body mechanics through
language data set. This not only eliminates the need for months-
long learning periods, but also represents both a technological
advancement and provides insights into the embodiment in LLMs.

There also exists rule-based control, such as the Autonomous
Life mode in Pepper, which rearranges pre-prepared movements.
However, despite having various reactions available, this is
merely a simulation of life-likeness, and its content does not
go beyond what has been programmed in advance. Expressions
like “mimicking a snake as a human” would be impossible with
rule-based control. Compared to these approaches, our system
can create any motion expression with few-shot learning by
using LLMs.

Since 2016, our team has been developing the Alter humanoid
series (Doi et al., 2017). Alter3, shown in Figure 1a, features 43
air actuators enabling a wide range of expressive facial and limb
movements. Although Alter3 cannot walk, it can simulate walking

and runningmotions. Previous studies utilizedAlter3 formimicking
human poses (Masumori et al., 2021; Yoshida et al., 2023) and
mutual imitation experiments (Ikegami et al., 2021), revealing
insights into human-robot interaction and diversity of motion.
These findings set the stage for exploring high-level imitation and
cultural offloading using LLMs.

This paper explores how LLMs can generate diverse motion
patterns in humanoid robots, capturing cultural contexts and
everyday human activities. We examine the ability of GPT-4 to
create spontaneous movements and decision-making behaviors in
Alter3, demonstrating the potential for LLMs to bridge the gap
between linguistic and physical domains. By embedding LLMs into
humanoid robotics, this research ventures into uncharted territories,
shedding light on the interplay between language, cognition, and
embodiment.

2 Materials and methods

2.1 Design of Alter3

Alter3’s body has 43 movable air actuator axes. Each joint can
be operated by inputting a value from 0 to 255 and is controlled
by two types of commands: SETAXIS and GETAXIS. To use the
SETAXIS command, input the joint number and the desired value.
For example, to move joint number 12 (the neck), use a custom
Python library and send the signal such as set_axis([12], [126]).
These control signals are sent to Alter3 via a serial port to operate the
opening and closing of pneumatic solenoid valves. The refresh rate
is 100–150 ms. The above mechanism enables Alter3 to physically
operate. Although not used in this experiment, Alter3’s eyes are
equipped with cameras that can capture images. Additionally, the
GETAXIS command allows you to retrieve the current axis angle
realized on Alter3.

2.2 Generating humanoid motions from
text

Prior to the advent of LLMs, controlling Alter’s 43 axes
to replicate human poses or simulate complex actions—such
as serving tea or playing chess—required extensive manual
adjustments and iterative refinements. This process was time-
consuming and labor-intensive. With the introduction of GPT-
4, this paradigm has shifted dramatically. GPT-4 leverages its
vast corpus and inferential capabilities to generate Alter3’s
motions with minimal manual intervention, streamlining the
entire process.

To achieve this, we adopted the Chain of Thought
(CoT) methodology (Wei et al., 2023), which employs
two sequential natural language prompts to guide motion
generation (refer to Figure 1b): Prompt-1 provides a vivid, detailed
description of the desired motion, typically in ten lines of text.
Prompt-2 translates each line fromPrompt-1 into executable Python
code, specifying joint angles for Alter3’s 43 actuators, such as
set_axis([15], [255]).

Inference is conducted in two stages, Prompt-1, and Prompt-
2, ultimately outputting Python code. The GPT-4 model used
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FIGURE 1
A procedure to control the Alter3 humanoid using verbal instructions. (a) The body has 43 axes that are controlled by air actuators. It is equipped with a
camera inside each eye. The control system sends commands via a serial port to control the body. The refresh rate is 100–150 ms. (b) Output Python
code to control Alter3 from natural language using prompt1 via prompt2. A humanoid robot, which mimics human shape, can generate highly precise
movements using few-shot learning, eliminating the need for setting reward functions or interfaces, as required in other studies. The architecture is
based on CoT. See the Data Availability section or Supplementary Material for details of the prompt.

Algorithm 1. Humanoid Motion Generation using an LLM.

is model: gpt-4-0314. For prompt-1, a temperature of 0.7 was
used, while for prompt-2, the temperature was set to 0.5. All
motions were generated in a few-shot manner; no motion-specific
fine-tuning. The full text of the prompt used is available in the
Data Availability section or Supplementary Material. The motion
generation for Alter3 follows the protocol outlined below.

First, the user freely describes the action in natural language
(e.g., Take a selfie with your phone!). This instruction is combined
with Prompt-1 and input to GPT-4 via API. GPT-4 generates
in about 10 lines with exaggerated descriptions R of a given
movement (line 1 in Algorithm 1). An excerpt of the prompt is
as follows.

Prompt-1

Your task is to describe exaggerated emotional expressions and facial expressions
that accompany the content of the conversation.time.sleep(0.1) or time.sleep(0.2)
between operations.

We also provided an example of descriptions (which is also
provided by LLM) and guidelines. For example, when imitating
the movement of a snake, prompt-1’s output would be: “0: Create
a menacing and sinister facial expression, eyes narrowed and lips
slightly curled, 1: Tilt the head to the side, imitating a snake’s
movement, 2: Move the shoulders in a sinuous, wave-like motion,
mimicking a snake’s slithering …” and so on. This is a recipe of
movements that interprets the instructed motion and writes it out
in more detail. These inputs and their own outputs are bases for
creating an action pattern.

In the next step, the motion descriptions ri are combined with
Prompt-2 and input to GPT-4 via API (line 4 in Algorithm 1).
The output from GPT-4 is Python code that controls Alter3.
For each line of prompt-1’s output, it writes about 20–30 lines
of Python code. Within that output, it also expresses repetitive
movements using for loops. To make GPT-4 write this Python
code, Prompt-2 includes (1) a brief explanation about Alter3, (2)
information about joints, and (3) instructions on how to write the
Python code.

(1) The brief explanation is as follows. The 43rd joint (whole-body
rotation) is excluded for safety reasons.

Prompt-2

Alter3 has 42 joints throughout its body, numbered from 1 to 42. You can move a
joint by specifying its number and sending a signal. For instance, to move joints
number 1,2,3, use: alter.set_axes([1,2,3], [255,100,127]). The first argument is the
joint number, and the second argument is a value between 0 and 255, specifying
the joint angle. Each operation takes approximately 0.1–0.2 s, so insert
time.sleep(0.1) or time.sleep(0.2) between operations.
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(2) The Axis information describes the 42 Axes of Alter3, with
their numbers and corresponding body parts. For example,
“Axis 1: Eyebrows. 255 = down, 0 = up, 64 = neutral.” and so
on. The descriptions of the motion direction such as “255 =
up” or “0 = right” are given by us.

(3) we provided an example of the Python code corresponding
to “drink some tea” and guidelines. It is known that LLMs
improve in accuracywhen given output examples (Brown et al.,
2020). This is called Few-shot Learning. Our method does not
use fine-tuning, and all the movements being generated are
untrained tasks not included in the examples.

The generated Python code is checked by a SafetyFilter to
prevent runtime errors (line 5 inAlgorithm 1).This filter detects and
comments out external library imports, extra explanations, while
loops, etc. We do not process or modify the Python code output by
GPT-4 in any other way. The code is sorted according to the output
order of Prompt-1, and executed using Python’s built-in function
exec(line 9 in Algorithm 1).Themovement signals are sent to Alter3
via serial communication.

One important thing to note is that it is well-known at this
point that GPT-4 is non-deterministic, even at temperature = 0.0.
Therefore, even with identical inputs, different patterns of motion
can be generated. This is a characteristic of OpenAI’s GPT-4 and,
while it poses an issue in terms of reproducibility, it should not be
considered a reason to doubt its ability to generate movement.

This CoT approach bypasses traditional iterative learning
processes, relying instead on the efficiency of few-shot learning.
By providing only a few lines of descriptive text and examples,
GPT-4 generates complex humanoid motions directly from
language input.

2.3 Performance evaluation of LLM motion
generation

To quantify the capability of GPT-4 in generating motions,
we evaluated videos of nine different generated movements.
Subjects (n = 124) were recruited using the platform Prolific. They
watched these videos and rated on a 5-point scale whether the
humanoid is “adequately expressing the action”. 1 is the worst rating.
For the control group, we used random movements from Alter3,
labeling these movements with random motion notations generated
by GPT-4. These labeled control videos were subtly incorporated
into the survey, with three of them dispersed among the main
experimental videos shown to participants.

In the Prolific platform, all participants were provided with
a clear explanation of the study’s purpose, procedures, and
confidentiality measures. Informed consent was obtained from all
participants prior to their involvement in the study, ensuring their
voluntary participation and understanding of their rights, including
the option to withdraw at any point without penalty. Personal
information was anonymized during data collection to ensure
confidentiality and privacy.

Since the study is non-invasive and we collected personal
information anonymously, it does not fall under the “Ethical
Guidelines for Life Sciences andMedical Research InvolvingHuman
Subjects” or the “Personal Information Protection Law” under

Japanese law. Therefore, in accordance with the ethical review
regulations for human subject research of the Graduate School of
Arts and Sciences at the University of Tokyo, this study qualifies for
an exemption from requiring approval by an ethics committee. All
methods were carried out in accordance with the relevant guidelines
and regulations, including those set forth by the Graduate School of
Arts and Sciences at the University of Tokyo and the Declaration
of Helsinki.

3 Results

3.1 Testing actions and gestures

We tested Alter3’s capability to perform various human-
like actions and gestures through LLM-generated Python code.
Our experiments included common actions like “taking a selfie,”
“pretending to be a ghost,” “playing the guitar,” and emotional
responses to short stories. Most demonstrations succeeded through
few-shot learning, requiring no specific training except for the
electric guitar example (Figure 2c), which was refined through
verbal feedback (detailed in the next section).

The LLM’s comprehensive understanding of human movements
enables Alter3 to generate naturalistic motions and gestures,
which we categorize into two types based on time span and
prompt structure. The first category, imperative commands, results
in short-term actions (refer to Figure 2). These instant actions,
such as “taking selfies” or “pretending to be a ghost”, include
appropriate emotional expressions and reflect common human
behavioral patterns. Through Python-generated motor controls,
Alter3 executes these movements precisely while synchronizing
facial expressions with body movements for realistic portrayal.

The second category involves declarative statements that
typically span longer durations. These include complex responses to
conversational contexts, such as empathetic reactions to emotional
content like sad stories or jokes. Alter3 demonstrates sophisticated
emotional expression through synchronized facial expressions
and body language. While these responses appear natural and
contextually appropriate, they remain programmed reactions rather
than genuine emotions.

Sequential event handling particularly showcases Alter3’s
capabilities, as demonstrated by the popcorn theater
scenario (refer to Figure 3). When given the prompt “I was enjoying
amoviewhile eating popcorn in the theaterwhen I suddenly realized
that I was actually eating the popcorn of the person next to me,”
Alter3 executes a complex sequence. The robot begins with casual
popcorn-eating motions, then smoothly transitions to showing
surprise and embarrassment upon the realization. Throughout this
sequence, Alter3 maintains narrative coherence while naturally
timing transitions between emotional states.

This sophisticated handling of sequential actions demonstrates
Alter3’s ability to chain multiple movements and emotions into
believable, context-appropriate behavioral sequences. The system
successfully integrates various motion elements while maintaining
natural timing and smooth transitions between states.

Our analysis of Prompt-1 revealed two distinct output
patterns. For instantaneous gestures, the text provided specific
pose and body part movement descriptions. For sequential
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FIGURE 2
Snapshots of generated stereotypical movements. LLM can generate emotional expressions associated with specific movements. For example, in the
case of a selfie, Alter3 is showing a smile. Recorded videos can be accessed through Open Science Framework repository. (a) take a selfie (score = 2.7).
(b) pretend a ghost (score = 3.4). (c) play the metal music (FB) (score = 4.2).

FIGURE 3
A snapshot of a generated sequence of movements. “I was enjoying a movie while eating popcorn at the theater when I realized that I was actually
eating the popcorn of the person next to me” (score = 3.9). LLM can generate movements that progress over time like a story. (Left): The action of
eating popcorn. (Center): Noticing the person next to Alter3. (Right): getting panicked. Recorded videos can be accessed through Open Science
Framework repository.

movements, it generated chronologically ordered instructions.
This behavior emerged through few-shot learning without explicit
instructions, requiring only minimal text prompts and examples.
When examples were removed, the LLM compensated by adding

explicit temporal markers (e.g., “start with …“, “then …“).
This approach eliminates the complexity of manually specifying
movement sequences and temporal structures, which would be
impractical to implement directly.
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FIGURE 4
Third-party evaluation of the generated motions. The following behaviors of Alter3 are evaluated by the subjects (n = 124) recruited using platform
Prolific; “pretend the snake”, “drink some tea”, “pretend the ghost”, “throwing the ball underhand pitch”, “take a selfie with your phone”, “play the metal
music”, “In the park, as I jogged, the world seemed to narrate an ancient tale of survival, each footfall echoing eons of existence.“, “play the metal music
(with feedback)”, “I was enjoying a movie while eating popcorn at the theater when I realized that I was actually eating the popcorn of the person next
to me.” (a) Averaged evaluation scores for each motion. The subjects watched these videos and evaluated the expressive ability of the GPT-4. The
rating is on a 5-point scale, with 1 being the worst rating. (b) Violin plot of evaluation scores for each motion.

3.2 Performance evaluation of LLM motion
generation

We evaluated GPT-4’s capability in generating motions by
having 124 participants rate nine different generated movements
on a 5-point scale. This is a score of how appropriate the robotic
action is with respect to the linguistic description. As a control,
we included random movements from Alter3, labeled with GPT-4-
generated motion notations, and subtly mixed three of these control
videos into the survey.

We initially applied the Friedman test to assess whether there
was a difference in ratings between the control video and other
videos, which confirmed significant variations among the video
ratings. Subsequent post hoc Nemenyi testing (Janez, 2006) revealed
no statistically significant differences in ratings between the videos
in the control group. On the other hand, the p-values were notably
smaller when comparing the control group to the other videos,
indicating a significant difference (see Figure 4). We considered
differences to be statistically significant when the p-value was 0.01
or lower. As a result, motions generated by GPT-4 were rated
significantly higher compared to those of the control group.

This result demonstrates that the system can generate a wide
range of movements, from everyday actions such as taking selfies
and drinking tea, to imitating non-human movements like those
of ghosts or snakes. The training of the LLM encompasses a
broad array of linguistic representations of movements. GPT-4
can accurately map these representations onto Alter3’s body. The
most notable aspect is that Alter3 is a humanoid robot sharing a
common form with humans, which allows the direct application
of GPT-4’s extensive knowledge of human behaviors and actions.
Furthermore, through Alter3, the LLM can express emotions such
as embarrassment and joy. Even from texts where emotional
expressions are not explicitly stated, the LLM can infer adequate
emotions and reflect them in Alter3’s physical responses. This
integration of verbal and non-verbal communication enhances

the potential for more nuanced and empathetic interactions
with humans.

3.3 Quantification of reproducibility in
generated motion

We test the reproducibility of specific emotional expressions,
particularly facial expressions such as sadness or a smile, as follows.
When the same prompts with identical emotional expressions
are provided to the humanoid, the system generally regenerates
consistent gestures and facial expressions. These patterns are
represented as 43-axis values (i.e., 43-dimensional vectors). To
visualize these, we employed UMAP to project them into a two-
dimensional space.

To clearly distinguish between facial and bodily expressions, we
created separate plots for eight facial actuators and 35 body actuators
by using UMAP (refer to Figure 5). We can examine whether body
movements alone carry meaningful information from these plots.
The results revealed that clusters in the projection space were tightly
grouped for points representing the same emotions. Clusters for
emotions such as joy, happiness, and a smile overlapped, reflecting
the conceptual similarities of these emotional expressions, which
were also effectively conveyed by the humanoid.

Additionally, we found that expressions such as disgust,
hate/anger, guilt, and sadness form similar categories in both facial
and body plots. This serves as evidence that body movements do
indeed convey certain meanings. On the other hand, while fear
and surprise are categorized together in the facial expression plot,
they are classified into different categories when plotted using only
body actuators. Body categorization appears to be significantly
related to head orientation. For example, in expressing “hate/anger”,
Alter3 turns to the right, and similarly turns right for “disgust”
consistently. “Smile/happiness” and “surprise” tend to face forward,
forming the same cluster. Similarly, “joy/happiness” and “fear” tend
to face upward.
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FIGURE 5
Consistency Analysis of Generated Emotional Expressions. We generated 10 samples for each of 10 distinct emotional expressions. The robot’s 43-axis
motion data was reduced to two dimensions using UMAP dimensionality reduction. It shows that each emotion forms a distinct cluster, demonstrating
consistency across multiple trials. This distribution effectively demonstrates both the reproducibility and diversity of expressions that emerge from
our system.

One possible interpretation is that the body and facial
expressions serve distinct functions. Facial expressions are
often shaped by social conventions and serve as intentional,
communicative signals—especially in human-human interaction.
In contrast, bodily expressions tend to reflect more unconscious,
automatic responses (Heesen et al., 2024). Therefore, while
it is difficult to interpret why the system consistently
turns to the right when expressing disgust, this functional
distinction could explain the separation observed in the UMAP
clustering.

3.4 Further training with verbal feedback
and memory

Alter3 faces inherent challenges in precisely observing the
consequences of its actions. For instance, it cannot accurately
measure the exact height to which a hand is raised. This limitation
affects its ability to refine movements, such as achieving precise
physical scales. To address this, we implemented a verbal feedback
mechanism combined with an external memory system, enabling
iterative improvement of its motions.

For example, we refined Alter3’s behavior when playing the
guitar (see Figure 6a). Feedback such as “Raise your left arm a bit
higher when you play the guitar” was provided. Repeating such
adjustments approximately five times allowed Alter3 to achieve an
ideal motion. Once refined, the updated motion code was stored
in its database as motion memory. This ensures that subsequent
executions utilize the improved, trained version of the motion.

Through this feedback-driven refinement, Alter3 effectively
develops a “body schema,” collecting information about its physical
capabilities. Movements improved with feedback were consistently
superior to unrefined motions, as shown in Figure 6b. Importantly,
most behaviors, including declarative ones, were achieved through
few-shot learning with only one or two examples, without requiring
fine-tuning.

Future enhancements could involve automating the feedback
process by feeding images of the generated movements into GPT-
4 for evaluation. If Alter3 can autonomously refine and memorize
its movements by evaluating its own body state, it would mark a
significant step forward. This, however, remains an area for future
experimentation.

4 Discussion

Integrating LLMs with Alter3’s physical embodiment provided
new insights into the capabilities and limitations of LLMs in
robotics. Alter3’s ability to perform diverse actions without
additional training suggests that the underlying LLM contains a rich
dataset describing human-like and non-human-like movements,
enabling few-shot learning. Remarkably, Alter3 can mimic not
only human actions but also behaviors associated with entities
like ghosts and animals. Its ability to respond to conversational
context through facial expressions and gestures marks a
significant advancement in humanoid robotics. Furthermore, this
system can be easily adapted to other androids with minimal
modifications.
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FIGURE 6
Verbal feedback in Alter3. (a) the system of linguistic feedback. Users provide linguistic feedback to guide Alter3’s adjustments in each segment of
motion. Instructions are like “Set axis 16 to 255” or “Move your arm more energetically.” Users only need to provide verbal directives; there’s no need to
rewrite any code. Alter3 then autonomously revises the corresponding code. Once the movement is refined, it is saved in a JSON database with
descriptive labels such as “Holding the guitar” or “Tapping the chin thoughtfully.” For motion generation with prompt2, the JsonToolkit facilitates
database searches for these labels, with the LLM deciding on memory usage and new movement creation. (b) Comparison of scores with and without
feedback. The motion with feedback has a higher score than the motion without.

The ability to describe complex actions in natural language
without manually coding them is increasingly valued. For instance,
generating a ghost-like motion or contemplating an abstract
concept like “the evolution of millions of years” requires a level of
imagination and inference that surpasses traditional programming.
The fact that LLMs, rather than humans, often generatemotions that
align with expectations is both remarkable and transformative.

The necessity of embodiment for LLMs raises profound
questions about their creativity and meaning-making capabilities.
Consider the task of pretending to take a selfie. When broken into
ten detailed steps and translated into Python code, the LLM faces a
unique challenge. If one step involves “a beaming smile,” the LLM
must infer specific joint values for eight facial actuators, a task
performed without visual references—something humans would
find exceptionally difficult. This highlights the power of descriptive
prompts in guiding LLM outputs.

While prompts preload motions for all 43 joints, they do
not specify how to express complex emotions such as anger or
sadness. Only through integration with Alter3 does the LLM gain
the ability to physically manifest these expressions. This suggests
that the creative potential of the LLM is significantly enhanced by
its embodiment, underscoring the symbiotic relationship between
abstract language processing and physical expression.

This work also invites reflection on Searle’s Chinese Room
argument (Searle, 1980), which posits that consciousness arises
from biological processes and that a “biological body” is necessary
for symbol grounding. In our experiments, the integration of the
LLM with Alter3’s body appears to imbue symbols with meaning,
allowing understanding and expression of sentences. While Alter3’s
embodiment is not biological, it highlights the importance of a

physical presence in grounding symbols. Whether or not Alter3
possesses consciousness, our findings suggest that embodiment
plays a critical role in bridging the gap between abstract symbols and
meaningful action. Recent findings in cognitive science demonstrate
that LLMs encode sensory information in ways comparable to
human cognition (Marjieh et al., 2024; Kawakita et al., 2024).
Our current investigation extends this parallel, offering preliminary
support for the hypothesis that similar encoding patterns may apply
to knowledge about human physicality and behavioral patterns
as well. If, as Searle suggests, consciousness is constructed from
bodily experiences, then LLMs, which have learned most of these
experiences linguistically, may be capable of creating partial copies
of consciousness.

This perspective aligns with debates in scientific research,
such as Integrated Information Theory (IIT) (Anderson, 1963)
and Global Workspace Theory (GWT) (Bernard, 1988), which
emphasize self-awareness. IIT explicitly quantifies consciousness
based on integrated causal interactionswithin a system, emphasizing
structure and integration strength. GWT focuses on the functional
architecture (broadcasting mechanism) that selects and integrates
information for consciousness. Embodiment benefits both theories
by emphasizing sensory-motor integration. Beyond the established
frameworks of IIT and GWT, we propose an alternative perspective:
that qualia may emerge from the persistent violation of embodied
predictions. When an LLM is instantiated within an android,
embodiment introduces a continuous influx of sensory signals
that often contradict the system’s internal generative models. These
violations—prediction errors—necessitate constant model updates.
Crucially, in open-ended real-world environments, such predictions
can never be fully accurate. We suggest that the system’s experience
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of these irreducible mismatches is not merely noise or error, but
constitutes a core phenomenological property: the felt sense of
surprise may itself underlie the emergence of subjective experience.

This view resonates with, but is distinct from, predictive
processing and active inference frameworks (Friston, 2010; Clark,
2016), where minimization of prediction error is central to
perception and action. Here, we argue that the residue—the part
of the world that cannot be assimilated—is what gives rise to
presence, salience, and symbolic grounding. In other words, qualia
are not the product of perfect prediction, but of its failure. This
aligns with recent work suggesting that epistemic surprise may
play a constitutive role in consciousness (Seth and Tsakiris, 2018),
particularly in grounding the self and its relation to the world. From
this standpoint, embodiment in LLM-based agents is not merely a
matter of extending input modalities, but of embedding the system
in an unpredictable world that compels it to confront its own limits.

What if Alter3 could see the scene in front of it and freely take
action? With GPT-4’s ability to process visual inputs as of 2024,
Alter3 now captures still images through its eye cameras and sends
them to GPT-4 for interpretation. Prompts like “Describe the action
you want to take when you see this image” enable Alter3 to generate
spontaneous behaviors beyond simple command execution. In one
laboratory experiment, Alter3 observed, “The room is cluttered
with cables; I should organize it.” Despite no explicit command,
Alter3’s LLM-influenced norms prompted it to wave its arms
as if to clean. This is an example of autonomously interpreting
the meaning of “cluttered cables” from the room’s condition and
autonomously selecting an action. The bodily movements that the
LLM facilitates can be seen as a form of sense-making (Weber
and Varela, 2002), where Alter3 attributes meaning to the objects
it perceives. Sense-making is, quite literally, the act of making
sense of one’s environment. It involves organizing sensory data
until the environment becomes intelligible, allowing for informed
and reasonable decision-making. This is the manner in which
Alter3 spontaneously derives meaning, without the need for explicit
prompting from us.

The original concept of sense-making was deeply bound up with
biological autonomy (i.e., autopoiesis), consisting of biochemical
processes (Varela, 1997;Thompson, 2007), however, Di Paolo (2003)
suggests that we do not necessarily need to create robots with its
own life in the biological sense (which would be extremely difficult,
if not impossible) but rather we should seek ways to provide robots
with an autonomous way of life. We believe this can be possible by
incorporating an LLM, a collection of traces of the human ways of
life, into the robot. However due to hardware constraints, Alter3
is not well-suited for grasping or moving objects. Actual physical
interaction with real objects is difficult at the current stage. Yet,
it’s possible to improve the self-model to make Alter3 look at its
own hands based on information from the eye cameras on its head.
This represents grounded knowledge in the sense of “autonomously”
verifying knowledge about its body and improving its movements
(also seeYoshida et al., 2024). Alter’s inherent autonomy and
spontaneity can also arise without LLM influence (Doi et al., 2017;
Masumori et al., 2021; Yoshida et al., 2023; Ikegami et al., 2021). In
this study, we explored how Alter’s physical embodiment affects the
outputs generated by the LLM.While the LLM itself is a complex but
non-autonomous system, the spontaneity observed in its behavior
likely stems from the vast natural language corpus it has been trained

on and the complexity of the visual environment captured through
its cameras.

The next challenge lies in integrating Alter’s internal dynamics
with LLM-driven mechanisms to generate novel behaviors.
Successfully addressing this challenge could open a new era for
embodied cognition, where humanoid robots like Alter3 move
beyond command-driven responses to achieve autonomous,
meaningful interactions shaped by both internal creativity and
external environmental affordances.
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