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In today’s era of digital transformation, industries have made a decisive leap 
by adopting data-driven, robot-assisted disassembly solutions that cut cycle 
time and cost relative to labor-intensive manual tear-down. Thus, including 
robots not only improved production activities but also strengthened the 
safety measures that once the human operator was handling. Minimizing the 
impact of the human factor in the process means minimizing incidents related 
to it. The disassembly of Waste Electrical and Electronic Equipment (WEEE) 
poses complex technical, economic, and safety challenges that traditional 
manual methods struggle to meet. Thus, there is a need for a decision-making 
tool harmonized with human cooperation, in which Artificial Intelligence (AI) 
plays a pivotal role by providing financially viable solutions while ensuring a 
secure collaborative environment for both humans and robots. This review 
synthesizes recent advances in AI-enabled robotic disassembly by focusing on 
four main research areas: i optimization and strategic planning, ii human–robot 
collaboration (HRC), iii computer vision (CV) integration, and (iv) Safety for 
Collaborative Applications. A supplementary subsection is also included to 
briefly acknowledge emerging topics such as reinforcement learning that lie 
outside the main scope but represent promising future directions. By analyzing 
62 peer-reviewed studies published between 2000 and 2024, the results identify 
how these themes converge, highlight open challenges, and map out future 
research directions.
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 1 Introduction

Natural resources used in electronics cannot be regenerated, or at least not at the 
same rate at which they are consumed. The United States itself generated 500 million 
volumes of electronic waste between 1997 and 2007 (Kiddee et al., 2013). During that 
period, printed-circuit boards (PCBs) relied on costlier raw materials underscoring the 
imperative for resource stewardship and long-term sustainability (Perossa et al., 2023). 
Remanufacturing is defined as the process of bringing back a used product up to the level 
of its original equipment manufacturer (OEM), with the same warranty as an equivalent 
new product (Matsumoto and Ijomah, 2013). It has a major impact on preserving the
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environment, thanks to the use of recovered components which 
are then reassembled into remanufactured products, saving on 
raw materials as well as reducing production costs while at 
the same time reducing the impact on the environment. A 
visualization of the life cycle of resources according to the circular 
economic business is presented in Figure 1. The early adoption 
of such processes was driven by the need to repair, maintain 
or understand complex machinery. However, as products became 
more complex and the need to recover individual components 
expanded, the term ‘disassembly’ was introduced allowing valuable 
components to be extracted in a targeted manner, thereby 
facilitating efficient recycling and reducing the environmental 
footprint. The disassembly process represents the first phase in 
the remanufacturing cycle (Priyono et al., 2016). It is the reverse 
process in which a product is separated into its components and/or 
sub-assemblies by non-destructive or semi-destructive operations 
that damage only the connectors or fixings. If the process of 
separating the product is not reversible, this process is called 
disassembly (Vanegas et al., 2019). Within the resource life cycle, 
the disassembly process itself focuses on the extraction of sub-
assemblies and individual components from end-of-life products 
(EOLPs) so that they can be reused/manufactured. Non-destructive 
disassembly refers to separating components without damaging 
them, enabling their reuse, remanufacturing, or recycling. While this 
preserves the integrity of individual parts, it does not necessarily 
allow for full reassembly of the original product and is therefore not 
always fully reversible. However, when it involves waste electrical 
and electronic equipment, the main obstacles to successful recycling 
(both technical and economic) include the difficulties associated 
with classifying and disassembling components. Manual operations 
are considered prohibitively expensive, and full automation is also 
rejected due to the lack of uniformity of discarded appliances and the 
exorbitant costs associated with traditional automation techniques 
(Alvarez-de-los-Mozos and Renteria, 2017a). Manual disassembly 
also causes safety problems which increase labor costs, representing 
the second most expensive item for a recycling plant (D’Adamo et al., 
2016). Following the industrial revolutions, starting with the first 
industrial robot up to the advanced technologies of industry 4.0 and 
5.0. Robots in industrial processes make industrial plants even more 
efficient, reducing errors and safety issues while improving both 
product stability and consistency. For this reason, one interesting 
solution consists of integrating robots into the disassembly process. 
The use of robots is increasing in remanufacturing systems which 
particularly improves the performance of disassembly lines. In 
remanufacturing systems, robots can be deployed in various roles 
ranging from fully autonomous execution of specific tasks to 
collaborative operations alongside human workers or other robots, 
with the flexibility to adapt to different task requirements. The main 
advantage of robotics is in the accurate and consistent performance 
of repeated tasks, such as on assembly lines. On the other hand, in the 
context of robotic disassembly which involved several uncertainties, 
a standard robot without any cognitive capacity for reasoning 
and logic will have serious limitations compared with the ability 
of a human being to disassemble an EOLP intuitively. To fully 
realize the potential of automated disassembly, it is essential to 
implement artificial intelligence approaches such as reinforcement 
learning (RL) alongside with computer vision systems capable of 

automatically identifying and locating such items or finding the 
most optimized path (Wegener et al., 2015).

This paper begins by presenting the background of robotic 
disassembly (Section 1), followed by the paper selection 
methodology (Section 2) used to identify relevant studies 
across four main areas, and then proceeds to a detailed 
analysis of selected studies (Section 3), which will be divided 
according to domain. 

2 Background: robotic disassembly

Robots enable faster, more consistent extraction of reusable 
components from end-of-life (EOL) products. Robotic systems now 
replace manual disassembly techniques to make recovery of reusable 
materials from electrical and electronic products faster. Companies 
demonstrate this breakthrough in their recycling processes. In 2016, 
Apple introduced Liam and Daisy which demonstrated a treatment 
process of e-waste by disassembling an iPhone within minutes 
(Apple, 2024). Another example presented by CRG Automation 
deployed robotic systems to safely disassemble the M55 rocket, a 
chemical weapon containing nerve agents such as VX and sarin 
(James, 2023). Without forgetting many use cases such as e-waste 
or battery disassembly. Or their automated solution enabled precise 
handling and neutralization within high-risk demilitarization 
facilities (Allison, 2023; Fraunhofer IFF, 2025). Robotic disassembly 
gives manufacturers promising performance benefits that combine 
flexibility with profitability and safety protection along with 
positive environmental outcomes. Robots can also handle many 
different products as human operators. In addition, robots improve 
both labor savings, making remanufacturing more affordable. 
Using robotic disassembly helps with material reuse which lowers 
environmental effects (Zeng et al., 2022). Finally, robots can perform 
in unsafe areas and manage dangerous materials making human 
workers safe (Xu et al., 2021). 

2.1 Collaborative approaches for 
disassembly

The existing e-waste management is confronted with a couple 
of issues: Manual disassembly process is expensive, and automated 
disassembly is complicated for virtually all types of legacy devices. 
The current approach is tackling the issues using a hybrid approach 
where robots and human operators collaborate (Alvarez-de-los-
Mozos and Renteria, 2017b). This approach incorporates robotic 
and human operators to facilitate e-waste recycling with the 
use of the best system designs under ecosystems. The basics 
of this field include interactions between people and robots as 
well as other advanced constructs of human-robot collaboration, 
wherein the robot is endowed with the skills needed to work 
with people (Feil-Seifer et al., 2009; HRI, 2024). Human-centered 
collaborative robotics creates shared workspaces in which robots 
handle repetitive or hazardous operations such as manipulating 
irregularly shaped, toxin-laden components while humans provide 
real-time judgement. Analyzing e-waste disassembly therefore 
requires a concurrent examination of collaborative strategies and the 
enabling tool-chain.
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FIGURE 1
An abstract visualization of the life cycle of resources according to the circular economic business model. 01: Dismantling of the EOLP; 02: Recycling 
of materials; 03: New raw materials enter production during the design and manufacture of sub-components; 04: Production of the final product; 05: 
Distribution of the product to customers; 06: Consumption of the product.

A specialized robotic cell for disassembly functions as a system 
that uses PLC-controlled robots to execute disassembly tasks under 
remote monitoring conditions (Dawande et al., 2005). Product 
separation and hazardous element removal procedures through 
recycling operations occur frequently with this technology to 
achieve layout disassembly goals. Robotic cells integrate built-in 
security and environmental awareness with custom disassembly 
techniques but require human agency to complete tasks which 
need direct assistance. Human Robot Coexistence operations at 
disassembly sites yield challenging situations together with fresh 
prospects for site management. People working alongside robots 
achieve versatile disassembly task integration by having robots 
complete excessive or dangerous procedures while humans handle 
decision-focused activities (Magrini et al., 2020). Today’s industries 
depend heavily on robotic technology for safety purposes because 
these machines safely handle toxic materials alongside sharp objects. 
Technical detection systems working with flexible robotic elements 
alongside cautious safety protocols help reduce exposure risks 
to create optimized work environments for concurrent human-
robot disassembling operations (Magrini et al., 2020). Humans 
and robots perform their work simultaneously in the same space 
through a coordinated disassembly method (Zhuang et al., 2019). 
During synchronization the human workers share the space with 
robotic systems through parallel task execution that maintains 
individual work domain separation. Human operators first remove 
screws from the workpiece, creating space for robotic extraction 
operations that achieve highly precise results. This integrated 
approach combines robotic processing elements alongside human 
capabilities to increase complex disassembly performances 
through enhanced accuracy rates and operational speed increases. 
When humans work with robots in identical workspace areas 
independent roles integrate as part of collaborative tasks. When 
companies adopt collaborative systems, they achieve effective 
workspace division between parallel assignments without sacrificing 

production objectives (Váncza et al., 2011). After robot systems 
break down single components human operators check these 
pieces to verify component condition before permitting additional 
disassembly operations. The current advanced technology enables 
several operations to execute simultaneously by forcing robotic 
employees to stay regardless of preceding work completion so tasks 
function without interruption. The methodology enables flexible 
operations within complex disassembly systems by implementing 
its collaborative process. The core technique behind robot-human 
operator collaboration allows teams to work together in both 
safe and optimized conditions (Ameur et al., 2024). Figure 2 
illustrates the collaborative approaches in robotic
disassembly.

2.2 Challenges and difficulties

However, robotic disassembly of WEEE introduces a wide 
range of associated challenges that make automation particularly 
difficult when compared to assembly processes. Among the most 
critical obstacles is the need to operate in dynamic environments 
in which variability in product orientation, product condition 
and component integrity can interfere with fixed robotic routines. 
Contrary to structured industrial tasks the disassembly often takes 
place in unpredictable spatial and material conditions which require 
real-time detection and adaptation. And there are no uniform end-
of-life conditions as products reaching the end of their life may be 
damaged at some stage, incomplete or severely worn (Hohm et al., 
2000). Different versions of products, user modifications may result 
in different internal configurations which limit the effectiveness 
of predefined CAD-based trajectories or fixed motion sequences 
(Bogue, 2019). As a result of this unpredictability, the cognitive 
and mechanical requirements of robotic systems increase. It also 
involves a variety of tooling requirements (Kernbaum et al., 2009). 
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FIGURE 2
Collaborative approaches in robotic disassembly (1. Robot Cell, 2. Coexistence, 3. Synchronized, 4. Cooperation, 5. Collaboration).

FIGURE 3
The five Phases of the Paper Selection Methodology as adapted from Moher et al. (2009).

As opposed to repetitive assembly, the disassembly process often 
requires several operations on a single product. This may involve 
unscrewing, cutting, breaking, heating or lifting components. Each 
of these operations may require a different tool head and actuation 
force and level of precision. This requires reconfigurable end-
effectors and tool change mechanisms that offer multiple functions 
while maintaining cycle time and safety (Poschmann et al., 2021; 
Karlsson and Järrhed, 2000). The coordination of these systems 
is even more complex when it comes to seamless automation. 
Perception, as well as decision-making and motion planning, 
must be tightly synchronized in an integrated way, especially in 
cluttered or constrained environments. Robots must be able to make 
decisions regarding the disassembly sequence and execute high-
precision movements, all in real time. In collaborative scenarios, 
the coordination between human and robotic agents becomes even 
more critical so robust interaction protocols and safety mechanisms 
are required. Other systemic barriers can include designs that are not 
intended for disassembly, where products are manufactured to be 
compact and tamper-proof with strong adhesives and welded joints 
or concealed fixings. Such features make automated disassembly 
technically unfeasible or economically inefficient (Huang et al., 
2021). The environmental and regulatory constraints associated 

with WEEE add to the complexity since robots need to securely 
extract toxic components such as lithium batteries or mercury 
lamps while maximizing the recovery of valuable materials such 
as rare earth elements. In addition, the availability of datasets 
and standardization remain major obstacles. While assembly is 
documented and often standardized at every stage, the disassembly 
process has no guidelines or detailed labelling. This limits the ability 
to form intelligent systems or to generalize robot behavior across 
product types.

3 Paper selection methodology

A systematic review selection framework was developed 
specifically to conduct thorough research on robotic disassembly 
processes and the integration of AI methods. This study follows 
preferred reporting items for systematic reviews and meta-analyses 
(PRISMA) guidelines as defined by Moher et al. (2009) through 
a five-stage framework (Figure 3). Phase I begin by developing an 
explanation of the topic then selecting research questions before 
retrieving publications through multiple information platforms. The 
second phase of methodology implements predefined eligibility 
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TABLE 1  Search string and operators.

Topic Search string and 
operators

Robotic Disassembly “Robot disassembly” OR “Cobot 
disassembly” OR “Disassembly 
automation” OR “Industrial robotic 
disassembly” OR “Automated reverse 
engineering”

Optimization and Strategic Planning “Optimized Robotic disassembly” OR 
“Robotic Optimization disassembly” 
OR “Strategic Planning disassembly” 
OR “Efficient Robotic Disassembly” OR 
“Robotic disassembly line balancing 
problem (RDLBP)” OR “Disassembly 
sequencing” OR “Path optimization in 
disassembly”

HRC “Human-robot collaboration” OR 
“Collaborative robots” OR “HRC 
disassembly” OR “Human-robot 
interaction in disassembly” OR 
“Robot-assisted human disassembly” 
OR “Shared control in robotics” OR 
“Hybrid disassembly systems”

CV Integration “Computer vision disassembly” OR 
“Machine vision in robotics” OR 
“Vision-guided robotics disassembly” 
OR “Image processing for disassembly 
tasks” OR “Object detection in robotics” 
OR “Vision-based disassembly systems” 
OR “AI vision systems in robotics”

Safety “Safety in robotic disassembly” OR 
“Disassembly safety protocols” OR 
“Human safety in collaborative 
robotics” OR “Safety optimization in 
robotics” OR “Robot safety systems” OR 
“Hazard prevention in disassembly 
processes” OR “Standards for safe 
human-robot collaboration”

criteria to refine the initial study pool which helps researchers 
locate appropriate and researched-based documents. During Phase 
III an extensive screening protocol integrates eligibility verification 
with descriptive investigations of approved reviews. With Phase 
IV researchers examine the chosen studies to discover feasibility 
levels and confirm study objectives match. Results from this 
research investigation present critical findings in Phase V. The 
structured systematic process safeguards the scientific validity of 
the review through detailed outcomes which researchers can easily
understand. 

3.1 Search strategy

The research query covered the four major robotic disassembly 
domains through precise search terms which included optimization 
approaches alongside strategic planning methods denoting high-
level, offline decisions that structure the entire disassembly 
system and human-robot collaboration systems. The research 

TABLE 2  Reviewing protocol.

Item Description

Time Period Publications from 2000 to 2024

Language Only English publications were considered to ensure 
consistency in data extraction

Availability articles available online as full text directly or via 
distributor

Publication type Journals, conference proceedings, industrial standards 
(e.g., ISO), technical reports

Exclusion criteria Studies not peer-reviewed, non-English papers, articles 
unrelated to robotic disassembly, AI applications or the 
four topics, and studies focusing on assembly

included search strings that combined “Robotic disassembly” with 
“Disassembly automation” to find general robotic disassembly 
studies and “Human-robot collaboration” with “Collaborative 
robots” to identify specific Human-Robot Collaboration research. 
The analysis included advanced technology searches with 
combinations of “Computer vision disassembly” OR “AI vision 
systems in robotics” to examine robotic applications that merged 
vision systems with artificial intelligence. Research examining 
safety practices in robotic disassembly is covered through search 
terms that include “Safety in robotic disassembly” OR “Human 
safety in collaborative robotics” (Table 1). A methodical searching 
system enables the review to identify an extensive collection of 
research documents which accurately represents the current body 
of knowledge.

The research period encompassed publications from 
2000 to 2024 (Table 2) to capture advancements in robotics and 
artificial intelligence and industrial disassembly methods during 
the last 24 years. The analysis included only publications written 
in English to ensure uniformity throughout data extraction and 
interpretation. The research included only peer-reviewed articles 
and conference proceedings alongside industrial standards (such as 
ISO) and technical reports that provided full text access through 
online distributors or direct access. The research excluded materials 
which did not meet peer-review standards or used non-English text 
or focused on unrelated robotic disassembly or AI applications. The 
analysis excluded research papers that analyzed assembly operations 
alone without discussing reverse engineering or disassembly work. 
The established criteria allowed researchers to select reviews which 
directly focused on review objectives while preserving scientific 
standards. 

3.2 Paper selection

To strengthen the examination process, the PRISMA flow 
diagram was used (Figure 4). In this way, a systematic and 
transparent evaluation of the literature is guaranteed, reinforcing 
the reliability of the findings and comparison. The inclusion and 
exclusion criteria were applied in distinct stages as follows:
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FIGURE 4
PRISMA flow diagram of studies selection procedure.

3.2.1 Title and abstract screening
The database search revealed 275 publications, which included 

198 from Google Scholar, 47 from Scopus and 30 from Web of 
Science. Our analysis has eliminated 21 duplicates and evaluated 248 
separate research articles (Table 3). Those publications were selected 
by the research team through a title and abstract evaluation process 
in order to find their relevance to the research topic. Evaluation 
included elimination of research that did not focus on robotic 
disassembly techniques or artificial intelligence applications.

3.2.2 Full-text screening
A thorough review of full texts applied to 254 remaining articles. 

The research excluded 192 articles throughout this stage for either 
being unfeasible to implement or showing insufficient data or 

TABLE 3  Initial set of studies found in relevant databases.

Databases Final set of studies

Google Scholar 198

Scopus 47

Web of Science 30

lacking alignment with the research context which included studies 
unrelated to disassembly systems or human-robot collaboration or 
safety. A thorough examination of 62 articles during this phase 
resulted in a final selection of articles for comprehensive research. 
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FIGURE 5
Topic Distribution of review.

3.2.3 Sorting based on content type
The final 62 articles received content-based categorization that 

focused on the review’s four main themes including optimization 
strategies and human-robot collaboration and computer vision 
integration alongside safety for collaborative applications. These 
articles served as the base for descriptive research and content 
analysis that followed in the review process. 

3.3 Content analysis and classification

This classification system defines the research spaces within 
robotic disassembly studies (Figure 5). Through optimization and 
strategic planning (O&SP) techniques developers create essential 
algorithms that optimize both sequencing planning processes and 
resource allocation effectiveness. Ergonomic system designs which 
enable HRC produce spaces that are safer and more productive 
for shared operations. Advanced visual systems integrated through 
computer vision technology enable robots to work with greater 
precision when detecting objects and sequencing disassembly 
operations. Safety represents an ongoing necessity because risk-
minimizing systems need appropriate protocols to operate with 
autonomous systems and collaborative systems alike. Research 
within robotic disassembly studies shows how artificial intelligence 
systems can solve various problems by linking different domains.

Figure 6 demonstrates strategic selection toward current 
discoveries while including essential studies in robotic disassembly 
and Artificial Intelligence research. Post-2019 scholarly work 
dominates the selection since it demonstrates advanced robotic 
disassembly techniques and Artificial Intelligence applications. 
Recent studies reveal new understanding about the operation of 
reinforcement learning systems together with collaborative robots 
and computer vision software. A selection of 19 groundbreaking 
papers originating from before 2018 serves as foundational material 
for subsequent investigation.

This research organizes its sources into three main categories 
including journal articles and conference papers and others 
for clear understanding of resource analysis. Journal articles 

FIGURE 6
Pie chart of Year Distribution.

present extensive examinations of field knowledge that deliver 
basic and advanced understanding. Conference papers highlight 
contemporary innovations and developmental progress which 
take place at prominent industrial events. The “Other Sources” 
category in Table 4 contains industry reports and white papers and 
industrial standards which strengthen the practical value of the 
study. The table provides an overview of source categories together 
with their assigned reference counts.

4 Detailed analysis of selected studies

Artificial intelligence has emerged as an essential tool for 
tackling the complexity inherent in robotic disassembly systems 
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TABLE 4  Categories of the selected papers.

Categories Number

Journal Articles 43

Conference Papers 11

Other Sources 8

(Poschmann et al., 2020). Within WEEE recycling, combining 
different types of robots such as industrial high-precision arms with 
flexible collaborative robots can broaden task coverage but also 
increases integration challenges due to different control interfaces, 
communication protocols and tooling requirements. AI overcomes 
these challenges by providing adaptive perception, decision-making 
and control capabilities that enable robots to navigate complex 
product geometries and identify components and also perform 
disassembly steps with greater accuracy and efficiency. Conceptually, 
AI refers to the integration of human-like reasoning and learning 
into machines. Machine learning forms the core to enable systems 
to derive patterns from data and automatically build analytical 
models, while deep learning takes advantage of multi-layer neural 
networks to model complex relationships in visual, spatial or 
sequential data (Saadat et al., 2022). Generative AI extends these 
capabilities to content creation, which, in the disassembly domain, 
can support tasks such as synthetic data generation for training 
vision systems (Sætra, 2023). The following sub-sections provides 
a detailed analysis of selected studies grouped into four key 
research domains that structure the current landscape of AI-
enabled robotic disassembly: optimization and strategic planning, 
human–robot collaboration, computer vision integration, and safety 
standards. These areas were identified as the most recurrent 
and impactful across the reviewed literature. A final subsection 
highlights supplementary trends, including emerging approaches 
such as reinforcement learning, which while outside the main scope, 
indicate promising future directions. 

4.1 Optimization and strategic planning

The strategic planning along with navigation optimization of 
robotic systems relies on AI algorithm execution (Chen et al., 
2021). This capability allows the robot to effectively determine the 
most straightforward path toward dismantling without harming 
significant components and while reducing operational mistakes. 
Guo et al. (2023) implemented a dual-agent approach using 
Deep Q-learning (DQL) and RL to create decision frameworks 
which enhanced state exploration efficiency and calculation speed. 
Lee et al. (2022) established a computational framework for HRC 
that combines safe human conditions with resource limitations to 
optimize complete disassembly durations within defined security 
boundaries. Qu et al. (2023) employed RL together with neural 
networks and actor-critic modeling to teach robots how to extract 
bolts from door chain grooves resulting in less than 1 mm of 
clearance between components. The objective of this work was 
to improve robotic disassembly capabilities through skill transfer 
and training capabilities. Çil et al. (2020) utilized Ant Colony 

Optimisation (ACO) along with Genetic Algorithm (GA) and 
Random Search (RS) algorithms for comparative analysis. ISIACO 
represents a proposed solution which uses multiple algorithms 
to optimize disassembly line balancing while incorporating the 
best elements of existing solution approaches to achieve improved 
performance. The study by Laili et al. (2022) shows how backup 
actions boost disassembly sequence planning reliability during 
automation system failures. The research presents three backup 
action types and introduces a new approach to disassembly planning 
along with the proposed DS-MOEA solution method. A two-pointer 
detection system combines with interference matrix technology 
to determine extractable components from subassemblies. The 
algorithm surpasses conventional methods by constructing optimal 
sequence plans while attaining superior completion results through 
performance enhancement. The research by Hartono et al. (2022). 
developed a robot planning model which determines disassembly 
product sequences to maximize profits alongside saving energy 
and reducing greenhouse gas emissions. A computational model 
implementing the bee algorithm takes inspiration from bees’ natural 
food search behavior. The algorithm functions to enhance the 
efficiency of disassembly plans. The Bees algorithm functions 
to determine both optimal recovery options and associated 
disassembly information. Ramírez et al. (2020), Covers how 
to use optimisation technologies and methodologies, including 
hybrid cellular automata (HCA) and GA, to solve the disassembly 
sequencing problem. The paper also provides a detailed description 
of the customisation of various operations to solve the disassembly 
problem, including the size of the population, initialisation, 
crossover, mutation operators also as stopping criteria. The paper 
shows the results of the ideal solution for different algorithms, HCA, 
GA and CGA, with respect to fitness value and execution time. 
Lambert (2003), outlines the latest research into the modelling, 
scheduling, and applications of the disassembly process. Zhou et al. 
(2019), gave a paper where disassembly sequence planning (DSP) 
methods are introduced from the point of view of disassembly 
modelling and disassembly planning methods. The paper describes 
the characteristics associated with different DSP methods as well as 
identifying future directions for DSP. Zhang et al. (2014) showed 
a parallel disassembly fuzzy-rough set mapping model that has 
been implemented to obtain the ideal parallel disassembly sequence. 
Some recent advances proposed by Ming et al. (2019) address 
the balancing of multirobotic disassembly lines with uncertain 
processing times using multirobotic systems and stochastic task 
processing. On the same theme, Xu et al. (2023) have explored 
a discrete brainstorming multi-objective optimizer, this was done 
for balancing robotic disassembly lines in the event of disassembly 
failure and product variability. The comparative results of these 
works are synthesized in Table 5.

4.2 Human-robot collaboration

Thanks to human-robot collaboration, disassembly tasks have 
become more efficient and flexible. Such collaborative action 
optimises the use of resources by giving repetitive or physically 
demanding tasks to robots, while leveraging human problem-
solving and adaptability skills. Thanks to advanced sensors and 
safety features, robots can work next to human operators. HRC’s 
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TABLE 5  Comparative table of algorithms used in optimization and strategic planning.

Authors Technologies/Algorithm Industry/Application

Guo et al. (2023) Q-Learning - Deep Q-Learning Disassembly Lines

Lee et al. (2022) Disassembly Sequence Planning (DSP) Task Planification

Qu et al. (2023) Deep Deterministic Policy Gradient (DDPG) - 
Delayed Updates - Adam Optimizer

Robotic disassembly operations

Çil et al. (2020) Mixed-Integer Linear Mathematical Model, Ant 
Colony Optimization

Robotic disassembly line balancing problem (RDLBP)

Laili et al. (2022) Dual-Selection Multiobjective Evolutionary Algorithm 
(DS-MOEA)

Sequence Planning

Hartono et al. (2022) Bees Algorithm Disassembly plans

Ramírez et al. (2020) HCA, GA, CGA Disassembly plans

Lambert (2003) Component-oriented, Product-oriented, Hierarchical 
tree, Reverse logistics approaches

Sequence Planning

Zhou et al. (2019) Nature-inspired heuristic algorithms (NIHA) - Linear 
Programming Methods (LPM) - Rule-Based Methods 

(RBM) - Stochastic Simulation (SSI)

Sequence Planning

Zhang et al. (2014) Fuzzy-rough set mapping Parallel disassembly – Sequence Planning

Ming et al. (2019) Mixed-Integer Programming Model, Task Precedence 
Diagram

Multi-Robotic Disassembly Line

Xu et al. (2023) Multi-Objective Discrete Brainstorming Optimizer Robotic Disassembly Line Balancing

adaptability offers major advantages for disassembly, as it enables 
rapid adaptation to different types of products as well as materials. 
In addition, working in this collaborative mode makes it easier 
to improve human skills, as robots help to stabilise components 
or carry out complex tasks. Hjorth and Chrysostomou (2022), 
Matheson et al. (2019) explores in a literature review, different 
technologies and standards related to human-robot collaboration 
in disassembly processes. Also, they focus on the technology 
and approaches used in human-robot collaborative disassembly 
systems. Kay et al. (2022), concluded that the optimum disassembly 
solution for an EV battery pack/module should be a human-robot 
collaboration, where the robot can efficiently make cuts on the 
battery pack, allowing the technician to quickly sort out the battery 
parts and remove any plugs or connectors that the robot is having 
trouble with. Li et al. (2018), have carried out research to overcome 
the challenges presented by the flexibility and reconfigurability 
of processing variable-sized components from electric vehicles, 
offering a robotized disassembly approach to boost value recovery 
and reduce environmental impact. Chen et al. (2014), describe a 
comprehensive state diagram for training a robot for a new bit 
position. With this approach, the robot can return several times to 
its initial position using joint control, thus improving the accuracy 
of the bit approach. The paper also offers some valuable insights into 
the development of robotic systems for unscrewing in disassembly 
processes, responding to the need for adaptability and flexibility 
within industrial automation. Chu and Chen (2023), present the 
results of a mathematical model which calculates the completion 

time under different conditions, and compare the performance of 
various optimization algorithms. Results reveal that the suggested 
approach achieves a reduced completion time while guaranteeing 
the sustainability of all disassembly sequences. One case study by 
Huang et al. (2020) shows a two-finger gripper KUKA LBR iiwa 
robot being employed to separate press-fit components, making use 
of active compliance monitoring along with impedance monitoring 
for safe and flexible interaction with human operators. Prioli and 
Rickli (2020), developed a cyber-physical architecture which uses 
human-robot interaction with collaborative robots (Cobots) to form 
a flexible automated disassembly system. The project aimed to 
solve the problem of executing large-scale disassembly operations 
which addresses uncertain end-of-life product conditions to support 
recycling and remanufacturing. Li et al. (2020) developed a control 
method which combines torque and position monitoring features 
with active compliance to unlock hex screws by using collaborative 
robots to improve end effector and screw head engagement 
success rates. Ding et al. (2019) proposes a knowledge graph-
based system which enables human-robot collaboration during 
disassembly operations. In order to lower the downtime and 
disassembly cost, Wu et al. (2022) have proposed a study on a 
multi-objective optimization model to be implemented in human-
robot collaborative disassembly extracting electric vehicle battery 
modules. In addition, a disassembly cell was designed by Huang et al. 
(2021) using active compliance and tactile sensing, making accurate 
human-robot interaction of complex elements such as automotive 
turbochargers. In Table 6, an overview of the referenced approaches. 

Frontiers in Robotics and AI 09 frontiersin.org

https://doi.org/10.3389/frobt.2025.1584657
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ameur et al. 10.3389/frobt.2025.1584657

TABLE 6  Comparative table of technologies/algorithms used in HRC.

Authors Technologies/Algorithm Industry/Application

Hjorth and Chrysostomou (2022)
Literature Review on HRCD (Human-Robot 

Collaborative Disassembly)

Industrial environments

Matheson et al. (2019) Manufacturing applications

Kay et al. (2022) Linear Quadratic Regulator (LQR) - Batch Least 
Squares Estimator - State Space Representation

Battery Modules

Li et al. (2018) Case Study Product Analysis - Material Recovery 
Evaluation

Electrical vehicles

Chen et al. (2014) Teaching by Demonstration - Collaboration Strategies Unscrewing

Chu and Chen (2023) Hybrid particle swarm optimization with Q-learning 
algorithm (HPSO_QL) - Particle swarm optimization 

(PSO) - Q-learning

Power batteries

Huang et al. (2020) Cartesian impedance controller Press-fitted components

Prioli and Rickli (2020) Cobots Critical Materials

Li et al. (2020) Spiral search strategy Unscrewing

Ding et al. (2019) Knowledge graph - Knowledge base Product disassembly

Wu et al. (2022) Multi-objective optimization for disassembling waste 
power battery modules in a human-robot hybrid mode

Battery disassembly

Huang et al. (2021) Active compliance, operator touch, and position 
control for a disassembly cell with complex geometries

Automotive Turbocharger

4.3 Computer vision integration

The combination of robotic devices with computer vision 
technology has transformed multiple industrial processes with 
robotic disassembly standing out as an exceptional application. 
Robotics-based disassembly operations require product or 
equipment extraction through computer vision methods which 
deliver unique advantages to this challenging process. By giving 
robots observation and environmental perception capabilities 
the accuracy levels together with operational speed and safety 
conditions of disassembly operations increase significantly. The 
accuracy and speed of robotic component identification improves 
when robots employ multiple product-specific detection models to 
update their environmental feature understanding. Research shows 
convolutional neural networks (CNN) (Chua, 1997) produce high 
image classification accuracy because they learn complex image 
data patterns, but their implementation demands big data sets and 
extensive computational resources. The YOLO (You Only Look 
Once) network stands apart through its real-time processing features 
and object detection speed of one pass through detection which 
benefits time-sensitive applications but demonstrates below-average 
efficiency in small-object scenes and cluttered scenes (Jiang et al., 
2022). Region-based CNNs (R-CNNs) demonstrate top accuracy 
for detection and segmentation in challenging environments yet 
their high processing needs require extended computation times 
(Liu et al., 2016). The Single Shot MultiBox Detector operates at a 
higher speed than R-CNN while maintaining moderate accuracy 

levels between the two approaches. The Real-time applicability 
domain matches this approach. Fast R-CNN took up an objective 
like that mentioned above: The researchers aimed to make the initial 
R-CNN faster without compromising its precision (Zhang et al., 
2018). SSD operates more rapidly than YOLO but slower than 
both detection models. Faster R-CNN delivers improved speed 
and accuracy in detecting small objects although its computational 
requirements surpass those of YOLO and SSD. By offering high 
precision capabilities RetinaNet detects objects of all sizes through 
a learning process that remains straightforward and efficient in 
terms of computational resources (Girshick, 2015). The Mask R-
CNN enhances Faster R-CNN through the addition of instance 
segmentation to object detection while maintaining exceptional 
precision yet requiring a significant increase in processing time and 
computational power. These models work together to boost robotic 
disassembly operations which results in advanced automation 
efficiency (Vuola et al., 2019). To complement this discussion,
Table 7 outlines the synthesized characteristics of prior works.

Brogan et al. (2021), presents deep learning methods and 
computer vision technology for automatic screw detection 
specifically designed for maintenance and disassembly operations. 
Researchers present different models along with their detection 
results for screws and objects utilizing both Average Accuracy 
(AA) and Frames Per Second (FPS) metrics. A training pool 
of 900 original images with 12.3 MPx resolution supported 
development and testing occurred across three distinct image sets 
containing 90 images each. The Tiny-YOLO v2 DL object detection 
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TABLE 7  Comparative table models used in computer vision.

Model Key applications Strengths Weaknesses

CNN (Chua, 1997) Component identification, defect 
detection

- High accuracy in image classification 
and object detection

- Ability to learn complex patterns

- Requires large datasets
- High computational cost

You Only Look Once (YOLO) 
(Jiang et al., 2022)

Real-time object detection

- Real-time processing
- Single pass for object detection

- Lower accuracy for small objects
- Less effective for highly cluttered 

scenes

Single Shot MultiBox Detector (SSD) 
(Liu et al., 2016)

- Faster than R-CNN
- Balances speed and accuracy

- Lower accuracy compared to R-CNN 
for small objects

R-CNN (Zhang et al., 2018)

Object detection and segmentation

- High accuracy in object detection and 
segmentation

- Effective for complex scenes

- Slower processing speed
- High computational requirements

Fast R-CNN (Girshick, 2015) - Faster than R-CNN- High accuracy in 
object detection and classification

- Still slower than YOLO and SSD
- High computational cost

RetinaNet (Wang et al., 2019) - High accuracy
- Efficient in detecting objects of 

varying sizes

- Higher computational cost
- Complex training process

Mask R-CNN (Vuola et al., 2019) - Adds instance segmentation to object 
detection

- High accuracy in detecting and 
segmenting objects

- Slower processing speed
- High computational requirements

system functioned as the testing model of choice. The paper by 
Vongbunyong et al. (2013) provided an extensive study of process 
monitoring for disassembly tasks through vision-based cognitive 
robotics systems along with oversight structures and decision 
pathways for achieving target objectives. Through IndiGolog’s 
programming platform a rule-based reasoning system operates 
an algorithm to minimize the evaluation space needed to execute 
operations at specified points during disassembly. The system 
maintains an execution loop until the desired goal state becomes 
reality. The system developed by Alvarez-de-los-Mozos E and 
team implements body tracking together with facial recognition 
with color segmentation to compute hand positioning for humans 
(Alvarez-de-los-Mozos and Renteria, 2017a). The development of 
human-robot interaction depends significantly on these processes. 
Through hand gestures combined with vocal instructions people 
can teach robots to understand specific operational settings. 
Mangold et al. (2022). have developed an adaptable system 
that performs quick screw head detection and classification in 
automated disassembly processes for reconditioning with robotic 
adaptability to diverse workpiece types. Using a 1280 × 1024 pixel 
monochromatic camera equipped with a 6 mm lens mounted 
on the robot arm to provide a hand-eye camera system, object 
detection architecture YOLOv5 is employed to locate and classify 
the screws within the perceived images. The dataset consists of 
550 images, among which six categories of screw heads at different 
sizes. Deng et al. (2024), proposed an approach that aims to provide 
efficient and highly accurate real-time exposure control of vision-
based robotic disassembly processes in difficult lighting conditions. 
It consists of three major modules: the region-of-interest (ROI) 
extraction module, along with the ROI quality assessment module 

in addition to the exposure time prediction module. Based on a 
deep learning-based object detection model, YOLOv5, the ROI 
extraction module can extract ROIs out of images captured using 
a variety of hypothetical lighting conditions. Deep learning with 
YOLOv5x performed better than conventional image processing 
techniques when identifying e-waste laptop parts as described 
by Bassiou et al. (2021). The experiment utilized Hasty. AI to 
label images of laptops with open or closed lids from a curated 
dataset. Yildiz et al. (2020) devised a visual perception system 
through deep learning and point cloud processing for automated 
hard disk (HDD) computer disassembly to achieve accurate gap 
detection. The researcher proposed a system for screw detection and 
localization in waste electronic products. The circular shapes that 
define screws as fundamental elements will be identified through 
Hough transform applications leading to a classifier which uses 
positive and negative training data examples. Using a dataset of 
over 10,000 samples, the performance of the screw classifiers is 
measured, and the two best-performing classifiers are combined into 
an integrated model (Yildiz and Wörgötter, 2019), Rehnholm (2021), 
concentrates specifically on two object detection approaches, pattern 
matching and CNNs, to benchmark how they perform in the task 
of dismantling electric vehicle batteries in order to find the optimal 
solution in terms of accuracy, recall performance as well as time 
consumption. A contrastive transfer learning framework (PLURAL) 
has been proposed by Biehler et al. (2023), which improves defect 
detection in 3D point clouds by using domain-invariant features. 
Zheng et al. (2022) have applied PointNet with the aim of identifying 
mechanical parts from 3D scans and facilitating robotic disassembly 
of complex automotive systems. The detailed characteristics of the 
cited contributions are organized in Table 8. 
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TABLE 8  Comparative table of technologies/algorithms used in CV integration.

Authors Technologies/Algorithm Industry/Application

Brogan et al. (2021) Tiny-YOLO v2 - Deep Learning Models Robotic disassembly

Vongbunyong et al. (2013) Haar classifier - Golog Programming Language Disassembly operations

Alvarez-de-los-Mozos and Renteria (2017a) RGB-D Kinect Sensor for Human E-waste management

Mangold et al. (2022) Eye-in-hand vision system - YOLOv5 Screw Head Detection

Deng et al. (2024) Illumination-Hypothesis Image-Expansion - Attention 
Region Fusion - Long Short-Term Memory (LSTM) - 

Deep Learning-Based Object Detector

Predictive Learning
Robotic disassembly

Bassiou et al. (2021) YOLOv5x Laptops

Yildiz et al. (2020) DBSCAN, HDBSCAN
Computer hard disks

Yildiz and Wörgötter (2019) DCNN - Hough transform

Rehnholm (2021) CNN - YOLOv4 Battery Pack

Biehler et al. (2023) 3D point cloud transfer learning with contrastive 
augmentation for robust and domain-invariant defect 

detection

Electronic component

Zheng et al. (2022) PointNet-based 3D deep neural network for automatic 
recognition of mechanical parts in disassembly tasks

Automotive component identification

TABLE 9  Four collaborative operating modes specified by robot safety 
standards.

Level Technologies

1 Safety-rated Monitored Stop (SMS)

2 Hand Guidance (HG)

3 Speed and Separation Monitoring (SSM)

4 Power and Force Limiting (PFL)

4.4 Safety standards for collaborative 
applications

The use of robotic disassembly systems is rapidly becoming 
an established feature across a range of industries, providing 
efficiency and accuracy in the disassembly of electronic devices 
and machinery. However, safety of human operators and the 
environment has become a major issue as the use of robotic systems 
for disassembly tasks continues to grow. The integration of safety 
measures plays a key role in minimising the risks involved in 
these tasks. ISO 10218 is a major standard governing the safety 
aspects of industrial robots, particularly those used in disassembly 
applications. 

4.4.1 ISO 10218-1:2011 - safety requirements for 
industrial robots—part 1: robots

This section deals with the essential safety aspects of 
industrial robots, including robot design, system integration and 

installation. Guidelines are given for risk assessment, safeguards, 
and implementation of safety features to avoid potential accidents 
in normal working conditions as well as under exceptional 
conditions (ISO, 2024a). 

4.4.2 ISO 10218-2:2011 - safety requirements for 
industrial robots—Part 2: robot systems and 
integration

In the second part, the standard deals with the interaction 
between a robot and its environment, which includes human 
workers. This part of the standard specifies collaborative operation 
and describes the safety measures that need to be taken when 
humans are operating in the proximity of robots, focusing on the 
need to reduce risks (ISO, 2024b). 

4.4.3 ISO/TS 15066:2016 - robots and robotic 
devices—collaborative robots

The technical specification delivers safety guidelines for 
robots that function together with human workers. Human-robot 
interfaces must establish the maximum force and pressure levels 
which humans can tolerate when accidently interacting with 
robotic systems. Risk assessment procedures and safety measures 
with guidelines for human-robot interactions are specified in the 
document while different collaborative operation modes such as 
speed and separation monitoring and hand guiding and power/force 
limiting are detailed. The standard functions as an essential addition 
to ISO 10218 by reducing risks in collaborative environments that 
combine human operators with robotic systems (ISO, 2024c).

Looking beyond ISO standards, a bunch of organisations have 
come up with safety guidelines that shape how robots are designed 
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TABLE 10  Comparative table of technologies/algorithms used in safety.

Authors Methods used Results

Wu et al. (2024) Position-Heading CBF, Flexible Performance Functions - Successful collision avoidance in dynamic environments
- Ensures safety-critical trajectory tracking with performance
  guarantees

Wang et al. (2024) Deep Learning, Semi-Supervised Object Detection - Real-time monitoring with high detection accuracy
- Effective in “cage-free” manufacturing environments

Zhu et al. (2024) Residual RL Models, Safety Task Design - Superior collision avoidance in dense crowds
- Achieved high success rates in both simulation and real-world
  experiments

Feng et al. (2024) Risk-Area Model, Dynamic Collision Avoidance - Significantly reduced unsafe actions in critical scenarios
- Maintains task efficiency despite safety interventions

Sahin and Savur (2022) Sensitivity Tuning, Velocity and Trajectory Adjustment - Moderate positive linear relationship between during-trial and
  after-trial safety ratings
- Significant improvement in perceived safety when sensitivity or all
  behaviors (velocity, trajectory, sensitivity) are adjusted

and used. In the EU the Machinery Directive (2006/42/EC) (Eur-
Lex, 2006) sets out a legal framework for machine safety including 
industrial robots which is often linked to EN ISO 10218 and 
ISO/TS 15066. In other sectors such as defence, safety rules 
cover autonomous and unmanned systems. NATO’s STANAG 
4586 (STANAG 4586, 2025) standard helps to standardise drone 
operations while the US Department of Defence applies MIL-
STD-882E (Department of Defense DoD, 2023) to manage risks 
associated with complex, high-risk robotic systems. Together, these 
policies highlight the general need for safety from factories to 
battlefields in order to ensure both the protection of people and the 
reliability of systems.

There are four collaborative operative modes identified by robot 
safety standards as mentioned in Table 9. Safety-rated Monitored 
Stop is the most basic form of collaboration. In this case, the worker 
executes manual tasks within the operational space shared by man 
and robot. Inside this collaboration zone, the human and the robot 
can work, however not at the same time since the robot is not allowed 
to move when the operator is occupying this shared space. Such 
cooperation is ideally suited to the manual placement of objects 
on the robot end-effector, whether for visual checking, finishing 
or complex tasks (Vysocky and Novak, 2016). Secondly, Hand 
Guidance. Also referred to as “direct teach”, it allows the operator 
in this collaborative mode to teach the robot positions by simply 
moving the robot, with no need for an additional interface, for 
example, a robot teach pendant. The robot arm’s weight is balanced 
to maintain its position. Using a guiding device, which drives the 
robot’s movement, allows the operator to be in direct contact with 
the machine (Ogura et al., 2012). Third mode refers to Speed and 
Separation Monitoring. This mode, also referred to as Speed and 
Position Monitoring (SPM), provides human access to the robot 
space using safety monitoring sensors. When a human is in the 1st 
zone, the robot operates at full speed, in the 2nd zone at slower speed, 
and in the 3rd zone it stops when the human enters (Marvel, 2013). 
A fourth mode is Power and Force limitation. It involves limiting the 
motor’s power and strength, to enable a human worker to work side-
by-side with the robot. It requires specific equipment and control 

models to handle collisions between robot and human without 
negative consequences for the human (Haddadin et al., 2015).
Table 10 demonstrates the application of safety technologies for 
human-robot collaboration in dynamic environments through 
key studies. The research presents both techniques and verified 
outcomes to display progress made in robot collision prevention 
alongside human perception of safety and robotic-human interface 
systems. Safety technology approaches highlight how vital it is to 
combine adaptive and predictive systems for maintaining safety and 
efficiency in shared work environments. 

4.5 Supplementary trends

Self-supervised learning refers to an approach based on 
a machine learning concept in which a model can learn 
representations directly from the data itself, with no explicit 
supervision. In conventional supervised learning, the model 
learns from labeled data, where every input is associated with a 
corresponding target output. Yet in self-supervised learning, a model 
is trained to predict certain aspects of the data without depending 
on external labels. 

4.5.1 Grasp2Vec
It combines the analysis of robotic grasping with the integration 

of words, presenting grasping actions as vectors like words in NLP. 
This exploits the properties of vector space for tasks such as grasp 
recommendation and similarity analysis, providing a new approach 
to improving robotic manipulation capabilities (Jang et al., 2018). 
As presented by Jang et al. (2018), there’s a representation learning 
from input, using a robotic arm to remove an object from the 
scene and examine the resulting scene and the object in the gripper. 
Making sure that the difference between the representations of 
the scene corresponds to the representation of the object. Also, as 
supervision of grasping using learned representations, A similarity 
metric between object representations has been used as a reward for 
grasping an object, which eliminates the need to manually label the 
results of the grasp.
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The grasping system detects motion while operating objects yet 
remains unaware of which specific objects it handles. The system 
includes cameras that record imagery of both the complete scene and 
the target object during gripping operations. During the initial training, 
the grasping robot is run to grasp any object at random, producing a 
triplicate of images (Spre, Spost, O): The camera shows O as an image 
representation of what the camera detected. The scene before the capture 
shows the object at position O. The image Spost shows the captured scene 
after capture while O is absent from the image. 

LGrasp2Vec = NPairs ((φs (spre) −φs (spost)) ,φo (o))

+NPairs (φo (o), (φs (spre) −φs (spost)))
 

4.5.2 RIG (reinforcement learning with imagined 
goals)

RIG combines reinforcement learning with self-supervised 
learning methods through an integrated system. The addition of 
imagined goals improves sample efficiency and policy robustness 
through exploration and learning of generalized policies. The method 
has demonstrated utility across different domains to improve RL agent 
performance within complicated scenarios. 

Like grasp2vec, RIG also applies data augmentation through 
latent relabeling of targets: specifically, half of the targets are 
randomly generated from the a priori and the other half are 
selected using HER. As with grasp2vec, the rewards do not depend 
on ground truth states, but only on the learned state encoding, 
so it can be used for training on real robots as outlined in 
the work of Nair et al. (2018). 

4.5.3 TCN (time-contrastive networks)
TCN (Time-Contrastive Networks) is based on the intuition 

that different viewpoints of the same scene at the same time 
should share the same integration (as in FaceNet), whereas the 
integration should vary over time, even for the same camera 
viewpoint. Therefore, the integration captures the semantic meaning 
of the underlying state rather than visual similarity. TCN integration 
is trained with triplet loss. Within the work of Sermanet et al. 
(2018), training data are collected by simultaneously taking videos 
of the same scene, but from different angles. All videos are
unlabeled.

The blue frames selected from two camera views at the same 
timestep are anchor and positive samples, while the red frame 
at a different timestep is the negative sample. TCNs are also 
used in various sequential data tasks such as speech recognition, 
natural language processing and time series prediction. They have 
demonstrated competitive performance against other recurrent 
and convolutional architectures, particularly for tasks requiring 
long-term dependencies and the capture of complex temporal
patterns. 

4.5.4 SOAR cognitive architecture
A powerful framework designed to emulate human cognitive 

processes and decision-making capabilities in complex and dynamic 
environments. As outlined in recent studies, Soar integrates state-
operator-action-result (SOAR) reasoning to systematically analyze 
and respond to environmental stimulus. It operates by constructing 
state spaces that combine long-term memory elements (domain-
specific knowledge) with short-term memory elements (real time 

environmental data). This architecture supports the generation of 
interpretable decisions through rule-based mechanisms, allowing 
agents to adaptively transition between states to achieve predefined 
goals The decision-making process in Soar can be expressed as:

Decision = arg max
O∈O
 (P(O) +R(O))

where O represents an operator from the set of available operators 
O,P(O) denotes the preference value of operator O, and R(O)
is the reinforcement-based reward associated with selecting O. 
Soar evaluates all operators, selecting the one with the highest 
combined preference and rewarding them to achieve efficient and 
goal-oriented transitions between states. Soar’s unique learning 
mechanisms enhance its adaptability. Through the chunking process 
Soar extracts new rules from historical problem-solving situations 
which shorten future decision times. Decision making benefits 
from reinforcement learning which adjusts operator preferences 
through feedback gathered from past activities. Through its episodic 
memory Soar can examine historical situations alongside present 
circumstances to generate decisions even when no direct rules exist. 

4.5.5 Adaptive control of thought-rational 
(ACT-R)

The robust cognitive architecture shows exceptional ability 
to model human thinking through its integration of perception 
modules with motor execution and memory retrieval systems. ACT-
R contains two memory modules with procedural and declarative 
functions which operate together through buffers and pattern-
matching to execute behavior-controlling production rules. The 
robotics systems utilizing ACT-R have shown successful deployment 
for adaptive tasks that support human-robot interaction along 
with collaborative functions. The system achieves performance 
through the combination of real-world sensory data with established 
cognitive models that produce context-specific responses. The 
modular design of ACT-R enables advanced perception along with 
motor functions that benefit humanoid robot implementations 
such as Pepper. Robotics systems that use ACT-R processing 
generate human emotion comprehension abilities which enable 
them to modify verbal and non-verbal outputs for improved human 
robot interaction. Practical implementations of ACT-R prove its 
ability to merge robotic operational competencies with human 
cognitive operations thereby developing more empathetic robotic
platforms. 

4.5.6 Robot operating system (ROS)
As middleware frameworks the Robot Operating System and 

its successor ROS2 are the key to how distributed robotics 
components talk and work together. It makes hardware complexity 
easier to deal with through a publish-subscribe model using 
topics, services and messages making it simpler to build robotics 
features in a modular way. While ROS1 is relying on a centralized 
master node, ROS2 adopts a decentralized approach based on the 
Data Distribution Service (DDS) offering better scalability and 
real-time communication also as fault tolerance. Both systems 
serve as the foundation for robotics software integration which 
support not only task orchestration but also system-level extensions
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such as safety monitoring as demonstrated by recent efforts
(Rivera et al., 2020). 

5 Conclusion and perspectives

In this paper, an in-depth systematic review is summarized on 
artificial intelligence approaches for robotic disassembly. Focusing 
on the optimization and strategic planning methodologies of HRC, 
CV, and safety measures. The benefits in these technologies are 
enormous, showing their potential to improve overall efficiency, 
precision, and flexibility in disassembly processes. Integration of 
machine learning, robotic handling, and advanced sensor systems 
finally seems to produce promising results toward disassembly 
tasks automation. Such technologies adequately treat issues related 
to the e-waste material diversity and intricate product designs, 
while being dependent on systems that will be totally safe for 
human operators, user-friendly, and easy to deploy. Despite all these 
advances, there still exist a few barriers to preventing the widespread 
robotic disassembly. Key issues are cost-effective implementation, 
scalability, and legal issues, these all must be addressed for proper 
application of these technologies in an industrial setup. More 
research and development need to be done further to give solutions 
related to these challenges, as this will move the field forward. 
There would need to be further advancement as well, in synthesis 
with robotics engineering, AI research, and policymaking. This 
form of interdisciplinary collaboration will be a defining feature in 
the future landscape for robotic disassembly. Such synchronization 
between technologic advancements, on one side, and practical, 
economic, and regulatory frameworks, on the other, could place the 
preconditions for effective and widespread introduction of robotic 
disassembly systems, which in turn will be an eventual step in 
the direction of more sustainable and efficient practices in e-waste 
management.
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