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In today's era of digital transformation, industries have made a decisive leap
by adopting data-driven, robot-assisted disassembly solutions that cut cycle
time and cost relative to labor-intensive manual tear-down. Thus, including
robots not only improved production activities but also strengthened the
safety measures that once the human operator was handling. Minimizing the
impact of the human factor in the process means minimizing incidents related
to it. The disassembly of Waste Electrical and Electronic Equipment (WEEE)
poses complex technical, economic, and safety challenges that traditional
manual methods struggle to meet. Thus, there is a need for a decision-making
tool harmonized with human cooperation, in which Artificial Intelligence (Al)
plays a pivotal role by providing financially viable solutions while ensuring a
secure collaborative environment for both humans and robots. This review
synthesizes recent advances in Al-enabled robotic disassembly by focusing on
four main research areas: i optimization and strategic planning, ii human-robot
collaboration (HRC), iii computer vision (CV) integration, and (iv) Safety for
Collaborative Applications. A supplementary subsection is also included to
briefly acknowledge emerging topics such as reinforcement learning that lie
outside the main scope but represent promising future directions. By analyzing
62 peer-reviewed studies published between 2000 and 2024, the results identify
how these themes converge, highlight open challenges, and map out future
research directions.

KEYWORDS

robotic disassembly, Al approaches, human robot collaboration, computer vision,
systematic review

1 Introduction

Natural resources used in electronics cannot be regenerated, or at least not at the
same rate at which they are consumed. The United States itself generated 500 million
volumes of electronic waste between 1997 and 2007 (Kiddee et al., 2013). During that
period, printed-circuit boards (PCBs) relied on costlier raw materials underscoring the
imperative for resource stewardship and long-term sustainability (Perossa et al., 2023).
Remanufacturing is defined as the process of bringing back a used product up to the level
of its original equipment manufacturer (OEM), with the same warranty as an equivalent
new product (Matsumoto and ITjomah, 2013). It has a major impact on preserving the

01 frontiersin.org


https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1584657
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1584657&domain=pdf&date_stamp=2025-10-09
mailto:m.tabaa@emsi.ma
mailto:m.tabaa@emsi.ma
https://doi.org/10.3389/frobt.2025.1584657
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1584657/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1584657/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1584657/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1584657/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Ameur et al.

environment, thanks to the use of recovered components which
are then reassembled into remanufactured products, saving on
raw materials as well as reducing production costs while at
the same time reducing the impact on the environment. A
visualization of the life cycle of resources according to the circular
economic business is presented in Figure 1. The early adoption
of such processes was driven by the need to repair, maintain
or understand complex machinery. However, as products became
more complex and the need to recover individual components
expanded, the term ‘disassembly’ was introduced allowing valuable
components to be extracted in a targeted manner, thereby
facilitating efficient recycling and reducing the environmental
footprint. The disassembly process represents the first phase in
the remanufacturing cycle (Priyono et al., 2016). It is the reverse
process in which a product is separated into its components and/or
sub-assemblies by non-destructive or semi-destructive operations
that damage only the connectors or fixings. If the process of
separating the product is not reversible, this process is called
disassembly (Vanegas et al., 2019). Within the resource life cycle,
the disassembly process itself focuses on the extraction of sub-
assemblies and individual components from end-of-life products
(EOLPs) so that they can be reused/manufactured. Non-destructive
disassembly refers to separating components without damaging
them, enabling their reuse, remanufacturing, or recycling. While this
preserves the integrity of individual parts, it does not necessarily
allow for full reassembly of the original product and is therefore not
always fully reversible. However, when it involves waste electrical
and electronic equipment, the main obstacles to successful recycling
(both technical and economic) include the difficulties associated
with classifying and disassembling components. Manual operations
are considered prohibitively expensive, and full automation is also
rejected due to the lack of uniformity of discarded appliances and the
exorbitant costs associated with traditional automation techniques
(Alvarez-de-los-Mozos and Renteria, 2017a). Manual disassembly
also causes safety problems which increase labor costs, representing
the second most expensive item for a recycling plant (D’Adamo et al.,
2016). Following the industrial revolutions, starting with the first
industrial robot up to the advanced technologies of industry 4.0 and
5.0. Robots in industrial processes make industrial plants even more
efficient, reducing errors and safety issues while improving both
product stability and consistency. For this reason, one interesting
solution consists of integrating robots into the disassembly process.
The use of robots is increasing in remanufacturing systems which
particularly improves the performance of disassembly lines. In
remanufacturing systems, robots can be deployed in various roles
ranging from fully autonomous execution of specific tasks to
collaborative operations alongside human workers or other robots,
with the flexibility to adapt to different task requirements. The main
advantage of robotics is in the accurate and consistent performance
of repeated tasks, such as on assembly lines. On the other hand, in the
context of robotic disassembly which involved several uncertainties,
a standard robot without any cognitive capacity for reasoning
and logic will have serious limitations compared with the ability
of a human being to disassemble an EOLP intuitively. To fully
realize the potential of automated disassembly, it is essential to
implement artificial intelligence approaches such as reinforcement
learning (RL) alongside with computer vision systems capable of
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automatically identifying and locating such items or finding the
most optimized path (Wegener et al., 2015).

This paper begins by presenting the background of robotic
followed by the paper
used to identify relevant studies

disassembly (Section 1), selection
methodology (Section 2)
across four main areas, and then proceeds to a detailed
analysis of selected studies (Section 3), which will be divided

according to domain.

2 Background: robotic disassembly

Robots enable faster, more consistent extraction of reusable
components from end-of-life (EOL) products. Robotic systems now
replace manual disassembly techniques to make recovery of reusable
materials from electrical and electronic products faster. Companies
demonstrate this breakthrough in their recycling processes. In 2016,
Apple introduced Liam and Daisy which demonstrated a treatment
process of e-waste by disassembling an iPhone within minutes
(Apple, 2024). Another example presented by CRG Automation
deployed robotic systems to safely disassemble the M55 rocket, a
chemical weapon containing nerve agents such as VX and sarin
(James, 2023). Without forgetting many use cases such as e-waste
or battery disassembly. Or their automated solution enabled precise
handling and neutralization within high-risk demilitarization
facilities (Allison, 2023; Fraunhofer IFF, 2025). Robotic disassembly
gives manufacturers promising performance benefits that combine
flexibility with profitability and safety protection along with
positive environmental outcomes. Robots can also handle many
different products as human operators. In addition, robots improve
both labor savings, making remanufacturing more affordable.
Using robotic disassembly helps with material reuse which lowers
environmental effects (Zeng et al., 2022). Finally, robots can perform
in unsafe areas and manage dangerous materials making human
workers safe (Xu et al., 2021).

2.1 Collaborative approaches for
disassembly

The existing e-waste management is confronted with a couple
of issues: Manual disassembly process is expensive, and automated
disassembly is complicated for virtually all types of legacy devices.
The current approach is tackling the issues using a hybrid approach
where robots and human operators collaborate (Alvarez-de-los-
Mozos and Renteria, 2017b). This approach incorporates robotic
and human operators to facilitate e-waste recycling with the
use of the best system designs under ecosystems. The basics
of this field include interactions between people and robots as
well as other advanced constructs of human-robot collaboration,
wherein the robot is endowed with the skills needed to work
with people (Feil-Seifer et al., 2009; HRI, 2024). Human-centered
collaborative robotics creates shared workspaces in which robots
handle repetitive or hazardous operations such as manipulating
irregularly shaped, toxin-laden components while humans provide
real-time judgement. Analyzing e-waste disassembly therefore
requires a concurrent examination of collaborative strategies and the
enabling tool-chain.
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An abstract visualization of the life cycle of resources according to the circular economic business model. 01: Dismantling of the EOLP; 02: Recycling
of materials; 03: New raw materials enter production during the design and manufacture of sub-components; 04: Production of the final product; 05:

Distribution of the product to customers; 06: Consumption of the product.

A specialized robotic cell for disassembly functions as a system
that uses PLC-controlled robots to execute disassembly tasks under
remote monitoring conditions (Dawande et al., 2005). Product
separation and hazardous element removal procedures through
recycling operations occur frequently with this technology to
achieve layout disassembly goals. Robotic cells integrate built-in
security and environmental awareness with custom disassembly
techniques but require human agency to complete tasks which
need direct assistance. Human Robot Coexistence operations at
disassembly sites yield challenging situations together with fresh
prospects for site management. People working alongside robots
achieve versatile disassembly task integration by having robots
complete excessive or dangerous procedures while humans handle
decision-focused activities (Magrini et al., 2020). Today’s industries
depend heavily on robotic technology for safety purposes because
these machines safely handle toxic materials alongside sharp objects.
Technical detection systems working with flexible robotic elements
alongside cautious safety protocols help reduce exposure risks
to create optimized work environments for concurrent human-
robot disassembling operations (Magrini et al., 2020). Humans
and robots perform their work simultaneously in the same space
through a coordinated disassembly method (Zhuang et al., 2019).
During synchronization the human workers share the space with
robotic systems through parallel task execution that maintains
individual work domain separation. Human operators first remove
screws from the workpiece, creating space for robotic extraction
operations that achieve highly precise results. This integrated
approach combines robotic processing elements alongside human
capabilities to increase complex disassembly performances
through enhanced accuracy rates and operational speed increases.
When humans work with robots in identical workspace areas
independent roles integrate as part of collaborative tasks. When
companies adopt collaborative systems, they achieve effective
workspace division between parallel assignments without sacrificing
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production objectives (Vancza et al., 2011). After robot systems
break down single components human operators check these
pieces to verify component condition before permitting additional
disassembly operations. The current advanced technology enables
several operations to execute simultaneously by forcing robotic
employees to stay regardless of preceding work completion so tasks
function without interruption. The methodology enables flexible
operations within complex disassembly systems by implementing
its collaborative process. The core technique behind robot-human
operator collaboration allows teams to work together in both
safe and optimized conditions (Ameur et al, 2024). Figure2
the  collaborative in  robotic

illustrates approaches

disassembly.

2.2 Challenges and difficulties

However, robotic disassembly of WEEE introduces a wide
range of associated challenges that make automation particularly
difficult when compared to assembly processes. Among the most
critical obstacles is the need to operate in dynamic environments
in which variability in product orientation, product condition
and component integrity can interfere with fixed robotic routines.
Contrary to structured industrial tasks the disassembly often takes
place in unpredictable spatial and material conditions which require
real-time detection and adaptation. And there are no uniform end-
of-life conditions as products reaching the end of their life may be
damaged at some stage, incomplete or severely worn (Hohm et al.,
2000). Different versions of products, user modifications may result
in different internal configurations which limit the effectiveness
of predefined CAD-based trajectories or fixed motion sequences
(Bogue, 2019). As a result of this unpredictability, the cognitive
and mechanical requirements of robotic systems increase. It also
involves a variety of tooling requirements (Kernbaum et al., 2009).
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The five Phases of the Paper Selection Methodology as adapted from Moher et al. (2009).

As opposed to repetitive assembly, the disassembly process often
requires several operations on a single product. This may involve
unscrewing, cutting, breaking, heating or lifting components. Each
of these operations may require a different tool head and actuation
force and level of precision. This requires reconfigurable end-
effectors and tool change mechanisms that offer multiple functions
while maintaining cycle time and safety (Poschmann et al., 2021;
Karlsson and Jarrhed, 2000). The coordination of these systems
is even more complex when it comes to seamless automation.
Perception, as well as decision-making and motion planning,
must be tightly synchronized in an integrated way, especially in
cluttered or constrained environments. Robots must be able to make
decisions regarding the disassembly sequence and execute high-
precision movements, all in real time. In collaborative scenarios,
the coordination between human and robotic agents becomes even
more critical so robust interaction protocols and safety mechanisms
are required. Other systemic barriers can include designs that are not
intended for disassembly, where products are manufactured to be
compact and tamper-proof with strong adhesives and welded joints
or concealed fixings. Such features make automated disassembly
technically unfeasible or economically inefficient (Huang et al.,
2021). The environmental and regulatory constraints associated
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with WEEE add to the complexity since robots need to securely
extract toxic components such as lithium batteries or mercury
lamps while maximizing the recovery of valuable materials such
as rare earth elements. In addition, the availability of datasets
and standardization remain major obstacles. While assembly is
documented and often standardized at every stage, the disassembly
process has no guidelines or detailed labelling. This limits the ability
to form intelligent systems or to generalize robot behavior across
product types.

3 Paper selection methodology

A systematic review selection framework was developed
specifically to conduct thorough research on robotic disassembly
processes and the integration of AI methods. This study follows
preferred reporting items for systematic reviews and meta-analyses
(PRISMA) guidelines as defined by Moher et al. (2009) through
a five-stage framework (Figure 3). Phase I begin by developing an
explanation of the topic then selecting research questions before
retrieving publications through multiple information platforms. The
second phase of methodology implements predefined eligibility
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TABLE 1 Search string and operators.

Search string and

operators

Robotic Disassembly “Robot disassembly” OR “Cobot
disassembly” OR “Disassembly
automation” OR “Industrial robotic
disassembly” OR “Automated reverse

engineering”

Optimization and Strategic Planning | “Optimized Robotic disassembly” OR
“Robotic Optimization disassembly”
OR “Strategic Planning disassembly”
OR “Efficient Robotic Disassembly” OR
“Robotic disassembly line balancing
problem (RDLBP)” OR “Disassembly
sequencing” OR “Path optimization in
disassembly”

HRC “Human-robot collaboration” OR
“Collaborative robots” OR “HRC
disassembly” OR “Human-robot
interaction in disassembly” OR
“Robot-assisted human disassembly”
OR “Shared control in robotics” OR

“Hybrid disassembly systems”

CV Integration “Computer vision disassembly” OR
“Machine vision in robotics” OR
“Vision-guided robotics disassembly”
OR “Image processing for disassembly
tasks” OR “Object detection in robotics”
OR “Vision-based disassembly systems”

OR “Al vision systems in robotics”

Safety “Safety in robotic disassembly” OR
“Disassembly safety protocols” OR
“Human safety in collaborative
robotics” OR “Safety optimization in
robotics” OR “Robot safety systems” OR
“Hazard prevention in disassembly
processes” OR “Standards for safe
human-robot collaboration”

criteria to refine the initial study pool which helps researchers
locate appropriate and researched-based documents. During Phase
III an extensive screening protocol integrates eligibility verification
with descriptive investigations of approved reviews. With Phase
IV researchers examine the chosen studies to discover feasibility
levels and confirm study objectives match. Results from this
research investigation present critical findings in Phase V. The
structured systematic process safeguards the scientific validity of
the review through detailed outcomes which researchers can easily
understand.

3.1 Search strategy

The research query covered the four major robotic disassembly
domains through precise search terms which included optimization
approaches alongside strategic planning methods denoting high-
level, offline decisions that structure the entire disassembly
system and human-robot collaboration systems. The research
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TABLE 2 Reviewing protocol.

Item ‘ Description

Time Period Publications from 2000 to 2024

Language Only English publications were considered to ensure
consistency in data extraction

Availability articles available online as full text directly or via
distributor

Publication type Journals, conference proceedings, industrial standards

(e.g., ISO), technical reports

Exclusion criteria | Studies not peer-reviewed, non-English papers, articles
unrelated to robotic disassembly, AI applications or the

four topics, and studies focusing on assembly

included search strings that combined “Robotic disassembly” with
“Disassembly automation” to find general robotic disassembly
studies and “Human-robot collaboration” with “Collaborative
robots” to identify specific Human-Robot Collaboration research.
The analysis included advanced technology searches with
combinations of “Computer vision disassembly” OR “AlI vision
systems in robotics” to examine robotic applications that merged
vision systems with artificial intelligence. Research examining
safety practices in robotic disassembly is covered through search
terms that include “Safety in robotic disassembly” OR “Human
safety in collaborative robotics” (Table 1). A methodical searching
system enables the review to identify an extensive collection of
research documents which accurately represents the current body
of knowledge.

The
2000 to 2024 (Table 2) to capture advancements in robotics and

research period encompassed publications from
artificial intelligence and industrial disassembly methods during
the last 24 years. The analysis included only publications written
in English to ensure uniformity throughout data extraction and
interpretation. The research included only peer-reviewed articles
and conference proceedings alongside industrial standards (such as
ISO) and technical reports that provided full text access through
online distributors or direct access. The research excluded materials
which did not meet peer-review standards or used non-English text
or focused on unrelated robotic disassembly or Al applications. The
analysis excluded research papers that analyzed assembly operations
alone without discussing reverse engineering or disassembly work.
The established criteria allowed researchers to select reviews which
directly focused on review objectives while preserving scientific
standards.

3.2 Paper selection

To strengthen the examination process, the PRISMA flow
diagram was used (Figure4). In this way, a systematic and
transparent evaluation of the literature is guaranteed, reinforcing
the reliability of the findings and comparison. The inclusion and
exclusion criteria were applied in distinct stages as follows:
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FIGURE 4
PRISMA flow diagram of studies selection procedure.

3.2.1 Title and abstract screening

The database search revealed 275 publications, which included
198 from Google Scholar, 47 from Scopus and 30 from Web of
Science. Our analysis has eliminated 21 duplicates and evaluated 248
separate research articles (Table 3). Those publications were selected
by the research team through a title and abstract evaluation process
in order to find their relevance to the research topic. Evaluation
included elimination of research that did not focus on robotic
disassembly techniques or artificial intelligence applications.

3.2.2 Full-text screening

A thorough review of full texts applied to 254 remaining articles.
The research excluded 192 articles throughout this stage for either
being unfeasible to implement or showing insufficient data or

Frontiers in Robotics and Al

TABLE 3 Initial set of studies found in relevant databases.

Google Scholar 198
Scopus 47
Web of Science 30

lacking alignment with the research context which included studies
unrelated to disassembly systems or human-robot collaboration or
safety. A thorough examination of 62 articles during this phase
resulted in a final selection of articles for comprehensive research.
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FIGURE 5
Topic Distribution of review.

20

3.2.3 Sorting based on content type

The final 62 articles received content-based categorization that
focused on the review’s four main themes including optimization
strategies and human-robot collaboration and computer vision
integration alongside safety for collaborative applications. These
articles served as the base for descriptive research and content
analysis that followed in the review process.

3.3 Content analysis and classification

This classification system defines the research spaces within
robotic disassembly studies (Figure 5). Through optimization and
strategic planning (O&SP) techniques developers create essential
algorithms that optimize both sequencing planning processes and
resource allocation effectiveness. Ergonomic system designs which
enable HRC produce spaces that are safer and more productive
for shared operations. Advanced visual systems integrated through
computer vision technology enable robots to work with greater
precision when detecting objects and sequencing disassembly
operations. Safety represents an ongoing necessity because risk-
minimizing systems need appropriate protocols to operate with
autonomous systems and collaborative systems alike. Research
within robotic disassembly studies shows how artificial intelligence
systems can solve various problems by linking different domains.

Figure 6 demonstrates strategic selection toward current
discoveries while including essential studies in robotic disassembly
and Artificial Intelligence research. Post-2019 scholarly work
dominates the selection since it demonstrates advanced robotic
disassembly techniques and Artificial Intelligence applications.
Recent studies reveal new understanding about the operation of
reinforcement learning systems together with collaborative robots
and computer vision software. A selection of 19 groundbreaking
papers originating from before 2018 serves as foundational material
for subsequent investigation.

This research organizes its sources into three main categories
including journal articles and conference papers and others
for clear understanding of resource analysis. Journal articles

Frontiers in Robotics and Al
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FIGURE 6

Pie chart of Year Distribution.

present extensive examinations of field knowledge that deliver
basic and advanced understanding. Conference papers highlight
contemporary innovations and developmental progress which
take place at prominent industrial events. The “Other Sources”
category in Table 4 contains industry reports and white papers and
industrial standards which strengthen the practical value of the
study. The table provides an overview of source categories together
with their assigned reference counts.

4 Detailed analysis of selected studies

Artificial intelligence has emerged as an essential tool for
tackling the complexity inherent in robotic disassembly systems
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TABLE 4 Categories of the selected papers.

Categories ’ Number

Journal Articles 43
Conference Papers 11
Other Sources 8

(Poschmann et al,, 2020). Within WEEE recycling, combining
different types of robots such as industrial high-precision arms with
flexible collaborative robots can broaden task coverage but also
increases integration challenges due to different control interfaces,
communication protocols and tooling requirements. AI overcomes
these challenges by providing adaptive perception, decision-making
and control capabilities that enable robots to navigate complex
product geometries and identify components and also perform
disassembly steps with greater accuracy and efficiency. Conceptually,
Al refers to the integration of human-like reasoning and learning
into machines. Machine learning forms the core to enable systems
to derive patterns from data and automatically build analytical
models, while deep learning takes advantage of multi-layer neural
networks to model complex relationships in visual, spatial or
sequential data (Saadat et al., 2022). Generative AI extends these
capabilities to content creation, which, in the disassembly domain,
can support tasks such as synthetic data generation for training
vision systems (Setra, 2023). The following sub-sections provides
a detailed analysis of selected studies grouped into four key
research domains that structure the current landscape of Al-
enabled robotic disassembly: optimization and strategic planning,
human-robot collaboration, computer vision integration, and safety
standards. These areas were identified as the most recurrent
and impactful across the reviewed literature. A final subsection
highlights supplementary trends, including emerging approaches
such as reinforcement learning, which while outside the main scope,
indicate promising future directions.

4.1 Optimization and strategic planning

The strategic planning along with navigation optimization of
robotic systems relies on Al algorithm execution (Chen et al,
2021). This capability allows the robot to effectively determine the
most straightforward path toward dismantling without harming
significant components and while reducing operational mistakes.
Guo et al. (2023) implemented a dual-agent approach using
Deep Q-learning (DQL) and RL to create decision frameworks
which enhanced state exploration efficiency and calculation speed.
Lee et al. (2022) established a computational framework for HRC
that combines safe human conditions with resource limitations to
optimize complete disassembly durations within defined security
boundaries. Qu et al. (2023) employed RL together with neural
networks and actor-critic modeling to teach robots how to extract
bolts from door chain grooves resulting in less than 1 mm of
clearance between components. The objective of this work was
to improve robotic disassembly capabilities through skill transfer
and training capabilities. Cil et al. (2020) utilized Ant Colony
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Optimisation (ACO) along with Genetic Algorithm (GA) and
Random Search (RS) algorithms for comparative analysis. ISTACO
represents a proposed solution which uses multiple algorithms
to optimize disassembly line balancing while incorporating the
best elements of existing solution approaches to achieve improved
performance. The study by Laili et al. (2022) shows how backup
actions boost disassembly sequence planning reliability during
automation system failures. The research presents three backup
action types and introduces a new approach to disassembly planning
along with the proposed DS-MOEA solution method. A two-pointer
detection system combines with interference matrix technology
to determine extractable components from subassemblies. The
algorithm surpasses conventional methods by constructing optimal
sequence plans while attaining superior completion results through
performance enhancement. The research by Hartono et al. (2022).
developed a robot planning model which determines disassembly
product sequences to maximize profits alongside saving energy
and reducing greenhouse gas emissions. A computational model
implementing the bee algorithm takes inspiration from bees’ natural
food search behavior. The algorithm functions to enhance the
efficiency of disassembly plans. The Bees algorithm functions
to determine both optimal recovery options and associated
disassembly information. Ramirez et al. (2020), Covers how
to use optimisation technologies and methodologies, including
hybrid cellular automata (HCA) and GA, to solve the disassembly
sequencing problem. The paper also provides a detailed description
of the customisation of various operations to solve the disassembly
problem, including the size of the population, initialisation,
crossover, mutation operators also as stopping criteria. The paper
shows the results of the ideal solution for different algorithms, HCA,
GA and CGA, with respect to fitness value and execution time.
Lambert (2003), outlines the latest research into the modelling,
scheduling, and applications of the disassembly process. Zhou et al.
(2019), gave a paper where disassembly sequence planning (DSP)
methods are introduced from the point of view of disassembly
modelling and disassembly planning methods. The paper describes
the characteristics associated with different DSP methods as well as
identifying future directions for DSP. Zhang et al. (2014) showed
a parallel disassembly fuzzy-rough set mapping model that has
been implemented to obtain the ideal parallel disassembly sequence.
Some recent advances proposed by Ming et al. (2019) address
the balancing of multirobotic disassembly lines with uncertain
processing times using multirobotic systems and stochastic task
processing. On the same theme, Xu et al. (2023) have explored
a discrete brainstorming multi-objective optimizer, this was done
for balancing robotic disassembly lines in the event of disassembly
failure and product variability. The comparative results of these
works are synthesized in Table 5.

4.2 Human-robot collaboration

Thanks to human-robot collaboration, disassembly tasks have
become more efficient and flexible. Such collaborative action
optimises the use of resources by giving repetitive or physically
demanding tasks to robots, while leveraging human problem-
solving and adaptability skills. Thanks to advanced sensors and
safety features, robots can work next to human operators. HRC’s
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TABLE 5 Comparative table of algorithms used in optimization and strategic planning.

10.3389/frobt.2025.1584657

Authors Technologies/Algorithm Industry/Application
Guo et al. (2023) Q-Learning - Deep Q-Learning Disassembly Lines
Lee et al. (2022) Disassembly Sequence Planning (DSP) Task Planification

Qu et al. (2023)

Deep Deterministic Policy Gradient (DDPG) -
Delayed Updates - Adam Optimizer

Robotic disassembly operations

Cil et al. (2020)

Mixed-Integer Linear Mathematical Model, Ant
Colony Optimization

Robotic disassembly line balancing problem (RDLBP)

Laili et al. (2022)

Dual-Selection Multiobjective Evolutionary Algorithm

Sequence Planning

(DS-MOEA)
Hartono et al. (2022) Bees Algorithm Disassembly plans
Ramirez et al. (2020) HCA, GA, CGA Disassembly plans

Lambert (2003)

Component-oriented, Product-oriented, Hierarchical
tree, Reverse logistics approaches

Sequence Planning

Zhou et al. (2019)

Nature-inspired heuristic algorithms (NTHA) - Linear
Programming Methods (LPM) - Rule-Based Methods

Sequence Planning

(RBM) - Stochastic Simulation (SSI)

Zhang et al. (2014) Fuzzy-rough set mapping

Parallel disassembly — Sequence Planning

Ming et al. (2019)
Diagram

Mixed-Integer Programming Model, Task Precedence

Multi-Robotic Disassembly Line

Xu et al. (2023)

Multi-Objective Discrete Brainstorming Optimizer

Robotic Disassembly Line Balancing

adaptability offers major advantages for disassembly, as it enables
rapid adaptation to different types of products as well as materials.
In addition, working in this collaborative mode makes it easier
to improve human skills, as robots help to stabilise components
or carry out complex tasks. Hjorth and Chrysostomou (2022),
Matheson et al. (2019) explores in a literature review, different
technologies and standards related to human-robot collaboration
in disassembly processes. Also, they focus on the technology
and approaches used in human-robot collaborative disassembly
systems. Kay et al. (2022), concluded that the optimum disassembly
solution for an EV battery pack/module should be a human-robot
collaboration, where the robot can efficiently make cuts on the
battery pack, allowing the technician to quickly sort out the battery
parts and remove any plugs or connectors that the robot is having
trouble with. Li et al. (2018), have carried out research to overcome
the challenges presented by the flexibility and reconfigurability
of processing variable-sized components from electric vehicles,
offering a robotized disassembly approach to boost value recovery
and reduce environmental impact. Chen et al. (2014), describe a
comprehensive state diagram for training a robot for a new bit
position. With this approach, the robot can return several times to
its initial position using joint control, thus improving the accuracy
of the bit approach. The paper also offers some valuable insights into
the development of robotic systems for unscrewing in disassembly
processes, responding to the need for adaptability and flexibility
within industrial automation. Chu and Chen (2023), present the
results of a mathematical model which calculates the completion
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time under different conditions, and compare the performance of
various optimization algorithms. Results reveal that the suggested
approach achieves a reduced completion time while guaranteeing
the sustainability of all disassembly sequences. One case study by
Huang et al. (2020) shows a two-finger gripper KUKA LBR iiwa
robot being employed to separate press-fit components, making use
of active compliance monitoring along with impedance monitoring
for safe and flexible interaction with human operators. Prioli and
Rickli (2020), developed a cyber-physical architecture which uses
human-robot interaction with collaborative robots (Cobots) to form
a flexible automated disassembly system. The project aimed to
solve the problem of executing large-scale disassembly operations
which addresses uncertain end-of-life product conditions to support
recycling and remanufacturing. Li et al. (2020) developed a control
method which combines torque and position monitoring features
with active compliance to unlock hex screws by using collaborative
robots to improve end effector and screw head engagement
success rates. Ding et al. (2019) proposes a knowledge graph-
based system which enables human-robot collaboration during
disassembly operations. In order to lower the downtime and
disassembly cost, Wu et al. (2022) have proposed a study on a
multi-objective optimization model to be implemented in human-
robot collaborative disassembly extracting electric vehicle battery
modules. In addition, a disassembly cell was designed by Huang et al.
(2021) using active compliance and tactile sensing, making accurate
human-robot interaction of complex elements such as automotive
turbochargers. In Table 6, an overview of the referenced approaches.
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TABLE 6 Comparative table of technologies/algorithms used in HRC.

Technologies/Algorithm

10.3389/frobt.2025.1584657

Industry/Application

Hjorth and Chrysostomou (2022)

Matheson et al. (2019)

Literature Review on HRCD (Human-Robot
Collaborative Disassembly)

Industrial environments

Manufacturing applications

Kay et al. (2022) Linear Quadratic Regulator (LQR) - Batch Least Battery Modules
Squares Estimator - State Space Representation
Lietal. (2018) Case Study Product Analysis - Material Recovery Electrical vehicles
Evaluation
Chen et al. (2014) Teaching by Demonstration - Collaboration Strategies Unscrewing
Chu and Chen (2023) Hybrid particle swarm optimization with Q-learning Power batteries

algorithm (HPSO_QL) - Particle swarm optimization
(PSO) - Q-learning

Huang et al. (2020)

Cartesian impedance controller

Press-fitted components

Prioli and Rickli (2020) Cobots Critical Materials
Li et al. (2020) Spiral search strategy Unscrewing
Ding et al. (2019) Knowledge graph - Knowledge base Product disassembly
Wu et al. (2022) Multi-objective optimization for disassembling waste Battery disassembly

power battery modules in a human-robot hybrid mode

Huang et al. (2021)

Active compliance, operator touch, and position
control for a disassembly cell with complex geometries

Automotive Turbocharger

4.3 Computer vision integration

The combination of robotic devices with computer vision
technology has transformed multiple industrial processes with
robotic disassembly standing out as an exceptional application.
Robotics-based disassembly operations require product or
equipment extraction through computer vision methods which
deliver unique advantages to this challenging process. By giving
robots observation and environmental perception capabilities
the accuracy levels together with operational speed and safety
conditions of disassembly operations increase significantly. The
accuracy and speed of robotic component identification improves
when robots employ multiple product-specific detection models to
update their environmental feature understanding. Research shows
convolutional neural networks (CNN) (Chua, 1997) produce high
image classification accuracy because they learn complex image
data patterns, but their implementation demands big data sets and
extensive computational resources. The YOLO (You Only Look
Once) network stands apart through its real-time processing features
and object detection speed of one pass through detection which
benefits time-sensitive applications but demonstrates below-average
efficiency in small-object scenes and cluttered scenes (Jiang et al.,
2022). Region-based CNNs (R-CNNs) demonstrate top accuracy
for detection and segmentation in challenging environments yet
their high processing needs require extended computation times
(Liu et al., 2016). The Single Shot MultiBox Detector operates at a
higher speed than R-CNN while maintaining moderate accuracy
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levels between the two approaches. The Real-time applicability
domain matches this approach. Fast R-CNN took up an objective
like that mentioned above: The researchers aimed to make the initial
R-CNN faster without compromising its precision (Zhang et al.,
2018). SSD operates more rapidly than YOLO but slower than
both detection models. Faster R-CNN delivers improved speed
and accuracy in detecting small objects although its computational
requirements surpass those of YOLO and SSD. By offering high
precision capabilities RetinaNet detects objects of all sizes through
a learning process that remains straightforward and efficient in
terms of computational resources (Girshick, 2015). The Mask R-
CNN enhances Faster R-CNN through the addition of instance
segmentation to object detection while maintaining exceptional
precision yet requiring a significant increase in processing time and
computational power. These models work together to boost robotic
disassembly operations which results in advanced automation
efficiency (Vuola et al., 2019). To complement this discussion,
Table 7 outlines the synthesized characteristics of prior works.
Brogan et al. (2021), presents deep learning methods and
computer vision technology for automatic screw detection
specifically designed for maintenance and disassembly operations.
Researchers present different models along with their detection
results for screws and objects utilizing both Average Accuracy
(AA) and Frames Per Second (FPS) metrics. A training pool
of 900 original images with 12.3 MPx resolution supported
development and testing occurred across three distinct image sets
containing 90 images each. The Tiny-YOLO v2 DL object detection
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TABLE 7 Comparative table models used in computer vision.

Model Key applications

CNN (Chua, 1997) Component identification, defect

detection

10.3389/frobt.2025.1584657

Strengths Weaknesses

- High accuracy in image classification - Requires large datasets
and object detection - High computational cost

- Ability to learn complex patterns

You Only Look Once (YOLO)
(Jiang et al., 2022)

Real-time object detection

Single Shot MultiBox Detector (SSD)
(Liu et al., 2016)

- Real-time processing
- Single pass for object detection

- Lower accuracy for small objects
- Less effective for highly cluttered
scenes

- Faster than R-CNN
- Balances speed and accuracy

- Lower accuracy compared to R-CNN
for small objects

R-CNN (Zhang et al., 2018)

Fast R-CNN (Girshick, 2015)

RetinaNet (Wang et al., 2019) Object detection and segmentation

Mask R-CNN (Vuola et al., 2019)

- High accuracy in object detection and - Slower processing speed

segmentation - High computational requirements

- Effective for complex scenes

- Still slower than YOLO and SSD
- High computational cost

- Faster than R-CNN- High accuracy in
object detection and classification

- High accuracy - Higher computational cost
- Efficient in detecting objects of

varying sizes

- Complex training process

- Adds instance segmentation to object - Slower processing speed

detection - High computational requirements
- High accuracy in detecting and

segmenting objects

system functioned as the testing model of choice. The paper by
Vongbunyong et al. (2013) provided an extensive study of process
monitoring for disassembly tasks through vision-based cognitive
robotics systems along with oversight structures and decision
pathways for achieving target objectives. Through IndiGolog’s
programming platform a rule-based reasoning system operates
an algorithm to minimize the evaluation space needed to execute
operations at specified points during disassembly. The system
maintains an execution loop until the desired goal state becomes
reality. The system developed by Alvarez-de-los-Mozos E and
team implements body tracking together with facial recognition
with color segmentation to compute hand positioning for humans
(Alvarez-de-los-Mozos and Renteria, 2017a). The development of
human-robot interaction depends significantly on these processes.
Through hand gestures combined with vocal instructions people
can teach robots to understand specific operational settings.
Mangold et al. (2022). have developed an adaptable system
that performs quick screw head detection and classification in
automated disassembly processes for reconditioning with robotic
adaptability to diverse workpiece types. Using a 1280 x 1024 pixel
monochromatic camera equipped with a 6 mm lens mounted
on the robot arm to provide a hand-eye camera system, object
detection architecture YOLOV5 is employed to locate and classify
the screws within the perceived images. The dataset consists of
550 images, among which six categories of screw heads at different
sizes. Deng et al. (2024), proposed an approach that aims to provide
efficient and highly accurate real-time exposure control of vision-
based robotic disassembly processes in difficult lighting conditions.
It consists of three major modules: the region-of-interest (ROI)
extraction module, along with the ROI quality assessment module
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in addition to the exposure time prediction module. Based on a
deep learning-based object detection model, YOLOV5, the ROI
extraction module can extract ROIs out of images captured using
a variety of hypothetical lighting conditions. Deep learning with
YOLOvV5x performed better than conventional image processing
techniques when identifying e-waste laptop parts as described
by Bassiou et al. (2021). The experiment utilized Hasty. AI to
label images of laptops with open or closed lids from a curated
dataset. Yildiz et al. (2020) devised a visual perception system
through deep learning and point cloud processing for automated
hard disk (HDD) computer disassembly to achieve accurate gap
detection. The researcher proposed a system for screw detection and
localization in waste electronic products. The circular shapes that
define screws as fundamental elements will be identified through
Hough transform applications leading to a classifier which uses
positive and negative training data examples. Using a dataset of
over 10,000 samples, the performance of the screw classifiers is
measured, and the two best-performing classifiers are combined into
an integrated model (Yildiz and Worgbtter, 2019), Rehnholm (2021),
concentrates specifically on two object detection approaches, pattern
matching and CNNs, to benchmark how they perform in the task
of dismantling electric vehicle batteries in order to find the optimal
solution in terms of accuracy, recall performance as well as time
consumption. A contrastive transfer learning framework (PLURAL)
has been proposed by Biehler et al. (2023), which improves defect
detection in 3D point clouds by using domain-invariant features.
Zhengetal. (2022) have applied PointNet with the aim of identifying
mechanical parts from 3D scans and facilitating robotic disassembly
of complex automotive systems. The detailed characteristics of the
cited contributions are organized in Table 8.
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TABLE 8 Comparative table of technologies/algorithms used in CV integration.

Authors

Brogan et al. (2021)

Technologies/Algorithm

Tiny-YOLO v2 - Deep Learning Models

10.3389/frobt.2025.1584657

Industry/Application

Robotic disassembly

Vongbunyong et al. (2013)

Haar classifier - Golog Programming Language

Disassembly operations

Alvarez-de-los-Mozos and Renteria (2017a)

RGB-D Kinect Sensor for Human

E-waste management

Mangold et al. (2022)

Eye-in-hand vision system - YOLOv5

Screw Head Detection

Deng et al. (2024)

Illumination-Hypothesis Image-Expansion - Attention

Predictive Learning

Region Fusion - Long Short-Term Memory (LSTM) - Robotic disassembly
Deep Learning-Based Object Detector
Bassiou et al. (2021) YOLOvV5x Laptops
Yildiz et al. (2020) DBSCAN, HDBSCAN
Computer hard disks
Yildiz and Worgétter (2019) DCNN - Hough transform
Rehnholm (2021) CNN - YOLOv4 Battery Pack

Biehler et al. (2023)

3D point cloud transfer learning with contrastive
augmentation for robust and domain-invariant defect
detection

Electronic component

Zheng et al. (2022)

PointNet-based 3D deep neural network for automatic
recognition of mechanical parts in disassembly tasks

Automotive component identification

TABLE 9 Four collaborative operating modes specified by robot safety
standards.

installation. Guidelines are given for risk assessment, safeguards,
and implementation of safety features to avoid potential accidents
in normal working conditions as well as under exceptional

4.4.2 1SO 10218-2:2011 - safety requirements for
industrial robots—Part 2: robot systems and

In the second part, the standard deals with the interaction

Level ’ Technologies
conditions (ISO, 2024a).
1 Safety-rated Monitored Stop (SMS)
2 Hand Guidance (HG)
3 Speed and Separation Monitoring (SSM) integ ration
4 Power and Force Limiting (PFL)

4.4 Safety standards for collaborative
applications

The use of robotic disassembly systems is rapidly becoming
an established feature across a range of industries, providing
efficiency and accuracy in the disassembly of electronic devices
and machinery. However, safety of human operators and the
environment has become a major issue as the use of robotic systems
for disassembly tasks continues to grow. The integration of safety
measures plays a key role in minimising the risks involved in
these tasks. ISO 10218 is a major standard governing the safety
aspects of industrial robots, particularly those used in disassembly
applications.

441 1SO 10218-1:2011 - safety requirements for
industrial robots—part 1: robots

This section deals with the essential safety aspects of
industrial robots, including robot design, system integration and
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between a robot and its environment, which includes human
workers. This part of the standard specifies collaborative operation
and describes the safety measures that need to be taken when
humans are operating in the proximity of robots, focusing on the
need to reduce risks (I1SO, 2024b).

4.4.3 ISO/TS 15066:2016 - robots and robotic
devices—collaborative robots

The technical specification delivers safety guidelines for
robots that function together with human workers. Human-robot
interfaces must establish the maximum force and pressure levels
which humans can tolerate when accidently interacting with
robotic systems. Risk assessment procedures and safety measures
with guidelines for human-robot interactions are specified in the
document while different collaborative operation modes such as
speed and separation monitoring and hand guiding and power/force
limiting are detailed. The standard functions as an essential addition
to ISO 10218 by reducing risks in collaborative environments that
combine human operators with robotic systems (ISO, 2024c).

Looking beyond ISO standards, a bunch of organisations have
come up with safety guidelines that shape how robots are designed
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TABLE 10 Comparative table of technologies/algorithms used in safety.

Authors

Wu et al. (2024)

Methods used

Position-Heading CBE, Flexible Performance Functions

10.3389/frobt.2025.1584657

Results

- Successful collision avoidance in dynamic environments
- Ensures safety-critical trajectory tracking with performance
guarantees

Wang et al. (2024) Deep Learning, Semi-Supervised Object Detection

- Real-time monitoring with high detection accuracy
- Effective in “cage-free” manufacturing environments

Zhu et al. (2024) Residual RL Models, Safety Task Design

- Superior collision avoidance in dense crowds
- Achieved high success rates in both simulation and real-world
experiments

Feng et al. (2024) Risk-Area Model, Dynamic Collision Avoidance

- Significantly reduced unsafe actions in critical scenarios
- Maintains task efficiency despite safety interventions

Sahin and Savur (2022)

Sensitivity Tuning, Velocity and Trajectory Adjustment

- Moderate positive linear relationship between during-trial and
after-trial safety ratings

- Significant improvement in perceived safety when sensitivity or all
behaviors (velocity, trajectory, sensitivity) are adjusted

and used. In the EU the Machinery Directive (2006/42/EC) (Eur-
Lex, 2006) sets out a legal framework for machine safety including
industrial robots which is often linked to EN ISO 10218 and
ISO/TS 15066. In other sectors such as defence, safety rules
cover autonomous and unmanned systems. NATOs STANAG
4586 (STANAG 4586, 2025) standard helps to standardise drone
operations while the US Department of Defence applies MIL-
STD-882E (Department of Defense DoD, 2023) to manage risks
associated with complex, high-risk robotic systems. Together, these
policies highlight the general need for safety from factories to
battlefields in order to ensure both the protection of people and the
reliability of systems.

There are four collaborative operative modes identified by robot
safety standards as mentioned in Table 9. Safety-rated Monitored
Stop is the most basic form of collaboration. In this case, the worker
executes manual tasks within the operational space shared by man
and robot. Inside this collaboration zone, the human and the robot
can work, however not at the same time since the robot is not allowed
to move when the operator is occupying this shared space. Such
cooperation is ideally suited to the manual placement of objects
on the robot end-effector, whether for visual checking, finishing
or complex tasks (Vysocky and Novak, 2016). Secondly, Hand
Guidance. Also referred to as “direct teach’, it allows the operator
in this collaborative mode to teach the robot positions by simply
moving the robot, with no need for an additional interface, for
example, a robot teach pendant. The robot arm’s weight is balanced
to maintain its position. Using a guiding device, which drives the
robot’s movement, allows the operator to be in direct contact with
the machine (Ogura et al., 2012). Third mode refers to Speed and
Separation Monitoring. This mode, also referred to as Speed and
Position Monitoring (SPM), provides human access to the robot
space using safety monitoring sensors. When a human is in the 1st
zone, the robot operates at full speed, in the 2nd zone at slower speed,
and in the 3rd zone it stops when the human enters (Marvel, 2013).
A fourth mode is Power and Force limitation. It involves limiting the
motor’s power and strength, to enable a human worker to work side-
by-side with the robot. It requires specific equipment and control
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models to handle collisions between robot and human without
negative consequences for the human (Haddadin et al, 2015).
Table 10 demonstrates the application of safety technologies for
human-robot collaboration in dynamic environments through
key studies. The research presents both techniques and verified
outcomes to display progress made in robot collision prevention
alongside human perception of safety and robotic-human interface
systems. Safety technology approaches highlight how vital it is to
combine adaptive and predictive systems for maintaining safety and
efficiency in shared work environments.

4.5 Supplementary trends

Self-supervised learning refers to an approach based on
a machine learning concept in which a model can learn
representations directly from the data itself, with no explicit
supervision. In conventional supervised learning, the model
learns from labeled data, where every input is associated with a
corresponding target output. Yet in self-supervised learning, a model
is trained to predict certain aspects of the data without depending
on external labels.

4.5.1 Grasp2Vec

It combines the analysis of robotic grasping with the integration
of words, presenting grasping actions as vectors like words in NLP.
This exploits the properties of vector space for tasks such as grasp
recommendation and similarity analysis, providing a new approach
to improving robotic manipulation capabilities (Jang et al., 2018).
As presented by Jang et al. (2018), there’s a representation learning
from input, using a robotic arm to remove an object from the
scene and examine the resulting scene and the object in the gripper.
Making sure that the difference between the representations of
the scene corresponds to the representation of the object. Also, as
supervision of grasping using learned representations, A similarity
metric between object representations has been used as a reward for
grasping an object, which eliminates the need to manually label the
results of the grasp.
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The grasping system detects motion while operating objects yet
remains unaware of which specific objects it handles. The system
includes cameras that record imagery of both the complete scene and
the target object during gripping operations. During the initial training,
the grasping robot is run to grasp any object at random, producing a
triplicate of images (Spre, Spost, O): The camera shows O as an image
representation of what the camera detected. The scene before the capture
shows the object at position O. The image Spost shows the captured scene
after capture while O is absent from the image.

LGrasp2Vec = NPairs ((¢s (spre) — gs (spost)) , o (0))
+ NPairs (¢o (0), (¢s (spre) — gs (spost)))

4.5.2 RIG (reinforcement learning with imagined
goals)

RIG combines reinforcement learning with self-supervised
learning methods through an integrated system. The addition of
imagined goals improves sample efficiency and policy robustness
through exploration and learning of generalized policies. The method
has demonstrated utility across different domains to improve RL agent
performance within complicated scenarios.

Like grasp2vec, RIG also applies data augmentation through
latent relabeling of targets: specifically, half of the targets are
randomly generated from the a priori and the other half are
selected using HER. As with grasp2vec, the rewards do not depend
on ground truth states, but only on the learned state encoding,
so it can be used for training on real robots as outlined in
the work of Nair et al. (2018).

4.5.3 TCN (time-contrastive networks)

TCN (Time-Contrastive Networks) is based on the intuition
that different viewpoints of the same scene at the same time
should share the same integration (as in FaceNet), whereas the
integration should vary over time, even for the same camera
viewpoint. Therefore, the integration captures the semantic meaning
of the underlying state rather than visual similarity. TCN integration
is trained with triplet loss. Within the work of Sermanet et al.
(2018), training data are collected by simultaneously taking videos
of the same scene, but from different angles. All videos are
unlabeled.

The blue frames selected from two camera views at the same
timestep are anchor and positive samples, while the red frame
at a different timestep is the negative sample. TCNs are also
used in various sequential data tasks such as speech recognition,
natural language processing and time series prediction. They have
demonstrated competitive performance against other recurrent
and convolutional architectures, particularly for tasks requiring
long-term dependencies and the capture of complex temporal
patterns.

4.5.4 SOAR cognitive architecture

A powerful framework designed to emulate human cognitive
processes and decision-making capabilities in complex and dynamic
environments. As outlined in recent studies, Soar integrates state-
operator-action-result (SOAR) reasoning to systematically analyze
and respond to environmental stimulus. It operates by constructing
state spaces that combine long-term memory elements (domain-
specific knowledge) with short-term memory elements (real time
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environmental data). This architecture supports the generation of
interpretable decisions through rule-based mechanisms, allowing
agents to adaptively transition between states to achieve predefined
goals The decision-making process in Soar can be expressed as:

Decision = arg max (P(O) + R(0O))
0O

where O represents an operator from the set of available operators
O,P(0O) denotes the preference value of operator O, and R(O)
is the reinforcement-based reward associated with selecting O.
Soar evaluates all operators, selecting the one with the highest
combined preference and rewarding them to achieve efficient and
goal-oriented transitions between states. Soar’s unique learning
mechanisms enhance its adaptability. Through the chunking process
Soar extracts new rules from historical problem-solving situations
which shorten future decision times. Decision making benefits
from reinforcement learning which adjusts operator preferences
through feedback gathered from past activities. Through its episodic
memory Soar can examine historical situations alongside present
circumstances to generate decisions even when no direct rules exist.

4.5.5 Adaptive control of thought-rational
(ACT-R)

The robust cognitive architecture shows exceptional ability
to model human thinking through its integration of perception
modules with motor execution and memory retrieval systems. ACT-
R contains two memory modules with procedural and declarative
functions which operate together through buffers and pattern-
matching to execute behavior-controlling production rules. The
robotics systems utilizing ACT-R have shown successful deployment
for adaptive tasks that support human-robot interaction along
with collaborative functions. The system achieves performance
through the combination of real-world sensory data with established
cognitive models that produce context-specific responses. The
modular design of ACT-R enables advanced perception along with
motor functions that benefit humanoid robot implementations
such as Pepper. Robotics systems that use ACT-R processing
generate human emotion comprehension abilities which enable
them to modify verbal and non-verbal outputs for improved human
robot interaction. Practical implementations of ACT-R prove its
ability to merge robotic operational competencies with human
cognitive operations thereby developing more empathetic robotic
platforms.

4.5.6 Robot operating system (ROS)

As middleware frameworks the Robot Operating System and
its successor ROS2 are the key to how distributed robotics
components talk and work together. It makes hardware complexity
easier to deal with through a publish-subscribe model using
topics, services and messages making it simpler to build robotics
features in a modular way. While ROS1 is relying on a centralized
master node, ROS2 adopts a decentralized approach based on the
Data Distribution Service (DDS) offering better scalability and
real-time communication also as fault tolerance. Both systems
serve as the foundation for robotics software integration which
support not only task orchestration but also system-level extensions
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such as safety monitoring as demonstrated by recent efforts
(Rivera et al., 2020).

5 Conclusion and perspectives

In this paper, an in-depth systematic review is summarized on
artificial intelligence approaches for robotic disassembly. Focusing
on the optimization and strategic planning methodologies of HRC,
CV, and safety measures. The benefits in these technologies are
enormous, showing their potential to improve overall efficiency,
precision, and flexibility in disassembly processes. Integration of
machine learning, robotic handling, and advanced sensor systems
finally seems to produce promising results toward disassembly
tasks automation. Such technologies adequately treat issues related
to the e-waste material diversity and intricate product designs,
while being dependent on systems that will be totally safe for
human operators, user-friendly, and easy to deploy. Despite all these
advances, there still exist a few barriers to preventing the widespread
robotic disassembly. Key issues are cost-effective implementation,
scalability, and legal issues, these all must be addressed for proper
application of these technologies in an industrial setup. More
research and development need to be done further to give solutions
related to these challenges, as this will move the field forward.
There would need to be further advancement as well, in synthesis
with robotics engineering, Al research, and policymaking. This
form of interdisciplinary collaboration will be a defining feature in
the future landscape for robotic disassembly. Such synchronization
between technologic advancements, on one side, and practical,
economic, and regulatory frameworks, on the other, could place the
preconditions for effective and widespread introduction of robotic
disassembly systems, which in turn will be an eventual step in
the direction of more sustainable and efficient practices in e-waste
management.
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