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This exploratory study investigates how open-domain, multi-session
interactions with a large language model (LLM)-powered social humanoid
robot (SHR), EMAH, affect user perceptions and willingness for adoption in a
university setting. Thirteen students (5 female, 8 male) engaged with EMAH
across four weekly sessions, utilizing a compact open-source LLM (Flan-
T5-Large) to facilitate multi-turn conversations. Mixed-method measures
were employed, including subjective ratings, behavioral observations, and
conversational analyses. Results revealed that perceptions of robot’s sociability,
agency, and engagement remained stable over time, with engagement
sustained despite repeated exposure. While perceived animacy increased
with familiarity, disturbance ratings did not significantly decline, suggesting
enhanced lifelikeness of SHR without reducing discomfort. Observational data
showed amid-study drop in conversation length and turn-taking, corresponding
with technical challenges such as slower response generation and speech
recognition errors. Although prior experiencewith robots weakly correlatedwith
rapport, it did not significantly predict adoption willingness. Overall, the findings
highlight the potential for LLM-powered robots to maintain open-domain
interactions over time, but also underscore the need for improving technical
robustness, adapting conversation strategies by personalization, and managing
user expectations to foster long-term social engagement. This work provides
actionable insights for advancing humanoid robot deployment in educational
environments.

KEYWORDS

social robots, human-robot interaction, large-language models, generative AI, user
studies

1 Introduction

As human-robot interaction (HRI) increasingly explores language-enabled social
robots, large language models (LLMs) have emerged as powerful tools for building
interactive, intelligent systems (Williams et al., 2024). Among the four broad areas
of LLM-powered robotics, communication is the primary focus of HRI researchers,
which can be divided into language generation and language understanding
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(Kim Y. et al., 2024). Language generation for social humanoid
robots (SHR) can be task-dependent, supporting goal-
specific dialogue, or task-independent, enabling open-domain
conversations for social engagement. Open-domain dialogue
systems are expected to (1) comprehend user response semantics,
(2) generate coherent responses that fit the conversation history
and match a predefined persona and style, and (3) engage
users emotionally (Huang et al., 2020). While LLMs excel in
language understanding and generation, they lack the ability
to engage in real-time, embodied interactions within physical
environments. LLM-powered agents address this gap by enabling
multi-turn reasoning, planning, and generalization through
language understanding (Xi et al., 2025).

In HRI studies, LLM-powered SHRs primarily use large
pre-trained language models that enable zero-shot or few-shot
learning without updating model weights, relying on proprietary
models like GPT-3.5 and GPT-4, or open-source models like
Llama-2 and Vicuna (Williams et al., 2024; Kim Y. et al., 2024;
Xi et al., 2025). In addition to their out-of-the-box capabilities,
fine-tuning LLMs such as OpenAI’s GPT-3, BERT, Google’s
PaLM, and T5 for specific HRI tasks has also been shown to
enhance real-time robot communication by better mimicking
human conversational patterns and behavioral cues, likely due
to large-scale pre-training on human-generated text (Zhang and
Soh, 2023). However, LLM-powered robots present two major
challenges: hallucination, where the robot deviates from the
intended context, and high computational overheads, which may
hinder offline deployment on embedded systems such as SHRs
with limited processing power and system memory. Due to the
opaque and sometimes inconsistent nature of LLM outputs, caution
is advised when integrating them into social robots (Ranisch
and Haltaufderheide, 2025). Nevertheless, similar to human-
driven solutions often used in HRI, such as wizards or expert
demonstrators, LLMs can still serve as valuable, human-like

components despite their imperfections Williams et al. (2024).
Previous studies have shown that physically embodied SHRs
consistently demonstrate higher engagement compared to virtual
agents, particularly in relationship-oriented tasks where physical
presence enhances social engagement and rapport (Nishio et al.,
2021). Building on this, recent work has demonstrated that
repeated interactions with SHR can further strengthen user
perceptions, emotional disclosure, and wellbeing over time,
highlighting the importance of studying relational change across
multiple sessions (Laban et al., 2024). Combining physical
embodiment with advanced LLM capabilities and repeated
interactions offers a promising strategy for a more natural
human-robot relationship.

This work extends from a prior study that introduced ChitT5,
a custom fine-tuned conversational model based on Flan-T5,
designed for small-talk (open-domain) in HRIs (Ashok et al.,
2024a). Evaluated with 22 participants in a first-time interaction
(ice-breaker) session, results showed strong correlations between
rapport and perceived conversational competence, though users
still saw the robot as a “stranger”. Despite promising engagement,
limitations of the developed robot dialog system included a lack
of factual accuracy, robot emotion handling, and conversational
memory, steering a need for an improved system deployed in a
long-term multi-session setting. Although recent studies in HRI
with SHRs have explored emotion, memory, or personalization
individually, the presentwork integrates all three into a single, locally
deployed system to support natural, multi-session interactions.
Simultaneously achieving the expected goals of open-domain
systems remains challenging due to the complexity of multi-turn
conversational reasoning and the lack of standardized methods for
evaluating dialogue quality (Huang et al., 2020). While technical
evaluations of the fine-tuned model were performed, we argue that
in the context of a highly anthropomorphic robot such as Ameca
(placed closest to human-like appearance and behavior in the poster

FIGURE 1
EMAH (Empathic Mechanized Anthropomorphic Humanoid) robotic system implemented on Gen 1 Ameca robot from Engineered Arts.
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Research, Social and Entertainment Humanoids1), real-world user
perceptions provide a more meaningful measure of system success,
as embodiment fundamentally shapes user expectations.

In this study, we built a custom LLM with under a billion
parameters into a dialogue system for the SHR Ameca robot,
evaluated over four interaction sessions (see Figure 1). The dialogue
system was customized using a pre-trained Flan-T5-Large model
(Chung et al., 2024), fine-tuned on a downstream task using
daily conversation datasets, and combinedwith retrieval-augmented
generation (RAG) methods. We then integrated this system into
the SHR Ameca’s robotic framework developed at the robotics
research lab (RRLab), named the EMAH system (here on referred
to as EMAH) (Ashok et al., 2024b). To evaluate the developed open-
domain dialog system, a controlled lab experiment was conducted
with 13 university students participating in four interaction sessions.

Exploratory Question: How does open-domain interaction
across multiple sessions with an LLM-powered social humanoid
robot affect user perceptions and willingness to adopt it as a
companion?

A demo recording of the first and second interactions of the
robot with the author is available here2.

2 Related work

LLMs are emerging as quick prototyping tools in HRI, enabling
full interaction pipelines for SHRs similar to earlier Wizard-of-Oz
methods (Williams et al., 2024). For example, Nadine, a gynoid
robot utilizing GPT-4 with prompt engineering through the ReAct
framework, demonstrated advanced conversational abilities and
real-time emotion generation based on the ALMA affect model
(Kang et al., 2024). Similar to our multi-module system, this
work highlights efforts to combine language generation, persona
consistency, and emotion modeling. The use of LLMs to generate
fitting robot emotions paired with dialogue is an area of social
robotics that continues to grow (Mishra et al., 2023; Sievers and
Russwinkel, 2024). Earlier studies have explored embedding non-
verbal cues, such as gestures and facial expressions on QTrobot,
within task-independent language generation to foster greater
user engagement and empathy, using fine-tuned GPT-3 models
to support the interactions (Khoo et al., 2023). Despite advances
in emotional expressiveness, conversations with LLM-powered
robots often remain superficial due to limited memory and context
retention (Irfan et al., 2023; Ashok et al., 2024a). To address
this, a key strategy has been to provide conversational history as
context within the system prompt to generate a more coherent
conversational flow. SHR platforms such as Furhat (Irfan et al.,
2023), Pepper and Nao (Billing et al., 2023), QTrobot (Khoo et al.,
2023), and Nadine (Kang et al., 2024) have been equipped with
proprietary GPT models to enhance their social capabilities.
However, most existing work relies on external APIs or cloud-based
solutions, limiting transparency and reproducibility. Therefore, to
ensure transparency, reproducibility, and control, the open-source
model deployed in this work was fine-tuned on publicly available

1 https://www.merphi.se/downloads/

2 https://youtu.be/mSKFp41aYyk

conversation datasets, deployed locally, and its weights are publicly
available.

User perception of an SHR’s sociability and agency plays a critical
role in determining a user’s willingness to use or adopt it. However,
these perceptions are not shaped solely by system capabilities but
are deeply influenced by the SHR’s physical and social design.
Users tend to naturally treat SHRs as social actors, expecting
them to behave in human-like ways and build social relationships
over time (Forlizzi and DiSalvo, 2006). Studies have shown that
while appearance can initially attract users, sustaining meaningful
engagement requires more sophisticated social behaviors, such as
expressing emotions, maintaining memory-based personalization,
using gestures, facial expressions, and demonstrating empathy (Cho
and Nam, 2023). Failure to meet these behavioral expectations
can lead to disappointment, emphasizing the mismatch between
user expectations and robot capabilities, creating an expectation
gap which plays a decisive role in user evaluation and acceptance
of social robots (Rosén et al., 2022). A prior study focusing on
robot emotions across three advanced humanoids, includingAmeca,
attributed its realistic facial expressions to the uncanny valley
phenomenon (Berns and Ashok, 2024).

Building on these previous findings, our study addresses
several gaps. While Nadine (Kang et al., 2024) and QTrobot
(Khoo et al., 2023) demonstrated emotional generation and
engagement techniques, they did not systematically measure
how user perceptions evolve across multiple sessions. Similarly,
studies highlighting expectation gaps (Rosén et al., 2022) and
physical embodiment effects (Forlizzi and DiSalvo, 2006; Berns
and Ashok, 2024) have emphasized the importance of managing
user expectations but often relied on single-session evaluations.
Following the recent focus on long-term relational development
with robots (Laban et al., 2024), we adopt a multi-session approach
to investigate how repeated open-domain interactions with an LLM-
powered SHR affect user perceptions and willingness to adopt the
robot as a university companion. To this end, we examine.

• RQ1: How does repeated interaction with an LLM-powered
social humanoid robot influence user perceptions of sociability,
agency, and engagement?

• RQ2: How does prior experience with robots relate to
developing rapport and perceived companionship over
multiple sessions?

• RQ3: How does user familiarity with the robot affect
perceptions of disturbance or comfort over time?

• RQ4: How are user expectations associated with their
willingness to adopt the robot as a social companion?

3 Methods: Designed LLM

The system is designed using a compact LLM, fine-tuned
for multi-task, which serves as the core of the robot’s dialogue
system. A prompting mechanism is utilized to personalize the
inference process and create a robot persona, enhancing the
user interaction experience (Whittaker et al., 2021). A retrieval-
augmented generation (RAG) approach (Lewis et al., 2020) is
integrated to mitigate hallucinations and improve factual accuracy,
where additional data is sourced explicitly from the RRLab website.
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FIGURE 2
Workflow of designed dialogue system on human-robot interaction.

Thesystem also involves emotion recognition grounded in Plutchik’s
eight basic emotions model (Plutchik, 1989), enabling real-time
emotional recognition in the HRI loop. The system detects human
emotions from their utterances and uses this information as an
additional context to generate the robot’s responses. Then the
emotion of the generated robot response is also analyzed, and
utilized as input to the robot’s expression control system. The source
code for themodel and the chatbot interface demo is available here3.

The dialogue system consists of four main components: a Google
API-powered speech recognition module for converting speech to
text, a fine-tuned language model, a memory management system
for storing and retrieving information, and the Finroc framework.
Finroc is a robotic integration platform that manages communication
with robots, text-to-speech capabilities, and physical behaviors with
finite-state machines implemented as a module (Reichardt et al.,
2012). The dialogue system supports multi-session interactions by
distinguishing between new and returning users, enabling long-term
companionshipthroughpersonal informationdetection,retrieval,and
memory management. Additionally, at the end of the conversation
session, a summarizer module is used to conclude the conversation
into a short story, which, along with the conversation history, is stored
as the robot’s memory of the user.

3.1 Multi-session interaction module

The multi-session interaction module consists of two main
components: the conversation agent, the brain that manages
the conversation process, and the robot communication system,
which oversees system communication, sensors, and the robot’s
actuation. The conversation agent is developed using Python, while

3 https://github.com/mauliana/Multi_Session-HRI

the robot communication system utilizes the Finroc Framework,
which is written in C++. A Pybind wrapper enables the
conversational agent to interface with the robot system by allowing
Python to call C++ functions.

The system flow is illustrated in Figure 2. Based on the generated
text and emotion label sent by the multi-session module, the robot’s
speech, facial expressions, and gestures are managed through a
modular system operating within the Finroc framework. A finite-
state machine (FSM) method, whose structure is initialized from an
XML configuration, is employed for dialogue management control.
Utilizing a pre-existing module developed and stored in the Finroc
library, the emotion label generated by the conversational agent can
be linked to activating the corresponding facial expressions and
robot gestures based on the defined labels. A default text-to-speech
(British English, Lucy from Acapela group4) allows the robot to
vocalize the generated text.

3.2 The conversation agent design

The conversation agent is designed with the aim of making
the robot able to engage in natural, human-like interactions.
Using a multi-task fine-tuned LLM as a core, the system is
expected to be capable of engaging in light conversation with
humans, including daily chit-chat, awareness of human feelings,
demonstrating empathy, and providing some facts about the RRLab
research group.

3.2.1 Datasets
Four publicly available English datasets are used to fine-

tune the main multi-task model: DailyDialog (Li et al., 2017),

4 https://www.acapela-group.com/
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EmpatheticDialogues (Rashkin et al., 2018), Topical-Chat
(Gopalakrishnan et al., 2023), and BlendedSkillTalk (Smith et al.,
2020). Additionally, the SamSun datasets (Gliwa et al., 2019) are
employed to fine-tune the summarizer model, while a handcrafted
dataset containing all relevant information about RRLab is created
for the retrieval feature.

The combined dataset is preprocessed and formatted into three
distinct tasks.

1. Response Generation: An autoregressive, context-aware text
generation task.The input includes past and current utterances
along with the emotion label of the current utterance. The
target is the next utterance.

2. Emotion Classification: A multi-label classification task where
the input is an utterance and the target is one of Plutchik’s eight
emotion labels.

3. Background Information Detection: A binary classification
task where the input is an utterance and the target is a “Yes”
or “No” label indicating whether background information
is present.

Fine-tuning is a transfer learning approach that modifies source
model parameters to learn target tasks in specific domains. The best
performance of multi-task learning can be obtained with balanced
sharing from each task (Upadhyay et al., 2024). Therefore, data
augmentation was carried out to reduce the dataset size gap among
tasks by increasing label data.

3.2.2 Data preprocessing
The following sections provide a detailed explanation of each

type of dataset preprocessing.

3.2.2.1 Response generation
An emotionally intelligent social robot is a crucial aspect of

our design system. To be a pleasant companion, a robot should
partially understand human emotions through speech, appearance,
and behavior. Additionally, the robot needs to respond with polite
sentences and perform gestures based on the perceived emotion
(Szabóová et al., 2020). In large language generative models,
emotional stimuli can be injected by either adding text that
represents a specific emotion (Li et al., 2023) or by directly stating
the type of emotion (Mishra et al., 2023).

For the response generation task, the DailyDialog, Topical-
Chat, and EmpatheticDialogue datasets are used. However,
since the emotion label of the text is also needed as context
in the input, along with the previous utterance, we utilized
a helper tool, namely, the emotion classification model, to
provide the emotion label. Additionally, this tool was also
used to standardize the emotion label based on Plutchik’s
eight-emotion model.

3.2.2.2 Emotion classification
With the most labeled emotion categories, the

EmpatheticDialogue datasets were selected as the baseline dataset
to fine-tune a helper model for an emotion classification tool.
The emotions were mapped to Plutchik’s labels beforehand.
The mapping of EmpatheticDialogue’s emotions into Plutchik’s
eight basic emotions is listed in Table 1. Once the mapping

TABLE 1 Mapping of EmpatheticDialogue dataset emotion label into
Plutchik’s basic emotion label.

Plutchik’s label EmpatheticDialogue label

Anticipating Anticipating, Anxious

Joy Joyful, Content

Trust Trusting

Fear Afraid, Terrified

Surprise Surprise

Sadness Sad, Lonely, Devastating

Disgust Disgusted

Anger Angry, Annoyed, Furious

was complete, the emotion classifier model was created by fine-
tuning the DistilBERT-Base model with this data. The model
fine-tuning and data augmentation process is illustrated in
Figure 3.

3.2.2.3 Background information detection
The BlendedSkillTalk is a conversational dataset with human

annotations on four categories: knowledge, empathy, personal
situations, and personal background (Smith et al., 2020). For a
background information detection task, the BlendedSkillTalk data
with personal background annotations was used as the main
dataset. However, since the dataset contains only 7,017 entries,
more synthesized data was needed to reduce the imbalance with
other tasks. A binary classifier for background information was
therefore created by fine-tuning the DistilBERT-base model on the
available data as a supporting tool. The Topical-Chat dataset was
then augmented as an additional source by labeling data using the
trained classifier. Before labeling, the data was filtered based on the
“knowledge source” attribute, and only entries labeled as ‘FS’ and
“personal knowledge” were included.

As the final preprocessing step, a profanity check5 with a 60%
threshold was applied to reduce the likelihood of the final model 167
generating inappropriate words. The final number of data pairs for
each task is presented in Table 2.

All datasets were then encapsulated into a prompting template
for the Seq2Seq input format as presented in Table 3.

3.2.2.4 Summarizer
The SamSun datasets6 was used to fine-tune the

summarization model. This dataset contains 16,000 messenger-
like conversations, each accompanied by a summary of the
corresponding dialogue (Gliwa et al., 2019). The dataset was
structured such that the conversation history serves as the input
while the summary is designated as the target.

5 https://pypi.org/project/alt-profanity-check/

6 Source: https://huggingface.co/datasets/samsum
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FIGURE 3
Emotion classifier fine-tuning and data augmentation to Plutchik’s label process.

TABLE 2 The structure and size of the dataset used for multi-task fine-tuning.

Task Datasets Total pairs

Response generation DailyDialog, Topical-Chat, EmpatheticDialogue 179,511

Emotion classification DailyDialog, EmpatheticDialogue 104,304

Background information detection BlendedSkillTalk, Topical-Chat 98,398

TABLE 3 Dataset format based on task type for multi-task fine-tuning model.

Task Prompt template Example

Response generation Current utterance emotions are a {emotion}. By
considering the emotion, predict the next response:\n
{history}

input_text =“““Current utterance emotions are a “Joy”.
By considering the emotion, predict the next response
S1: Are you going to the annual party? I can give you a
ride if you need one
S2: Thanks a lot. That’s the favor I was going to ask you
for.”””
target_text = “The pleasure is mine.”

Emotion classification Please predict the Plutchik’s emotion label for this
utterance:\n {text}

input_text =“““Please predict the Plutchik’s emotion
label for this utterance
I used to scare for darkness”””
target_text = “fear”

Background Information detection Please predict if this utterance contains personal
background information: \n
{text}

input_text =“““Please predict if this utterance contains
personal background information
I used to scare for darkness”””
target_text = “yes”

3.2.2.5 Information retrieval
The information for RRLab was gathered by scraping articles

from the RRLab website and its internal repository. Each article or
piece of information was saved in an individual TXT file, resulting
in a total of 54 articles. This data was then converted into vector

embeddings using the BAAI general embedding (BGE) model
(Xiao et al., 2023) and stored in the Chroma database (Chroma,
2024) as non-parametric data. The decision to use the BGE
model was made solely after inspecting three leading embedding
models for semantic retrieval functionality. The three candidate
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FIGURE 4
Embedding local information workflow.

TABLE 4 DistilBERT fine-tuning model evaluation score.

Task type Accuracy Precision Recall F1

Emotion Classification Model 0.78 0.77 0.77 0.77

Background Information Detection Model 0.66 0.66 0.66 0.66

TABLE 5 Flan-T5 fine-tuning model evaluation score.

Task type BLEU METEOR ROUGE-L

Response Generation
(Multi-task) Model

0.023 0.24 0.40

Summarizer Model 0.136 0.39 0.41

models were Sentence Transformers7, Instructions Embedding8,
and the BGE model. The inspection follows the same procedure
for all embedding models, which are placed in the same system
designed to run the same embedding and searching tests. Based
on the inference time, computational complexity, and output
produced, BGE was chosen. This evaluation result was subjective
and may not be applicable in different cases since it is only a
self-evaluation process.

The workflow of transforming data from a repository of
documents into a vector embedding representation saved in the
Chroma database is illustrated in Figure 4. During this process,
the RecursiveCharacterTextSplitter chunking strategy from the
LangChain Framework was applied, with a window size of 1,000 and
an overlap size of 100.

3.2.3 Model fine-tuning
A study conducted by Kim C. Y. et al. (2024) found that robots

powered by LLMexhibit distinct preferences for various tasks, which
are influenced by the unique characteristics of each task. Referring
to this finding, we fine-tuned four models to create a complete
workflow for a multi-session HRI scenario. The fine-tuning process
is executed using Trainer, a function within the HuggingFace API
library, in PyTorch.

7 https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2

8 https://huggingface.co/hkunlp/instructor-large

3.2.3.1 Response generation (multi-task) model
A multi-task model was developed by fine-tuning a version

of the Flan-T5-Large language model, optimized for three
specific tasks: response generation, emotion classification, and
background information detection. Also, to prevent the loss of
previous information from the fine-tuning process, the low-rank
adapter (LoRA) (Hu et al., 2021) technique was applied.

Training configuration: epochs 20, batch size 32, learning rate
1e-3, warmup ratio 0.01, weight decay 0.01, optimizer AdamW.

LoRA configuration: rank 16, alpha 32, dropout 0.05, and task
type SEQ_2_SEQ_LM.

3.2.3.2 Emotion classification model
The emotion classification model was fine-tuned from the

DistilBERT-Base model for a multi-label classification task. This
model was created as a helper tool for augmenting emotion-
label data.

Training configuration: epochs 10, batch size 64,
learning rate 2e-5, weight decay 0.01, callback early stopping
with patience 2 and threshold 1.0, and evaluation strategy
IntervalStrategy.STEPS.

3.2.3.3 Background information detection model
The background information detection model was fine-tuned

from the DistilBERT-Base model for a binary classification task,
using “yes” and “no” as labels. Similar to the emotion classification
model, this model was developed to help increase the size of the
labeled background information dataset.

Training configuration: epochs 10, batch size 64,
learning rate 2e-5, weight decay 0.01, callback early stopping
with patience 2 and threshold 1.0, and evaluation strategy
IntervalStrategy.STEPS.

3.2.3.4 Summarizer model
The summarizer model was a fine-tuned Flan-T5-Large

model specifically created for text generation tasks. This model
functions exclusively as a summarizer, supporting the design of the
conversational agent for multi-session scenarios.
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FIGURE 5
Conversation workflow of Multi-session Interaction Module within the Finroc framework.

Training configuration: epochs 10, batch size 8, learning rate
1e-3, warmup ratio 0.01, optimizer AdamW.

LoRA configuration: rank 16, alpha 32, dropout 0.05, and task
type SEQ_2_SEQ_LM.

3.2.4 Model evaluation
The evaluation metrics used for the fine-tuned models varied

depending on the specific task. For classification tasks such as
the emotion (multi-label) classification model and the background
information (binary) classificationmodel, performancewas assessed
using accuracy, precision, recall, and F1-score. In contrast, models
designed for text generation tasks, including themulti-task response
generation and summarizer models, were evaluated using BLEU,
METEOR, and ROUGE-L metrics. This evaluation was conducted
during the fine-tuning phase, where various hyperparameters
were adjusted to optimize model performance. The final model
used for inference achieved scores as detailed in Table 4 for the
classification task and Table 5 for the text generation task.

It is important to note that the evaluation metric scores used
during the fine-tuning of the Flan-T5 model provide only a
general indication of learning progress and do not fully reflect
the model’s real-time inference performance across all tasks
(Zhang et al., 2024).

3.2.5 Retrieval-augmented generation (RAG)
Internal information about the RRLab was embedded into the

robot systemusing theRAGapproach. Lewis et al. (2020) introduced
RAG to mitigate the hallucination effect in LLMs by incorporating
a retrieval function to access external knowledge (non-parametric
data), thus providing additional information for the LLMduring text
generation. This enhancement aimed to improve the accuracy and
reliability of the generated results.

This work implemented the RAG concept using a question-
answering tool within the LangChain Framework. The LLM utilized
was a multi-task fine-tuned model, with the non-parametric data
source being the RRLab internal information data. In real-time
retrieval, the vector embedding data stored in Chroma was accessed
via the RetrievalQA function, which is a vector retrieval
tool within the LangChain framework, specifically designed for
question-answering purposes (LangChain, 2024).

3.3 Real-time conversation system flow

The multi-turn conversation system was equipped with person
identification to support a long-term interaction scenario. At the
beginning of the interaction, the robot would ask the speaking
partner tomention their username. According to the name detected,
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FIGURE 6
Response generation using RAG approach.

FIGURE 7
Response generation using LLM functionality.
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the system will identify the person as a new encounter or revisited
before starting the conversation flow.

One of the limitations observed in the preceding study
(Ashok et al., 2024a) was that in some cases, such as when the
interlocutor responded with a short answer, the model repeated
the same sentence from the previous turn. Therefore, to tackle
this problem, we implemented a minimum quality control in the
current work by utilizing a rule-based approach and a simple
machine learning method to obtain better response sentences.
The conversation flow in the system is illustrated in Figure 5.
Additionally, the main process of the multi-session interaction
module is presented as pseudocode in the supplementary material
section “Real-time Conversation Algorithm”.

Two approaches were used to generate responses: RAG + LLM
and LLM functionality. A gradient-boosting classifier from the
NLTK library analyzes sentence structure. When a question is
detected in the transcribed text, we assumed the interlocutor may
expect factual information. Consequently, we activate the RAG +
LLM function; otherwise, the LLM function is always triggered.
As previously mentioned, during real-time interactions, the model
detects not only emotions from the spoken sentences but also
whether the utterances contain personal background information.
At the end of each interaction, the conversation history (including
human utterance and robot response), the emotion detected for
each utterance, and a list of background information identified from
the human utterances are stored as a user profile in the form of
a JSON file.

1. RAG + LLM Functionality. The retrieval feature in this
function extracts relevant context from the user’s query using
a pre-created vector database. Subsequently, the user’s query
and the retrieved information are combined in a prompt
template and sent to the languagemodel to generate a response.
The RAG approach emphasizes factual information and does
not consider human emotions when generating the response.
This functionality is referred to as RAG + LLM, representing
the process of generating a response with RAG and then
utilizing a multi-task LLM to obtain the emotion label from
the generated text.The flowof response generation on this path
is shown in Figure 6

2. LLM Functionality. The LLM function aims to create a
friendly conversational tone. It considers both the context
from the previous utterance turn and the emotional aspect of
human interaction when generating responses. In addition, a
robot persona was appended to the prompt template during
the inference process to personalize the robot as a student
companion. A cosine similarity check with a threshold of 0.6
was applied to prevent the generation of identical responses.
If the current generated text failed this check, the response
was re-generated by lowering the top-p value of the sampling
method in the inference hyperparameter to 0.80.

The default hyperparameter settings in the inference process
are num_beams = 5, max_new_tokens = 90, top_p = 0.90, top_k =
150, repetition_penalty = 1.15, early_stopping = True, do_sample =
True. These hyperparameter configurations were determined after
several experiments on the parameter values, particularly regarding
the number of beams, top-p, and top-k. The flow of response
generation with LLM functionality is illustrated in Figure 7.

3.4 Conversation summarizer and robot
memory

A conversation summarizer function serves as a complementary
module to support multi-session interactions. From a technical
standpoint, this module aims to reduce real-time buffer memory
in the system by storing less data across multiple conversation
sessions. From a cognitive perspective, it enhances naturalness by
mimicking the human-like ability to recollect past conversations as
well as imperfections through forgetfulness. A study by Biswas and
Murray (2015) revealed that incorporating cognitive imperfections,
such as forgetfulness, successfully fosters initial attachment bonds
with humans. Considering humans’ tendency to imperfectly recall
past events, particularly conversation content, we hypothesized
that providing only summary or partial information to the robot
in subsequent interaction sessions could simulate human-like
forgetfulness.

In the HRI process, the summarization function ran separately
after each interaction session. The conversation history, which
served as the robot’s episodic long-term memory, was stored in
a JSON file. This file was then passed to the summarization
module, which generated a new JSON file containing the summary
appended to the end of the conversation history. The robot system
structured memory based on personal encounters. Each JSON file
represented one user profile. When encountering a new person, the
system created a new JSON file, while in subsequent meetings, new
information was appended to the existing user profile.

4 Multi-session student and robot
interaction

4.1 Experiment design

A controlled experiment was conducted at RPTU
Kaiserslautern-Landau, Germany. The participants were recruited
through a multi-channel approach, including posters in university
public spaces, the university mailing list system, and the
experimenter’s social media. The eligibility criteria required
participants to be university students aged between 19 and 35,
proficient in English, and willing to commit to attending four
interaction sessions with the EMAH robot scheduled in April
2024. Each participant was allocated specific time slots to interact
weekly with a robot throughout four sessions. The experimenter
gives a short monologue about the procedure and scenario at the
beginning of each session and asks for the participant’s consent
to undergo the experiment. The participants were also required
to complete the questionnaire every session before and after the
interaction session. In addition, at the fourth session, besides the
questionnaire, at the end of the interaction, the experimenter will
also interview the participant to get an objective perspective of the
interaction experienced by the participant.No technical information
is disclosed during the experiment session to reduce bias; only the
recorded data from participants’ interactions is shared. However, all
technical details about the system are explained after the participant
completes the experiment.
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4.2 Participants

The HRI experiment initially involved 15 participants, but
two withdrew during the interaction sessions. Consequently, 13
participants (5 females and 8 males, with no non-binary or diverse
individuals) successfully completed all four sessions. Their ages
ranged from 21 to 32 years old. The majority of participants (seven
in total) were from computer science. Two were from cognitive
science, two from Embedded Systems, one from Commercial
Vehicle Technology, and one from Physics. In the initial interaction
session regarding contact with robots, data were collected from all
13 participants. Five indicated prior experience with a university
robot before their involvement in the experiment, while six reported
no prior interaction. The remaining two participants chose not to
disclose their experiences. A similar distribution of responses was
observed regarding participants’ familiarity with personal assistant
systems such as Siri, Alexa, and Bixby.

4.3 Interaction scenario

The interaction scenario involved the robot positioned in the
middle of the room, facing participants who stood behind a table
with a microphone to record their responses. Participants entered
the experiment room at their scheduled times, were asked to take
their positions, and then the experimenter delivered a monologue.
Following this, participants completed a pre-questionnaire before
signaling their readiness to begin the interaction. The robot
introduced itself as EMAH, a student companion designed to
engage in casual conversations and knowledge about RRLab. The
background story varied across four sessions: In the first session,
the robot knew nothing about the participant. In the second
session, the robot started the conversation by summarizing the
previous conversation history, and the participant was allowed
to refer to their previous conversation topic. The third session
introduced a transition function, theme switching, that activates
if a conversation theme lasts more than six turns, allowing
the robot to introduce a new topic. In the fourth and final
session, the robot acknowledged that it was the last interaction
and inquired about the participant’s feelings. After the first
transition, it asked a scripted question: “I just remembered that
the lectures have started. How’s it going for you?” The interaction
concluded with the robot thanking the participant for their
cooperation.

4.4 Research materials

In the multi-session student-robot interaction study, the
robot used is named EMAH system implemented on Ameca
robot. The study employed a mixed-method experimental design,
incorporating several measures to evaluate various aspects of
the interaction experience. These measures included the self-
assessment manikin (SAM) (Bynion and Feldner, 2020), bot
usability scale (BUS) (Borsci et al., 2022), human-robot interaction
evaluation scale (HRIES) (Spatola et al., 2021), the Engagement
construct from the Empathic Robots for Long-term Interaction
Scale (Leite et al., 2014), the rapport-expectation scale (RERS)

(Nomura and Kanda, 2016), the Perceived Safety construct from
the Godspeed Questionnaire (Bartneck et al., 2009), and a post-
experimental interview.

The pre-interaction survey collected information about
participant demographics, prior contact with robots, the SAM
using a five-point Likert scale, and robot perception from HRIES
using a seven-point Likert scale. After each interaction session,
participants completed the SAM again, followed by the five-
point Likert BUS questionnaire and a Godspeed construct,
which assessed participants’ views on the robot’s role during the
interaction. In the fourth session, participants also completed
seven-point Likert HRIES and RERS items, followed by a short
interview. During the interview, participants answered two
reflective questions.

(1) What do you think could make the robot better in
interactions?

(2) What do you think you could have done better in the
interactions?

All questionnaire items and evaluation metrics used in this
study are provided in the supplementary material. Additionally, the
conversation history, including human utterances, robot responses
with timestamps, detected emotions of both the robot and the
participant, and the participant’s background from each session, was
recorded as supporting data.

5 Results and analysis

Analyses were carried out using JASP software version 0.19.1.

5.1 Repeated exposure and changes in
social perception

To explore RQ1, a repeated measures ANOVA (RM-ANOVA)
was conducted to assess changes in constructs of sociability,
agency (Spatola et al., 2021) (see Supplementary Table S1), and
engagement (Leite et al., 2014) (see Supplementary Table S2) across
four interaction sessions. Mauchly’s test of sphericity was not
violated for any construct (p > 0.05), allowing interpretation of
standard ANOVA results. Polynomial contrasts were included for
exploratory purposes but should be interpreted cautiously due to the
small sample size.

Engagement scores remained relatively stable across sessions,
with the mean engagement scores being: Post-1st = 3.79, Post-2nd =
3.90, Post-3rd = 4.15, and Post-4th = 4.12. Although a slight increase
was observed descriptively, the main effect of session was not
significant (F(3,36) = 1.386, p = 0.263,η2 = 0.104), indicating that
repeated interactions did not meaningfully increase engagement
over time. Post hoc comparisons confirmed that no session-
to-session differences were statistically significant (all p > 0.05),
with the largest observed mean difference being between Post-1st
and Post-3rd sessions (Mdi f = − 0.365,SE = 0.219, p = 0.723).
Polynomial contrast tests further showed no significant linear
(p = 0.194), quadratic (p = 0.533), or cubic (p = 0.384) trends,
suggesting engagement remained relatively stable across sessions.
Sociability ratings also showed minimal change. Mean values
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across sessions were: Pre-1st = 4.42, Pre-2nd = 4.67, Pre-3rd =
4.38, and Pre-4th = 4.40. For sociability, RM-ANOVA results
were not significant (F(3,36) = 0.844, p = 0.479,η2 = 0.066),
indicating no substantial increase in perceived sociability over
time. Post hoc analyses showed no significant session-to-session
differences (p > 0.05), though means fluctuated slightly. Polynomial
contrasts for sociability were also non-significant, confirming
the absence of reliable trends. For agency, mean scores across
sessions were: Pre-1st = 5.17, Pre-2nd = 5.33, Pre-3rd = 5.15,
and Pre-4th = 5.06. No significant main effect of session was
observed (F(3,36) = 0.511, p = 0.677,η2 = 0.041). Post hoc
pairwise comparisons revealed no significant changes between
sessions (p > 0.05), and polynomial contrast tests were non-
significant across all trends (linear: p = 0.454, quadratic: p = 0.334,
cubic: p = 0.614).

Although none of the constructs demonstrated statistically
significant change across the 4 HRI sessions, descriptive gender-
based differences were noted. Males perceived a slight increase
in sociability (ΔX̃ = 5→ 5.5), while females reported improved
sociability (ΔX̃ = 4→ 5) and reduced disturbance (ΔX̃ = 4→ 3) but
lower agency (ΔX̃ = 6→ 5), leaning towards prior findings that
gender influences robotic perceptions (Spatola et al., 2021).

5.2 Prior robot contact and rapport
development

To explore RQ2, a linear regression analysis was conducted to
examine whether prior robot contact (“I have contact with social
robots at university.“) predicted rapport with EMAH, measured
as togetherness and partner perception (Nomura and Kanda,
2016) (see Supplementary Table S3).

Shapiro-Wilk tests confirmed that rapport variables were
normally distributed (p > 0.05), validating the use of parametric
tests, and VIF values were 1.000, indicating no multicollinearity.
Pearson’s correlations showed weak positive relationships between
prior robot contact and rapport constructs (expectations for
togetherness: r = 0.333, p = 0.133; expectations as a conversation
partner: r = 0.366, p = 0.109). However, these correlations did not
reach statistical significance (p > 0.05), suggesting only a marginal
association between prior robot contact and how participants
perceived EMAH as a social partner. Descriptive statistics revealed
moderate perceived rapport overall. For togetherness perception,
scores ranged from 1.85 to 6.00 with a mean of 4.08 (SD = 1.22);
for partner perception, scores ranged from 2.18 to 5.45 with a mean
of 3.98 (SD = 1.05).

For the expectations for togetherness, the linear regression
model explained 11.1% of the variance (R2 = 0.111, adjusted
R2 = 0.030), but the regression was not statistically significant,
F(1,11) = 1.375, p = 0.266. The coefficient for prior robot
contact was β = 0.334,SE = 0.285, t(11) = 1.173, p = 0.266,
95% CI[−0.293,0.961], indicating no strong predictive effect. For
the expectations as a conversation partner, the model explained
13.4% of the variance (R2 = 0.134, adjusted R2 = 0.056), but
again, the regression was not significant, F(1,11) = 1.706, p =
0.218. The coefficient for prior robot contact was β = 0.317,SE =
0.243, t(11) = 1.306, p = 0.218, 95% CI[−0.217,0.851], suggesting
only a weak, non-significant relationship. Effect sizes (Cohen’s

f2) for both models were small ( f2 < 0.15), reinforcing the low
predictive value of prior robot contact on rapport outcomes.
Residual diagnostics confirmed no major violations of linearity or
homoscedasticity.

5.3 Familiarity and perceived disturbance

To explore RQ3, an RM-ANOVA was conducted to test
whether the construct of perceived disturbance (Spatola et al.,
2021) (see Supplementary Table S1) decreased over repeated
interactions with EMAH administered in pre-surveys (referred
to as Pre-1st, Pre-2nd, Pre-3rd, and Pre-4th). Shapiro-Wilk tests
confirmed normality (p > 0.05 for all sessions). Mauchly’s test of
sphericity was not violated (W = 0.399, p = 0.081). Polynomial
contrasts were included for exploratory purposes but should be
interpreted cautiously due to the small sample size.

Descriptive statistics showed stable disturbance ratings: Pre-1st
(M = 3.85, SD = 0.81), Pre-2nd (M = 3.85, SD = 0.79), Pre-3rd
(M = 3.64, SD = 0.75), and Pre-4th (M = 3.62, SD = 0.72). The
main effect of session was non-significant, F(3,36) = 0.425, p =
0.736,η2 = 0.034, indicating no meaningful reduction in perceived
disturbance. Post-hoc comparisons revealed no significant pairwise
differences (all p > 0.05). Polynomial contrasts further confirmed a
lack of linear (p = 0.243), quadratic (p = 0.973), or cubic (p = 0.451)
trends. These findings suggest no habituation effect in reducing
perceptions of creepiness or uncanny feelings toward EMAH over
repeated exposure.

By contrast, perceived animacy increased across sessions with
a strong effect size (η2 = 0.473,p < 0.001). The mean scores were:
Pre-1st (M = 3.08, SD = 0.70), Pre-2nd (M = 3.27, SD = 0.66),
Pre-3rd (M = 4.38, SD = 0.62), and Pre-4th (M = 4.85, SD =
0.51). Post-hoc analyses revealed a significant increase in perceived
animacy between Pre-1st and Pre-3rd sessions (p = 0.003) and
a small but significant increase between Pre-3rd and Pre-4th
sessions (p = 0.048). Polynomial contrasts indicated a significant
linear (p = 0.002), quadratic (p = 0.020), and cubic (p = 0.004) trend,
suggesting gradual improvement in the perception of EMAH’s
lifelike qualities.

5.4 Expectations and willingness to use
EMAH

To explore RQ4, a generalized linear model (GLM) with a
Bernoulli distribution was conducted to examine whether the
expectation of EMAH as a companion (Nomura and Kanda, 2016)
(see Supplementary Table S3) predicts willingness to use EMAH as
a university friend (“If EMAH is made specifically as a university
student friend (companion), will you use it? (yes/no)”.). Preliminary
analyses indicated that expectation togetherness and expectation
partner were highly correlated (r = 0.772,p < .001), suggesting
conceptual overlap. Shapiro-Wilk normality tests showed no
significant deviations from normality for expectation togetherness
(p = .860) and expectation partner (p = .467), supporting their
inclusion in the model. Descriptive statistics for these constructs are
reported in Subsection 5.2.
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Including the rapport construct of expectation togetherness
significantly improved model fit over the null model
(X2 = 4.463,p = .035), but the predictor itself was not statistically
significant (β = 1.818,SE = 1.177,p = .122), with a wide confidence
interval 95% CI[0.108,5.449]). A separate GLM model,
including expectation partner, also showed improved model fit
(X2 = 6.413,p = .011), indicating a stronger association. However,
expectation partner did not significantly predict willingness to
use EMAH (β = 3.770,SE = 3.220,p = .242), with an odds ratio of
43.372, but a large confidence interval spanning −2.542 to 10.081,
indicating instability in estimates. Due to severe multicollinearity
(VIF = 7.730to12.650), expectation togetherness and expectation
partner were tested in separate models to ensure stable
estimation.

5.5 Perceived quality of SHR and LLM
content

The Bot Usability Scale (BUS) (Borsci et al., 2022) (see
Supplementary Table S2) assessed the LLM-powered SHR’s
performance and content quality across four interaction sessions.
An RM-ANOVA revealed a significant improvement in the SHR’s
performance over time (F(3,36) = 3.353, p = 0.029,η2 = 0.218),
suggesting participants perceived the system as increasingly
effective in handling conversations. In contrast, content
quality ratings showed no significant changes across sessions
(F(3,36) = 1.417, p = 0.254,η2 = 0.106), with session 2 receiving
the lowest median ratings, indicating probable inconsistencies in
the relevance of content discussed. Mauchly’s test of sphericity was
not violated for any construct (p > 0.05), allowing interpretation of
standard ANOVA results.

Post hoc comparisons for SHR’s performance revealed
a significant decline from the first to the third session
(Mdi f = − 0.523, p = 0.061), with a moderate effect size (Cohen’s
d = −0.583). However, no significant differences were observed
between other sessions, indicating variability in perception but
no consistent improvement or decline over time. Additionally,
participants initially rated the SHR’s performance as neutral
(Mode/Median = 3) in the first two sessions, with improvements
to four in later sessions, suggesting perceived functionality
enhancements over time. In contrast, content quality dropped in 2nd
session (Mode/Median = 2), indicating reduced relevance, before
recovering to a neutral rating in later sessions.

5.6 Effect of human-robot interaction on
mood

To assess whether participants interacting with an LLM-
powered robot would show improvements in mood across four
sessions, Wilcoxon signed-rank tests were conducted on the
Pleasure, Arousal, and Dominance dimensions from the SAM non-
verbal pictorial questionnaire (see Supplementary Figure S1), with
pre- and post-session ratings. Data for the tests were not normally
distributed, as confirmed by the Shapiro-Wilk test (all p < 0.05);
thus, non-parametric tests were used. The Wilcoxon signed-rank
tests showed no significant differences in Pleasure, Arousal, or

Dominance across the sessions. Specifically, no significant pre-
post changes were observed for Pleasure, Arousal, or Dominance
(e.g., Pleasure, Session 1: W = 11.500, p = 0.194; Session 2: W =
20.000, p = 0.395; Session 3: W = 5.500, p = 0.883; Session 4:
W = 6.000, p = 0.187).

Although not statistically significant p > 0.05), descriptive
trends emerged across the sessions. Pleasure showed a subtle but
consistent rise, especially in Sessions 1 (Δ = 0.308) and 3 (Δ =
0.308). Arousal had a slight increase in Session 1 (Δ = 0.384) and
Session 3 (Δ = 0.230) but showed no change in Session 2 (Δ = 0.000).
Dominance showed a rise in Sessions 1 (Δ = 0.231), 2 (Δ = 0.384),
and 3 (Δ = 0.307), with a slight decrease in Session 4 (Δ = −0.154).

5.7 Experiment observation and content
analysis

The system’s operation and human behavior were observed
in real time during the multi-turn interaction sessions. Sentences
containing background information, conversation history, and the
timestamps of received utterances or system-generated responses
were transcribed for further analysis. Several system limitations
were identified through real-time observation. First, the response
generation speed significantly slowed when utilizing the LLM
+ RAG approach (ranging from 6.0 to 15.0 s). Second, when
dealing with complex or accented English speech, the automatic
speech recognition (ASR) module often produced inaccurate
transcriptions, particularly during user identification. Additionally,
the clarity and structure of participants’ responses strongly
influenced the quality of the conversation flow; more structured
user input led to more engaging interactions.

The conversation data across four sessions revealed notable
trends. Participants’ disclosure of personal information decreased
between the first and third sessions but increased again in the
fourth session. Similarly, conversation length and duration followed
a decreasing trend up to the third session, with a partial recovery
in the fourth. Turn-taking remained relatively consistent except
for a notable drop in the third session, suggesting potential
fatigue or decreased engagement. These patterns are detailed in
Table 6. A Spearman’s correlation analysis was conducted to examine
the relationship between perceived system quality, as measured
by the BUS (Borsci et al., 2022), and conversational dynamics.
A significant negative correlation between engagement and mean
user turn-taking (p = 0.046) suggested that as the robot became
more engaging, participants tended to hold longer speaking turns.
Conversation duration was positively correlated with the number
of turn-takings (p = 0.020) and showed a strong positive correlation
with the amount of self-disclosure (p = 0.002).

Post-session interviews further clarified participant perspectives
on interaction quality. Overall, participants expressed enjoyment
but highlighted several system limitations. Some noted that the
robot would “insist on discussing the same topic” or “talk about
things I was not aware of ”, indicating issues with topic management
and memory recall. Others observed that EMAH “sometimes
looked around the room instead of keeping eye contact” and
displayed “random expressions that did notmatch the conversation”.
Regarding response quality, participants pointed out that “speech
recognition errors made the answers confusing” and that responses
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TABLE 6 Mean values of conversational components across four sessions.

Observation component Session 1 Session 2 Session 3 Session 4

Conv. duration (minutes) 19.986 18.496 12.256 15.526

Conv. length (words) 10.645 9.903 8.848 9.313

User turn-taking 30.615 30.538 24.231 29.231

Count of personal information detected 11.426 10.692 8.846 11.923

sometimes felt “like talking to a four or five-year-old child, which
is acceptable but needs improvement”. Suggested improvements
included diversifying topic selection, enhancing memory and
personalization, making facial expressions more natural, and
reducing response times to better match human conversational
pacing. Participants also reflected on their own role, suggesting that
“preparing topics beforehand”, “responding in longer sentences”, and
“being patient with response delays” could contribute to smoother,
more natural interactions. These insights emphasize that both
technological enhancements and user adaptation are critical for
improving long-term human-robot interaction experiences.

6 Discussion and conclusion

This study explored how open-domain, multi-session
interaction with an LLM-powered SHR affects user perceptions
and willingness to adopt it as a social companion. Across four
HRI sessions, we examined sociability, agency, engagement, rapport
development, disturbance, animacy, expectations, and willingness
to adopt the robot. Although they lacked strong statistical support,
several minor trends emerged, offering valuable insights into
long-term open-domain HRI using small, fine-tuned LLMs.

First, repeated interaction with EMAH showed that perceptions
of sociability, agency, and engagement remained largely stable across
sessions. Although high engagement was maintained through most
of the study, it slightly declined during the final session.This suggests
that while EMAH initially captured users’ attention, sustaining
engagement over longer periods remains a challenge. Such declines
may reflect user fatigue, novelty loss, or technical inconsistencies,
as suggested by prior work on long-term HRI (Steinfeld et al.,
2009; Smedegaard, 2019; Babel et al., 2021). Researchers have
recommended personalization through tailored content as a means
to counteract this well-documented HRI phenomenon (Nasir et al.,
2021). Participant interviews reinforced this, with several users
suggesting that EMAH should diversify topics, elaborate more
naturally during discussions, and improve memory recall to make
conversations feel less repetitive and more engaging.

Second, prior contact with robots did not significantly influence
the development of rapport with EMAH. Although users with
more robot experience reported slightly higher rapport descriptively,
the effect was not statistically significant. This leans towards prior
findings that mere exposure to robots does not guarantee deeper
social bonding (Rosén et al., 2024).

Third, increasing familiarity through repeated sessions did
not reduce perceptions of disturbance toward EMAH. However,

animacy ratings increased, implying that familiarity made EMAH
seem more lifelike without alleviating discomfort. This matches
findings from HRI research showing that highly anthropomorphic
designs often expose system limitations rather than conceal them
(Berns and Ashok, 2024). Consistently, interview feedback in our
study highlighted technical shortcomings, particularly in speech
recognition and response timing. Participants noted that inaccurate
transcriptions and long response delays disrupted conversational
flow and made interactions feel less natural. These observations
suggest that users may recalibrate their expectations (Rosén et al.,
2022), viewing robots not as fully human-like agents, but rather as
“scarecrows,” that are partially capable entities whose imperfections
are anticipated and accepted (Williams et al., 2024).

Fourth, while higher expectations correlated with positive
perceptions of sociability and engagement, they did not predict
users’ willingness to adopt EMAH as a companion. Users can
enjoy interacting with a robot without necessarily wanting a
deeper relationship or repeated use, especially when subtle technical
limitations persist (Kim C. Y. et al., 2024).

Another notable trend was the improvement in EMAH’s
perceived functionality. Although initial ratings of the robot’s
conversational ability were neutral, improvements were observed
during the third and fourth sessions. This aligns with previous
findings that familiarity can boost user confidence in system
capabilities, promoting perceptions of reliability over time
(Schneider and Kummert, 2021). However, the dip in functionality
ratings between the first and third sessions suggests temporary
inconsistencies in system performance. Similarly, the drop in
conversation length and turn-taking during the third session likely
reflected technical disruptions and participant fatigue. The recovery
seen in the fourth session suggests that user engagement remained
resilient, possibly supported by anticipation of completing the study
(Oertel et al., 2020). This aligns with earlier findings that repeated
interaction with social robots can lead to increased comfort and
deeper disclosure over time (Laban et al., 2024).

At this point, we acknowledge that external factors likely
influenced participant perceptions of the adapted open-domain
LLM deployed on SHR EMAH. Speech recognition challenges,
particularly with users’ accented English, and slow response
generation likely affected user perceptions. It is important to note
that response time ratings improved across sessions, suggesting
some adaptation to EMAH’s Text-to-Speech pacing (Powell et al.,
2022). Nonetheless, real-time observations confirmed that technical
fragility contributed to fluctuations in participant ratings. Users
appeared sensitive to inconsistencies in conversational quality,
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confirming earlier findings that real-world system flaws significantly
shape perceptions (Berns and Ashok, 2024).

Overall, while the study found that SHR EMAH could sustain
open-domain multi-turn interactions across multiple sessions,
it also highlighted areas for future improvement. Future work
will focus on enhancing the robot’s responsiveness, reducing
inconsistencies in accented speech detection, and exploring ways to
maintain engagement across longer-term interactions. Additionally,
increasing the user sample size and diversity of participants could
provide more robust insights into how different groups perceive
and interact with the robot. This work contributes to the growing
research on LLM-powered humanoid robots and their social
perception in educational settings, offering insights into using
customized LLMs in real-time, long-term HRI.
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