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Modeling arbitrarily applicable 
relational responding with the 
non-axiomatic reasoning system: 
a Machine Psychology approach

Robert Johansson*

Department of Psychology, Stockholm University, Stockholm, Sweden

Arbitrarily Applicable Relational Responding (AARR) is a cornerstone of human 
language and reasoning, referring to the learned ability to relate symbols in 
flexible, context-dependent ways. In this paper, we present a novel theoretical 
approach for modeling AARR within an artificial intelligence framework using the 
Non-Axiomatic Reasoning System (NARS). NARS is an adaptive reasoning system 
designed for learning under uncertainty. We introduce a theoretical mechanism 
called acquired relations, enabling NARS to derive symbolic relational knowledge 
directly from sensorimotor experiences. By integrating principles from Relational 
Frame Theory—the behavioral psychology account of AARR—with the reasoning 
mechanisms of NARS, we conceptually demonstrate how key properties of 
AARR (mutual entailment, combinatorial entailment, and transformation of 
stimulus functions) can emerge from NARS’s inference rules and memory 
structures. Two theoretical demonstrations illustrate this approach: one 
modeling stimulus equivalence and transfer of function, and another modeling 
complex relational networks involving opposition frames. In both cases, the 
system logically demonstrates the derivation of untrained relations and context-
sensitive transformations of stimulus functions, mirroring established human 
cognitive phenomena. These results suggest that AARR—long considered 
uniquely human—can be conceptually captured by suitably designed AI systems, 
emphasizing the value of integrating behavioral science insights into artificial 
general intelligence (AGI) research. Empirical validation of this theoretical 
approach remains an essential future direction.
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 1 Introduction

Human intelligence is marked by an extraordinary capacity for symbolic reasoning—the 
ability to understand and manipulate symbols (words, ideas, abstract concepts) and their 
relationships in a flexible manner. An aspect of this flexibility is the capability to derive 
new relationships between symbols without direct training, purely based on their contextual 
relations. In cognitive and behavioral psychology, this phenomenon is captured by the 
concept of Arbitrarily Applicable Relational Responding (AARR), which underlies human 
language and higher cognition (Hayes et al., 2001; Hayes et al., 2021). AARR refers to the 
learned behavior of relating stimuli in arbitrary ways (not dictated by the physical properties
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of the stimuli, but by contextual cues and social learning). For 
example, once a child learns that the spoken word “dog” refers 
to an actual furry pet, the child responds to the word as if 
it is functionally equivalent to the animal itself—experiencing 
excitement or happiness when hearing the word, similar to 
encountering the dog. Such symbolic equivalence is not determined 
by physical similarity but by relational learning. Derived relational 
responding of this type is considered a hallmark of human language 
and reasoning, enabling everything from understanding metaphors 
to performing complex analogies.

While humans readily perform AARR, instantiating this 
ability in artificial intelligence (AI) systems remains a formidable 
challenge. Traditional symbolic AI systems typically rely on 
explicitly programmed logic rules or axioms, and machine learning 
systems (like deep neural networks) often require vast amounts 
of data and struggle with extrapolating knowledge in the absence 
of direct examples. Achieving human-like symbolic reasoning in a 
machine calls for an approach that can learn relational patterns from 
a few examples and generalize them in a context-sensitive way, much 
as humans do. In other words, we seek an AI that can learn how to 
relate rather than being pre-programmed with all possible relations.

In this paper, we propose that AARR can be effectively modeled 
within a particular AI framework known as the Non-Axiomatic 
Reasoning System (NARS). NARS is an AI reasoning architecture 
designed to operate under the real-world constraints of insufficient 
knowledge and resources (i.e., it does not assume a closed, complete 
set of axioms or unlimited processing power) (Wang, 2013; Wang, 
2022). Instead of a fixed logic, NARS uses an adaptive logic (Non-
Axiomatic Logic, NAL) that allows it to learn from experience, 
update its beliefs probabilistically, and make plausible inferences 
even when knowledge is incomplete. These features make NARS a 
strong candidate for modeling the emergent, learned relations that 
characterize AARR.

The key contribution of this work is to demonstrate a 
computational method for describing human-like symbolic 
reasoning (AARR) in a machine by utilizing NARS’s capabilities. 
We integrate theoretical insights from Relational Frame Theory 
(RFT) (Hayes et al., 2001; Hayes et al., 2021) — the behavioral 
theory that explicates AARR—with the algorithmic machinery of 
NARS. We propose a novel theoretical mechanism called acquired 
relations, enabling NARS to derive symbolic relational knowledge 
directly from sensorimotor experiences. In doing so, we show that 
an AI system can learn and derive relationships among symbols in 
a manner analogous to human relational learning. This integration 
provides a framework for studying and implementing cognitive 
phenomena like language and abstract reasoning in AI. Importantly, 
our approach goes beyond purely mechanistic or narrow AI 
methods: rather than training a black-box neural network on vast 
relational datasets, we employ a functional approach grounded 
in how relations are learned and used by humans (Johansson, 
2024a). This allows the system to capture the contextual control 
and generalizability of human relational responding.

This integrative approach aligns with the broader 
interdisciplinary perspective of Machine Psychology (Johansson, 
2024a; Johansson, 2024b), which systematically applies principles 
from learning psychology—such as operant conditioning, 
generalized identity matching, and functional equivalence—to 
artificial intelligence architectures, aiming to replicate increasingly 

complex cognitive phenomena in machines (See Table 1 for 
an overview of how the present research fits with previously 
conducted studies).

We validate our approach with two experimental paradigms 
inspired by human studies. The first is a stimulus equivalence 
task involving three groups of stimuli and tests for derived 
symmetric and transitive relations, as well as a demonstration of 
the transformation of stimulus function (e.g., if one stimulus in a 
set is given a certain meaning or consequence, the others derived 
to be equivalent to it also reflect that meaning) (Hayes et al., 
1987). The second is an oppositional relational network task, where 
the system learns a network of “opposite” relations (a case of a 
more complex relational frame) and we examine how this leads to 
emergent relations and transformations of function consistent with 
what is observed in human experiments on relational framing of 
opposites (Roche et al., 2000).

The remainder of this article is organized as follows. 
Section 2 provides background on Arbitrarily Applicable Relational 
Responding, the Non-Axiomatic Reasoning System, and our 
research approach—Machine Psychology. Section 3 reviews related 
work, contrasting our perspective with other AI and cognitive 
modeling efforts. Section 4 introduces our theoretical framework, 
explaining how acquired relations enable modeling of AARR 
within NARS. Section 5 outlines the methodology behind our 
illustrative theoretical demonstrations, and Section 6 summarizes 
their key results, with detailed conceptual derivations provided in 
the Supplementary Material. Finally, Section 7 discusses broader 
implications for artificial general intelligence and cognitive science, 
and outlines directions for future empirical research. Collectively, 
these contributions establish a theoretical foundation for the 
empirical study of relational responding in adaptive AI systems. 

2 Theoretical background

2.1 Arbitrarily applicable relational 
responding

Arbitrarily Applicable Relational Responding (AARR) is a 
concept from behavioral psychology that refers to a general pattern 
of learned behavior: responding to the relation between stimuli 
rather than just the stimuli themselves, and doing so in a way 
that is not determined by the stimuli’s physical properties but by 
contextual cues and history of reinforcement (Hayes et al., 2001; 
Hayes et al., 2021). This idea is central to Relational Frame Theory 
(RFT), a modern behavioral theory of language and cognition 
(Hayes et al., 2001; Hayes et al., 2021). According to RFT, virtually 
all of human language and higher cognition is founded upon 
AARR—the ability to treat different stimuli as related along various 
dimensions (e.g., same, different, greater than, opposite, etc.) purely as 
a result of learned context, not because of any inherent relationship 
in their physical features.

Three key properties define AARR and distinguish it from 
simple associative learning. 

1. Mutual Entailment: This is the bidirectionality of derived 
relations. If a person learns a relation in one direction 
(e.g., A is larger than B), they can derive the relation 
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TABLE 1  Overview of psychological processes, NARS mechanisms, layers (from Wang, 2013), and references.

Psychological process NARS mechanisms NARS layers References

Operant conditioning Temporal reasoning and procedural reasoning 7–8 (Johansson, 2024b)

Generalized identity matching +Abstraction +6 (Johansson et al., 2023)

Functional equivalence +Implications +5 (Johansson et al., 2024)

Arbitrarily applicable relational eesponding +Acquired relations +4 This study

in the opposite direction (B is smaller than A) without 
direct training (Luciano et al., 2007). In classical terms, mutual 
entailment encompasses symmetric relations (if A = B, then 
B = A) and the inverses of asymmetrical relations (if A > B, 
then B < A) in a generalized way. Notably, the derived relation 
might not be identical in form (for instance, larger than
vs smaller than are inverse relations rather than exactly the 
same), but they are mutually implied by each other given the 
contextual cues (such as the contextual cue for comparison).

2. Combinatorial Entailment: This is the ability to derive new 
relations from combinations of learned relations. For example, 
if one learns that A is related to B, and B is related to C, 
one can often derive a relation between A and C, depending 
on the nature of the relation. In the simplest case, if A = B
and B = C (coordination relations), then one can derive A =
C (equivalence). If A > B and B > C (a comparative relation 
of “more than”), one can derive A > C (“A is more than C”). 
These are akin to transitive inferences, but RFT uses the term 
combinatorial entailment to emphasize that the new relation 
emerges from the combination of two or more other relations.

3. Transformation of Stimulus Function: Perhaps the most 
distinctive aspect, this refers to the way the functions of stimuli 
(their meaning, emotional valence, or behavioral effects) can 
change based on the relations they participate in (Dymond 
and Rehfeldt, 2000). In other words, if two stimuli are related 
in a certain way, any psychological function attached to one 
stimulus (like being pleasant, having a certain name, evoking 
a specific response) can be transferred to the other stimulus 
in accordance with their relation. For instance, suppose a 
person is taught that stimulus A is equivalent to stimulus B 
(A = B, a coordination relation), and separately, stimulus A 
acquires a particular function (e.g., A is paired with a reward 
or labeled as “good”). Then, without additional training, the 
person may treat stimulus B as also having that function 
(finding B pleasant or “good”), because B is in the same 
equivalence class as A. If the relation is one of opposition, the 
functions might transfer in an opposite manner (e.g., if A is 
opposite to B, and A is associated with “good,” B might be 
seen as “bad”) (Roche et al., 2000). Transformation of function 
demonstrates how relational learning can govern the meaning 
of symbols in context.

An example can illustrate these principles. Imagine a scenario 
in a coffee shop: A newcomer is told that “Espresso is stronger 
than Americano, and Americano is stronger than Caffé au Lait.” 
From just this information, the person can derive that Espresso is 

stronger than Caffé au Lait, and conversely, Caffé au Lait is weaker 
than Espresso (combinatorial entailment and mutual entailment for 
the comparative frame). Now, suppose the person actually tastes 
an Americano and finds it strong and bitter. That experience may 
attach a function (strong flavor) to Americano. Due to the relational 
network, the person might now expect that Espresso (which was 
said to be stronger than Americano) has an even stronger taste, 
and that Caffé au Lait (weaker than Americano) has a milder taste, 
even though they have never tasted Espresso or Caffé au Lait. 
This is a transformation of stimulus function across a comparative 
relation network: the direct experience with one item (Americano) 
transformed the anticipated qualities of the related items (Espresso, 
Caffé au Lait) in line with the learned relations.

Relational Frame Theory has identified numerous types of 
relational patterns (called relational frames) that humans can 
learn. Some prominent examples include frames of coordination
(equivalence/sameness), distinction (different from), comparison
(more than/less than as in the coffee strength example), opposition, 
hierarchy (e.g., category membership relations, like “X is a 
kind of Y”), temporal (before/after), spatial (here/there), and 
deictic (I/you, now/then, here/there, which involve perspective) 
(Hayes et al., 2001; 2021). All these frames share the properties 
of mutual and combinatorial entailment and can lead to 
transformations of function, though the exact nature of the 
entailments depends on the frame.

It is important to note that AARR is considered an operant 
behavior, meaning it is learned through a history of reinforcement 
and context, rather than being an innate or automatic reflex 
(Hayes et al., 2021). Crucially, according to RFT, derived relational 
responding (such as mutual entailment, combinatorial entailment, 
and transformation of function) is established via multiple exemplar 
training (MET), a well-documented learning process through 
which individuals are exposed to a variety of relational examples 
until relational responding generalizes to new, untrained examples 
without direct reinforcement (Luciano et al., 2007; Hayes et al., 
2021). Thus, explicitly training relational patterns initially is fully 
consistent with RFT, and subsequent relational responding is 
considered “emergent” precisely because it generalizes beyond 
reinforced examples due to this learning history. The term 
“arbitrarily applicable” emphasizes that any stimuli, regardless 
of their formal properties, can be related in any way, given 
the appropriate training context. Humans, especially those with 
language ability, seem uniquely capable of this kind of learning 
(Devany et al., 1986). Indeed, research has shown that stimulus 
equivalence (a basic form of AARR focusing on sameness) reliably 
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appears in humans but not in most non-human animals without 
language training, with only rare exceptions (Schusterman and 
Kastak, 1993). This link between language and AARR suggests that 
a capacity for relational responding is a defining feature of higher 
cognition.

Relational Frame Theory provides a perspective on general 
intelligence as well. Rather than viewing intelligence as a 
monolithic IQ or a fixed set of problem-solving abilities, RFT 
suggests intelligence involves a rich repertoire of relational skills 
(Cassidy et al., 2016; Hayes et al., 2021). From this viewpoint, 
improving one’s ability to learn and manipulate complex relational 
networks should enhance cognitive performance. Studies have 
found that training individuals on relational tasks can increase 
scores on standard intelligence tests (Cassidy et al., 2016). 
Programs like SMART (Strengthening Mental Abilities with 
Relational Training) and PEAK (Promoting the Emergence of 
Advanced Knowledge) aim to boost cognitive and language 
abilities by systematically exercising relational responding 
abilities (Dixon et al., 2017).

In summary, AARR, as characterized by RFT, captures the 
flexibility, generativity, and context-sensitivity of human symbolic 
reasoning. Modeling this phenomenon in an AI system requires 
that the system can represent relations between symbols, infer new 
relations from old, and dynamically update what symbols mean 
based on relational context. Next, we discuss NARS, which we 
propose as a suitable candidate for this challenge. 

2.2 Non-Axiomatic Reasoning System 
(NARS)

The Non-Axiomatic Reasoning System (NARS) is an AI system 
and cognitive architecture developed by Pei Wang (Wang, 2013; 
Wang, 2022) with the goal of realizing a form of general intelligence 
that operates effectively under real-world constraints. The name 
“non-axiomatic” reflects that NARS does not assume a predefined, 
complete set of axioms or truths about the world; instead, it must 
learn and reason non-axiomatically, meaning all its knowledge is 
gleaned from experience and is always revisable. NARS was built on 
the recognition that an intelligent agent in the real world must cope 
with insufficient knowledge and insufficient resources (a principle 
Wang abbreviates as AIKR: Assumption of Insufficient Knowledge 
and Resources (Wang, 2019)). Unlike classical logic systems that 
are brittle outside of their given axioms, NARS is adaptive and is 
constantly updating its beliefs and strategies as new information 
comes in, somewhat akin to a human continually learning and 
adjusting their understanding.

At the core of NARS is an AI reasoning framework called Non-
Axiomatic Logic (NAL). NAL is a formal logic that extends term 
logic (a kind of logic dealing with relationships between terms or 
concepts) and is probabilistic in nature. NARS uses an internal 
language, Narsese, to represent knowledge. All pieces of knowledge 
in NARS are expressed as statements in Narsese, which typically 
have a subject and a predicate and a copula connecting them (the 
copula defines the type of relation between subject and predicate). 
The simplest form is an inheritance relation “S→ P” meaning “S is 
a kind of P” or “S implies P” in a category sense. For example, one 
could represent “Tweety is a bird” as Tweety→ Bird, and “Birds 

are animals” as Bird→ Animal. NAL can then derive Tweety→
Animal by inference (a kind of syllogism) (Wang, 2013). In 
addition to inheritance, Narsese includes other basic copulas such 
as similarity (noted as ↔ in Narsese, meaning two terms are similar 
or equivalent in some sense), implication (→ with different context 
indicating temporal or causal implication), and equivalence (⇔ for 
bi-conditional statements). Through combinations of these, NARS 
can represent a wide variety of knowledge, including rules like “if X 
happens then Y tends to happen” (an implication), or “Concept A is 
similar to Concept B” (a similarity statement).

Crucially, every statement in NARS carries a measure of 
uncertainty. NARS does not use binary true/false assignments; 
instead, each piece of knowledge has a truth value with two 
parameters: frequency (a measure akin to probability based on 
how often the relation has been true in experience) and confidence
(reflecting the amount of evidence available) (Hammer, 2022; Wang, 
2022). This allows NARS to reason under uncertainty and update 
its beliefs as new evidence arrives. For example, if initially NARS 
has little evidence about “Tweety can fly,” it might assign it a low 
confidence. If many observations confirm it, the confidence (and 
perhaps the frequency) increases. See the Supplementary Material 
for more information regarding frequency and confidence.

Another distinguishing feature of NARS is its approach to 
resource constraints. NARS operates in real-time and has a limited 
“budget” for attention and memory. It cannot consider all knowledge 
all the time. Instead, it uses a priority mechanism to decide which 
tasks (questions, goals, new knowledge) to process next, based on 
factors like urgency and relevance. This ensures that at any given 
moment, the system focuses on the most pertinent information, 
allowing it to scale to larger problems by not getting bogged down 
in less relevant details.

Recent implementations of NARS include OpenNARS and 
specifically a variant called OpenNARS for Applications (ONA) 
(Hammer and Lofthouse, 2020). ONA is tailored for integration into 
practical applications, including robotics. It extends the basic NARS 
framework with sensorimotor capabilities, meaning it can handle 
input from sensors and send output to actuators (motors) as part 
of its reasoning. This is done by treating sensorimotor events also 
as terms in the language (for instance, a sensory observation or a 
motor command can be a term that participates in statements). In 
ONA, the reasoning engine is capable of doing temporal inference, 
understanding sequences of events and causality. Temporal relations 
in Narsese might be represented with additional notation - for 
example, A⇒ B might denote events A and B happening in 
sequence. ONA’s design includes components like event buffers, 
concept memory, and distinct inference processes for different types 
of tasks (e.g., some for immediate reactions, some for long-term 
learning) (Hammer and Lofthouse, 2020; Hammer, 2022).

For the purposes of this work, what is important is that NARS 
(and ONA) provides. 

• A flexible knowledge representation that can express arbitrary 
relations between symbols (via terms and copulas in Narsese).
• Inference rules that can derive new relationships from known 

ones, analogous to the entailments described in RFT. For 
example, NARS can perform syllogistic inference (if A→ B and 
B→ C, derive A→ C) and inductive inference (generalizing 
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or specializing relations based on evidence), which parallel 
combinatorial entailment in AARR.
• The ability to incorporate new knowledge on the fly and revise 

existing knowledge, which is essential for any learning system 
attempting to acquire relational behavior through training.
• The ability to handle context and switch between tasks, 

somewhat akin to how contextual cues in AARR determine 
which relation applies. In NARS, context is handled through 
its concept activations and the specific questions posed to the 
system; it is not identical to the notion of contextual cues 
in RFT, but NARS can take context into account by treating 
it as just another piece of information in the premise of a 
statement or rule.

In short, NARS can be seen as a unified cognitive model that 
does not separate reasoning, learning, memory, and perception 
into different modules; the same underlying logic and control 
mechanism handles all these functions (Wang et al., 2022). This 
makes it very appealing for modeling complex cognitive phenomena 
like AARR, because we do not need to bolt together separate 
systems for learning relations and for reasoning about them—NARS 
does both in one framework. The challenge is to design the right 
way to present relational training to NARS and possibly to extend 
NARS with any additional mechanisms so that it can exhibit mutual 
and combinatorial entailment and transformation of functions in a 
manner comparable to humans. 

2.3 Machine psychology: bridging learning 
psychology and adaptive AI

Machine Psychology is an interdisciplinary framework that 
integrates learning psychology with adaptive AI systems, such as 
NARS, to explore the emergence of cognitive behaviors in artificial 
agents (Johansson, 2024a; Johansson, 2024b). This approach 
systematically investigates increasingly complex learning processes, 
drawing from operant conditioning, generalized identity matching, 
and functional equivalence, which are fundamental to relational 
cognition. In Table 1, we clarify how this systematic approach has 
been carried out in previous studies.

In this work, we assume that the system is interacting with the 
environment using different sensors. A key sensor that will be used 
throughout the entire paper is the assumption of a location sensor. 
Objects perceived by the vision system would using this model all 
be assigned a location. The labels sample, left, right, etc., 
are totally arbitrary. They are chosen by the designer and are only 
labels used to indicate that different objects are perceived at different 
locations.

We could also imagine that the system is equipped with a color 
sensor, and is interacting with a Matching-to-sample procedure. For 
example, as illustrated in Figure 1, something red is in the sample 
position, something green is to the left, and something blue to the 
right. This could be described that the only “eyes” that the system 
have are location and color, meaning that other object properties like 
shape and size couldn’t be perceived by that system.

The way we represent such interactions with the world in this 
paper is like the following:

<(sample ∗ red) --> (loc ∗ color)>. :|:

FIGURE 1
An example scene where the system perceives three different colors 
at three different locations.

<(left ∗ green) --> (loc ∗ color)>. :|:
<(right ∗ blue) --> (loc ∗ color)>. :|:
The scene is described by two temporal statements (as indicated 

by:—:). Perceiving a green object to the left can be described 
as an interaction between perceiving to the left, and perceiving 
green. Hence, the statement <(left ∗ green) --> (loc ∗ 
color)> can be seen as a composition of <left --> loc>
and <green --> color>. This encoding of object properties at 
certain locations will be used throughout this paper. Importantly, 
also an OCR detector will be assumed in the experiments carried 
out in the present study, leading to interactions as the one 
illustrated below.

<(sample ∗ A1) --> (loc ∗ ocr)>. :|:
<(left ∗ B1) --> (loc ∗ ocr)>. :|:
<(right ∗ B2) --> (loc ∗ ocr)>. :|:
For details regarding the experimental setup used in the research 

described below, see the section in the Supplementary Material, that 
clarifies Narsese syntax and key concepts. 

2.3.1 Operant conditioning with NARS
The foundation of Machine Psychology is built on 

operant conditioning, a fundamental demonstration of 
adaptive behavior (Johansson, 2024b). In our research, NARS was 
exposed to operant contingencies where behaviors were reinforced 
based on temporal and procedural reasoning. This enabled NARS 
to learn through interaction with its environment, adjusting actions 
based on feedback, similar to how organisms learn in response to 
consequences. The results demonstrated that NARS could acquire 
and refine behaviors through reinforcement, providing an essential 
basis for more advanced relational learning.

<(left ∗ blue) --> (loc ∗ color)>. :|:
<(right ∗ green) --> (loc ∗ color)>. :|:
G! :|: // Establish G as a goal

// Executed with motor babbling:

// ^select executed with args

({SELF} ∗ right)
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G. :|: // Provide G as a consequence

// Derived with frequency 1, and confidence 

0.19:

// <(<(right ∗ green) --> (loc ∗ color)> &/ 
<({SELF}  ∗ right) --> ^select>) =/> G>. 

2.3.2 Generalized identity matching with NARS
Building upon operant conditioning, our research 

extended into generalized identity matching, which involves 
recognizing and responding to identity relations across 
varying stimuli (Johansson et al., 2023). This required NARS to 
utilize complex learning mechanisms, including abstraction and 
relational generalization. By introducing an abstraction mechanism 
to NARS, we enabled it to derive identity relations beyond explicit 
training examples, mirroring human cognitive abilities in symbolic 
matching tasks. The results showed that NARS could generalize 
identity relations to novel stimuli, demonstrating an emergent form 
of relational reasoning.

Let’s say that the system was exposed to the following NARS 
statements in the training phase.

<(sample ∗ blue) --> (loc ∗ color)>. :|:
<(left ∗ green) --> (loc ∗ color)>. :|:
<(right ∗ blue) --> (loc ∗ color)>. :|:
G! :|:
NARS could execute match with sample and right (from 

motor babbling or a decision based on previous experience), which 
would be considered correct, and hence the feedback G. :— :
would be given to NARS, followed by 100 time steps. Only from this 
single interaction, NARS would form both a specific and a general 
hypothesis.

<((<(sample ∗ blue) --> (loc ∗ color)> &/
<(right ∗ blue) --> (loc ∗ color)>) &/
<({SELF}  ∗ (sample ∗ right)) --> ^match>) 

=/> G>
// frequency: 1.00, confidence: 0.15

<((<(#1 ∗ #2) --> (loc ∗ color)> &/
<(#3 ∗ #2) --> (loc ∗ color)>) &/
<({SELF}  ∗ (#1 ∗ #3)) --> ^match>) =/> G>
// frequency: 1.00, confidence: 0.15 

2.3.3 Functional equivalence with NARS
Further advancing Machine Psychology, we explored 

functional equivalence, a process in which stimuli become 
interchangeable in guiding behavior due to shared functional 
properties (Johansson et al., 2024). This study introduced additional 
inference mechanisms into NARS, allowing it to derive new relations 
based on implications and acquired equivalences. Functional 
equivalence is critical for understanding how abstract categories 
are formed and used in problem-solving. Our findings indicate that 
NARS can establish and apply functional equivalence relations, 
effectively transferring learned functions between distinct but 
related stimuli.

<(s1 ∗ A1) --> (loc ∗ ocr)>. :|:
G! :|:
// Executed with motor babbling

<({SELF}  ∗ R1) --> ^press>. :|:
G. :|:
// Derived

<(<(s1 ∗ A1) --> (loc ∗ ocr)> &/
<({SELF}  ∗ R1) --> ^press>) =/> G>.
100

<(s1 ∗ A2) --> (loc ∗ ocr)>. :|:
G! :|:
// Executed same operation with motor 

babbling

<({SELF}  ∗ R1) --> ^press>. :|:
G. :|:
// Derived

<(<(s1 ∗ A2) --> (loc ∗ ocr)> &/
<({SELF}  ∗ R1) --> ^press>) =/> G>.
Since the system derived two contingencies that only differed 

in the pre-condition, statements like the following (functional 
equivalence) would also be derived.

<<($1 ∗ A1) --> (loc ∗ ocr)> ==>
<($1 ∗ B1) --> (loc ∗ ocr)>>.

<<($1 ∗ B1) --> (loc ∗ ocr)> ==>
<($1 ∗ A1) --> (loc ∗ ocr)>>.

These studies collectively illustrate the progression from simple 
operant conditioning to complex relational cognition, reinforcing 
Machine Psychology as a viable framework for advancing artificial 
general intelligence (AGI). An overview of the systematic approach 
Machine Psychology has taken, can be seen in Table 1. By 
systematically integrating behavioral learning principles with 
adaptive AI reasoning, this approach contributes to the development 
of more flexible, human-like intelligence in machines. 

3 Related work

Integrating principles of human cognition and learning into AI 
systems is a growing interdisciplinary endeavor. However, Relational 
Frame Theory (RFT) and its core concept of Arbitrarily Applicable 
Relational Responding (AARR) have seen relatively little application 
in mainstream AI research. Most approaches to relational reasoning 
in AI have taken alternative paths. 

3.1 Symbolic AI and knowledge graphs

Traditional symbolic reasoning systems, such as knowledge 
graph inference engines and logic-based AI, typically represent 
relations axiomatically (Lenat, 1995; Rosenbloom et al., 2016). 
These systems utilize explicitly predefined relational structures 
(e.g., ontological relationships like “isFatherOf ” being inverse to 
“isChildOf ”). They do not usually learn these relations dynamically 
but rely instead on manually crafted knowledge. In contrast, the 
proposed NARS-based approach aims at learning arbitrary relations 
from experience, enabling dynamic derivation of novel relations 
without predefined axioms. 

3.2 Machine learning for relational tasks

In the machine learning domain, methods such as relational 
reinforcement learning, graph neural networks, and transformer-
based models excel at extracting patterns from relational datasets. 
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For example, DeepMind’s Relation Networks can effectively learn 
relational structures to answer visual-spatial questions from large-
scale training data (Santoro et al., 2017). However, these data-driven 
methods typically require substantial training examples and may not 
guarantee key relational properties such as mutual or combinatorial 
entailment. Furthermore, these methods often lack interpretability 
and struggle with few-shot generalization—a core strength of human 
cognition that NARS aims to model by deriving relational structures 
adaptively from minimal and context-sensitive experiences. 

3.3 Bayesian approaches to relational 
learning

Bayesian methods, including probabilistic programming and 
Bayesian relational modeling, represent relational structures while 
also modeling uncertainty (Nitti et al., 2016; Tenenbaum et al., 
2011). These approaches are highly effective in generalizing from 
limited data, but they typically depend on predefined model 
structures and well-defined priors. As a result, dynamically 
deriving novel relational structures purely from interaction or 
flexibly adapting to context-sensitive relations can be challenging. 
By contrast, our NARS-based framework inherently constructs 
relational structures directly from interaction and accommodates 
dynamic, context-dependent inference without reliance on extensive 
predefined priors. 

3.4 Statistical relational learning and 
neurosymbolic AI

Recent advances in Statistical Relational Learning (SRL) and 
neurosymbolic AI methods integrate symbolic logic with statistical 
and neural learning techniques (Marra et al., 2024). These hybrid 
methods effectively handle relational inference tasks by leveraging 
symbolic representation and data-driven learning. However, 
SRL methods typically require large datasets and predefined 
structures, potentially limiting their adaptability in low-data or 
dynamically evolving contexts. Our approach utilizing NARS offers 
a complementary perspective by emphasizing adaptive reasoning 
and minimal-data learning, targeting scenarios that demand rapid 
relational inference from limited interactions. 

3.5 Inductive logic programming

Inductive Logic Programming (ILP) is another well-established 
paradigm for symbolic relational learning, focusing on deriving 
relational rules from structured data (Cropper and Dumančić, 
2022). Recent ILP applications have successfully modeled cognitive 
processes in robotic systems, enabling robots to generalize relational 
tasks from expert feedback (Meli and Fiorini, 2025). While powerful, 
ILP generally relies on explicitly defined logical frameworks and 
structured training examples. In contrast, our proposed integration 
of NARS and RFT uniquely emphasizes adaptive, context-sensitive 
relational learning, minimizing reliance on predefined logic 
templates or extensive datasets. 

3.6 Computational approaches inspired by 
RFT

Few computational approaches explicitly model AARR as 
defined by RFT. Early computational models attempted to simulate 
stimulus equivalence and relational responding through neural 
network approaches (Barnes and Hampson, 1993; Cullinan et al., 
1994). These connectionist methods successfully modeled basic 
relational properties such as symmetry and transitivity but typically 
required extensive training data and had limited scalability 
to complex relational frameworks. Although computational 
modeling of stimulus equivalence remains active (Tovar et al., 
2023), modeling of broader AARR principles beyond stimulus 
equivalence is rare, with notable exceptions including recent works 
by Edwards et al. (2022); Edwards (2024).

In summary, relational reasoning remains a vibrant area within 
AI research, yet the challenge of dynamically learning arbitrary, 
contextually flexible relational structures with minimal training 
data remains largely unmet. Our proposed NARS-based framework 
directly addresses this gap. To the best of our knowledge, this study 
is the first to conceptually demonstrate how mutual entailment, 
combinatorial entailment, and transformation of functions—key 
properties of AARR—can emerge within a unified symbolic 
reasoning system. This theoretical foundation sets the stage for 
future empirical validations and positions NARS as a promising 
candidate for adaptive, human-like relational reasoning. 

4 Theoretical framework: modeling 
AARR with NARS

To enable the modeling of Arbitrarily Applicable Relational 
Responding (AARR) within OpenNARS for Applications (ONA), 
we introduce a novel mechanism called acquired relations. Currently, 
ONA’s reasoning is based primarily on sensorimotor contingencies; 
however, according to NARS theory (NAL Definition 8.1 in Wang 
(2013)), relational terms (products) can equivalently be represented 
as compound terms of inheritance statements. This theoretical 
notion has not yet been implemented in ONA, and its introduction 
would allow the system to derive relational statements directly from 
learned sensorimotor contingencies.

Within NARS theory, a learned contingency such as.
<((<A1 --> p1> &/ <B1 --> q1>) &/ ^left) 

=/> G>.
can yield an acquired relation, formally represented as.
<(A1 ∗ B1) --> (p1 ∗ q1)>.
In the notation employed here, learned sensorimotor 

contingencies often take the form.
<(sample ∗ red) --> (loc ∗ color)> &/
<(left ∗ blue) --> (loc ∗ color)> &/
<({SELF}  ∗ (sample ∗ left)) --> ^match> 

=/> G>.
Following our approach, this yields two distinct relational 

terms—one describing the relation between stimulus properties 
(colors), and another describing the relational structure of stimulus 
locations.

<(red ∗ blue) --> (color ∗ color)> &&
<(sample ∗ left) --> (loc ∗ loc)>
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To avoid a combinatorial explosion, i.e., an exponential growth 
in derived terms and inferences, the introduction of acquired 
relations is carefully restricted. Specifically, new relations are 
generated only when procedural operations within contingencies 
are actively executed by the system. This targeted triggering ensures 
computational efficiency while maintaining functional generality.

Acquired relations can be combined with implications, another 
core element in NARS theory (see statement-level inference in Wang 
(2013)), allowing for generalized, context-sensitive reasoning. 
For example, from the acquired relations shown previously, the 
following implications can be derived.

<(red ∗ blue) --> (color ∗ color)> &&
<(sample ∗ left) --> (loc ∗ loc)> ==>
<(sample ∗ red) --> (loc ∗ color)> &/
<(left ∗ blue) --> (loc ∗ color)> &/
<({SELF}  ∗ (sample ∗ left)) --> ̂match> =/> G>. 
More generally, implications abstracted with variables 

take this form.
<($1 ∗ $2) --> (color ∗ color)> &&
<($3 ∗ $4) --> (loc ∗ loc)> ==>
<($3 ∗ $1) --> (loc ∗ color)> &/
<($4 ∗ $2) --> (loc ∗ color)> &/
<({SELF}  ∗ ($3 ∗ $4)) --> ^match> =/> G>.
This framework can be understood as a grounding mechanism 

whereby abstract relations (e.g., color-color) become anchored 
in concrete sensorimotor experiences. This allows NARS to 
dynamically transition from basic, animal-like contingency learning 
towards symbolic, human-like reasoning capabilities.

When multiple abstract relational templates or rules could 
apply during inference, NARS selects among these templates by 
prioritizing the rule with the highest truth expectation (Hammer 
and Lofthouse, 2020). Truth expectation in NARS is calculated as 
a function of frequency and confidence associated with previously 
derived relational implications:

exp ( f,c) = c×( f − 1
2
)+ 1

2

where frequency ( f) represents the proportion of positive evidence 
relative to the total evidence, and confidence (c) reflects the degree of 
evidential support based on the total amount of evidence (Hammer 
and Lofthouse, 2020). Thus, inference proceeds using the relational 
rule with the strongest combined evidential support, reflecting the 
system’s accumulated relational learning experiences.

Conversely, symbolic-level relational statements can also guide 
sensorimotor behavior. If a relation such as (blue→ yellow) is 
symbolically derived, it can then inform decision-making in novel 
situations via the implications described above, provided relevant 
locational relations (e.g., (sample→ right)) are established through 
direct interaction with the environment.

The concept of acquired relations is general and not restricted 
to matching-to-sample procedures. For example, functional 
equivalences acquired through interactions with different 
procedures also lead to relational derivations. Consider the 
following example.

<(<(left ∗ green) --> (loc ∗ color)> &/
<({SELF}  ∗ left) --> ^select>) =/> G>
100

<(<(left ∗ blue) --> (loc ∗ color)> &/

<({SELF}  ∗ left) --> ^select>) =/> G>
// Derived functional equivalence:

<(left ∗ green) --> (loc ∗ color)> <=>
<(left ∗ blue) --> (loc ∗ color)>
This equivalence, in turn, can support acquired relational 

implications.
<(green ∗ blue) --> (color ∗ color)> &&
<(left ∗ left) --> (loc ∗ loc)> ==>
<(left ∗ green) --> (loc ∗ color)> <=>
<(left ∗ blue) --> (loc ∗ color)>
// Abstracted form:

<($1 ∗ $2) --> (color ∗ color)> &&
<($3 ∗ $3) --> (loc ∗ loc)> ==>
<($3 ∗ $1) --> (loc ∗ color)> <=>
<($3 ∗ $2) --> (loc ∗ color)>
This flexibility aligns closely with contemporary learning 

psychology perspectives, which argue that any regularity—such 
as stimulus pairing or common roles within contingencies—can 
serve as a contextual cue for relational responding (De Houwer and 
Hughes, 2020; Hughes et al., 2016).

In the following section, we detail specific experimental 
paradigms designed to validate and explore the capabilities enabled 
by these modeling extensions. 

5 Illustrative theoretical 
demonstrations

The following sections present conceptual scenarios illustrating 
logical derivations rather than empirical experiments. These 
demonstrations serve as theoretical proofs-of-concept, designed 
to illustrate how the proposed NARS extensions could enable 
Arbitrarily Applicable Relational Responding (AARR). Quantitative 
performance metrics (e.g., accuracy, F1-score) are not applicable 
in this purely theoretical context but remain important targets for 
future empirical evaluations.

Crucially, during all theoretical testing phases reported here, we 
presented only the goal-event (G! :|:) to trigger system choices. 
We never provided feedback or reinforcement (G. :|:) during 
these tests. Thus, our testing phases strictly followed standard 
Matching-to-Sample (MTS) procedures used in human relational 
research, ensuring genuine tests of generalization in the absence of 
feedback. Please see the Supplementary Material for details.

In alignment with standard Matching-to-Sample procedures 
used in the human studies we replicate, the spatial positions 
(left/right) of comparison stimuli were systematically varied and 
balanced across trials within each training and testing block. 
This procedure, which has also been employed consistently in 
our previous experimental research with NARS-based systems 
(Johansson et al., 2023; Johansson, 2024b), ensures that relational 
responding could not rely on positional cues.

During training phases, we propose providing feedback in the 
form of positive reinforcement (G. :|:) for correct responses and 
negative feedback (G. :|: {0.0 0.9}) for incorrect responses. 
In this conceptual framework, negative feedback would reduce 
the truth expectation of corresponding implications, theoretically 
decreasing the probability that NARS would repeat incorrect 
behavior. This approach allows NARS, at a theoretical level, to 
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adapt relational knowledge based on experience. However, empirical 
testing of this mechanism remains an essential direction for 
future research.

We adapted two paradigms from Relational Frame Theory (RFT) 
literature: the Stimulus Equivalence and Function Transfer task 
(Task 1; Figure 2) and the Opposition and Function Transformation 
task (Task 2; Figure 3) (Hayes et al., 1987; Roche et al., 2000). 
These tasks were modified to conceptually fit the capabilities 
of NARS. Importantly, these setups were not implemented 
empirically in OpenNARS for Applications (ONA) (Hammer 
and Lofthouse, 2020); rather, they are presented here as 
symbolic analyses intended to illustrate how NARS, when 
theoretically extended, could account for these forms of relational
reasoning.

5.1 Task 1: stimulus equivalence and 
transfer of function

The design for Task 1 was inspired by the methodology 
introduced by Hayes et al. (1987). In their original human study, 
participants underwent four phases: (1) training conditional 
discriminations, (2) testing for derived equivalence classes, (3) 
training discriminative stimulus functions on selected class 
members, and (4) testing whether discriminative functions 
transferred to other members of the same equivalence classes. 
Importantly, the original study did not account for participants’ 
prior relational learning history.

In the present study, we included pretraining to establish basic 
relational skills prior to the main experiments. The study consisted 
of four phases conducted sequentially. 

1. Pretraining of relational networks: This phase explicitly trained 
foundational relations such as symmetry (X1→ Y1 and Y1→
X1), and transitivity (X1→ Y1, Y1→ Z1, thus deriving X1→
Z1).

2. Training conditional discriminations: Using a Matching-to-
sample (MTS) procedure, conditional discriminations were 
trained within two separate stimulus networks: one comprising 
stimuli A1, B1, and C1, and another comprising A2, B2, and C2.

3. Function training: NARS was trained to execute two 
discriminative responses: ^clap when B1 was presented as a 
sample stimulus, and ^wave when B2 appeared as the sample.

4. Testing derived relations and transfer: In the final phase, 
derived relations within each ABC network were tested 
without feedback, specifically examining whether previously 
trained discriminative functions (^clap, ^wave) transferred 
to equivalent stimuli (C1, C2).

5.2 Task 2: opposition and transformation 
of function

Task 2 was inspired by the relational methodology of Roche et al. 
(2000). Roche and colleagues examined how derived relational 
responses and stimulus functions transformed contextually 
using “Same” and “Opposite” relational frames. Their human 

FIGURE 2
Task 1 of this paper. Stimulus equivalence and the transfer of function. 
The necessary pre-training (Phase 1) is excluded from the picture. 
Picture shows Phases 2–5 of the task. Underlined options indicate 
correct choices.
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FIGURE 3
Task 2 of this paper. AARR in accordance with opposition and the transformation of function. The necessary pre-training (Phase 1) is excluded from the 
picture. Picture shows Phases 2–5 of the task. Underlined options indicate correct choices.

participants initially learned operant associations between 
arbitrary stimuli and actions (e.g., waving, clapping), followed 
by relational pretraining to establish “Same” and “Opposite” 
frames. Through training and contextual cueing, participants 
showed contextually controlled derived responding (e.g., relationally 
responding “Same” or “Opposite” for specific stimuli) and function
transformation.

In the current study, we again included explicit pretraining 
phases to equip NARS with necessary relational skills. The 
experimental design comprised five phases. 

1. Pretraining of relational frames: This phase explicitly trained 
“SAME” and “OPPOSITE” relations, establishing mutual 
entailment (e.g., SAME X1↔ Y1, OPPOSITE X1↔ Y2) and 
combinatorial entailment (e.g., SAME X1→ Y1, SAME Y1→
Z1, thus deriving SAME X1→ Z1). Functional equivalence 

and transfers between symmetry and functional equivalence 
were also established.

2. Training relational networks: Using the Matching-to-sample 
(MTS) procedure, relational networks were trained, forming 
SAME (e.g., A1→ B1, A1→ C1) and OPPOSITE (A1→ B2, 
A1→ C2) relations. A second analogous network (A2-B2-C2) 
was similarly trained.

3. Function training: The system was trained to produce 
discriminative responses ^clap (for B1) and ^wave (for B2).

4. Testing derived relations and function transformations: In the 
final phase, derived relations within the SAME/OPPOSITE 
networks were tested without feedback, specifically examining 
whether trained functions transformed appropriately across 
relational contexts. Stimuli tested included combinations such 
as SAME/C1, SAME/C2, OPPOSITE/C1, and OPPOSITE/C2.
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6 Theoretical results and conceptual 
derivations

Given the detailed and extensive nature of the logical 
derivations underlying these theoretical demonstrations, the full 
derivations, explicit representations, and step-by-step processes 
are presented in the Supplementary Material. Here, we summarize 
the key outcomes of our theoretical demonstrations evaluating 
whether NARS, with the proposed extensions, can model Arbitrarily 
Applicable Relational Responding (AARR). The main text thus 
maintains readability by focusing on the key relational properties 
(mutual entailment, combinatorial entailment, and transformation 
of function) that conceptually emerge within the NARS framework. 

6.1 Stimulus equivalence and transfer of 
function

In the first experiment (illustrated in Figure 2), we explored 
whether NARS logic could model the formation of stimulus 
equivalence classes and demonstrate the transfer of stimulus 
functions across related stimuli. Briefly, NARS was theoretically 
exposed to matching-to-sample (MTS) procedures where 
conditional relations (A→ B and B→ C) were trained. Additionally, 
discriminative functions were assigned to specific stimuli within 
these relational networks (e.g., stimulus B1 triggering a ^clap
response, and B2 a ^wave response).

Key results included. 

• Mutual entailment: NARS successfully derived bidirectional 
relations (e.g., if trained A→ B, it inferred B→ A).
• Combinatorial entailment: The system correctly inferred 

indirect relations from explicitly trained ones (e.g., from A→ B
and B→ C, it inferred A→ C).
• Transformation of function: Critically, discriminative 

functions (e.g., ^clap and ^wave) initially trained on B-
stimuli were transferred without additional training to C-
stimuli through derived equivalence relations, demonstrating 
a successful relational transfer of stimulus functions.

Thus, NARS logic adequately models essential aspects 
of stimulus equivalence and function transfer, foundational 
within Relational Frame Theory (Figure 4; detailed 
derivations in Supplementary Material Section S1).

6.2 Opposition and transformation of 
function

In the second experiment (illustrated in Figure 3), we assessed 
whether NARS logic could model relational networks involving 
oppositional frames (“SAME” and “OPPOSITE”) and the contextual 
transformation of stimulus functions. Similar to the first task, 
MTS training was theoretically applied, but now relations 
involved both SAME and OPPOSITE contexts. After training, 
discriminative functions were again assigned to specific stimuli 
within these networks.

Key outcomes included. 

• Context-sensitive mutual entailment and combinatorial 
entailment: NARS derived relations consistent with 
trained SAME and OPPOSITE relational frames, correctly 
generalizing from trained examples.
• Transformation of function across oppositional relations: 

Trained discriminative functions (e.g., ^clap associated with 
stimulus B1, and ^wave with B2) were accurately transferred 
to related stimuli (C1 and C2), including appropriate reversal in 
functions when oppositional relational contexts were applied 
(e.g., if stimulus pairs were related as OPPOSITE, stimulus 
functions reversed accordingly).

These results illustrate that NARS logic effectively models 
complex, contextually controlled transformations of function, 
consistent with Relational Frame Theory (Figure 5; detailed 
derivations in Supplementary Material Section S2).

In summary, these theoretical demonstrations confirm that 
the extended NARS logic is sufficiently powerful and flexible to 
capture core relational learning phenomena—mutual entailment, 
combinatorial entailment, and transformation of function—essential 
for modeling human-like symbolic reasoning and cognition. 

7 Discussion

This study demonstrated that the Non-Axiomatic Reasoning 
System (NARS), extended with mechanisms inspired by Relational 
Frame Theory (RFT), can successfully model Arbitrarily Applicable 
Relational Responding (AARR), a cornerstone of human cognition. 
Through theoretical analysis and logical derivations, we showed 
how NARS’s adaptive logic can capture essential relational learning 
phenomena without pre-defined axioms or extensive data-driven 
training. This integration provides a computational framework 
aligning cognitive science principles with artificial intelligence 
(AI), underscoring the interdisciplinary potential of Machine 
Psychology (Johansson, 2024a; Johansson, 2024b) in developing 
flexible, context-sensitive reasoning systems. 

7.1 Summary of theoretical insights

We have shown theoretically that NARS can replicate critical 
aspects of human-like relational reasoning by modeling Arbitrarily 
Applicable Relational Responding. Specifically, we demonstrated that. 

• NARS exhibits mutual entailment, accurately deriving 
bidirectional relations from trained unidirectional 
associations.
• It demonstrates robust combinatorial entailment, integrating 

multiple trained relations to correctly infer novel relations.
• It successfully replicates transformation of stimulus function, 

whereby functions (such as specific responses like “clap” or 
“wave”) trained to one stimulus are systematically transferred 
to other related stimuli without additional direct training.

These findings illustrate that the cognitive mechanisms 
underlying AARR—once considered unique to biologically evolved 
cognition—can be conceptually instantiated within a symbolic 
reasoning system. NARS’s capability to learn from minimal, 
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FIGURE 4
The two networks trained as part of the first experiment of this paper. Solid arrows represent relations that are explicitly trained. Dashed arrows 
represent derived relations.

FIGURE 5
The network trained as part of the second experiment of this paper. S and O indicate SAME and OPPOSITE, respectively. Left panel shows relations that 
are explicitly trained. Right panel shows derived relations.

structured experiences and subsequently perform flexible relational 
inference provides a clear departure from contemporary AI models 
that primarily rely on large-scale statistical training. Instead, our 
approach emphasizes “small data” and logical consistency, aligning 
closely with the RFT premise that very few exemplars, combined 
with appropriate contextual cues, can generate powerful relational 
generalizations. 

7.2 Implications for artificial general 
intelligence

Our theoretical demonstration of AARR within NARS offers 
significant implications for AGI research. First, it illustrates 
that sophisticated relational reasoning is achievable through 
adaptive symbolic systems without relying on extensive datasets, 
reinforcing structured symbolic learning as a viable path toward 
AGI. Second, our approach establishes learning psychology 
principles—particularly those articulated by RFT—as functional 
benchmarks for evaluating AGI systems’ relational generalization 

capabilities. Third, the flexibility of NARS in dynamically 
constructing relational structures under uncertainty makes it 
suitable for adaptive, real-world contexts. Lastly, integrating 
adaptive logic with relational reasoning supports broad applications, 
including robotics and human-AI interaction, where context-
sensitive symbolic manipulation is essential for achieving human-
like understanding. 

7.3 Limitations and future research 
directions

This theoretical study presents a conceptual framework and 
logical derivations rather than empirical validation. As such, 
the proposed extensions to NARS have not yet been practically 
implemented or empirically tested within an actual NARS-
based AI system. Quantitative evaluations, such as measuring 
accuracy, precision, recall, or F1-score of learned relational 
structures, are therefore not presented in this study. Empirical 
validation—including quantitative performance assessments and 
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comparative baseline evaluations with established methods such as 
Inductive Logic Programming (ILP), Statistical Relational Learning 
(SRL), and Neural Logic Machines—remains essential future work.

Furthermore, our theoretical demonstrations employed binary 
(two-choice) comparisons rather than multi-choice comparison 
tasks typically found in human MTS studies, thereby simplifying 
the generalization and discrimination demands. Future empirical 
validations should implement multi-choice comparison setups to 
systematically assess the scalability and generalization of relational 
responding within the NARS framework.

Several other avenues remain open for further exploration. 
One immediate direction involves expanding the relational frames 
modeled in NARS beyond equivalence and opposition, including 
comparative, hierarchical, and deictic relations, to comprehensively 
evaluate the system’s generalization capabilities. Another promising 
direction involves scaling relational networks by increasing 
stimulus complexity, testing NARS’s resource management and 
inference flexibility. Additionally, integrating perceptual inputs 
with symbolic reasoning represents a crucial step toward practical, 
embodied applications, enabling NARS to generate and reason about 
relations directly from sensory data in dynamic environments. 
Lastly, further refining and automating the relational learning 
mechanisms within NARS, alongside comparisons of NARS-derived 
relational learning curves with empirical human data, could guide 
targeted enhancements and deepen our understanding of relational 
cognition in both artificial and biological systems. 

8 Conclusion

We presented a theoretical framework demonstrating that 
NARS, enhanced by relational learning principles derived from 
Relational Frame Theory, can successfully model Arbitrarily 
Applicable Relational Responding—a foundational component of 
human cognition. This provides a concrete method for developing 
symbolic AI systems capable of dynamic, context-sensitive relational 
reasoning similar to that observed in humans. These findings 
represent a meaningful step toward bridging cognitive science 
and artificial intelligence, emphasizing that principles identified 
through human learning research can inform AI systems that 
“think” more like humans—not necessarily in brain-like structures 
but in the dynamic and contextually controlled use of symbolic 
knowledge. Continued interdisciplinary research in this direction 
holds considerable promise for developing flexible, adaptive, and 
ultimately more human-like artificial intelligence.
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