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Autonomy in socially assistive
robotics: a systematic review

Romain Maure* and Barbara Bruno

Socially Assistive Robotics with Artificial Intelligence Lab, Karlsruhe Institute of Technology, Karlsruhe,
Germany

Socially assistive robots are increasingly being researched and deployed
in various domains such as education, healthcare, service, and even as
collaborators in a variety of other workplaces. Similarly, SARs are also expected
to interact in a socially acceptable manner with a wide audience, ranging
from preschool children to the elderly. This diversity of application domains
and target populations raises technical and social challenges that are yet
to be overcome. While earlier works relied on the Wizard-of-Oz (WoZ)
paradigm to give an illusion of interactivity and intelligence, a transition toward
more autonomous robots can be observed. In this article, we present a
systematic review, following the PRISMA method, of the last 5 years of Socially
Assistive Robotics research, centered around SARs’ level of autonomy with a
stronger focus on fully and semi-autonomous robots than non-autonomous
ones. Specifically, to analyse SARs’ level of autonomy, the review identifies
which sensing and actuation capabilities of SARs are typically automated
and which ones are not, and how these capabilities are automated, with
the aim of identifying potential gaps to be explored in future research. The
review further explores whether SARs’ level of autonomy and capabilities are
transparently communicated to the diverse target audiences above described
and discusses the potential benefits and drawbacks of such transparency. Finally,
with the aim of providing a more holistic view of SARs’ characteristics and
application domains, the review also reports the embodiment and commonly
envisioned role of SARs, as well as their interventions’ size, length and
environment.

KEYWORDS

human-robot interaction, socially assistive robotics, level of autonomy, artificial
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1 Introduction

Socially Assistive Robotics (SAR) describes a class of robots that stand
at the intersection of assistive robotics, which includes robots that provide
assistance to a user, and socially interactive robotics, which includes robots that
communicate with a user through social interaction (Feil-Seifer and Matarić,
2011). As assistive robots, SARs’ core function is to provide assistance in
a variety of domains ranging from education to health or tasks requiring
collaborative teamwork (Breazeal et al., 2016). As social robots, SARs are
expected to interact in a natural manner with people of different ages, expertise
and cultures (Breazeal et al., 2016). To successfully interact with and properly
assist users, SARs require to be equipped with appropriate interaction and
actuation capabilities. Similarly, SARs also need to be equipped with sensing
capabilities to be able to sense their environment and react appropriately
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to humans’ inputs and actions. Creating social robots that are
competent and capable assistants for people raises technical
challenges that are yet to be overcome (Breazeal et al., 2016).
As a result of these challenges, many SAR applications rely on
the Wizard-of-Oz (WoZ) paradigm, which refers to a person
(usually the experimenter and often hidden to the target user)
remotely operating a robot and controlling some or all of the
robot’s sensing and actuation capabilities, such as its vision, hearing,
navigation, speech, gestures, etc (Riek, 2012). WoZ may involve
any amount of control along the autonomy spectrum, from full
autonomy to full human control (or no autonomy), with human-
robot shared autonomy (or semi-autonomy) anywhere in between
(Riek, 2012). While technical challenges are often a motivation to
choose no or shared autonomy over full autonomy, other factors
can also enter into consideration. For example, when robots are
used for highly critical tasks that have potential for human safety
concerns, less autonomous robots can be preferred (Elbeleidy et al.,
2022). Similarly, when robots are used in tasks which require
a clear chain of accountability, less autonomous robots can also
be recommended so that blame can be appropriately attributed
(Elbeleidy et al., 2022). Finally, teleoperation can also be preferred
in applications in which the operator is the target user itself and
operating the robot is part of the SAR intervention. Although
WoZ has advantages and is a convenient tool for human-robot
interaction (HRI) researchers, many raise concerns about this
technique. For example, Clabaugh and Matarić (2019) consider
WoZ methods intractable in SAR domains that require long-
term and real-world interventions. As described in Riek (2012),
many researchers argue that WoZ has methodological flaws, to
the point of stating that there is no real human-robot interaction
when using this technique, but rather a human-human interaction
through the proxy of a robot. Additionally, Riek (2012) also
mentions that researchers are concerned about the ethical flaws
of this method, both for the target user, who is subject to
deception, and for the operator, who is required to perform
deception.

The above discussion highlights how the topic of
autonomy in SARs is as old as SARs themselves, and still
far from being solved. Indeed, we identified three reviews
that explore the relation between SARs and their level of
autonomy (LoA).

Clabaugh and Matarić (2019) focus exclusively on fully
autonomous robots and explore how full autonomy is achieved.They
analyse full autonomy along two dimensions. The first dimension
corresponds to the interaction complexity, which is defined by
the intervention’s group size and length, as well as the robot’s
embodiment and role. The second dimension corresponds to the
computational complexity and intelligence of the SAR system,which
is defined by the environment’s observability and discreteness,
as well as the number of percepts (i.e., sensing modalities) and
the level of reasoning of the robot system employed. Riek (2012)
focuses solely on studies using the WoZ paradigm (non- and semi-
autonomous robots). The review explores how the WoZ technique
is typically employed in HRI by classifying studies using criteria
proposed by different authors (Fraser andGilbert, 1991; Green et al.,
2004; Steinfeld et al., 2009; Kelley, 1984). These criteria evaluate,
for example, the type of WoZ model used (Wizard of Oz, Wizard
with Oz, Wizard and Oz, Oz with Wizard, Oz of Wizard, Wizard

nor Oz) (Steinfeld et al., 2009), the possibility to simulate the system
in an autonomous way in the future (Fraser and Gilbert, 1991), the
necessity of providing training to wizards (Fraser andGilbert, 1991),
whether instructions were given to the target users to specify what
they could do during the interaction (Green et al., 2004), whether
the use of the WoZ technique is part of an iterative design process
or not (Kelley, 1984), etc. Finally, Elbeleidy et al. (2022) explores
the whole spectrum of autonomy (from non-autonomous to fully
autonomous). The authors use Beer et al. (2014)’s definition of
autonomy: “The extent to which a robot can sense its environment,
plan based on that environment, and act upon that environment
with the intent of reaching some task-specific goal without external
control.” Using this definition, they compare researchers’ choices of
robot’s level of autonomy with frameworks providing guidelines on
how to select a robot’s level of autonomy in accordance to the type of
intervention and users (Beer et al., 2014), and suggest that there is a
mismatch between the two. They also demonstrate that researchers
rarely provide a rationale concerning their choice for the robot’s
level of autonomy. While Elbeleidy et al. (2022) shed light on an
interesting gap in the literature, they only consider the overall level
of autonomy of social robots, with no insights on the underlying
technologies, unlike the reviews of Clabaugh and Matarić (2019)
and Riek (2012).

In the present review, we employ the same search pattern as
the one used by Clabaugh and Matarić (2019) (further described
in Section 2). By doing so, we aim to skew our research towards
publications whose SAR systems presents some degree of autonomy,
with the overarching goal of understanding how and through which
means autonomy is achieved in HRI. As opposed to the review of
Clabaugh and Matarić (2019), however, we do not exclude semi-
and non-autonomous SAR works that would result from the search.
By doing so, we aim to understand which sensing and actuation
capabilities are typically automated, and which ones are not, and
attempt to provide insights concerning the choice of robots’ level
of autonomy at the functionality level, thus potentially gaping the
lack of researcher’s rationale identified by Elbeleidy et al. (2022).
It should be noted that, while the search pattern allows to identify
publications whose SAR system presents some degree of autonomy
(as stated by Clabaugh and Matarić (2019): “The terms in the query
only enforce that a paper includes some form of social HRI and ML
or AI for automation”), the search pattern does not allow to provide
a comprehensive view of non-autonomous SARs. To summarize,
this article contributes to the current state of research in Socially
Assistive Robotics by providing an up-to-date systematic review
focusing on the level of autonomy employed in SAR applications.
We report the robots’ embodiment and commonly envisioned role,
as well as the interventions’ size, length and environments of SARs.
We study autonomy by analysing which sensing and actuation
capabilities of social robots are typically automated, and which ones
are not, and how these capabilities are automated. Finally, we also
study the level of transparency concerning robots’ autonomy and
capabilities.

The article is structured as follows. First, we present the
methodology of the survey in Section 2. Following the coding
scheme introduced in the survey methodology, we analyse the
included publications in Section 3 and discuss the insights emerging
from the analysis in Section 4. Finally, we conclude and provide
opportunities for future research in Section 5.
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2 Materials and methods

2.1 Identification, screening and selection
of relevant publications

The present study is a systematic review following the PRISMA
approach (Page et al., 2021). We used Google Scholar to identify
records and limited the search over the last 5 years (from January
2019 to July 2023). We limited our search to the same venues as the
ones indicated in Clabaugh and Matarić (2019): the International
Conference on Human-Robot Interaction (HRI), the International
Conference on Robot and Human Interactive Communication
(RO-MAN), the Conference on Human Factors in Computing
Systems (CHI), the Interaction Design and Children Conference
(IDC), the International Conference on Robotics and Automation
(ICRA), the International Conference on Intelligent Robots and
Systems (IROS), the Robotics: Science and Systems conference
(RSS), the International Conference on Development and Learning
and Epigenetic Robotics (ICDL-EpiRob), the Conference on Robot
Learning (CoRL), the AAAI Conference on Artificial Intelligence
(AAAI), the International Conference on Multimodal Interaction
(ICMI), the International Conference onMachine Learning (ICML),
and the Conference on Neural Information Processing Systems
(NeurIPS). Similarly, and as indicated in Section 1, we used the same
search pattern as the one used by Clabaugh and Matarić (2019):

(social OR sociable OR socially) AND (“machine learning”
OR “artificial intelligence”) AND “human-robot interaction.”

The search returned 1,138 records. Among them, 10 were
identified as duplicates and removed and 37 were removed because
they were published at venues excluded from our search. Among
the 1,091 remaining reports, one could not be retrieved because
it was not correctly referenced anymore, leaving 1,090 articles to
be assessed for eligibility. We excluded 51 reports for being meta-
analyses. Specifically, these articles do not present a primary study
but rather focus on synthesizing, comparing and discussing thework
described in other studies. Similarly, we further excluded 185 reports
due to their type. These articles are workshop papers, extended
abstracts, student competition papers, video demonstration papers,
position papers, summaries of a person’s work (e.g., full PhD theses)
or project plans. Lastly, we excluded 784 reports as out-of-scope for
this review. In particular, an article was considered out-of-scope if it
fell in one of the following cases:

1. The work lacks a clear socially assistive application.
2. The work lacks details about the robot’s approach to sensing

and acting.
3. The work was covered and expanded on in a subsequent

publication.
4. The work lacks a human-robot interaction:

a. There is no interaction between a human and a robot.
b. Human participants only interact with a virtual robot

(AR/VR or agent on a display).
c. Human participants only interact with a physical robot in

an online format (videoconference).
d. Human participants only watch a video of a pre-recorded

human-robot interaction.

In the end, 70 studies were included in the review. Figure 1
summarizes the flow of information through the stages of
identification, screening, and inclusion. Figure 2 presents the
distribution of publications by venue and by year. Please notice that
the low number of publications in 2023 is partly due to the fact that
this review only considers articles published in the first half of 2023.

2.2 Coding of the included publications

After the stages of identification, screening and selection of
relevant publications, we coded each of the included 70 publications
using the coding scheme1 described below. As introduced in
Section 1, and to the best of our knowledge, there is currently no
unique and standardized way of evaluating SAR autonomy. The
coding scheme of the present review is partially inspired by the
coding scheme described in Clabaugh andMatarić (2019). However,
since we do not only consider fully autonomous systems, as done in
Clabaugh and Matarić (2019), but also non- and semi-autonomous
systems, some elements of Clabaugh and Matarić (2019)’s coding
scheme were adapted or discarded, while new elements were added,
to fit our specific goals and research interests.

• Field of application reports the domain for which the robotic
intervention is intended.Thepublications are classified into the
following domains: health, education and workplace.
• Subfield of application provides further details on the robotic

application’s domain. Examples of subfields for the health
domain are physical activity, body hygiene ormentalwellbeing,
among others.
• Age is classified using Erikson’s stages of development (Erikson

and Erikson, 1998): infancy (0–1 years old), early childhood
(1–3 years old), preschool (3–6 years old), school-age (6–12
years old), adolescence (12–19 years old), early adulthood
(19–25 years old), adulthood (25–64 years old), elderly
(65+ years old). We use the age range of the participants’
population to determine the corresponding Erikson’s stages of
development. As a result, a publication may include multiple
Erikson’s stages of development. In the cases of publications
that only specify the mean μ and standard deviation σ of the
participant’s population’s age, we determine the Erikson’s stages
of development using an age range equal to μ± σ. In the cases of
publications that only specify the mean age of the population,
we infer the Erikson’s stage of development by looking at the
stage in which the mean falls into. Publications that do not
report the age of their population are classified as unspecified.
• Robot’s name reports the name of the robot used in the study.
• Robot’s morphology comprises three classes: humanoid,

zoomorphic and objectmorphic. Robots are classified as
humanoid, zoomorphic or objectmorphic if their morphology
mainly resembles, more or less realistically, the one of

1 The list of the 70 included publications and their

classification on the basis of the proposed coding scheme

is accessible at the following link: https://docs.google.

com/spreadsheets/d/1u5dONx1YIGruVeWI9WjGM2jN8EUnffBZhfhXlbh6

H5o/edit?usp=sharing
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FIGURE 1
PRISMA flow diagram for the stages of identification, screening and inclusion.

FIGURE 2
Number of publications by venue and by year.

a human, an animal or an object respectively. Figure 3
provides examples of robots classified as humanoid [Jibo,
NAO and ERICA (Glas et al., 2016)], examples of robots
classified as zoomorphic [Spot, Nybble and Paro (Shibata
and Wada, 2011)], as well as examples of robots classified
as objectmorphic [Cellulo (Özgür et al., 2017), Thymio
(Mondada et al., 2017) and Micbot (Tennent et al., 2019)].
• Robot’s realism is assessed on a three-point ordinal scale as:

abstract,mediumand realistic (Figure 3). A robot is considered
abstract if it exhibits only a few, fundamental characteristics
and morphology of a human, animal, or object. For example,
Jibo is considered abstract, as it solely possesses a torso, a head,
and a vertical posture similar to that of a human. Similarly, Spot
is considered abstract due to its overall quadrupedal animal
shape, which however does not correspond to any specific
animal. Conversely, robots are considered realistic if they
display a sufficient number of characteristics of the reference
morphology. For instance, ERICA is equipped with synthetic
skin and hair, has human-like facial and body features, and
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wears human clothing, rendering it very similar to a human.
Similarly, Paro not only has the morphology of a baby seal,
but it is also covered in synthetic fur, making it more easily
recognizable.
• Robot’s role is divided into four classes: subordinate, peer,

superior/tutor and multiple roles. A robot is considered to
have multiple roles if it enacts a different role in different
conditions (Salomons et al., 2022a), or in accordance with the
user’s preferences or actions (Domínguez-Vidal et al., 2021).
• Intervention size is assessed on a five-point ordinal scale as:

dyadic (size of 2), triadic (size of 3), small group (size of 4–9),
medium group (size of 10–14) and large group (size of 15+).
The robot is included in the group’s size count. Conversely,
people who relate to the intervention but are not members
of the target population are not: for example, in the context
of an educational robot, an adult teleoperating the robot such
as it is done in Vogt et al. (2019) is excluded from the group
size count.
• Intervention length is assessed on a five-point ordinal scale

as: single session, 2-6 sessions, 1–3 weeks, 1–11 months, more
than 1 year. Note that this rating does not take into account
the time between sessions: a study composed of five sessions
spread over a month would fall in the 2-6 sessions category, for
example, exactly as one in which the five sessions took place
over the span of a few days, withmultiple sessions per day.This
rating also does not account for the duration of each individual
session: a study such as Salomons et al. (2022b), composed
of 15–25 min interventions, repeated each day over 14 days,
would fall in the 1–3 weeks category, for example. We also only
focus on the duration of the SAR intervention in itself: a final
evaluation session is, for example, discarded from the count.
• Intervention environment reports the environment in

which the user study has been conducted. Examples of
intervention environments are school/university, home,
clinical environment and research laboratory. Publications
that do not report the intervention environment are classified
as unspecified.
• Sensing reports who is taking care of sensing the environment,

on behalf of the robot, during the interaction. We identify
three possible classes: human (if a human is responsible of
the robot’s perception), robot system (if the robot is provided
with perceptual information collected by on-board sensors
or external hardware components), and unused (no sensing
is done or mentioned). We report this information for each
of the following sensing modalities: vision, hearing, touch,
and other. Note that our assessment exclusively focuses on
the intervention itself: any sensing modality used to collect
data solely for offline post-processing is not considered.
Furthermore, some works rely on a combination of human
and robot sensing for a same sensing modality. For example, in
Mizumaru et al. (2019), vision is handled both by the robot and
a human operator. We code such cases as human sensing, as
the robot is reliant (albeit partly) on human input. Conversely,
other publications present a robotic intervention in which a
same sensing modality can be managed by either a human
or the robot, autonomously. For example, in Nakanishi et al.
(2021), vision can be handled by a human operator, or
autonomously by the robot. Such cases are coded as robot

sensing, given that the robot is able to autonomously detect
and process information along that sensing modality, and the
possibility of human involvement is just an optional feature.
Finally, in case a publication lacked clarity with respect to
sensing, it would be excluded according to the exclusion
criteria “The work lacked details about the robot’s approach
to sensing and acting.” For instance, if the authors of a
publication mention the use of a sensing modality, but it
is unclear whether this sensing modality is used solely for
data collection and offline post-processing purposes or it is
actively used during the intervention, the publication would
be excluded. Similarly, if the authors of a publication mention
the use of a sensing modality, but it is unclear whether this
sensing modality is handled autonomously by the robot or
by a human operator, the publication would be excluded. To
perform the coding of the sensing modalities and identify
whether a publication provides sufficient details, a two-pass
method was used. In the first pass, the coder would go through
the article adopting a fast reading approach2, to identify all
sensing modalities mentioned in the paper. During this pass,
the coder would search for any term that could generally be
associated with any of the considered sensing modalities (e.g.,
for the hearing modality, the coder would look for terms such
as “microphone,” “speech recognition,” “audio recording,” etc.).
Please notice that no specific set of keywordswas systematically
used to this purpose, also to take into account the possibly
different linguistic conventions of different sub-communities
and linguistic proficiency levels). If a considered sensing
modality was not mentioned in the article, it would be marked
as “unused,” as described above. For each considered sensing
modality mentioned in the article, the coder would identify all
the sections of the paper that refer to it and read them with the
aim of identifying who handles it (i.e., a human or the robot
system, as described above). If the answer could be found, the
coder would mark the answer in the coding sheet and move
on to the next mentioned sensing modality, or coding item if
no other considered sensing modality is left. If no clear answer
could be found, the coder would perform a second pass, in
which the paper is thoroughly read in full. In case the coder
could still not confidently identify how the sensing modality
is handled after the second pass, the article would be excluded
on the grounds of a lack of sufficient details about the robot’s
approach to sensing or acting. Notice how this conservative
approach aims at maximizing the precision of the analysis,
at the expense of possibly excluding articles that are clear in
all parts except for the handling of even just one considered
sensing modality.
• Actuation reports who decides how the robot should act

during the interaction.We again consider three classes: human,

2 Fast or speed reading is a technique aimed at increasing the rate at which

a person reads text while maintaining comprehension. It often involves

a stronger reliance on peripheral vision, with the eyes move from one

line to another along a broken path in the form of a snake, rather than

following each line from the beginning to the end. More details about

speed reading can be found at the following link: https://en.wikipedia.

org/wiki/Speed_reading.
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robot system, and unused (no acting is done or mentioned).
We report this information for each of the following action
modalities: movement, speech/sound, facial expression, lights,
and display. Note that we focus on the action level and not on a
goal level: a robot can be considered fully autonomous, even
if it has been tasked to perform a specific task by a human,
as long as each action to accomplish this task is performed
autonomously by the robot. For example, in Kraus et al. (2022),
human participants were able to give high level goals to a
robot such as fetching food, or cleaning the environment.
Even though the tasks to be accomplished were decided by a
human, the robot was classified as fully autonomous, because
all of the action modalities used to carry out each task were
handled in a fully autonomous way by the robot. Note that
we only consider modalities for direct (inter)action on the
target population: a display used to convey information to an
operator is not considered, unless the operator is a member of
the target population. Additionally, displays used as a robot’s
face (such as the face of Jibo) are classified as part of the facial
expression category and not the display category. Finally, the
same reasoning described in the sensing section above applies
for the cases where an action modality is jointly handled by a
human and the robot, or either by a human or the robot. The
same reasoning as the one described above also applies when it
comes to a lack of clarity with respect to actuation modalities.
If the authors of a publication mention the use of an actuation
modality, but it is unclear whether this modality is handled
autonomously by the robot, or manually handled by a human
operator, the publication would be excluded. The same two-
pass process described above for the sensing modalities was
used to code the actuation modalities and identify whether an
article should be excluded from the survey due to a lack of
details about the considered action modalities.
• Level of autonomy is divided into three classes: non-

autonomous, semi-autonomous, and fully autonomous. The
level of autonomy is decided on the basis of the sensing and
actuation items described above. A robot is classified as non-
autonomous if its sensing and actuation capabilities are only
human-based. A robot is classified as semi-autonomous if at
least one of its sensing or actuation capabilities is handled
by a human operator and at least one of its sensing or
actuation capabilities is handled by the robot system. Finally,
a robot is classified as fully autonomous if all of its sensing
and actuation capabilities are handled by the robot system.
It is important to note that, according to this definition, a
SAR system does not necessarily need to rely on artificial
intelligence to be classified as fully autonomous: a SAR system
solely relying on handcrafted behaviours with no need for
human intervention during the interaction, would in fact
also be classified as fully autonomous. Please also note that
dynamic shared autonomy is beyond the scope of this review.
As previously described, sensing or actuation abilities that are
handled both by a robot and a human operator are classified
as human sensing/actuation, given that the robot is reliant
(albeit partially) on human input. Additionally, sensing or
actuation abilities that can be handled either by a human
operator or autonomously by the robot are classified as robot
sensing/actuation, given the fact that human operation is an

optional but not necessary feature. This choice to classify
autonomy in a static way is made because our main research
interest lies in identifying gaps in SAR autonomy at the
functionality level, rather than exploring cases of shared
autonomy and how such cases are typically handled.
• Operator reports who is the operator in the case of

non-autonomous and semi-autonomous robots. Examples of
operators are researchers, caregivers, target users themselves,
etc.
• Transparency on the level of autonomy reports if the level

of autonomy is disclosed, prior to the SAR intervention, to
the target user(s) or not. We report this information only
for the publications employing a semi-autonomous or non-
autonomous robot.
• Transparency on the robot’s capabilities reports if the robot’s

capabilities (in terms of sensing and actuation) are explicitly
disclosed, implicitly disclosed, or not disclosed, prior to the
SAR intervention, to the target user(s).

3 Results

3.1 Fields of application

Concerning the fields of application of SARs, 44.3% of the
publications included in this review focus on the health domain,
while 27.1% employ social robots for applications related to the
field of education, and 28.6% explore the use of social robots in the
workplace (Figure 4). Among the health domain, the applications
are diverse: helping individuals with ASD (Ramnauth et al.,
2022; Carpio et al., 2019; Hijaz et al., 2021), visual impairment
(Antunes et al., 2022; Kayukawa et al., 2023) or auditory impairment
(Uluer et al., 2020; Chang et al., 2022), promoting physical activity
(Kothig et al., 2021; Cooney et al., 2020; Salomons et al., 2022b;
Cao et al., 2022; Li X. et al., 2023) or mental wellbeing (Farrall et al.,
2023; Dino et al., 2019; Zhang et al., 2023), providing assistance on
feeding (Gallenberger et al., 2019; Shaikewitz et al., 2023) or body
hygiene (Palinko et al., 2021; Unnikrishnan et al., 2019; Ye et al.,
2022), delivering services in clinical environments (Odabasi et al.,
2022; Horn et al., 2022) or acting as a telepresence device for
caregivers (Fiorini et al., 2020) or patients (Mackey et al., 2022;
Wang et al., 2021). In the field of education, the disciplines of
science, technology, engineering and mathematics (STEM) are the
most commonly considered (Nasir et al., 2019; Donnermann et al.,
2020; Ramachandran et al., 2019; Charisi et al., 2021), followed
by language learning (Vogt et al., 2019; Kim et al., 2019),
storytelling (Zhao and McEwen, 2022; Park et al., 2019), and motor
development (Tozadore et al., 2022; Kouvoutsakis et al., 2022),
among others. Finally, similarly to the health domain, the use of
SARs in the workplace is represented by a variety of scenarios,
including as receptionists (Mishra et al., 2019; Hwang et al., 2020;
Gunson et al., 2022), waiters (McQuillin et al., 2022; Naik et al.,
2021), tour-guides (Del Duchetto et al., 2019; Cauchard et al.,
2019), assembly workers (Rajavenkatanarayanan et al., 2020;
Lambrecht and Nimpsch, 2019), service providers in retail
environments (Takada et al., 2021; Lewandowski et al., 2020),
cooking assistants (Yamamoto et al., 2021) or video recording
assistants (Li J. et al., 2023).
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FIGURE 3
Classification of robots based on their morphology and their realism. The Micbot image is taken from (Tennent et al., 2019).

FIGURE 4
Proportion of publications per field of application and level
of autonomy.

3.2 Populations

Concerning the populations recruited to test the robotics
applications (Figure 5), the most represented age categories are the
early adulthood (Salomons et al., 2022b; Donnermann et al., 2020)

and adulthood categories (Kayukawa et al., 2023; Takada et al.,
2021), which are included in respectively 37.1% and 47.1% of
the publications analysed in this review. The widespread presence
of these age categories is likely explained by the ease to recruit
and conduct experiments with such populations. Following these
categories, the preschool (Vogt et al., 2019; Tolksdorf and Rohlfing,
2020), school age (Antunes et al., 2022; Kim et al., 2019) and
adolescence (Azizi et al., 2022; Nasir et al., 2019) are included
in respectively 15.7%, 22.9% and 18.6% of the publications. Most
of these age categories are represented by the education domain.
Finally, the least represented populations, which are also the most
vulnerable, are the elderly (Luperto et al., 2019; Fiorini et al.,
2020), early childhood (Zhao and McEwen, 2022) and infancy
populations (Kouvoutsakis et al., 2022), which are present in
respectively 11.4%, 1.4% and 1.4% of the studies. In a Kendall’s tau-
b correlation analysis investigating the relationship between the age
of the populations (excluding the unspecified category) and their
representation in the publications included in this review, a strong
and nearly statistically significant positive correlation was observed,
τb = 0.545, p = 0.061.

3.3 Robots used

Concerning the robots used in the studies, NAO, Pepper
(Pandey and Gelin, 2018), QTRobot and Jibo are the most
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FIGURE 5
Proportion of publications per age category and level of autonomy.
Please notice that a publication can fall into multiple age categories,
as explained in Section 2.2.

commonly employed and represent respectively 14.3%, 10%, 5.7%
and 2.9% of the publications (Figure 6A). Various robotic arms
such as UR5, KUKA LBR iiwa or FRANKA EMIKA PANDA are
also used and collectively account for 14.3% of the publications
(Salomons et al., 2022a; Li J. et al., 2023; Ye et al., 2022;
Kowalski et al., 2022). The figure also shows that the majority
of the studies are conducted with a plethora of diverse robots
(52.9%), some being commercially available such as Turtlebot,
Double or TIAGo, while some are ad hoc designed, such as Micbot
(Tennent et al., 2019), POP Cart (Takada et al., 2021), RIMEPHAS
(Palinko et al., 2021) or Cobbie (Lin et al., 2020).

Most of the robots used have a humanoid morphology (75.7%),
while objectmorphic robots represent 21.4% of the publications
and zoomorphic robots only represent 2.9% of the publications
(Figure 6B). Objectmorphic robots take various forms: a suitcase
(Kayukawa et al., 2023), a backpack (Cao et al., 2022), a microphone
(Tennent et al., 2019), a wheeled vehicule (Domínguez-Vidal et al.,
2021) or a drone (Cauchard et al., 2019), among others. Zoomorphic
robots are only employed in two studies: one uses the Luka robot
(owl-shaped robot) in a storytelling activity for children (Zhao and
McEwen, 2022), while the other used the Keepon robot (canary-
shaped robot) in an interaction promoting physical activity in early
adulthood individuals (Salomons et al., 2022b).

Most robots present a low (40%) to medium (48.6%) level of
realism, while realistic robots are less represented and account for
11.4% of the publications (Figure 6C). Nearly all the realistic robots
are objectmorphic (87.5%) and only one publication employs a
realistic humanoid robot [Nadine, a robot designed to resemble a
middle-aged Caucasian woman, employed in Mishra et al. (2019)].

Concerning the robot’s role, the corpus of publications studied
in this review is characterized by a majority of robots acting as a
peer (50%) while the subordinate and superior/tutor roles account
for 27.1% and 18.6% of the publications respectively (Figure 6D).

3.4 Intervention types

Concerning the type of intervention (Figure 7A), the vast
majority of studies are dyadic (80%). Publications characterized by
a triadic (Zhang et al., 2023; Kowalski et al., 2022; Charisi et al.,
2021), small group (Unnikrishnan et al., 2019; Humblot-
Renaux et al., 2021; Tennent et al., 2019) or large group
(Velentza et al., 2021; Sackl et al., 2022) interaction sizes represent
10%, 4.3% and 5.7% respectively. No publication using a medium
group intervention size is recorded. In a Kendall’s tau-b correlation
analysis investigating the relationship between the interaction’s size
and their representation in the publications included in this review,
a strong but not statistically significant negative correlation was
observed, τb = − 0.6, p = 0.233.

Most of the interactions involve only a single session
(68.6%), while studies lasting 2 to 6 sessions (Chen et al., 2022;
Ramachandran et al., 2019; Rajavenkatanarayanan et al., 2020), 1–3
weeks (Ramnauth et al., 2022; Mizumaru et al., 2019; Dino et al.,
2019) and 1–11 months (Zhao and McEwen, 2022; Park et al., 2019;
Del Duchetto et al., 2019) represent 20%, 7.1% and 4.3% respectively.
No publication lasting more than 1 year is recorded (Figure 7B). In
a Kendall’s tau-b correlation analysis investigating the relationship
between the interaction’s length and their representation in the
publications included in this review, a perfect and statistically
significant negative correlation was observed, τb = − 1, p = 0.016.

Concerning the intervention environment (Figure 7C), 32.9%
of the studies are conducted in a laboratory setting, while 52.9%
are conducted in-the-wild, and 14.2% of the publications do not
report the intervention location. The interventions performed in
the real world are various: 20% of the studies are conducted
in schools or universities (Kim et al., 2019; Nasir et al., 2019;
Velentza et al., 2021; Charisi et al., 2021), 10% are conducted in
entertainment facilities such as gym rooms (Sackl et al., 2022),
museums (Del Duchetto et al., 2019; Kayukawa et al., 2023) or
science festivals (Koenig et al., 2021), 8.6% are conducted at home
(Ramnauth et al., 2022; Fiorini et al., 2020), 5.7% are conducted
in clinical environments such as hospitals (Palinko et al., 2021),
rehabilitation centres (Horn et al., 2022) or retirement homes
(Odabasi et al., 2022), 4.3% are conducted in retail environments
such as supermarkets (Takada et al., 2021; Lewandowski et al.,
2020) or shopping malls (Mizumaru et al., 2019) and 4.3% are
conducted in workplace environments such as insurance companies
(Mishra et al., 2019), hotels (Nakanishi et al., 2021), etc.Additionally,
we observe differences between the fields of applications concerning
the proportion of studies conducted in the wild with respect to
studies conducted in controlled-laboratory settings (Figure 7D).
Education is the domain that is most tested in-the-wild, with 81.2%
of the publications. On the other hand, applications related to the
health and workplace domains are tested in-the-wild in 53.9% and
55.6% of the cases, respectively.

3.5 Levels of autonomy

Using our search pattern, which mainly targets publications
whose SAR system present some degree of autonomy, and following
our coding scheme, we obtained the following distribution of
level of autonomy: 68.6% of the publications employed robots
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FIGURE 6
(A) Proportion of the robots used in the studies included in the review. (B) Proportion of publications per robot morphology and level of autonomy. (C)
Proportion of publications per robot realism and level of autonomy. (D) Proportion of publications per robot role and level of autonomy.

able to conduct the intervention in a fully autonomous manner,
17.1% employed semi-autonomous robots, and 14.3% employed
non-autonomous robots (Figure 8). We conducted statistical tests
of association between the level of autonomy and the field of
application, the robot’s morphology, the robot’s realism, the robot’s
role, the intervention’s size, the intervention’s length and the
intervention’s environment. Due to one of the assumptions of the
Chi-squared test not being satisfied (expected values above five
in at least 80% of the cells of the contingency table) for all these
sets of variables, we used the Fisher’s exact test instead. However,
due to the nature of this literature review, the row and column
totals of the contingency tables could not be fixed, which is one
of the assumptions of Fisher’s exact test. As a result, the tests we
conducted can not be referred as exact anymore and their power is
reduced. We still favoured Fisher’s exact test over alternatives such
as Barnard’s test or Boschloo’s test due to the lack of available and
tested software implementations (both in R and Python) of these
alternative tests for more than two by two contingency tables. Note
that we did not conduct a test of association between the level
of autonomy and the users’ age, because each publication could
fall into multiple age categories, as explained in Section 2.2. As a
result, the observations are not mutually exclusive, which is another
assumption of the Fisher’s exact test of association. The results
of the tests we conducted are summarized in Table 1. For all the
variables studied, no statistically significant associations were found
(p > 0.05).

3.5.1 Sensing
Concerning the sensing modalities (Figure 9), vision is the

most prominent and is used in 72.9% of the publications. In
48.6% of the publications, the vision modality is handled fully
autonomously by the robot system, while it is handled by a human
in 24.3% of the publications. Publications using vision in a fully
autonomous manner typically use the internal camera of the robot
or external devices such as Intel RealSense or Kinect cameras. Some
publications also use Lidars and laser scanners. Vision is used in a
variety of ways, for example, Palinko et al. (2021); Ramnauth et al.
(2022); Tozadore et al. (2022) use face/body detection to trigger
specific behaviours when humans enter the robot’s field of view,
Kayukawa et al. (2023); Odabasi et al. (2022) use vision to perform
socially-aware navigation in real-world environments, Sackl et al.
(2022); Cooney et al. (2020); Salomons et al. (2022b) use body
pose estimation to provide feedback to humans during physical
activities, McQuillin et al. (2022); Park et al. (2019) use vision to
perform facial expression recognition, Gallenberger et al. (2019);
Shaikewitz et al. (2023); Lambrecht and Nimpsch (2019) use the
eye-in-hand paradigm to allow robotic arms to detect and grasp
objects in their reachable workspace. This sensing modality is used
for similar purposes when it is handled by humans, for example,
Unnikrishnan et al. (2019); Mizumaru et al. (2019) use vision to
trigger specific robot behaviours when humans enter the scene,
Fiorini et al. (2020); Kouvoutsakis et al. (2022); Yadollahi et al.
(2022); Gunson et al. (2022) use vision to navigate the robot in
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FIGURE 7
(A) Proportion of publications per intervention size and level of autonomy. (B) Proportion of publications per intervention length and level of autonomy.
(C) Proportion of publications per intervention environment and level of autonomy. (D) Proportion of publications per intervention environment and
field of application.

FIGURE 8
Proportion of publications per level of autonomy.

TABLE 1 Fisher’s exact test statistics (two-tailed).

Variable 1 Variable 2 p value

Level of autonomy

Field of application 0.336

Robot’s morphology 0.793

Robot’s realism 0.593

Robot’s role 0.254

Intervention’s size 0.660

Intervention’s length 0.360

Intervention’s environment 0.237

its environment, while Koenig et al. (2021) use vision to perform
grasping operations.

Hearing is used to a lesser extent than vision and is present in
45.7% of the publications, with 28.6% letting hearing being handled
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FIGURE 9
Proportion of publications per sensing modality and actor handling
the modalities.

by the robot system, and 17.1% by a human. Some publications
included in this review justify not using the hearing modality
with the inaccuracies of the available speech recognition solutions
(Vogt et al., 2019; Donnermann et al., 2020; Tolksdorf and Rohlfing,
2020). In the cases where hearing is implemented in an autonomous
manner, the internal robot microphone is typically used. External
microphones such as the Amazon Echo Dot, the ReSpeaker 4-
microphone array or the microphones present in Kinect devices
are also used. The hearing modality is used with varying levels of
complexity, for example, Ramnauth et al. (2022) uses voice activity
detection: the behaviour of the robot changes according to the
presence or absence of an answer from the human user, but the
content of the user’s answer, if given, has no influence on the
interaction. Most of the other publications adapt the interaction
based on the content of the user’s answers. While some only accept
a limited set of answers such as basic affirmations or negations like
“yes,” “understood,” “no” (Palinko et al., 2021; Luperto et al., 2019),
or basic commands like “next,” “start,” “stop,” “help” (Cooney et al.,
2020; Yamamoto et al., 2021; Lambrecht andNimpsch, 2019), others
combine speech recognition with more advanced natural language
understanding and dialogue management solutions (Kraus et al.,
2022; Horn et al., 2022; Dino et al., 2019; Mishra et al., 2019).
Finally, only a few studies extract features from the raw audio
signals. For example, in Carpio et al. (2019), the robot extracts the
spectrogram of the user’s audio signals and uses this information
to select appropriate actions in the context of an intervention for
individuals with ASD. Similarly, in Humblot-Renaux et al. (2021),
the robot extracts the users’ spectrograms and gammatonegrams to
perform speaker recognition. Alongside speaker recognition, they
also use an array of microphones to perform sound localization,
allowing the robot to align toward the current human interlocutor.
Sound localization is also used in Tennent et al. (2019) to allow the
robot to align toward the interlocutorwho talked the least in a group.
When hearing is handled by human operators, it is essentially used
to perform perfect speech recognition, which is then used to react
appropriately to the target user’s prompts and control the flow of
the interaction. Unlike vision, where autonomous solutions seem

capable to handle the same tasks occasionally delegated to humans,
with comparable accuracy, automated hearing solutions seem still
far from human performance, particularly in the case of speech
recognition.

The touch modality is present in 52.9% of the publications, and
is always handled autonomously by the robot. In most cases, this
modality is employed through the use of tablets, which are often
external to the robot (Apple or Android based tablets, Microsoft
Surface, Wacom tablets, etc.). For example, in Vogt et al. (2019)
a Microsoft Surface tablet is used as the main support for a
language learning activity with children, in Kim et al. (2019)
children practice handwriting on a Wacom tablet, in Kraus et al.
(2022) an Android-based tablet is used to give tasks to a home
assistant robot. The touch modality is also characterized by the
use of force sensors, mainly by robotic arms performing grasping
tasks (Gallenberger et al., 2019; Shaikewitz et al., 2023), or the use
of buttons, which are often used as a way to communicate with
the robot (Ramnauth et al., 2022; Kayukawa et al., 2023), or as
emergency stop buttons (Odabasi et al., 2022; Dennler et al., 2021).

Finally, 7.1% of the publications used other sensing modalities.
Among them, inertial sensing (Zhao and McEwen, 2022;
Mizumaru et al., 2019) and heart rate/ECG sensing (Kothig et al.,
2021; Farrall et al., 2023) are the most common. In Zhao and
McEwen (2022), the robot possesses an inertial measurement
unit (IMU) which allows detecting the child’s manipulation of the
robot and triggering specific robot behaviours. In Mizumaru et al.
(2019), the robot collects IMU data to perform Simultaneous
LocalizationAndMapping (SLAM) and navigate in its environment.
In Kothig et al. (2021), the heart rate of the participant is
measured to adapt in real-time the difficulty of cardiovascular
exercises. In Farrall et al. (2023), the heart rate of the participant is
measured and is replicated on a shape-changing pneumatic sphere
used for relaxation and anxiety reduction.

3.5.2 Actuation
Concerning the actuation modalities (Figure 10), robot

movements are the most employed and appear in 91.4% of the
publications. The embodiment of robots, which is the main
difference between robots and virtual agents, is thus mostly
leveraged by HRI researchers. In 67.1% of the publications, the
movements are handled fully autonomously by the robot system,
while they are handled by a human operator in 24.3% of the
publications. In the case of fully autonomous robots, movements
are used in a variety of ways, for example, Kayukawa et al. (2023);
Kraus et al. (2022); Odabasi et al. (2022); Del Duchetto et al.
(2019) use it to navigate in the environment, Gallenberger et al.
(2019); Shaikewitz et al. (2023); Salomons et al. (2022a); Lambrecht
and Nimpsch (2019) use it to perform grasping and hand-over
tasks, Rossi et al. (2019); Park et al. (2019) use arm and body
gestures to make the robot’s emotions more expressive and realistic,
Tozadore et al. (2022); Uluer et al. (2020); Dennler et al. (2021)
use arm gestures to provide positive or negative feedback during
child-robot interactions, Cooney et al. (2020); Kothig et al. (2021);
Salomons et al. (2022b) use arm and body gestures to motivate
and guide users in physical exercise interventions, Mishra et al.
(2019); Nakanishi et al. (2021); Tennent et al. (2019); Humblot-
Renaux et al. (2021) use it to align the robot’s head or body toward
the user. Robot movements are used for similar purposes when
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FIGURE 10
Proportion of publications per actuation modality and actor handling
the modalities.

handled by humans: in Fiorini et al. (2020); Kouvoutsakis et al.
(2022); Takada et al. (2021); Nasir et al. (2019), the operators control
the robots’movements tomake themnavigate in the environment, in
Koenig et al. (2021) the user operates the robot to perform grasping
tasks, in Tolksdorf and Rohlfing (2020) a researcher operates the
robot to perform pointing gestures, in Hijaz et al. (2021) a caregiver
operator controls the robot’s gestures to make the robot’s emotions
more expressive, in Azizi et al. (2022); Velentza et al. (2021), gestures
are used to make the robot appear more lively and to complement
other actuation modalities, in Tolksdorf and Rohlfing (2020) the
operator controls the robot’s head to align it toward the target user.

Speech and sounds is the second most used actuation modality
and is used in 75.7% of the publications, with the robot handling this
modality in a fully autonomousway in 58.6%of the publications, and
a human operator handling it in 17.1% of the publications. Similarly
to the hearing modality, when speech is handled autonomously by
the robot, it is used with varying levels of complexity. At the lowest
level, speech is completely pre-programmed and does not depend
on the user’s actions. For example, in Alimardani et al. (2022),
the robot utterances follow a pre-programmed script, which does
not depend on any sensed information from the user. Similarly, in
Rossi et al. (2019), a robot uses speech to provide recommendations
to the user, but these recommendations always follow the same, user-
independent, structure. At the intermediary level, the flow of the
interaction can typically be represented with a finite-state machine:
the transition from one state of the interaction to another depends
on the user’s actions, which are sensed by the robot, and each state
is associated with one or more pre-programmed speech routines,
keeping the overall interaction rather constrained (Luperto et al.,
2019; Kim et al., 2019; Ramnauth et al., 2022; Dennler et al., 2021).
Finally, no publication allowing truly open-ended conversations,
such as what is permitted by the recent advancements of large
language models, is recorded. This is probably mostly explained
by the fact that publications using LLMs are too recent to be
included in the present survey, although compliance with ethical
requirements might also impact the spread of LLM-based solutions

in SAR contexts.When speech is handled by a human operator, such
more advanced open-ended conversation are possible: for example,
inHijaz et al. (2021), a caregiver answers childrenwith ASD through
the robot, as in normal, robot-less, therapy sessions with ASD
children. Similarly, in Fiorini et al. (2020), a caregiver communicates
with elderly individuals through the robot in the same way as they
would normally interact with elderly people at their workplace. In
most cases, however, the interaction remains constrained, with the
operator taking care of managing the flow of the interaction by
sending adapted pre-programmed speech routines for the robot to
execute (Azizi et al., 2022; Unnikrishnan et al., 2019; Vogt et al.,
2019; Chen et al., 2022). In one publication, a combination of both
open-ended speech and pre-programmed speech routines is used by
the operator (Nakanishi et al., 2021). While most publications use
speech, sounds are also used in several publications: in Sackl et al.
(2022); Kothig et al. (2021) music is used to motivate the target
users during physical activity, in Farrall et al. (2023) relaxing music
is used instead to help with meditation, in Antunes et al. (2022)
sounds are used in an inclusive storytelling activity for children with
visual disabilities while in Uluer et al. (2020) sounds are used to
perform hearing rehabilitation for children with hearing disabilities.
While hearing and speech are typically jointly employed in human-
human interaction, it is interesting to note the gap between hearing
and speech in human-robot interaction. Indeed, 43.4% of the
publications using speech and sounds as an actuation modality do
not use hearing as a sensingmodality. Hearing, andmore specifically
speech recognition, suffers from several limitations which are likely
to explain this gap and that will be further discussed in Section 4.4.

Concerning the use of facial expressions as an actuation
modality, it is present in 34.2% of the publications, with 27.1%
being handled autonomously by the robot system, and 7.1% being
handled by a human operator. This modality is used is several ways,
for example, Azizi et al. (2022); Kothig et al. (2021); Dennler et al.
(2021) use it to display emotions and provide feedback to users,
while Palinko et al. (2021); Naik et al. (2021) use it as a way to align
the robot’s gaze towards the user. Many publications also simply use
thismodality to render the robotmore lively, typically synchronizing
facial expressions with speech (Dino et al., 2019; Horn et al., 2022;
Dennler et al., 2021). In most publications, facial expressions are
conveyed through the use of displays acting as the robot face (such
as the one of QTRobot) and mainly consist of animated faces or
eyes. Only a few publications use robots whose facial expressions
are performed through physical mechanisms (Mishra et al., 2019;
Del Duchetto et al., 2019; Unnikrishnan et al., 2019). Additionally,
in a handful of publications, facial expressions consist of a human
operator’s face, which is transmitted through teleoperation on the
robot’s display (Fiorini et al., 2020; Bordbar et al., 2021).

Finally, the use of light as an actuation modality is pretty rare
and represents only 10% of the publications included in this review.
This modality is handled in a fully autonomous way by the robot in
7.1% of the publications, while it is controlled by human operators
in 2.9% of the publications. It is used in a variety of ways, for
example, Nakanishi et al. (2021); Rossi et al. (2019); Antunes et al.
(2022) link light colours to different emotion behaviours, while
Kouvoutsakis et al. (2022) uses lights to stimulate the mobility of
infant children. Lights are also used to communicate robot’s states
and intentions to users. For example, in Nasir et al. (2019) lights are
used to communicate an imaginary battery level to children during
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an educational activity, in Hwang et al. (2020), lights are used to
notify the user when the robot is listening, in Lewandowski et al.
(2020), lights are used to display the robot’s planned trajectory.

3.5.3 Transparency
When the robots are semi-autonomous or non-autonomous,

researchers are the most common operators and represent 40.9%
of the publications (Figure 11A). Researchers mainly operate robots
for applications related to the field of education, but also appear
in applications related to the health and workplace domains
(Figure 11B). In 22.7% of the cases, the robots are controlled by
field professionals. Field professionals operate robots in applications
related to the health and workplace domains. No interventions
related to the field of education employ field professionals as
operators. It should be noted however that academic researchers
were classified as researchers, although one could argue that they are
also, to some extent, professionals in education. Examples of field
professional operators are caregivers/therapists (Azizi et al., 2022;
Fiorini et al., 2020; Hijaz et al., 2021), hotel staffs (Nakanishi et al.,
2021) or policemen (Bordbar et al., 2021). Finally, robots are
operated by target users themselves in 36.4% of the cases. In the
field of education, the target user operators are typically children,
for which controlling the robot behaviour is part of an educational
activity targeting a specific learning gain. For example, in Nasir et al.
(2019), the children learn about computational thinking, and more
specifically path planning, by controlling the robot to go from a
starting location to a goal destination while minimizing the cost of
the path. Similarly, in Yadollahi et al. (2022), the children learn about
perspective-taking, by controlling the robot displacements from
different perspectives. In the health domain, examples of target user
operators are users undergoing rehabilitation, for which controlling
the robot is part of the rehabilitation process (Li X. et al., 2023), or
users with disabilities for which teleoperation can help with social
isolation (Mackey et al., 2022; Wang et al., 2021). Finally, in the
workplace domain, Takada et al. (2021) presents a robotic shopping
cart which is controlled by the target user and which performs
product recommendations.

Concerning transparency, the level of autonomy is known by the
user in 45.5% of the cases (Figure 11C). The level of autonomy is
mainly known in applications in which the operator is the target
user itself and operating the robot is part of the SAR intervention.
This case accounts for 80% of the publications in which the user
is aware of the level of autonomy. When researchers are the ones
controlling the robot, the level of autonomy is typically not divulged
to the target users. Finally, the level of autonomy is divulged in two
out of five publications using field professionals as operators. In these
two cases, the robot possesses a display on which the face of the
teleoperator is video streamed. More specifically, in Fiorini et al.
(2020), a robot is placed in the home of elderly individuals, and
a caregiver teleoperates the robot to visit and chat with them on
a daily basis. In Bordbar et al. (2021), a robot teleoperated by a
policeman interacts with another policeman acting as a citizen.

Finally, the robot capabilities are explicitly disclosed to the
users in 24.3% of the publications, implicitly disclosed in 32.85%
of the publications, and not disclosed in 42.85% of the publications
(Figure 11D). Examples of publication that explicitly disclose the
robot capabilities are Kraus et al. (2022), in which the robot
performs an introductory dialogue to the user, describing its sensory

system and functionalities, or Tolksdorf and Rohlfing (2020), in
which the experimenter takes care of introducing the robot in a
powered-off state to children users and explains its functions: they
are for example, told that the robot can talk and move by using
its motors. Note that four publications included in this review
employed one or several of the publication’s authors as test users
of the robotic intervention (Kothig et al., 2021; Chang et al., 2022;
Humblot-Renaux et al., 2021; Naik et al., 2021); we consider the
robot’s capabilities to be known in such cases. Finally, publications
that implicitly disclose the robot’s capabilities are publications that
would not directly reveal the robot’s capabilities to the users,
but would perform a warm-up session, before the official robotic
intervention, to familiarize the users with the robot and the way it
acts (Kayukawa et al., 2023; Dino et al., 2019; Dennler et al., 2021).

4 Discussion

4.1 Choice of population

As outlined in Section 3.2, most robotic applications are
tested with early adulthood and adulthood populations, while
younger and older populations are less represented. This under-
representation can be attributed to several factors. First, these
populations tend to bemore vulnerable, which generally implies that
more meticulous considerations should be made when designing
robotic interventions, and more thorough ethical applications are
required. These needs can be a cause for delays or cancellations of
studies, which might in turn reduce the number of publications
involving vulnerable participants. Similarly, the need for more
carefully designed robotic interventions can be a factor leading
to preliminary tests with non-vulnerable participants, and can
contribute to a formofmismatch between the population targeted by
the robotic interventions and the population used to test the robotic
interventions. While we do not observe mismatches based on age
in the publications included in this review, we notice mismatches
based on other factors such as the health condition for example, (a
robotic intervention designed for a population affected by a specific
condition is tested on a healthy population) (Carpio et al., 2019;
Cooney et al., 2020; Chang et al., 2022). Finally, the assessment of
even standard HRI metrics with more vulnerable populations may
also present challenges. Conventional HRI assessment means, such
as questionnaires, typically do not suit well the younger populations,
and alternatives, such as gamified questionnaires (Stals et al., 2024;
Druga et al., 2017) or drawings (Rudenko et al., 2024) are still not
widely adopted.

This review calls for more representation of the younger
and older populations. These populations are not only the
least represented, but are also often the most vulnerable, and
therefore the ones that could potentially benefit the most
from SARs. To this extent, efforts in sharing collected data
(Gunes et al., 2022; Bagchi et al., 2023), aswell as ensuring agreement
within the community concerning which data can and should
be shared, could help in developing SARs technologies for these
populations and thus in reducing their under-representation.
Finally, while preliminary tests on convenience populations can
benefit vulnerable populations by preventing risks of harm, the
results of such tests might not necessarily transfer to the vulnerable
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FIGURE 11
(A) Proportion of operators in the case of non-autonomous and semi-autonomous robots. (B) Number of publications with a semi-autonomous or
non-autonomous level of autonomy per operator and field of application. (C) Number of publications per transparency on the level of autonomy and
per operator. (D) Transparency on the robot’s capabilities.

populations. As such, the review calls HRI researchers to consider
such tests as a part of the iterative design process but not as a
replacement of tests with the populations targeted by a robotic
intervention.

4.2 SARs: various, humanoids and peers

As outlined in Section 3.3, the field of HRI is characterized
by a plethora of different robots, with some being commercially
available, and others being ad hoc designed. This observation can
be viewed as positive since choosing or designing a robot to fit
a specific intervention and target users can be key to ensuring
the success of the intervention. This trend is notably enhanced by
the participatory design paradigm, which aims at involving all the
stakeholders in the design process of a technology to ensure that
the designed technology meets the needs of its user base (Schuler
and Namioka, 1993). However, the plethora of robots used can also
raise difficulties. The most notable one concerns the replication
of studies and their associated findings, as results that might hold
for one robot might not necessarily hold for others. Furthermore,
the plethora of robots used also makes transferability, and thus
reusability of codemore difficult, sincemany robots often comewith
their own programming interface. This review thus calls for more

standardization in terms of software and hardware. Concerning the
software, the use of standardmiddlewares such as ROS, as well as the
use of robot programming conventions such as the ones presented
in Mohamed and Lemaignan (2021), should be favoured whenever
possible. Concerning the hardware, initiatives such as the one
presented in Alves-Oliveira et al. (2022) could be further explored
by the HRI community. More specifically, Alves-Oliveira et al.
(2022) present a social robot embodiment kit which is intended
to be flexible and to allow for customization. This kind of robot
kit could represent a good tradeoff between customization, to fit a
specific intervention and user base, and hardware standardization,
as most of the robot hardware remains the same across different
intervention cases.

As demonstrated in Section 3.3, themajority of robots employed
in the field ofHRI exhibit a humanoidmorphology (75.7%). Because
of such prevalence, researchers should remain conscious of some
design principles that may negatively influence the outcomes of
their intervention. One of such principles is often referred to as
“Form matches function,” and states that target users expect robots
to possess the sensing and actuation capabilities suggested by their
appearance (Bartneck et al., 2024). In the case of humanoid robots,
which are prevalent in this review, people would expect them to
do human-like things such as moving, talking, hearing, seeing, etc.
While some actuation modalities typically used by humans such
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as moving and talking are commonly implemented in robots (and
even autonomously), as seen in Section 3.5.2, other typically human
modalities, such as hearing for example, are used to a smaller extent,
as described in Section 3.5.1 and further discussed in Section 4.4. As
a result of such a gap, people might get disappointed and negatively
perceive the robot. To prevent such issues, it might be interesting
to be transparent with the user and communicate what are the
actual capabilities of the robot. Alternatively, it might be worth
exploring other types of robot morphology, such as zoomorphic or
objectmorphic designs, which are currently underrepresented in the
literature, and might even be better suited than humanoids for some
contexts and applications.

The results of this review also point out that robots are
predominantly programmed to act as peers during interventions,
while the subordinate and tutor roles are less represented. In the field
of education (Tolksdorf and Rohlfing, 2020; Park et al., 2019), justify
this choice by mentioning the benefits of peer robots identified
by previous research, such as the facts that children may feel
more comfortable, less inhibited, and show a greater ability to
focus when interacting with a robot that fulfils the role of a peer
(Westlund et al., 2016; Zaga et al., 2015). Similarly (Salomons et al.,
2022a), compared a robot acting as a peer with one acting as a tutor
in an education context and found that participants with low prior
domain knowledge learned significantly more with the peer robot.
Additionally, the peer robot was also perceived as friendlier, more
social, smarter, and more respectful than the tutor robot, regardless
of the initial skill level of the participants (Salomons et al., 2022a).
While the peer role has strong benefits, we argue that the other roles
can also be successful depending on the intervention, and are worth
exploring. For instance, Gargot et al. (2021) leveraged the learning
by teaching paradigm to treat severe dysgraphia in children. More
specifically, a child played the role of the tutor and the robot acted
as a tutee requiring help to improve its handwriting. By doing so,
positive results were achieved, such as improvements in the child’s
handwriting and posture quality.

4.3 SARs: individualized and short-term
interventions

The interventions’ size, length, and environment reflect the level
of complexity of a given intervention. Large-size interventions are
more challenging as they require the robotic system to have more
advanced sensing capabilities, as well as take more variables into
consideration in the reasoning process. Long-term interventions
are challenging from a systems engineering perspective as they
require the technology to be robust, intuitive, and engaging enough
for repetitive use (Clabaugh and Matarić, 2019). Finally, real-
world environments are more noisy and less controlled compared
to laboratory settings, and thus also require more robust HRI
technology (as further discussed in Section 4.4). As described in
Section 3.4, themajority of studies are dyadic (80%) and only involve
a single session (68.6%). These findings place the main body of
SAR research on the lower end of the complexity spectrum and are
consistent with the results of other reviews, such as that of Clabaugh
and Matarić (2019), although their review only examines fully
autonomous robots.

While focusing on dyadic interactions may reduce the overall
complexity of the interventions, this also places SARs as highly
individualized intervention tools, and, by extension, as a very
expensive technology. It is often argued that one of themain benefits
of SARs is to offer individual, adaptive andpersonalized interactions.
While this may be appropriate for certain domains, such as health,
which typically relies on individualized interactions, other domains
may be affected by this viewpoint of SARs.The field of education, for
instance, typically relies on group interactions, and as such, efforts
in implementing SAR technology that adapts to groups instead
of individuals could not only help in bridging the gap with the
real world, but also in mitigating the issue of developing costly
technology.

Similarly, the prevalence of single-session interventions also
contributes to positioning SARs as an expensive technology, since
investing significant amounts of time and effort in developing
interventions with a limited lifespan is legitimately questionable.
SARs have the potential (and, one could argue, the necessity)
to adapt not only to higher interaction sizes but also to longer
interaction lengths. This is for example, explored in Park et al.
(2019), which is one of the few publications included in this
review that conducts an intervention lasting more than a month.
Specifically, the authors focus on children’s early literacy training
through robot-mediated storytelling. The robot disposes of a large
database of children’s storybooks and uses a method based on
reinforcement learning to select stories that are optimized for each
child’s engagement and linguistic skill progression. The prevalence
of single-session interventions also highlights the fact that the main
body of HRI research is subject to the novelty effect. As in the case of
the intervention size, we argue that also in intervention length there
is a discrepancy between the current state of HRI research and the
real world. The field of education, for example, is typically a long-
term process requiring practice and multiple interventions to be
successful (Shute et al., 1998). Similarly, in the health domain, long-
term interactions generally have a positive impact on therapeutic
alliance, i.e., the collaborative relationship between a healthcare
professional and a patient, which in turn, positively affects the
efficacy of treatments (Martin et al., 2000). In such domains, the
novelty effect greatly impacts the validity and generalizability of
findings based on single-session interventions.

Other methods could be used to mitigate the issue of SARs
being a costly solution. For example, efforts could be made with
respect to the robot’s hardware. Three-dimensional (3D) printing
and other technologies such as laser cutting or low-cost single-
board computers have helped in this regard (Bartneck et al.,
2024). In this review, several publications have employed robots
designed with such techniques (Chang et al., 2022; Palinko et al.,
2021; Unnikrishnan et al., 2019; Nasir et al., 2019; Lin et al.,
2020), however, they remain a minority. This review thus suggests
HRI researchers to reflect on the requirements of their research
contexts, and favor technologies that are more affordable, and
thus potentially more transferable to the society (such as the ones
employed in the publications mentioned above or other low-cost
and open-source robot designs like Flexi [Alves-Oliveira et al.,
2022) or PixelBot (Maure and Bruno, 2023)], whenever their
research contexts do not justify a need for expensive and advanced
technologies.
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4.4 Investigating researchers’ rationale for
SARs’ levels of autonomy

In this subsection, we attempt to provide insights concerning
the choice of robots’ level of autonomy at the functionality level,
in an effort towards understanding the lack of researcher’s rationale
identified by Elbeleidy et al. (2022).

As outlined in Section 3.5, the majority of the publications
included in this review use robots that are capable of performing
the intervention in a fully autonomous manner (68.6%), whereas
semi-autonomous and non-autonomous robots are represented in
a smaller extent, respectively accounting for 17.1% and 14.3% of
the publications. The prominence of fully autonomous SARs can
be partly explained by our search pattern, which mainly targets
publications whose SAR system present some degree of autonomy.
However, it should be noted that this prevalence was also found in
the review of Elbeleidy et al. (2022), although they used a search
pattern which did not enforce any specific level of autonomy, and
thus represents the literature on SAR autonomy more fairly. In
their review, Elbeleidy et al. (2022) mention that this vision of fully
autonomous SARs by the HRI community may be partly explained
by the vision of the researchers who defined the concept of SARs in
the first place, who stated: “Ideally, a SAR system requires no expert
operator or extensive training for use. It should be self explanatory
and capable of being started, stopped, and configured by people
already providing care with a minimum burden placed upon them”
(Feil-Seifer and Mataric, 2005). This vision is commonly justified by
stating that WoZ techniques become intractable in SAR domains
requiring long-term and in-the-wild interventions (Clabaugh and
Matarić, 2019).

When it comes to the other types of robot LoA (semi-
autonomous and non-autonomous), this review argues that their
choice over full autonomy could be motivated by the complexity
of real-world environments and the limitations of the technologies
typically used in the field of HRI. By observing Figure 7C for
example, we notice that the majority of studies performed in
a laboratory setting use fully autonomous robots (82.6%), while
studies performed in the real world use fully autonomous robots to
a smaller extent (62.16%). While this finding can appear counter-
intuitive at first, since it can be argued that laboratory settings
represent the perfect environment to control the interactions anduse
teleoperated robots in a semi or non-autonomousmanner, it can also
be argued that laboratory settings, by being more controlled, are less
complex, require less robustness, and are thus simpler testbeds for
fully autonomous HRI technology. To illustrate this hypothesis, we
discuss the cases of two sensing modalities analysed in this review,
namely, hearing and touch. To start, it is interesting to note that
71.1% of the publications not using hearing as a sensing modality
use the touch modality instead. This observation is likely explained
by several limitations of the hearing modality. First, hearing, and
more specifically speech recognition, is affected by ambient noises.
Although most speech recognition frameworks allow for ambient
noise calibration, they remain a limiting factor, making speech
recognition difficult to deploy, especially in non-controlled in-the-
wild environments. In this review, for example, among the studies
taking place in a controlled laboratory setting, hearing is handled
fully autonomously by robots in 39.1% of the cases and is handled
by humans in 8.69% of the cases. While keeping the predominance

of robot-handled hearing, real-world settings significantly reduce
this gap: hearing is handled autonomously by robots in 27% of the
studies conducted in real-world settings, and by humans in 21.6%
of the cases. Second, speech recognition also often suffers from
timing issues. Indeed, without proper feedback on the robot side,
human users often tend to speak when the robot is not yet listening.
Similarly, inaccuracies in voice activity detection often result in
the listening phase stopping before the end of users’ utterances.
This issue can also arise when humans think and remain silent
in between two utterances. Third, as mentioned in Tolksdorf and
Rohlfing (2020), some populations, especially children, are often
underrepresented in the training process of speech recognition
techniques, which lowers the accuracy for these specific populations.
In this review, only 10% of the publications involving school age
and lower Erikson age categories use hearing in a fully automated
way, while it is handled by a human in 30% of the cases, and not
used at all in the remaining 60%. Finally, many commonly used
speech recognition frameworks also face difficulties when used in
interactions involving a group of individuals. For example, in this
review, only 28.6% of the publications involving a triadic or bigger
intervention size use hearing in a fully automated way, while the
remaining 71.4% either rely on humans or do not use this modality
at all. On the other hand, most of the limitations mentioned above
concerning hearing do not hold for touch sensing. Indeed, the
accuracy of this modality is not influenced by ambient noises nor
by the age of the population using it, and it is also less impacted
by timing issues and the intervention group size. Finally, while
touch can allow open-ended user inputs [such as the user’s hand-
writing as described in Kim et al. (2019)], it is commonly used for
simple and constrained user inputs, suitable for interaction flows
defined as a finite-state machine. To conclude, hearing is a good
example of a sensing modality which is typically used in human-
human interaction, but not used to a similar extent in human-robot
interaction because of the challenges associatedwith it, which are yet
to be overcome by the currently existing technical solutions. These
technical limitations, which can also apply to other modalities, are
a plausible explanation for letting a human operator handle some of
the robot capabilities, or replacing them with other more robust and
easily automated ones, and thus give one potential rationale for the
overall choice of robots’ LoA.

As a closing remark, while some technical challenges associated
to the field of HRI remain as of today, we can expect that a
growing number of them will be overcome in the future. When it
comes to speech recognition of underrepresented populations such
as children for example, the latest models, especially the Whisper
models, have shown significant improvements in the recent years
(Janssens et al., 2024). Such models are also showing improvements
concerning responsiveness, achieving delays below the maximum
acceptable delay for human-robot interaction (≈1s) when run on
local basic GPUs, and near acceptable delays for the smallest
models when run on local basic CPUs (Janssens et al., 2024).
Another plausible rationale for the choice of robots’ LoA lies in
the robots’ operators themselves. Indeed, as seen in Section 3.5.3,
and as described in the review of Elbeleidy et al. (2022), letting a
human operate a robot can be desirable (and even unavoidable)
when the operator is the target user and operating the robot is an
integral part of the SAR intervention. In this review, such cases
represent 36.4% of the publications involving human operation.
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Additionally, we also observe that field professionals are the least
represented among human operators (22.7%). While this finding is
in line with the vision of the researchers who defined the concept
of SARs, stating that SARs should be self explanatory and place a
minimum burden on the people already providing assistive services,
this observation might also reveal feelings of fear among field
professionals. Among such fears, one that is commonly mentioned
is the fear of job loss and unemployment, which is particularly
present in the health (Tuisku et al., 2019) and workplace domains
(Wurhofer et al., 2015; Welfare et al., 2019). Such fears might
induce difficulties in finding field professionals willing to test and
experiment with SARs. To mitigate this issue, this review calls for
more participatory and real-world research approaches, in which
field professionals are actively involved in shaping the technology
they are destined to use. Such research not only has the potential to
boost field professionals’ understanding of the technology, but also
their acceptance toward it and their confidence in using it.

4.5 SARs as undercover HCI

As described in Section 3.5.2, movements represent an essential
aspect of SARs and are used to a great extent (91.4% of the
publications included in this review). This finding highlights the
desire of HRI researchers to leverage the physical embodiment of
robots, which is a key element differentiating robots from virtual
agents and the field of HCI. On the other hand, as mentioned
in Section 3.5.2, 50% of the publications included in this review
use displays as an actuation modality, and among them, 80.5%
use this modality through hardware components that are external
to the robot (not built-in). The fact that displays are often absent
from the robots’ original design and are specifically added by
HRI researchers highlights their importance in the interaction.
Similarly, one can argue that the popularity of Pepper as a SAR
platform, as seen in Section 3.3, is partly explained by the fact that
it possesses a built-in display. In many cases, the interaction is
designed and centred around the display, and the robot rather acts
as an animated appendix, complementing the interaction with other
actuation modalities, such as movements. While these modalities
may contribute to the effectiveness of the intervention, we argue
that they remain a complement to the intervention, rather than
a necessity, unlike displays, without which the whole intervention
would not be possible, thus revealing certain proximity of SARs
interventions to HCI rather than HRI. Additionally, we argue that
the use of certainmodalities, such asmovements in particular, solely
as a complement to the interaction, underlines a sort of paradox of
SARs, which was initially raised by Feil-Seifer and Mataric (2005).
By constraining social robots to social gestures, and not letting them
rely on direct physical interaction, researchers limit the potential of
robots and their main advantage over computers and the field of
HCI, which lies in their physical action capabilities. To distinguish
the field of HRI from the one of HCI, researchers should reflect on
whether the use of displays as the main intervention means is truly
necessary, and possibly design novel human-robot interactions that
truly take advantage of the robot’s physical embodiment. In that
regard, we argue that assistive robots, to reach their full potential,
should not be limited to social intervention only, nor to physical
intervention only, but rather on a combination of the two. While

a previous research workshop already introduced this concept and
attempted to bring the physically assistive robotics (PAR) and the
socially assistive robotics communities together, it seems that the
current body of the literature does not clearly define this concept
yet. As such, this review proposes the name Physically and Socially
Assistive Robotic (PSAR), and calls for more collaboration between
the PAR and SAR communities to provide a clear definition of
PSAR as well as to advance the current state of research towards this
direction.

4.6 Transparency

Concerning transparency with respect to the level of autonomy
and the robots’ capabilities, we believe that these can have
both advantages and disadvantages. First, this review argues that
transparency on the robot’s capabilities can help the target users
in better understanding the system they are interacting with, and
thus facilitate the overall interaction. To illustrate this point, we
report some of the qualitative results from a publication analyzed
in this review, namely, Chen et al. (2022), in which a social robot
was used in long-term in-the-wild parent-child-robot storytelling
activities. More specifically, the authors report that some parent had
no idea what the robot was capable of understanding and/or doing
in the triadic interaction and hence had no idea how to interact
with the robot properly, especially at the beginning. One of the
parent who participated in their study said for example,: “[Jibo]
listens to me talking about [the story] and then pipes up with a
question [but] you do not really know if it is really understanding
you or to what level of understanding you ….” Similarly to this
lack of transparency, some of the parents commented on the lack
of an initial familiarization process: “But I do admit it did take a
bit of getting used to …The first time [Jibo] was talking, I found
him more disruptive a bit just because I was not used to it.”
While warm-up sessions are explored in some of the publications
included in this review, as described in Section 3.5.3, they remain
a minority, and the comments mentioned above are a testament
to their importance. Finally, the comments mentioned above also
highlight the importance of transparency on the robot’s capabilities,
to facilitate the overall human-robot interaction.

As discussed in Section 4.2, transparency with respect to the
robots’ capabilities can also benefit the interaction by reducing the
risk of unmet expectations. Indeed, letting the users know what
the robot is capable of, and what it is not, can be a way to avoid
raising their expectations over the robots’ actual capabilities, which
would in-turn help in preventing any sort of disappointment that
would be detrimental to the success of the interaction (Paepcke and
Takayama, 2010).

Fully autonomous SARs can also raise ethical concerns when
it comes to data privacy and security (Zhong et al., 2025).
Indeed, online cloud-based solutions are often leveraged to by-
pass the limitations of social robots when it comes to on-board
computational power. This is notably the case for some speech
recognition libraries or LLMs used as dialoguemanager.While these
cloud-based solutions offer new opportunities for social robots, they
also require users’ data to be handled by third party entities. On that
regard, transparency is a necessary requirement to ensure that users
are aware of theway their data is extracted andmanipulated by social
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robots. Similarly, initiatives such as TinyML, aiming at compressing
standard AI models and enabling their execution on local and
low-power hardware, can also assist in reducing the reliance on
cloud computing and, by extension, in safeguarding users’ data
privacy. While transparency about the robots’ capabilities presents
several advantages, we believe that there are specific cases in which
such transparency should be avoided. If we take again the example
of the Paro robot for instance, it can be argued that one of the
reasons of its success resides in its design, which takes advantage of
the principle “Interaction expands function.” This design principle,
particularly effective for robots with limited capabilities, refers to the
act of designing a robot in an open-ended way, in order to incite
the target users to “fill in the blanks” left open by the design by
themselves (Bartneck et al., 2024). As a result, target users invent
their own way of interacting with the robot, which in turn helps in
limiting disappointments linked to the robot’s limited capabilities.
In such cases, transparency on the robot’s capabilities would work
against such design principle, and thus limit the effectiveness of
robots relying on it.

Finally, as mentioned by Riek (2012), the WoZ method raises
ethical concerns, both for the target user, who is subject to deception,
and for the operator, who is required to perform deception. While
being transparent on robots’ LoA could represent an ethical solution,
it will not change the fact that the robots are controlled by a human,
nor guarantee that users will correctly understand or believe the
explanation (Nasir et al., 2022).

5 Conclusion

This article reports a systematic review on socially assistive
robotics. The review follows the PRISMA method and analyzes
70 publications published over the last 5 years. The publications
are studied under different lenses: the application domains, the
populations used to test the interventions, the robots’ morphology,
realism and role, the interventions’ size, length and environment, the
level of autonomy employed in robots based on an analysis of each
of their sensing and actuation capabilities, the operators typically
involved in the control of non- and semi-autonomous robots, and
the transparency with respect to the robots’ level of autonomy and
capabilities.

In terms of populations, the main body of SAR research focuses
on adult and early adult populations, while younger and older
populations are less represented and represent an opportunity for
future research. The robots employed to fulfill the role of SAR
are various. While this can be advantageous to select a robot
that is adapted to a specific intervention and population, it also
raises difficulties in terms of transferability of findings between
robots, as well as transferability and reuse of code bases. To
this end, more standardization is desirable and could be further
explored in future research. Additionally, the vast majority of SARs
exhibit a humanoid morphology, which might lead the target users
to have high expectations about the robots’ capabilities, and in
turn cause disappointment. On that regard, other types of robot
morphologymight be worth exploring in the future. Concerning the
interventions in which SARs are employed, most are characterized
by individualized and short-term interactions, which contribute to
position SARs as an expensive technology with limited impact.

Additionally, the short-term nature of SARs studies makes them
prone to the novelty effect, which limits the validity of their
results. Efforts should be made by the SAR research community
to conduct higher-size and longer-term interventions to limit the
aforementioned issues. With respect to the level of autonomy, the
majority of studies we reviewed employ fully autonomous robots.
While this is partly due to our search pattern, which focusses on
publications whose SAR system present some degree of autonomy,
the prominence of fully autonomous robots was also observed
in other literature reviews, mainly the one of Elbeleidy et al.
(2022), although using a search pattern representing the spectrum
of SAR autonomy more fairly, and can thus be considered a real
characteristic of the field. We argue that this prominence is mainly
influenced by an initial vision promoting full autonomy in SAR
to ensure their tractability and adoption in the real world. On
the other hand, among the factors that could explain a preference
for non- or semi-autonomous robots, we list intervention designs
for which operating the robot is part of the assistive intervention
itself, the reluctance of field professionals to use a technology
that could potentially replace them, and, above all, the limitations
of the current technologies required by SARs. As a result of
these limitations, we point out that SARs over-rely on technology
traditionally associated to HCI, such as displays and tablets, and
we argue that future research, aiming to fully leverage the unique
characteristics ofHRI, should be dedicated to Physically and Socially
Assistive Robots (PSAR): a class of robots not only relying on social
interaction to provide assistance, but also taking full advantage
of their embodiment, and viewing physical assistance as (also) a
type of social assistance or anyway eliciting social reactions that
the robot should not ignore. Finally, with respect to transparency
about robots’ level of autonomy and capabilities, we argue that
these can present several advantages, such as helping the target
users in better understanding the system they are interacting
with and thus facilitating the overall interaction, or helping in
limiting disappointments that would result from over-expectations
of the robots’ capabilities. However, we also identify cases in which
transparency could be detrimental, and argue that the impact of
transparency is still unclear, and requires further research by the
community.

This review provides an analysis of socially assistive robotics
centered around their level of automation. Several gaps and
limitations of the current state of SAR research are identified and
significant advancements in the field can be made by addressing
these gaps in the future.
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