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Oysters are ecologically and commercially important species that require
frequent monitoring to track population demographics (e.g., abundance,
growth, mortality). Current methods of monitoring oyster reefs often require
destructive sampling methods and extensive manual effort. However, these
methods are destructive and are suboptimal for small-scale or sensitive
environments. A recent alternative, the ODYSSEE model, was developed to
use deep learning techniques to identify live oysters using video or images
taken in the field of oyster reefs to assess abundance. The validity of this
model in identifying live oysters on a reef was compared to expert and non-
expert annotators. In addition, we identified potential sources of prediction
error. Although the model can make inferences significantly faster than expert
and non-expert annotators (39.6 s, 2.34±0.61 h, 4.50± 1.46 h, respectively), the
model overpredicted the number of live oysters, achieving lower accuracy (63%)
in identifying live oysters compared to experts (74%) and non-experts (75%)
alike. Image quality was an important factor in determining the accuracy of
the model and annotator. Better quality images improved human accuracy and
worsened model accuracy. Although ODYSSEE was not sufficiently accurate,
we anticipate that future training on higher-quality images, utilizing additional
live imagery, and incorporating additional annotation training classes will greatly
improve the model’s predictive power based on the results of this analysis.
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Future research should address methods that improve the detection of living vs
dead oysters.

KEYWORDS

oyster aquaculture, deep learning, image identification, YOLOv10, confusion matrix,
reef ecology

1 Introduction

Globally, historical oyster reefs decreased in abundance
from historical levels by approximately 85% (Beck et al., 2011).
Reductions in global oyster populations were attributed to several
factors, including disease (Haskin and Ford, 1982; Andrews,
1988; Petton et al., 2021), overharvest (Rothschild et al., 1994)
and climate change (McFarland et al., 2022; Heo et al., 2023;
Neokye et al., 2024). Since oysters are ecosystem engineers, the
reduced reef area and continuity affect the beneficial services
provided to other aquatic organisms, resulting in a disproportional
impact on marine communities (Rodney and Paynter, 2006;
Grabowski et al., 2022).

The formation of oyster reefs increases the rugosity of the
seafloor, producing shear stress that attenuates wave action and
downstream velocity (Kitsikoudis et al., 2020; Campbell et al.,
2025) and stabilizes sediments (Scyphers et al., 2011; Peyre et al.,
2015; Walles et al., 2015). The structures also provide valuable
habitat for many fishes and invertebrates (Harding and Mann,
2001; Connolly et al., 2024). Furthermore, oyster filtration was
historically capable of filtering entire estuarine regions (Wiltsee,
2023; zu Ermgassen et al., 2013), removing suspended particles,
facilitating benthic coupling (Hoellein et al., 2015; Testa et al., 2015;
Ray and Fulweiler, 2021), and improving water clarity (Newell and
Koch, 2004).Oysters are also culturally and commercially significant
for many coastal communities (Michaelis et al., 2021). In the United
States alone, wild oyster harvest was valued at $221 million in
2019 (NMFS, 2023), and global oyster aquaculture grows roughly
2% annually (Botta et al., 2020).

The importance of oyster reefs for ecosystem and economic
function has led to a global effort to restore natal beds
(Carranza and zu Ermgassen, 2020). These efforts often succeed
in increasing the population of formerly eradicated reefs,
revitalizing threatened species (McAfee et al., 2024), and
expanding the reef area (Hernandez et al., 2018), without affecting
genetic diversity (Hornick and Plough, 2022). Furthermore,
restored reefs provide ecosystem services similar to functionally
undisturbed reefs (Grabowski et al., 2022; Smith et al., 2024),
further elucidating the benefits of reef restoration efforts.
However, while services are observed to improve during the
first 2 years, the rate of service provision decreases over the
following years, highlighting the need for long-term monitoring
(Hemraj et al., 2022).

Reef monitoring to manage local fisheries and assess habitat
quality is often conducted annually to biannually, combining efforts
from state and academic institutions with varying scales and
objectives (e.g., New Jersey, Burt et al. (2023); Delaware; DNREC
(2023); Maryland; Tarnowski (2024); Virginia; Southworth (2024)).

Althoughmonitoring is regionally specific and is directed to address
local interests, many sampling methods and analytical metrics
overlap. In Delaware, beds are dredged to collect roughly one
bushel of reef material (35.2 L) to identify, count, and measure
market-sized and small oysters. These individuals are used to
derive size frequency distributions to determine the density of
marketable oysters and understand reef population dynamics.
Although these metrics provide valuable information on reef
health and fisheries status, the processing time to conduct these
studies in Delaware alone takes several days of boat time and
the concentrated effort of six to seven trained crew members to
sample a subset of the existing reefs (Audrey Ostroski, DNREC,
personal communications). Furthermore, these assessments require
destructive sampling methods, which cannot occur in small or
vulnerable reef beds, hardened shoreline restoration projects, or
newly seeded beds.

Modern advances in robotics and photogrammetry can facilitate
data collection for oyster stock assessments while providing a
minimally destructive alternative to traditional sampling methods.
Stationary video cameras are often used to identify the abundance,
composition, and behavior of nekton associated with coral reefs
(Boom et al., 2014), oyster reefs (Connolly et al., 2024), and
oyster aquaculture equipment (Mercaldo-Allen et al., 2023;
Armbruster et al., 2024; Ambrose and Munroe, 2024). Autonomous
vehicles assessed the abundance and distribution of sea scallops
in the Mid-Atlantic Bight (Kannappan et al., 2014; Walker et al.,
2016; Rasmussen et al., 2017). Aerial drones were successful
in imaging the area and morphology of intertidal oyster reefs
in North Carolina and Florida (Windle et al., 2019; Bennett,
2024). Hand-towed video cameras provided footage to assess
localized habitat quality of harvested and non-harvested oyster beds
(Anchondo et al., 2024; Heggie andOgburn, 2021).The culmination
of video-based surveying efforts in marine environments provides
valuable information regarding habitat extent, quality, and
composition, but at the species or individual level to address
abundance or density, hours to days worth of data are required over
longer time spans to acquire a sufficient dataset (e.g., Mercaldo-
Allen et al., 2023; Jensen et al., 2024). Furthermore, manual
efforts to accurately assess video data require significant training
and labor to process and quality control datasets, which is time-
consuming, labor-intensive, and limits the scalability of research
efforts (English et al., 2024). Fortunately, a catalog of more than 11
million benthic images is available open-access through BenthicNet
to facilitate training and potential deep learning (DL) applications,
expanding opportunities for underwater image-based analyses
(Lowe et al., 2025).

Recent advancements on DL have contributed to optimizing
surveying methods in marine systems. DL-based visual recognition
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and detection of aquatic animals combines advanced technologies
such as image processing, computer vision, cloud computing, sonar,
and sensors to provide automatic and intelligent identification,
detection, and tracking of aquatic species (Fernandes and DMello,
2024). In addition, these techniques can be integrated into edge
devices and directly help identify marine species, providing crucial
support to researchers in the field (Lin et al., 2025). Underwater
robots can implement vision models in situ; however, training
vision models often requires large datasets and manual annotations,
which can be extremely difficult and tedious in coastal marine
environments, limiting scalability (Huang and Khabusi, 2025). In
recent years, advanced image generation techniques, such as stable
diffusion, have allowed the generation of convincing synthetic data
to enhance and diversify training data sets for detectionmodels.This
approach was used to train the OSYSSEEmodel to detect live oysters
in a reef setting (Lin et al., 2025).

In this study, we compared the performance of the DL oyster
identification model, ODYSSEE, against expert and non-expert
annotators to delineate potential sources of error associated with the
identification of live oysters using photogrammetry methods. We
anticipate that the model will accurately identify live oysters and
potentially have limitations in its current stage in separating live
and dead oysters. The main contribution of this work is to realize
the potential sources of error in the model compared to human
identifiers that can provide the necessary information to determine
the validity of such models, a scientific monitoring tool, and inform
pathways that can be used to enhance model performance. Then,
utilizing DL as a non-destructive means to census live oysters
on a reef can significantly improve current monitoring efforts
for stock assessments, restoration efforts, and aquaculture citing
and harvest.

2 Methods

2.1 Image acquisition

A set of 150 unique images was obtained using video footage
captured on an oyster reef located in Lewes, DE United States
(38.7890 N, 75.1624 W) during low tide, spanning multiple efforts
between June and September 2024 when the water clarity was
favorable. Data were recorded using a handheld camera system
(drop camera method) with two GoPro Hero12 cameras mounted
on a 2-m-long PVC post or a remotely operated vehicle (ROV)
BlueROV2 heavy configuration (Blue Robotics, St. Torrance, CA,
United States) with a GoPro Hero12 (GoPro, San Mateo, CA,
United States) mounted on the payload skid. All images were
unmodified with varied target distance, clarity, and number of
oysters to represent the potential range of images available in a
field setting. The quality score (QS) of each image was assessed
based on previously published works (Padole et al., 2019) to use a
score of 0–4, where 0 indicates no visibility of desired features, 1
contains features that are present but are not interpretable, 2 contains
features with limited or inconsistent quality, 3 indicates acceptable
quality for most of the image, and 4 indicates exceptional quality
throughout the entire image. Images with a QS of 0 or 1 were not
used in the study.

2.2 Deep learning model

The best-performing model from Lin et al. (2025) (highest
recorded mAP 0.657, called ODYSSEE) was developed using the
YOLOv10 model platform and trained on a dataset of 30% human-
annotated data of oysters in thewild and 70% synthetically generated
images to provide an efficient source of data using methods by
Lin et al. (2022) to render oysters based on 3D scans of live
specimens. These renderings were then passed through a stable
diffusion model (Rombach et al., 2022) in conjunction with various
ControlNets (Zhang et al., 2023) to improve the generated output
and more effectively bridge the sim2real gap.

2.3 Annotation process

To compare the accuracy and detection rate across potential
end users, 150 images were analyzed by (i) the oyster detection
model, (ii) five expert annotators (biologists who frequently work
with oysters), and (iii) five non-expert annotators (deemed by
having minimal hands-on experience with oysters outside of this
project). All human annotators are listed as coauthors, and no
annotations were completed by a third party. The model identifies
live oysters with a confidence score (CS) and only accounts for
CS greater than 0.5 (potential range = 0–1). Non-expert and
expert annotators identified live (confident identification of a live
individual), dead (confident identification of a dead individual or
loose shell), or unknown (confident identification of an oyster but
not confident whether live or dead). Manual annotations were made
using RoboFlow (Dwyer et al., 2024) using preset options for each
observation class. Annotators drew a bounding box around their
observations and marked them with the appropriate class. The
program then recorded the number of identifications per class,
per image. The images were annotated in the same order and the
annotators were not encouraged to review the completed images to
standardize the exposure time between all the annotators for each
image. The final time to annotate all 150 images was also recorded.

2.4 Analysis of model performance

Across each annotator treatment, pairwise tests were used to
determine the average number of live identifications made per
image and assess the differences in time needed to complete the
annotations, considering an alpha of 0.05. To determine consistency,
the intraclass correlation coefficient (ICC) was calculated between
and within the annotator groups per image. When comparing
annotator treatments with unequal sample sizes, the identifications
were averaged and rounded to standardize the range of potential
outcomes between the groups.

A random subset of 30 images was evaluated for all unique
identifications against all annotators to determine the agreement
between the individual oysters observed.The ‘true’ identificationwas
determined in two ways: the first was to account for all potential
outcomes, and the second was to consider only live identifications.
For the first method, when two or fewer annotators identified an
object, we denoted that observation as a false positive. When three
or more groups identified the object, we determined that the true
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value was the observation made the most frequently. If the number
of live classifications was equal to dead or unknown, the object
would be considered live. If the number of dead classifications
was equal to unknown, the object would be considered dead. For
the second method, any observation without live identifications
was removed from the dataset. Any object with two or fewer
live identifications was classified as a false positive and anything
with three or more live identifications was considered live. For
both methods, a CS was generated for each result by dividing
the total number of classifications that matched the true result
by the total number of times that object was identified. The
confidence matrices were then created to understand the agreement
between the individual identifications and to describe the sources
of error between the groups of annotators. For live or no-
observation evaluation, the resulting outcomes from the confusion
matrices were used to derive Area Under Curve (AUC) values to
determine false detection rates from each group when identifying
live oysters.

3 Results

Of the 150 images used, 54 had a QS of 2 followed by 75 with a
QS of 3, and 21 with a QS of 4, following a non-normal distribution
(p < 0.001, Shapiro-Wilk test). The model annotated 150 images in
39.6 s, which is negligible compared to experts (2.34± 0.61 h, n = 5;
average ± standard deviation), which were significantly faster than
non-experts (4.50± 1.46 h, n = 5; p = 0.021, Wilcoxon signed-rank
test). Across all images, the model made an average of 4 ± 2.45 live
observations per image,whichwas greater than experts (2.76± 3.20),
and non-experts (1.89 ± 2.08; p < 0.001, Kruskal–Wallis and Dunn
test for all combinations).Themodel generated an averageCS of 0.65
± 0.18 across all its live observations. Experts made more dead (3.12
± 3.57) and unknown (3.49 ± 2.62) observations than non-experts
(2.04 ± 2.53, 4.69 ± 2.85, respectively; p < 0.001, Wilcoxon signed-
rank test, Figure 1).

At the image scale, the consistency of live detections between
all annotator groups for an image was poor (ICC = 0.430,
p < 0.001) and was moderate between experts and non-experts
(ICC = 0.673, p < 0.001, Figure 2). Similarly, the consistency of
the experts and non-experts in observing dead and unknown
detections in each image was also poor (ICC = 0.379, p < 0.001;
ICC = 0.282, p < 0.001; respectively). However, the consistency of
observations increased with better image quality. The consistency
of live observations across all annotator groups increased from
0.366 at QS = 2 to 0.420 at QS = 4. Expert and non-expert
groups had poor consistency of live observations at QS = 2 and
moderate consistency at QS = 3 and QS = 4 (ICC = 0.466, 0.696,
0.658, respectively, p < 0.001). For dead observations, images with
a QS of 2 and 3 had moderate consistency and good consistency
at QS = 4 (ICC = 0.528, 0.657, 0.890, respectively, p < 0.001).
However, the consistency of unknown observations decreased with
QS between expert and non-expert annotators (ICC when QS =
2, 0.649; when QS = 3, 0.540, p < 0.001) showing poor consistency
at QS = 4 (ICC = 0.226, p = 0.156).

To determine the accuracy (Acc), Precision (Pre), and Recall
(Rec) of each annotator group, 30 images were randomly selected
to compare all unique observations made. From this subset, 125

FIGURE 1
The model appears to over-predict live (orange) oysters compared to
expert and non-expert annotators. Expert annotators also make a
greater number of dead (green) and unknown (purple) annotations per
figure compared to non-experts. The model treatment has a wider
box for live annotations since it only has the capability of making live
identifications.

live oysters (CS = 0.50 ± 0.17), 99 dead (CS = 0.57 ± 0.16),
135 unknown, and 113 false oyster detections were classified. The
model made 36 correct observations, missed 89 live oysters, and
misidentified 26 dead, 33 unknown, and 3 false-positive oysters as
live (Figure 3). Experts, who classified an average of 72.2 ± 67.5 live
oysters, positively identified 39% of the live oysters. Non-experts,
who classified 49 ± 24.5 live oysters, only positively identified 27%
of the live oysters. Of the average 76 ± 63.8 dead observations made
by experts and 56 ± 47.8 by non-experts, 46% and 33% of dead
oysters were positively categorized, respectively. When comparing
all independent responses and results from expert and non-expert
annotators, accurate and false negative classifications were most
often observed, regardless of image QS, however, accuracy did
increase positively with QS (Figure 4). Images with a QS = 2 resulted
in 47% Acc (F1 = 0.39, Pre = 0.27, Rec = 0.69), while images with
a QS = 3 resulted in 50% Acc (F1 = 0.45, Pre = 0.33, Rec = 0.69)
and images with a QS = 4 resulted in 55% Acc (F1 = 0.70, Pre = 68,
Rec = 0.73).

To standardize outcomes between the model and human
annotators, we simplified all observations and classifications to
‘live’ or ‘not observed.’ Using these criteria in the independent
observations of the 30 images subsampled, 91 live oysters (CS
= 0.41 ± 0.18) and 190 false detections were made. The model
made 98 live observations and 47% were correct. Experts with an
average 72.2 ± 67.5 live observations accurately predicted 48% of
live classifications and non-expert made 49 ± 24.5 live observations
and were correct 40% of the time. From the confusion matrices,
when all annotator groups were pooled, there was 74% accuracy
among correct or true negative observations (live detections, F1 =
0.52, Pre = 0.44, Rec = 0.63). Experts (Acc = 73%; live detections,
F1 = 0.54, Pre = 0.48, Rec = 0.61) and non-experts (Acc = 76%; live
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FIGURE 2
Examples of images used that represented low (left) and high (right) relative agreement between all annotators.

FIGURE 3
Confusion matrix from the model demonstrates that the majority of
classifications were not identified by the model, primarily “unknown”
oysters. A classification or observation of “0” denotes a false positive
or missed observation.

detections, F1 = 0.52, Pre = 0.40, Rec = 0.74) generally had improved
performance compared to the model (Acc = 63%; live detections, F1
= 0.46, Pre = 0.47, Rec = 0.44). The accuracy and receiver operating
characteristics (ROC) aremore ideal across higherQS for expert and
non-experts and have the opposite effect on the model (Figure 5).
Similarly, all annotator groups demonstrate a skew towards more
false positive detections, with the model generating the largest

deviance, followed by experts, the average across all annotators, then
non-experts.

4 Discussion

In this study, we evaluated the ability of a developed DL model
to distinguish and quantify living oysters from their surroundings
accurately. We then compared the performance of the DL model to
observationsmade by expert and non-expert annotators. Accurately
identifying oysters using automated detection models would greatly
improve the efficiency and cost of reef surveying, permitting greater
scalability. While the image processing time was immediate and
can run in situ (Lin et al., 2025), the model greatly over-predicted
the presence of live oysters with poor consistency (ICC = 0.430,
p < 0.001), lower accuracy, and higher false positive rates (Acc =
63%, AUC = 0.59) compared to expert (Acc = 73%, AUC = 0.67)
and non-expert annotators (Acc = 76%, AUC = 0.67). Between
human groups, experts annotated images almost twice as fast.
They made more accurate observations than non-experts, but had
a greater false negative rate and a less balanced skew between
accurate and false detections. There was a considerable difference
in accuracy with image quality, highlighting a gap in the current
training process for the model. Human annotators had an overall
increasing accuracy in detecting live and dead oysters as image
quality increased, while the model was less accurate when image
quality increased.

The ODYSSEE model provides a valuable estimate of living
oysters in reefs by identifying the presence of live and dead animals
within a dense aggregation of shells, a functional need for an
abundant reef to be present. However, a stronger differentiation
between live and dead oysters during the annotation process is
required to properly quantify living oyster abundance and act as a
reliable quantitative tool for oyster reef censusing for aquaculture,
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FIGURE 4
Confusion matrices from all data across expert and non-expert annotators (top left) and separated by QS show an increase in prediction accuracy and
reduction in false positive detections (denoted as ‘0’) with increasing QS.

fisheries, and restoration applications. Still, estimating oyster shell
density can be used for analysis in areas of large, living oyster
aggregations where relative measures of abundance are sufficient.
Having a relative abundance metric can be useful for on-bottom
oyster farmers and the wild capture fishery to more efficiently
site harvestable beds using imagery coupled with GPS data. The
concept of constructing an oyster distribution map through ROV
operation was simulated using the OysterSim model (Lin et al.,
2022), and when applying the proposed framework ShellCollect, by
Wang et al. (2024), the map can be used to generate an optimal
harvesting path. The current stage of ODYSSEE likely provides
sufficient context to develop harvest paths using these existing
frameworks, and the continued improvements to ODYSSEE will
better resolve the efficiency of the harvest paths generated. These
maps can also be implemented in restoration efforts to determine
locations to strategically replenish shell to support reef development
and support other local fisheriesMarquardt et al. (2025) by targeting
areas of low relative oyster density. Beyond harvest path planning,
alterations to the ODYSSEE model for pure detection of oyster
shell substrate could prove valuable to site selection for both habitat

restoration (George et al., 2015; Hughes et al., 2023) and oyster larval
planting efforts (Spires et al., 2023).

Several considerations in our annotating procedures and data
processing should be acknowledged for future studies. First, when
annotating oysters in situ using photogrammetry methods, the
presence of dead oysters that are forced shut from trapped sediment
(referred to as ‘mudders’) would likely be counted as a live oyster
in any computer-based survey method, inflating the number of live
oysters counted in a study compared to hand-grading methods,
where manual assessments post-harvest can detect mudders by
feeling for atypical density and differences in sound emitted when
hit against a known live oyster. Another source of error could be
attributed to the variable gaping behavior of oysters when they
feed, which may be indistinguishable from dead oysters, providing
a source of disagreement between annotators and potential error
when counting live individuals. Although ICC analyses provide
some context and can establish relative consistency through future
model iterations, manually analyzing all unique observations across
all annotators provides a more precise assessment of consistency
since ICC metrics rely on perfect agreement from an image scale
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FIGURE 5
Receiver Operating Characteristic (ROC) curve plots including the dataset where all observations and classifications were simplified to ‘live’ or ‘not
observed’ for all annotator groups. Plots and line types are separated by quality score and color is separated by annotator group. Data including all QSs
is represented in the top left plot. Higher area under the curve values observed with increasing QS for expert and non-expert annotators and lower area
under the curve values observed for the model with increasing QS.

rather than an individual identification scale, although manually
checking unique observations for a more in-depth analysis is time-
consuming and tedious.

To improve model performance, the number of false negative
and false positive observations need to be reduced and consistency
between the model and human annotators needs to increase.
Qualitatively, most false positives were caused by rocks, mussels,
and shadows. A potential avenue is to use a larger percentage of
live imagery in our training datasets. ODYSSEE is currently trained
using 30% real oyster images and 70% synthetic oyster images
(Lin et al., 2025). Although incorporating synthetic data helps to
provide a larger training dataset, it can overlook features of oysters
noticeable in natural imagery, reducing precision (Nowruzi et al.,
2019; Corvi et al., 2023; Wang and Perez, 2017). Furthermore,
providing additional higher-quality imagery and determining an
intentional distribution of image quality to the existing training
dataset would likely improve model performance by providing

more variable content for the model to learn from. Furthermore,
several annotators should annotate real images, and the associated
CS classification should provide context for clear and less clear
observations (Sullivan et al., 2018). Lastly, providing additional
annotations to the detection model (i.e., dead, unknown, and
other objects such as mussels, rocks, and debris), and better
quantifying sources of false positive detections can be a possible
solution to minimize false positive detections (Shorten and
Khoshgoftaar, 2019).

While comparing model accuracy to expert and non-expert
annotators provides some context on model performance using
a relative measure of a live oyster, a more valid ground-truth
with known live oysters would be a more insightful test of
model performance. A comparison to hand-counted living oysters
in a reef setting would be an ideal method for making model
accuracy assessments. However, such an assessment would be
difficult and costly to perform. This methodology is frequently
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used in terrestrial landscapes, although there are considerably fewer
logistical barriers (Shah et al., 2024).

Our study demonstrates the potential of DL models to automate
oyster detection from underwater imagery, offering a non-invasive
alternative to traditional, labor-intensive monitoring methods like
dredging. By integrating real and synthetic data for training,
we reduce reliance on destructive sampling while improving the
efficiency and accessibility of reef assessments under variable
conditions. These advances have broad applications, benefiting
restoration and fisheries management efforts, where frequent and
minimally invasive monitoring is essential. This approach has
promise for oyster farmers looking to utilize technology to reduce
labor demands and streamline aquaculture operations. Using tools
that reduce processing time provides a foundation for sustainable
reef management while supporting the growing intersection of
aquaculture and technology.
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