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A model-based approach to
automation of formal verification
of ROS 2-based systems

Lukas Dust*, Rong Gu, Saad Mubeen, Mikael Ekstrém and
Cristina Seceleanu

School of Innovation, Design, and Technology, Malardalen University, Vasteras, Sweden

Formal verification of robotic applications, particularly those based on ROS
2, is desirable for ensuring correctness and safety. However, the complexity
of formal methods and the manual effort required for model creation and
parameter extraction often hinder their adoption. This paper addresses these
challenges by proposing a model-based methodology that automates the
formal verification process using model-driven engineering techniques. We
introduce a methodology which can be applied as a toolchain that automates
the initialization of formal model templates in UPPAAL using system parameters
derived from ROS 2 execution traces generated by the ROS2_tracing tool.
The toolchain employs four model representations based on custom Eclipse
Ecore metamodels to capture both structural and verification aspects of ROS
2 systems. The methodology supports both implemented and conceptual
systems and enables iterative verification of timing and scheduling parameters
through model-to-model and model-to-text transformations. A proof-of-
concept implementation demonstrates the feasibility of the proposed approach.
The designed toolchain supports verification using two types of UPPAAL
models: one for individual node verification (e.g., callback latency and buffer
overflow) and another for end-to-end latency analysis of ROS 2 processing
chains. Experiments conducted on two implemented and one conceptual
ROS 2 systems validate the correctness and adaptability of the toolchain. The
results show that the toolchain can automate parameter extraction and model
generation. The proposed methodology modularizes the verification process,
allowing domain experts to focus on their areas of expertise. It targets to
enhances traceability and reusability across different verification scenarios and
formal models. The approach aims to make formal verification more accessible
and practical to robotics developers.

ROS 2, robotic systems, formal verification, model checking, model-based engineering

1 Introduction

Ensuring that a robotic system’s design and implementation meet the requirements
specification is crucial for guaranteeing the system’s desired behavior. Various verification
methods are employed to achieve this, with formal methods, e.g., model checking, being
particularly effective due to their rigorous mathematical approach to analyzing complex
system models during the design phase (Carvalho et al., 2020). Model checking involves an
exhaustive exploration of the system’s model state space to verify that the system meets its
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specification, uncovering potential errors that might be missed
by traditional trial-and-error methods such as simulation and
experimentation (Dust et al., 2023a).

Despite its advantages, the application of formal model-
based approaches in distributed and complex systems poses
significant challenges. The steep learning curve associated with the
mathematical syntax and semantics of formal modeling languages
can be a barrier for robotic developers. Consequently, the high
initial effort required for model checking often deters its use in
industry, leading developers to rely on less rigorous, trial-and-
error methods (Rajkumar et al., 2010).

The Robot Operating System (ROS) (OpenRobotics, 2023b;
OpenRobotics, 2023a) is an open-source middleware that facilitates
rapid prototyping and deployment of robotic systems. ROS-based
systems, particularly those with safety-critical applications, have
stringent timing requirements that necessitate real-time capabilities
in the middleware. These capabilities are influenced by various
system components, including communication, task scheduling,
and execution. To address the limitations of ROS in real-
time applications, ROS 2 was developed, incorporating real-time
communication through the Data Distribution Service (DDS) C. S.
V. (Gutiéerrez et al., 2018). While DDS provides a robust framework
for real-time communication, the task scheduling in ROS 2 still
requires extensive analysis to ensure deterministic timing behavior
(Casini et al., 2019; Blaf3 et al., 2021).

Tools like ROS2_tracing (Bédard et al., 2022) and Autoware_
perf (Lietal, 2022) have been developed to trace system execution
and analyze performance based on execution traces. However,
these tools primarily offer experimental analysis, which may not
be exhaustive and could miss potential system errors. In contrast,
model checking offers a comprehensive verification approach
capable of identifying all potential bugs in the model. Despite this,
the manual application of formal methods to ROS 2 systems remains
error-prone and time-consuming, requiring significant background
knowledge.

In our previous work (Dust et al, 2023a), we utilize
the UPPAAL model checker (Alur and Dill, 1994) to create
reusable templates for verifying timing behavior and buffer
overflow in ROS 2 systems. These templates simplify the
modeling process by allowing systems to be instantiated from
pre-defined templates rather than constructed from scratch.
However, this approach still requires detailed knowledge of static
and runtime system parameters, as well as of the modeling
language itself, to represent verification properties accurately. The
manual nature of this process makes it susceptible to errors, as
parameters are often determined through source-code analysis and
runtime evaluation.

1.1 Problem definition and paper
contributions

In our previous work (Dust et al., 2023b; Dust et al., 2024),
we identified scheduling-related timing issues in ROS 2 and
developed formal model templates to address such issues (Dust et al.,
2023a). The proposed template-based verification facilitates formal
verification, but initializing the formal model templates requires
extended knowledge and analysis of static and runtime parameters.
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Furthermore, due to the manual process of initializing the formal
models, extended knowledge about the modeling language is
needed. Additionally, manual source code and runtime analysis
make the proposed verification vulnerable to errors. In this paper,
we aim to simplify the formal verification process by proposing a
model-based methodology that automates parameter determination
and model initialization using the existing formal model templates.
This methodology is designed for robotics developers, with the goal
of making formal verification more accessible and less error-prone.
In this article, we extend our work (Dust et al., 2024), automating
model-based formal verification using model-driven engineering
techniques.

Based on the problem definition, we develop the three research
questions. The research questions are presented in the following
paragraphs.

As the first goal of this paper, we aim to identify an approach
that can be used to automate the application of formal verification.
By proposing an approach, we aim to reduce the complexity for
practitioners when applying formal methods through the facilitation
of automation. To achieve the stated goal, we design a methodology
and implement a proof of concept of a toolchain that enables
the application of such methodology. Hence, we contribute a
bridging approach utilizing ROS 2 traces, modeling, and formal
methods that automate formal verification through automated
transformations.

As the second goal of this paper, we aim to modularize
the process of formal verification. The modularization targets to
decouple components of the verification process to enable actors to
focus on their domain of expertise in the creation and adaptation
of the verification process. In this paper, we modularize the process
of formal verification through the design and modeling of a
methodology that we apply in a novel toolchain implemented in this
paper. Hence, we propose a layered and modular methodology that
can be applied through the implemented toolchain.

As the third goal of the paper, we aim to propose a methodology
that allows verification of different formal models, focusing on
different properties to verify. The proposed methodology aims to
separate the concerns in terms of the type of properties to verify.
We demonstrate the ability of the methodology to allow verification
of different formal models by implementation of a toolchain and
experimental evaluation. As a result of the design, implementation,
and evaluation, we develop a novel validated UPPAAL model
for end-to-end (E2E) latency to enable comparison to formal
models proposed in the literature. Furthermore, we develop a
proof of concept that covers multiple verification goal-oriented
UPPAAL models.

Summarizing, the following research questions are tackled
in this paper:

RQ1: What approach can be employed to automate the application
of formal verification of ROS 2-based applications?

RQ2: How can the formal verification process be modularized to

enable domain experts to concentrate on their specific areas of

expertise without requiring deep formal methods knowledge?

RQ3: How can a methodology incorporate verification using

different formal models?

The contributions of this paper are summarized as follows:
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1. A novel methodology for model-based verification of ROS 2
systems, featuring a toolchain that includes UPPAAL, Eclipse,
and ROS2_tracing.

. UPPAAL models for verification of end-to-end latencies in
ROS 2 processing chains in a single executor.

. Ecore metamodels to capture system structure and support
verification activities.

. Automated and conceptual model-to-model transformations
from ROS 2 execution traces to Ecore models, and from Ecore
models to UPPAAL models.

. Demonstration of the proposed toolchain’s workflow through
a proof of concept implementation, covering key aspects of the
toolchain architecture.

The remainder of this paper is organized as follows.
Section 2 provides an overview of model checking, ROS 2, and
model-driven engineering using Eclipse. Section 3 details the
proposed methodology and toolchain architecture, along with
the potential workflow. Section 4 presents the proof of concept
implementation, followed by a discussion of related work in
Section 6. The paper concludes with final remarks, and prospective
future work in Section 7.

2 Background

In this section, we provide an overview of the essential
concepts and tools relevant to our work, including model checking,
ROS 2, model-driven engineering using Eclipse, and end-to-end
timing analysis.

2.1 Model checking and UPPAAL

Model checking is a formal verification technique that offers a
rigorous, mathematical approach to the analysis of complex systems
during the design phase (Carvalho et al, 2020). It involves an
exhaustive exploration of the system’s model state space to ensure
that the system meets its specification. UPPAAL is a widely used
model checker for the modeling, simulation, and verification of real-
time systems described as timed automata (Alur and Dill, 1994). Tt
supports the creation of reusable templates to verify timing behavior
and buffer overflow, making the application of formal verification
more accessible.

Below, we provide a brief, informal overview of timed automata
(TA). For detailed and precise definitions of TA and their application
in UPPAAL, we refer the reader to the literature (Alur and
Dill, 1994; Hendriks et al., 2006).

A timed automaton (TA) (Alur and Dill, 1994) consists of a finite
set of locations, including an initial location, which are connected
by edges, as well as a finite set of non-negative real-valued variables,
known as clocks, which measure the elapse of time and progress
simultaneously at rate 1. The edges are decorated with a finite set of
actions, and guards, which are conjunctive Boolean formulas of clock
constraints that need to evaluate to true for the edge to be traversed.
Clocks can be reset over the edges, and a partial function assigns
invariants to locations, which constrain the time allowed to elapse
in a particular location. The semantics of TA is defined as a labeled
transition system with delay and action transitions.
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Name: ‘TA1 Parameters: int para1, int para2
L0 al L1
O c1>=10
¢1:=0, vi:=parai c1E<15
v2:=para2
Ot 3 &
a
Name: TA2 Parameters:
c2>=5
a?
0 ©)
b
FIGURE 1

Examples of UTA in UPPAAL. (a) UTA template TAZL (b) UTA template
TA2.

UPPAAL (Hendriks et al., 2006) is a tool used for modeling,
simulation, and model checking of an extended version of timed
automata called UPPAAL Timed Automata (UTA). In UPPAAL,
UTA are organized as templates (see Figure 1) that can be
instantiated. UTA enhances the capabilities of TA by adding features
such as data variables, synchronization channels (Boolean variables
decorated by “!”
committed locations, and more. Furthermore, UPPAAL allows the
composition of UTA in parallel as a network of UTA (NUTA),
synchronized via channels.

Figures la,b show two NUTA implemented in UPPAAL. In these
figures, blue circles represent locations connected by directional

for sending, and by “?” for receiving), urgent and

edges. Double-circled locations are the initial locations (e.g., LO).

“u” are urgent (e.g., L3),
¢ are committed (e.g., L4). UTA
imposes constraints that prevent time from progressing in urgent

Locations marked with an encircled
and those with an encircled

and committed locations. Committed locations have stricter rules:
the next edge traversal must start from one of them.

Edges allow for assignments such as resetting clocks (e.g.,
c1:=0), updating data variables (e.g., v1:=paral), guards (e.g.,
¢1>=10), and synchronization channels (e.g., a! and a?). At
location L1, an invariant C1<=15 ensures that clock C1 does not
exceed 15 time units in that location. In UPPAAL, UTA templates
can include parameters (e.g., para’l in TA1) that are assigned values
upon instantiation.

2.2 ROS 2

The Robot Operating System 2 (ROS 2) (OpenRobotics,
2023a) is an open-source middleware designed to facilitate
the rapid development and prototyping of robotic systems.
Unlike what its name suggests, ROS 2 is not a standalone
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FIGURE 2

An example ROS 2 system showing the concepts of Node, Timer, Topic, Publisher, Subscriber, Service, and Client.

operating system but rather runs on top of an existing host OS,
predominantly Linux.

ROS 2 was developed to meet industrial requirements such
as fault tolerance and real-time performance. To achieve real-time
capabilities, ROS 2 introduced the Data Distribution Service (DDS)
Group (2022) as its communication protocol. DDS, created by the
Object Management Group (OMG) Group (2022), enables efficient
communication between distributed applications. While DDS is the
default communication protocol, other protocols such as Zenoh can
be utilized.

The fundamental building blocks of ROS 2 systems are nodes,
which communicate through designated channels using DDS.
ROS 2 supports two primary communication paradigms (Birman
and Joseph, 1987): Publisher-Subscriber and Service-Client. In the
Publisher-Subscriber model, nodes can either publish messages
to a specific topic or subscribe to receive messages from that
topic. All nodes subscribed to a topic receive the published
messages. Conversely, the Service-Client model involves directed
communication, where a client node requests a service from a
server node, which then processes the request and sends back
a response.

Figure 2 illustrates an example of a ROS 2 system with two nodes
communicating over four channels. In addition to communication
channels, system timers can be used to trigger functions within a
node at specified intervals.

Nodes in ROS 2 are executable entities within the host OS
and consist of several functions known as callbacks, which are
the atomic schedulable units in ROS 2. Callbacks are triggered by
events such as the arrival of data in an input buffer or a timer
event. There are four types of callbacks: timer, subscriber, service,
and client.

Each node also includes an executor, which is responsible for
scheduling and executing callbacks (Casini et al., 2019; Blaf} et al.,
2021). The executor can operate with single or multiple threads,
depending on the configuration chosen. However, the latest versions
of ROS 2 do not provide options to set callback priorities, making
the execution susceptible to blocking. This can lead to issues such
as buffer overflow and missed callback instances in worst-case
scenarios (Dust et al., 2023b; Dust et al., 2023a).

Frontiers in Robotics and Al

2.3 ROS2_tracing

ROS2_tracing (Bédard etal., 2022) is alow-overhead framework
based on the Linux Trace Toolkit next-generation (LTTng). It is
included in the ROS 2 installation and allows for the generation
of execution traces. These traces provide valuable insights into
the system’s behavior, including callback execution times, message
passing instances, and system initialization events. The ROS2_
tracing toolbox includes a Python library called tracetools_analysis,
which transforms LTTng traces into a defined ROS 2 data model,
represented as pandas Python objects (Bédard et al., 2022).

2.4 Autoware real Time reference system

The Autoware Reference System (ROS Realtime Working Group,
2025b) is part of the ROS 2 (Robot Operating System) ecosystem,
specifically designed to provide a standardized and repeatable
benchmarking environment for evaluating the performance of
various executors and configurations within the ROS 2 framework
(ROS Realtime Working Group, 2025a). This real-time reference
system simulates the Autoware. Auto (Autoware Foundation, 2025)
LiDAR data pipeline, to measure and compare the performance
of different executor implementations. The reference system is
defined by a fixed number of nodes, each with specific publishers,
subscribers, processing times, and publishing rates. It uses a fixed
message type and size for consistency. The system can run on various
platforms, including different hardware and operating systems,
ensuring that the benchmarks are portable and replicable.

2.5 Pattern-based verification of ROS 2
timing

In our previous work (Dust et al., 2023a), we proposed a pattern-
based verification approach for analyzing the execution behavior of
ROS 2 systems using UPPAAL. This approach focuses on verifying
two key properties: callback latency and input buffer sizes.

Callback Latency: This is defined as the maximum time
between the release of a callback instance and the completion of its

frontiersin.org
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// Executor start_exp

// Release Times for WallTimeCallbacks
const int releasesSUBSCRIBERO[MAXX]=
{43,43,43,43,0,0,0,0,0,0};

// Executor

ExV1 ExecutorExV1(StopTime) ;

// Callbacks

SUBSCRIBERO =
WallTimeCallback(®, 5,4, releasesSUBSCRIBER®,
SUBSCRIBER, 1000) ;

// System Definition

system ExV1 < SUBSCRIBERO;

Listing 1. Example of UPPAAL System Initialization.

execution. Ensuring low callback latency is crucial for maintaining
the responsiveness of the system.

Input Buffer Size: This property verifies that the input buffer
is large enough to handle incoming data for a given system
configuration. Adequate buffer sizes prevent data loss and ensure
smooth data flow within the system.

To facilitate the verification process, we create three types of
UPPAAL templates to represent ROS 2 nodes:

e Wall-Time-Callbacks: These are callbacks that are released at
specific times.

e Periodic Callbacks: These are callbacks that are released
periodically.

e Executors: These represent different versions of the ROS 2
executor, which schedules and executes callbacks.

These templates can be composed to model a ROS 2 system,
allowing for exhaustive verification of timing properties. Listing 1

illustrates an example of UPPAAL system initialization:
The listing above shows an example of how a ROS 2 system can

be initialized using UPPAAL templates. In this example:

e An array is created to hold the release times for a Wall-Time-
Callback. In this case, the callback is released four times at 43 m
intervals.

e An executor is initialized with a defined stop time, which
describes the interval for which the verification will be
conducted.

e The Wall-Time-Callback template is instantiated with
parameters such as the callback ID, execution time, number of
releases, release time array, callback type, and buffer size.

o The system is defined as a composition of the executor and
the callback.

This initialization process allows for the simulation and
verification of the system’s timing behavior using UPPAAL. By
modeling the system in this way, we can conduct exhaustive
verification to ensure that the system meets its timing requirements
and identify any potential issues related to callback latency and
buffer sizes. The actual verification of such properties happens in the
UPPAAL verifier through checking the states of defined variables.

The pattern-based verification approach provides a structured
and systematic method for analyzing the timing behavior of ROS 2
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systems, making it easier for developers to ensure the correctness
and reliability of their systems.

2.6 Eclipse modeling framework (EMF)

The Eclipse Modeling Framework (EMF) (Steinberg et al., 2008)
is a widely used tool for model-driven engineering (MDE). EMF
provides a framework for defining metamodels and generating
code from models. It supports model-to-model and model-to-text
transformations, enabling the automation of various development
tasks. In our work, we utilize EMF to create metamodels that
represent different abstractions of ROS 2 systems, facilitating the
automation of formal verification. EMF allows the definition of
metamodels that are instances of the Ecore metamodel, which can
be used to create models representing system components and their
interactions.

2.7 End-to-end timing analysis

End-to-end timing analysis is crucial for ensuring the correct
functionality and safety of autonomous systems, particularly in real-
time applications. It involves analyzing the timing behavior of cause-
effect chains, which represent sequences of reactions from a cause
(e.g., sensing) to an effect (e.g., actuation). Two key metrics in
end-to-end timing analysis are the maximum reaction time (the
maximum time for the system to react to an external input) and the
maximum data age (the maximum time between sampling and the
output being based on that sample) (Teper et al., 2022).

In ROS 2 systems, end-to-end timing analysis can be challenging
due to the combination of time-triggered and event-triggered
components. Existing methods for periodic and sporadic task
systems are not directly applicable to ROS 2. Therefore, we propose
new UPPAAL templates that resemble the end-to-end timing
analysis presented in (Teper et al., 2022). These templates are used
to model and verify the timing behavior of ROS 2 systems, to ensure
that they meet the required timing constraints.

3 Proposed methodology

In this section, we present a methodology designed to automate
the formal verification of ROS 2-based systems. The methodology
integrates execution traces generated at runtime, model-driven
development, and the composition of formal model declarations
and verification. This methodology aims to decouple the process
of formal modeling from system development while ensuring
traceability, enabling users to apply formal verification without
requiring extensive domain expertise.

3.1 Definition of users
The primary goal of this methodology is to simplify the

verification process for robotic systems. The intended end users are
robotics developers who may have limited knowledge of modeling
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and formal verification. Hence, the aim is to allow robotics engineers
to perform formal verification with limited learning effort.
Practically, the methodology is designed to enable the design
of an extensible toolchain, where domain experts, such as formal
verification specialists and modeling engineers focus on the aspects
where they can contribute most. Once such a toolchain following
the developed methodology is developed, implemented, and set up,
robotics engineers should be able to operate it with limited learning
effort. The definition of users and maintainers of the toolchain is
essential to analyze potential modularization, as stated in RQ2.

3.2 Architectural overview

The toolchain comprises four main architectural components.

1. System Implementation Layer
2. Tracing Layer

3. Modeling Layer

4. Verification Layer

Figure 3 provides an overview of the methodology, showing the
included layers and their connections. Each layer is marked in a
different color. It can be seen that with Start A and Start B, there are
two starting points for the potential application of the methodology.
They refer to the two possible application approaches, namely, the
verification of already implemented, executable systems, and the
verification of conceptual system design. A more detailed overview
of the components of each layer can be found in Figure 4. In the
figures, MM stands for Meta-Model, M stands for Model, and T
stands for Transformation. In Figure 4, boxes stand for artifacts and
system components such as models and traces, while ellipses stand
for actions such as transformations. The subsequent sections explain
the layers in more detail.

3.2.1 System Implementation Layer

The ROS 2 Layer 0 (light blue) represents the ROS 2 system
implementation, encompassing both static information (Figure 4a)
(dark blue) and dynamic information (white). Static information
includes system components such as nodes, timers, subscriptions,
publishers, services, and clients. Dynamic information involves
runtime data such as callback execution times, timer release times,
and message passing instances that describe the system behavior
during execution.

3.2.2 Tracing layer

The Tracing Layer 1 (green) utilizes tracing to generate execution
traces from the running system. An overview of the elements
in this layer is presented in Figure 4b. Generated traces contain
both static and dynamic information, and are then transformed
into a human-readable ROS 2 Data Model representation (MO).
Additionally, customized analysis can be performed during the
initial analysis of the traces, such as message flow analysis, as
proposed in (Bédard et al., 2023). Based on the generated traces
and analysis, a detailed visualization of system components and their
interactions is possible. The traces are an important part to answer
RQ1, as they enable automated determination of system parameters.
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FIGURE 3
Architectural overview of the proposed methodology for automating

verification of ROS 2-based systems. The architecture includes layers
for system implementation, tracing, modeling, and verification.

3.2.3 Modeling layer

The Modeling Layer 2 (light yellow) shown in Figure 4c
involves the use of a modeling framework to create and utilize
different metamodels and transformations. The metamodels allow
the definition of models to model the system from different
perspectives. The following exemplary types of metamodels allow
representation of various abstractions of the ROS 2 system:

e MM1 Metamodel: Input Metamodel: Maps the ROS 2 Data
Model to an model for use in a model editor, allowing detailed
analysis and traceability.

e MM2 Metamodel 2: System Model: Allows modeling of
the system from a perspective towards the formal model.
Parameters not needed for verification might be excluded, and
component links might be made using a different approach.
This model is used to decouple the formal modeling further
from the tracing and parsing. Hence, if a different formal model
is introduced, MM2 has to be exchanged. Nevertheless, there
can be multiple different implementations of MM2 to allow the
generation of different formal model representations.

While it is possible to generate the verification code from
the traces directly, it is beneficial to include different metamodels
during the generation steps. This allows traceability throughout the
generation process, which might lead to a better understanding
of parameters. Furthermore, this allows for the testing of different
parameters without the need to adapt and rerun the system.
Additionally, the introduction of incremental steps is essential to
achieve modularization as stated in RQ2. Note that in a modeling
environment, there might be multiple different implementations of
MM2 to allow the application of different formal models.
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FIGURE 4

Detailed overview of the elements in the component layers. (1) System Implementation Layer. (2) Tracing Layer. (3) EMF Modeling Layer. (4) Verification
Layer. (a) Overview of the ROS 2 system implementation, highlighting the static and dynamic information captured during system execution. (b) Tracing
layer overview, showing the process of generating and analyzing execution traces to create the ROS 2 Data Model. (c) Modeling Layer overview,
illustrating the different metamodels and transformations used to automate the verification process. M2M stands for model-to-model transformation.
(d) Verification Layer overview, showing the generation of UPPAAL artifacts from EMF models for formal verification.

To
model representations, three types of transformations can be

simplify the transformation between the different

employed:

e Model Parsing (T1): Transforms textual model descriptions
into model representations specific to the chosen modeling
environment, ensuring compatibility with the metamodel
definitions.

e Model to Model Transformation (T2): Converts one model
representation to another, facilitating different sets of features
and abstractions.

e Code Generation (T3): Translates models into executable
code, enabling the generation of formal model declarations and
verification queries.
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The shown transformations can be automated using designated
tools. Such automation potential is important to answer RQI.

3.2.4 Verification layer

The Verification Layer 3 (violet) shown in Figure 4d contains
three main elements. First of all, there are the formal model
templates, which are created by a verification expert; the templates
capture the behavior of the system components, formally. The
templates can be composed into a system, in the system declaration.
Using the toolchain, the system declaration can be produced through
model-to-text transformations. Verification queries can be executed
in the verifier. The verifier allows verification of the properties
of a system specified by such queries. They can be predefined as
templates and adapted to the chosen notation and naming during the
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model-to-text transformations. When applying the methodology
following the architectural overview in Figure 3, upon creation of
the formal model and queries in form of a compatible file (3.1), the
outcome of the verification is given as potential execution traces
and the query results (3.2). In the proposed methodology, multiple
different implementations of Templates, Systems Declarations,
and Verification Queries can be employed. This is essential to
answer RQ3.

3.2.5 Relation of components and
modularization

In the previous subsections, we divided the methodology into
four layers. Each of the layers consists of multiple components.

While the metamodels proposed in the Tracing Layer and the
Modeling Layer are not strictly needed to enable automation, in this
paper, they are introduced to enable modularization and decoupling
of domain knowledge in the verification processes.

Generally, the boxes shown in Figures 4b—d show artifacts that
result from specific actions shown as ellipses.

Two consecutive artifacts in the methodology are related by the
fact that the set of attributes of the first artifact is an extension
of the attributes of the second artifact. Hence, a transformation
reduces the set of parameters while changing the structure of the
model. As an example, one can transform an instance of the class
Trace to an instance of the class ROS 2 Data Model by using
Trace_analysis library functions. The classes are substitutable by
any other class that obeys the extends mechanism. However, the
transformation needs to be adapted, provided that the inherited
attributes of the substituted class change. In the Modeling Layer,
multiple, different instances of the two metamodels might be
created. Any instance of MM1 can be transformed in any instance
of MM2, as long as the extends mechanism for the parameters is
true. Hence, in case a preceding model is adapted or exchanged,
the transformation only needs to be adapted when the inherited
attributes change.

The layered approach with the different artifacts allows for
reducing complexity and shifting the goal of the models in defined
steps through an adaptation of the modeled system architectures
incrementally. While the MM1 reflects more the architecture of
a ROS 2 system, the MM2 reflects closer the architecture of the
proposed formal model. Each parameter reduction and architectural
model change is conducted incrementally, reducing the need
for complex domain knowledge while allowing traceability. This
reflection is essential as an informal proof of modularization to
tackle RQ2.

3.3 Application of the methodology

To apply the methodology, a toolchain is needed that
implements the required components, such as metamodels
and transformations. Once the necessary metamodels and
transformations are established, the end user (robotics developer)
can perform the verification by following the outlined approach.
The general flow of applying the methodology is shown in Figure 3,
and the workflow can start from two points: verifying legacy systems
(Start A) or conceptual systems (Start B).
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3.3.1 Verification of legacy systems

Starting with a ROS 2 system implementation (Start A), tracing
is used to generate runtime execution traces. These traces are
transformed into the ROS 2 Data Model using analysis tools. A
parser then converts the ROS 2 Data Model into a model. Multiple
model-to-model transformations can be applied within the EMF
environment to generate a formal model based on predefined
templates. The generated formal model definition is used for formal
verification, and the results can guide parameter adjustments in the
model or the real system. This iterative process allows for thorough
testing before implementing changes in the actual system.

3.3.2 Verification of new systems

For new system designs (Start B), the system can be modeled
directly using the created metamodels. This approach allows for
system definition without existing source code. By modeling
a system using a modeling environment, only the necessary
parameters for verification need to be determined, and the code
generation can automatically produce the formal model declaration.
Iterative verification of system parameters can then be conducted
using the models and formal modeling tool, ensuring a robust design
before implementation.

3.4 Toolchain setup, development, and
extension

As described in the previous section, a toolchain is needed to
enable the application of the methodology following Figure 3 to
verify ROS 2-based applications. The design and implementation of
such toolchain is done in a different order than the actual verification
process shown in Figure 3. The modularity of components in the
methodology allows domain experts to focus on their area of
expertise when implementing the toolchain. Each domain expert
is responsible for the implementation of specific components
and only interacts with other domain experts to implement the
connectors, such as transformations. Below, we give an overview of
the implementation process of a toolchain that involves several steps,
each requiring specific expertise:

Step 1: Development of Formal Models (Formal Methods Expert):
In a first step, the formal model component templates
need to be defined, created, and tested in the formal
modeling tool.

Step 2: Determination and setting of Parameters (Formal Methods

Expert/Robotics Expert): Next, the needed input parameters

for the formal verification, and how they can be obtained

(e.g., through ROS2_tracing), need to be identified. If they

cannot be obtained through the mainline analysis tools,

additional analysis methods may be required.

Step 3: Development or Adaptation of Tracing Tools (Robotics

Expert): In a following step, the tracing needs to be adapted

to capture the parameters as required.

Step 4: Development or Adaptation of Metamodels (Software

Engineering/Modeling Expert): The next step incorporates

an update of the ROS 2 data model and creation of the

metamodels needed to cover the components needed for

formal verification.
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Step 5: Development or Adaptation of Transformations (Software
Engineering/Modeling ~ Expert):  Implementation  of

the parsing, the model-to-model, and model-to-text

transformations. Create verification models in the
formal verification environment and corresponding
metamodels.

When creating a toolchain, we assume the goal is the verification
using one specific formal model representation. Nevertheless, in case
different formal model approaches are to be used, the toolchain
can be extended by extending the second and third layer. While
the first metamodel in the layer is for a seamless parsing of a
trace output to a model in the model environment, the second
metamodel enables the transformation towards the formal model
representation. Hence, when adding a formal model representation,
a further implementation of the second metamodel has to be
introduced to adapt to the new formal model. The first metamodel
and the parsing can be reused. The possibility of domain experts
focusing on defined steps with defined connectors with inputs and
outputs in between different layers, is evidence of modularization
and helps answering RQ2.

4 Toolchain implementation and
application

In this section, we apply and evaluate the proposed methodology
through the design, implementation, and application of a toolchain.
In the first step, we design and implement a toolchain following the
process explained in Section 3.4.

4.1 Toolchain design

Following the four layers of the proposed methodology, the
designed toolchain comprises four main architectural components:
three tools (ROS2_tracing, Eclipse/EMF, and UPPAAL) and the
actual system implementation.

An overview of the Tracing Layer, the EMF Modeling Layer and
the Verification Layer of the toolchain created in this evaluation
is given in Figure 5.

To show the extensibility of the approach, in this paper we
implement formal verification based on two approaches of formal
modeling. The first approach is verifying callback latency (CBL).
The second approach focuses on verification of end to end delays
(E2E). Hence, the verification layer comprises of two different
UPPAAL models. Each UPPAAL model consists of the UPPAAL
timed automata templates, the UPPAAL systems definition and the
verification queries.

The parsing layer consists of the tool ROS2_tracing and
generated outputs created by the python libraries of tracetools_
analysis, such as custom graph visualization.

The modeling layer contains the EMF Data MM, which allows
direct parsing of the ROS 2 data model to a model in Eclipse. The
model can be reused for the generation of both formal models. Next,
the specialized model representation has to be designed for each of
the verification approaches individually. Hence, the EMF Modeling
Layer contains one metamodel for the CBL and one metamodel for
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the E2E. Besides the metamodels, the EMF modeling layer contains
model transformations.

We implement the transformations,T1,T2.1 and T31 to an
extent to be conducted automatically using the chosen tools.
Transformations T2.2and T2.3are conducted by hand. Nevertheless,
if a feature is contained in the preceding model, it can be contained
in the next model after the transformation. Furthermore, some
features that are not directly contained can be calculated during the
transformation from the parameters that are contained.

In the following, we explain the implementation of the
toolchain and the order in which it is designed. Furthermore, we
explain the parameters and features that are contained in each
element in Figure 5.

4.2 Toolchain implementation

In the next sections, we follow the workflow for creation of a
toolchain following the methodology presented in Section 3.4.

4.2.1 Step 1: Formal models in UPPAAL

To demonstrate the methodology and toolchain we utilize two
different kinds of UPPAAL models for verification. The first kind
of UPPAAL models has been created previously (Dust et al., 2023a),
and are explained in Section 2. The model focuses on the verification
of latency and callback size of a single callback in a ROS 2 system.

The second kind of UPPAAL models (E2E) used for evaluation
in this paper are created during the implementation of the toolchain.
The models aim to allow verification of end-to-end (E2E) latency
as proposed in the literature (Teper et al., 2022). Generally, our
modeling approach is to create a chain that contains all the
components of the original chain and adds delays during the
execution that are equally long as the maximum latency for each
component. Hence, when executing the model, at the end of the
simulation of the last component, the system time will be according
to the maximum latency of the chain. In related work (Teper et al.,
2022), the authors define six types that can describe a callback based
on the function in a processing chain: Sensor, Filter, Timer Fusion,
Subscription Fusion, Timer Actuator, and Subscription Actuator.
For each of the types of callbacks, we propose UPPAAL templates
that can be used to model the end-to-end delays and are shown
in Figure 6. In what follows, we give an overview of the proposed
templates, where the details, such as included parameters, are
explained in Section 4.2.2.

Sensor: A sensor node is the start of a chain and sends a message
periodically. According to (Teper et al., 2022) the maximum latency
is defined as the period minus the maximum execution time plus
two times the execution time of all callbacks in the executor. To
model the callback in UPPAAL, the callback starts in a location
where it waits for the time to elapse until the maximum latency to
finish its execution. When the execution of the sensor callback has
ended, a following callback is triggered. This is modeled through a
synchronized channel to the following callback that is initiated by
the sensor.

Filter: The subscription actuator can be modeled like a filter,
as the maximum latency is equal to two times the sum of all
callback execution times (Teper et al., 2022). The callback is modeled
by triggering the execution through the synchronized channel
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FIGURE 6
UPPAAL templates for the callbacks.
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through the preceding callback. Upon triggering of the execution,
the callbacks stay in the execution location until the maximum
blocking time has elapsed. Upon finishing the execution, the next
callback is triggered through a synchronized channel.

Timer fusion: Timer fusion in a chain basically consists of two
relevant callbacks. The first callback receiving a message from the
preceding node can be modeled as a filter. The second callback is a
timer callback that has the same latency as a sensor (Teper et al.,
2022). Hence, we model the callback as a sensor, but with the
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difference that the callback is triggered by another callback and upon
execution triggers another following callback.

Subscription Fusion: When modeling a subscription fusion,
there are two different paths possible for a chain. If the subscription
that triggers the following node of a fusion lies within the same chain
(is triggered by a callback in the chain that is modeled). In this case,
the callback can be modeled as a filter node.

If the callback that outputs the fusion result is not contained in
the same chain, a second chain has to be introduced to determine the
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maximum latency. As each chain starts with a sensor node, we model
the start of that chain as a sensor that is triggered by another node.
Following, each element of the same chain including the fusion
callback has to be included separately as a fusion callback.

Timer actuator: The timer actuator actually consists of two
callbacks that have to be modeled accordingly in our UPPAAL
representation. The first callback is triggered by the preceding node
in the system and resembles a subscription node. In our example,
the callback has to be modeled as a filter. The final callback is a timer
callback that executes the actuator. This callback has the same latency
asasensor callback (Teper et al., 2022). Hence, we model the callback
as a sensor, but with the difference that the execution is triggered by a
preceding callback. Upon finishing the execution, the callback passes
through an End location that is used for the verification query.

Subscription actuator: The subscription actuator can be
modeled like a filter, as the maximum latency is equal to two times
the sum of all callback execution times (Teper et al., 2022). The only
difference is the actuator being the end of the chain. Hence it does
not need to trigger another execution of a following callback.

The shown templates are sufficient to model processing chains of
callbacks and determine the upper bound for the latency by checking
the global system time while the Actuator callback passes through
the End location.

4.2.2 Step 2: Determining parameters, features,
and formal model declaration

In this step, we identify the parameters required to instantiate
the UPPAAL templates for model verification. These parameters are
essential for accurately modeling the system’s behavior and ensuring
the correctness of the verification process.

4.2.2.1 Buffer overflow UPPAAL templates

The legacy UPPAAL model includes three types of templates:
BufferOverflow, Executor, and Callbacks. Each template requires
specific parameters to be instantiated, as follows.

4.2.2.1.1 Executor template

o stoptime: The time at which the executor stops executing. This
parameter defines the duration for which the verification is
conducted.

4.2.2.1.2 PeriodicCallback template

e id: A unique identifier for the callback.
e execution time (Ci): The time required to execute the callback.
period (Ti): The interval at which the callback is triggered.

e type: The type of callback (e.g., timer, subscriber).
buffer size: The size of the buffer associated with the callback.

4.2.2.1.3 SporadicCallback template

e id: A unique identifier for the callback.

e execution time (Ci): The time required to execute the callback.

e amount of releases: The number of times the callback
is released.

e release array: An array specifying the release times of
the callback.

o type: The type of callback (e.g., timer, subscriber).

o buffer size: The size of the buffer associated with the callback.
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4.2.2.2 End-to-end (E2E) timing analysis templates
For end-to-end timing analysis, we use several templates to

model different components of the system. Each template requires
specific parameters to capture the timing behavior accurately.

4.2.2.2.1 Sensor template

e Csum: The sum of the execution times of all callbacks in the
system/executor.

e Ci: The execution time of the callback.

o Ti: The period of the callback.

e SenderID: A unique identifier for the callback that sends
information.

4.2.2.2.2 Filter template

e Csum: The sum of the execution times of all callbacks in the

system/executor.

e ReceiverID: The identifier of the callback that receives
information.

e SenderID: The identifier of the callback that sends
information.

4.2.2.2.3 SubFus template

e Csum: The sum of the execution times of all callbacks in the
system/executor.

e Ci: The execution time of the callback.

o Ti: The period of the callback.

e ReceiverID: The identifier of the callback that receives
information.

e SenderID: The
information.

identifier of the callback that sends

4.2.2.2.4 TimFus template

e Csum: The sum of the execution times of all callbacks in the
system/executor.

e Ci: The execution time of the callback.

o Ti: The period of the callback.

e ReceiverID: The identifier of the callback that receives
information.

e SenderID: The
information.

identifier of the callback that sends

4.2.2.2.5 SubAct template

e Csum: The sum of the execution times of all callbacks in the
system/executor.

o ReceiverID: The identifier of the callback that receives
information.

4.2.2.2.6 TimAct template

e Csum: The sum of the execution times of all callbacks in the
system/executor.

e Ci: The execution time of the callback.

e Ti: The period of the callback.

e ReceiverID: The identifier of the callback that receives
information.
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4.2.2.2.7 Explanation of parameters

e Ci (execution time): The time required to execute a callback.

e Ti (period): The interval at which a callback is triggered.

e SenderID: A unique identifier for the callback that sends
information, ensuring it can be correctly identified.

o ReceiverID: Matches the receiving callback with the sender,
ensuring proper communication between callbacks.

e Csum: The cumulative execution time of all callbacks within
the system or executor, used to assess overall system load.

After determining the described parameters, we can instantiate
the UPPAAL templates to create a model that allows for formal
verification of buffer overflows and end-to-end latency, via
model checking.

4.2.3 Step 3: Setup of ROS2_tracing and graph
analysis

In a trace generated by ROS2_tracing, the execution of each
individual callback is contained. Hence, the callbacks and their
executions can be mapped from the tracing output to the model. The
timing information contained in the traces allows the calculation
of the maximum execution time for each callback. Additionally,
for timers, the configured period is recorded in the traces. By
aggregating the execution times of all callbacks, the total execution
time for the system can be calculated, with the assumption that all
callbacks are executed within the same executor.

To model the callback chain, we utilize the tracing information
to identify publishers and subscribers, along with their preceding
and following nodes. The primary challenge lies in determining the
type of each callback for accurate modeling. In the initial automated
transition, we categorize all receiving and sending callbacks as filters,
all timers as sensors, and all sinks as actuators. A message flow
analysis is conducted to visualize the internal connections and
relationships, which helps in manually constructing the graphs.

4.2.4 Step 4: Development of metamodels

To follow the process shown in Figure 5, we implement three
different Metamodels that can be used to create models containing
the information needed to automate the verification. MM1 is used
to parse the tracing output with all its information into a model of
the same architecture to allow traceability.

MM?2 is the EMF CBL Metamodel allowing to create models that
resemble the system architecture for individual node verification
and MM3 is the EMF E2E metamodel allowing modeling of a
system to transform it into UPPAAL code for verification of the
E2E latency. In the following, we show the implementation of the
metamodels.

4.24.1 Metamodel 1 - Eclipse Data Metamodel
In the initial step, we develop the EMF Data metamodel, which

includes all system components specified by the ROS 2 Data Model,
such as subscriptions, callbacks, and timers, represented as classes
with parameters as attributes. Figure 7 shows an excerpt from the
metamodel implementation. The yellow boxes indicate the classes in
the metamodel, with arrows illustrating the dependencies between
them. All classes representing system components are child objects
of a master class that represents the entire system. Although ina ROS
2 implementation, components like Publishers are contained within
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Nodes, in this metamodel, the association of Publishers to Nodes
is managed by identification handlers modeled as attributes. This
approach aligns the representation of the ROS 2 Data Model with
the EMF data model.

4.24.2 Metamodel 2 - EMF CBL Metamodel

The second metamodel represents the UPPAAL templates
within the EMF framework, which are utilized for formal
verification. An overview is provided in Figure 8.

In this metamodel, each of the three UPPAAL templates
(Executor, WallTimeCallback, and PeriodicCallback) is represented
as a distinct class, which are components of a system. As
detailed in Section 2, each template includes parameters such as
ids and buffer sizes. Additionally, the metamodel defines datatypes
for attributes like callback type and executor version, which can be
specified in a model instance.

Although the toolchain proposal mentions the modeling of
requirements such as maximum callback latency, this aspect is
reserved for future work.

4.2.4.3 Metamodel 3 - EMF E2E Metamodel
In the created metamodel in Figure 9, the callbacks are modeled

as a single class contained in an executor that is part of a system.
The callbacks are distinguished by their Type, which is a parameter.
Furthermore, the parameters needed to initialize the UPPAAL
model such as execution times and the sum of callback execution
times. This model allows the representation of the features needed
for the end-to-end verification.

4.2.5 Step 5: Implementation of model-to-model
transformations
4.2.5.1 T1: Model parsing - ROS 2 to EMF Data Metamodel
We implement the parsing T1 as a python function in
Trace_Analysis. The function takes the ROS 2 Data Model and
creates an XML file that can be imported as a model (using the
EMF Data Metamodel) in the Eclipse workspace. The parsing is
done by reading the data of the ROS 2 Data Model and printing
them in an XML document with the desired formatting of the EMF
Data Model.

4.2.5.2 T2.1: Model-to-Model - EMF Data Metamodel to
EMF CBL Metamodel

In this model-to-model transformation, T2.1 the components
of the EMF Data Model are mapped to the components in
the verification model using QVT-O. QVT-O is an operational
mapping language (Eclipse Foundation, 2025b). In the first step,
the periodic timers are mapped to periodic callbacks with the type
attribute set to TIMER. The period and execution time is extracted
from the attributes in the EMF Data Model and passed to the
verification model. Furthermore, for timers, the buffer size is set
to one. The second mapping is between the subscription callback
and the wall-time-callback of the type SUBSCRIBER. A subscription
callback is released on the reception of data. As neither the release
time of the callback, nor the reception of the data is initially
contained in the system traces, we map the publishing time of the
data in the topic the callback is subscribed to as the release time.
Furthermore, we pass the execution time and buffer size as further
parameters.
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Data Metamodel in Eclipse.

4.2.5.3 T3.1: Model-to-Text - EMF CBL Metamodel to

UPPAAL code
With the model-to-text transformation T3.1 using the

tool Acceleo (Eclipse Foundation, 2025a), the EMF verification
model is translated into the UPPAAL code. Therefore, the classes
contained in the EMF verification model are mapped to specific code
snippets, e.g., representing the UPPAAL template instantiation.
Then, the code is dynamically filled with the needed parameters
based on the class attributes.

4.2.54 T2.2, T3.2: EMF Data Metamodel to EMF E2E

Metamodel to E2E UPPAAL code
The transformations T2.2 and T3.2 are needed to fully automate

the process of verifying ROS 2 applications using the E2E UPPAAL
models. As we evaluate the automation of such transformations
on T2.1 and T3.1, and the repetitive implementation of the
transformation as being rather engineering than research, for the
sake of simplicity, T2.2 and T3.2 are not implemented by a tool but,
in the context of this paper, are conducted manually.
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4.3 Toolchain application

The application and evaluation of the toolchain is carried out
using three ROS 2 systems (Use-Case 1, 2, 3). Use-Case 1 and Use-
Case 3 are implemented in source code and executable, while Use-
Case 2 is evaluated from a conceptual perspective without actual
source code implementation.

We show the automation of formal verification on two examples
of formal models in UPPAAL, each focusing on a different set of
properties to verify. The implementation shows how to set up the
toolchain and its main components in the context of verification
of buffer overflow, callback latency and end-to-end delays for ROS 2
processing chains.

While for the verification of the buffer overflow and callback
latency, we reuse UPPAAL templates that have been proposed in
related work, for the verification of end-to-end timing analysis, we
propose new UPPAAL UTA templates. We implement exemplar
metamodels to demonstrate the application of the toolchain. For the
verification of the buffer overflow, we implement prototypes of the
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System overview.

model parsing, the model-to-model transformation, and the model-
to-text transformation. In the second part of verifying end-to-end
latencies, we perform the transformations by hand. The created
artifacts, such as metamodels, templates, source code, and graphs,
are published in (Dust et al., 2025).

4.3.1 Use-cases

The first system (Use-Case 1) is a lightweight ROS two
implementation of two nodes similar to the setup depicted in
Figure 2. The system has been proposed by Casini et al. (2019)
and used for real-time evaluation and demonstration of different
scheduling approaches of ROS two in Blaf et al. (2021), Dust et al.
(2023b), and Dust et al. (2023a). The system offers traceability
through controlled execution times and controlled trigger events
of the included callbacks. The limited complexity simplifies manual
analysis, and hence enables simpler comparison and evaluation of
verification and modeling approaches.

The second system (Use-Case 2) is a conceptual ROS two system
as given in the evaluation of Teper et al. (2022). The system is used
to evaluate the correctness of the created UPPAAL templates for
E2E verification. As a part of RQ3 we aim to provide validated
UPPAAL models. The correctness of the proposed formal models
is demonstrated by repeating the calculations from the case study
in Teper et al. (2022). Furthermore, as the system is a conceptual
design, as we have no access to the original ROS two code,
the approach of verification of conceptual designs (START B) is
demonstrated. An overview of the nodes in the system is given
in Figure 10. The system consists of two sensors, which contain a
ROS two timer each publishing a message at a given interval. The
message is received by a filter callback that forwards the message
on reception. The two filter messages are fused into one message in
the fusion node. A third filter node receives and forwards the fused
message. The final message is received by an actuator node. In an
actual system, the fusion and the actuator can be implemented in
two different ways. The subscription fusion and actuation, and the
timer subscription and actuation. Both are shown in Figures 11, 12.
In the subscription configuration, the messages are forwarded using
the same callback triggered by the subscriptions. In the timer
configuration, the messages are received by a subscription callback,
and then the final message is published by a different timer callback.

The third system (Use-Case 3) is an ROS two real-time
benchmark system (ROS Realtime Working Group, 2025b) and

Frontiers in Robotics and Al

15

resembles parts of an autonomous driving stack. As a controlled
real-world system is used to demonstrate applicability of the
proposed methodology. In Figure 13, we show an excerpt of the
system, visualized through implemented message flow analysis. For
simplicity, we focus the verification of the end-to-end latency on the
chains shown in the figure.

4.3.2 Application of legacy UPPAAL models and
automated transformations on use-case 1

As a first step, we utilize Use-Case 1 to assess and validate our
toolchain prototype regarding automation as stated in RQI, and
verification as stated in RQ3. We evaluate the proof of concept by
generating UPPAAL code through our proposed workflow, with an
example excerpt shown in Listing 1. Instead of manually analyzing
the system and calculating potential release times, our approach
automatically generates traces and performs model transformations
to produce executable UPPAAL code. We then ran this code in
UPPAAL and verified the accuracy of the results at each stage.

By focusing on subscription and timer callbacks, the generated
traces provided the necessary information to either directly
determine or infer the required parameters, such as callback periods,
release times, buffer sizes, and execution times. However, some
parameters for services and clients, as well as certain subscription
callback release times, are currently not captured by ROS2_tracing.

Despite these limitations, the presence of parameters for
subscribers and periodic timers demonstrates the feasibility of
our toolchain. Additionally, it is possible to add custom trace
points, although this requires expert knowledge. We are working
on incorporating the necessary trace points into the mainline
releases of ROS 2.

Our observations indicate that the model-based verification of
ROS two applications can be automated by using system execution
traces and model-driven engineering to automatically populate
model-based verification templates.

4.3.3 Verification of E2E latency of conceptual
system design on use-case 2

To implement the system in the modeling layer, we create
models in Eclipse containing the different configurations following
the grammar of the defined E2E metamodel. An example of such
a model for a subscription fusion and the subscription actuation
is shown in Figure 14. It can be seen that all callbacks are included in
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FIGURE 11
Two versions of the fusion node.

TIMER ACTUATOR SUBSCRIPTION ACTUATOR

Actuator CB

Actuator CB

e

Actuator TIMER CB

Ml

FIGURE 12
Two versions of the actuator node.

the same executor. Furthermore, the callbacks contain information
such as the period and type of timers. The callback, whose
parameters are shown in the example, is the Fusion F1 CB that
receives the data from Filter one and forwards the fused message to
Filter 3. The links are done through the connection of the parameters
External Receiver and External Sender. The fusion is indicated
through the internal sender Sub Fusion 2.

Next, we transform the model into the system instantiation
for UPPAAL as shown in Listing2 for an example with a
subscription fusion and subscription actuation. As described, the
actual transformation in this example is done by hand, but can be

automated through Acceleo model-to-text transformation.
After performing the transformations and modeling in

UPPAAL, we run the verification and compare the obtained results
for the E2E latency with the results from (Teper et al., 2022). Table 1
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shows the system parameters and the results of the verification,
which match the results from Teper et al. (2022). Hence, we validate
the correctness of our models to achieve parts of our goal in RQ3
and the approach to the transformations towards RQ1 with the
verification of conceptual system designs.

4.3.4 Verification of E2E latency of legacy system
implementation on use-case 3

In the following, we use the implementation of the ROS 2
Autoware Real-Time benchmark (ROS Realtime Working Group,
2025b) (Use-Case 3) to show the verification process on an actual
ROS two implementation. In this experiment, we demonstrate
formal verification on a real-world use-case to answer RQ3.
Furthermore, we demonstrate the modularization of the toolchain
and reusability of components compared to the application of Use-
Case 1 to answer RQ2. We run the system in a development
container and create a ROS2_tracing trace. The trace is transformed
into the ROS 2 Data Model. In Figure 13, we show an excerpt of the
system, visualized through implemented message flow analysis. For
simplicity, we focus the evaluation on the chains shown in the figure.
Furthermore, we assume all the callbacks to be in the same executor.

We perform verification using the E2E metamodels. We
transform the system into four different versions of the verification
metamodel. Each representing a different chain that can be verified
from the given example. The first chain is going from the Euclidean
Cluster Settings to the Intersection Output. The second chain goes
from the Front Lidar Driver to the Object Collision Estimator. The
third chain goes from the Front Lidar Driver to the Intersection
Output via subscription fusion on Euclidean Cluster Detector. The
last chain goes from the Euclidean Cluster Settings to the Object
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FIGURE 13
Extract from the lidar pipeline in the autoware reference system with

the obtained worst case execution times C and the periods T
for timers.

Collision Estimator via subscription fusion on the Euclidean Cluster
Detector. Hence, following the methodology from Start A, the
following results in Table 2 are obtained for the E2E latency for the
individual chains.

5 Evaluation and discussion

In this section, we first compare the proposed methodology
and implemented toolchain with a manual application of formal
verification. Next, we discuss the threats to validity before answering
the research questions.

5.1 Comparison of manual and automated
verification

After implementation and application of the toolchain, in
this section, we compare the verification steps following the
methodology to a manual approach to provide more evidence
towards automation in RQ1 and modularization for RQ2.

5.1.1 Verification of legacy systems

The following steps are needed to perform formal verification of
legacy systems using a manual approach:
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. System Implementation

. System Component Determination

. Real-Time Parameter Determination
. Formal model System composition

G s W N =

. Formal Verification

The following steps are needed to perform formal verification of
legacy systems using the automated approach:

. System Implementation

. Systems Execution and Tracing
. Model Parsing

. Model Transformation

. Verification Code Generation

AN U1 A W N

. Formal Verification

At first glance, the automated verification approach contains
more steps. Nevertheless, the given steps can be performed using
pre-defined transformations. In the manual approach, analysis and
extraction of system components and runtime parameters have to be
conducted by hand, which is error-prone and requires application
and domain knowledge. Furthermore, additional domain expert
knowledge in formal verification is needed to apply formal modeling
and verification.

5.1.2 Verification of conceptual systems
The following steps are needed to perform formal verification of
conceptual systems using a manual approach:

1. Formal Model System Definition
2. Real-Time Parameter Determination
3. Formal Verification

The following steps are needed to perform formal verification of
conceptual systems using the automated approach:

1. Architectural Modeling

2. Real-Time Parameter Determination
3. Generation of Formal Models

4. Formal Verification

In a manual approach to verifying conceptual systems, the
practitioner directly works in the formal modeling environment.
This reduces the complexity of the toolchain. However, domain
knowledge is required to create formal models and formal
verification. In the automated approach, a practitioner models the
system in a modeling environment before automatically generating
the formal models using pre-defined transformations.

5.2 Limitations and threats to validity

While the proposed methodology has strong potential for
generalization due to its use of MDE techniques, the need
for customization and the reliance on specific tools during the
implementation present challenges.

First of all, there might be scenarios where transformations
from ROS two execution traces to formal models (via EMF
metamodels) may not fully capture all relevant system behaviors
and parameters. Additionally, ROS2_tracing may not capture all
necessary parameters (e.g., service/client interactions), which could
lead to incomplete or incorrect models.
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& Frontiers_Bench X

) Resource Set

¥ <4 System
¥ 4 Executor E1
4 Callback Sensor 1
< Callback Filter 1
4 Callback Sensor 2

= B [ Properties X

Property

External Receiver
External Sender
Internal Receiver k=

Internal Sender

Value

4 Callback Filter 3
4 Callback Filter 1

4 Callback Sub Fusion 2

// Csum: 18@ms, Cch1: 11@ms, Cch2 166ms, Ts 360ms
// Ct1: 16ms Tt1: 360ms

// Ct2: 20ms Ct2: 360ms

// CHAIN 1:

/

ST = Sensor (180, 10, 360, 0);

F1 = Filter(186, @, 1);

Fus1l = Filter(180, 1, 2);

F3 = Filter(180, 2, 3);

A = SubAct(180, 3);

system S1, F1, Fus1, F3, A;

*/

// CHAIN 2:

/

S2 = Sensor (180, 20, 360, 0);

F2 = Filter(180, 0, 1);

Fus2Cb = Filter (180, 1, 2);

S1 = SubFus(180, 10, 360, 2, 3);
F1 = Filter(186, 3, 4);

Fus1l = Filter(180, 4, 5);

F3 = Filter(180, 5, 6);

A = SubAct (180, 6);
system S2, F2, S1,
*/

Fus2Cb, F1, Fus1, F3, A;

Listing 2. Created UPPAAL model system declaration.

Next, the automated classification of callbacks and system
components (e.g., as filters, sensors, actuators) based on trace data
may lead to misclassifications, especially in complex chains.
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FIGURE 14
E2E Model instance in Eclipse.
. In the implementation of the methodology, there is
// Under Utilized System: Sub Fus, Sub Act .
a toolchain dependency, where the correctness of the

verification heavily depends on the accurate functioning of
multiple tools (ROS2_tracing, Eclipse EME QVT-O, Acceleo,
UPPAAL). Bugs or misconfigurations in any of these could
compromise results.

In this paper, a proof of concept is demonstrated on a conceptual
system and a specific benchmark (Autoware). The scaling of the
approach to large, heterogeneous, or multi-executor ROS two
systems has to be evaluated further. As an example, the evaluation
in this paper assumes all callbacks are in the same executor, which
may not reflect real-world deployments with multiple executors or
distributed systems.

Additionally, the toolchain and formal models rely on specific
versions or configurations of ROS two and the tracing tools used,
limiting applicability across different setups. Nevertheless, different
templates of formal models can be introduced to model different
versions of ROS two systems that can be matched through manually
set parameters by the developer.

While the toolchain is shown to work in a controlled setting,
there is a need for extended statistical or empirical analysis
to support claims of improved efficiency, accuracy, or usability.
Furthermore, user studies or usability evaluations are needed to
evaluate the simplifications for robotics developers when applying
formal methods. Furthermore, more evaluation is needed on how
verification results are interpreted or used to guide system design
decisions.

5.3 Answers to the research questions

After utilizing the methodology to implement and apply formal
verification, in this section, we answer the posed research goals.
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TABLE 1 Experiment Results with the formal models (all results are in ms).

10.3389/frobt.2025.1592523

Csum (Ofel ] ‘ Ts Teper et al. Formal models

Chain 1 180 110 360 — — 1,430 1,430
sub fus + sub act

Chain 2 180 160 360 — — 2,490 2,490

Chain 1 210 140 420 — 840 2,900 2,900
sub fus + tim act

Chain 2 210 190 420 — 840 4,140 4,140

Chain 1 210 140 420 840 — 2,900 2,900
tim fus + sub act

Chain 2 210 160 420 840 — 2,890 2,890

Chain 1 240 170 480 960 960 4,730 4,730
tim fus + tim act

Chain 2 240 190 480 960 960 4,720 4,720

TABLE 2 Obtained Upper bounds for the End-To-End Latency.

Chain E2E Latency

C1 134.333 m
C2 291.553 m
C3 398.511 m
C4 398.511 m

RQ1: What approach can be employed to automate the application
of formal verification of ROS 2-based applications?

Answering this question, we first propose a methodology that
incorporates four layers. The first layer is the implementation of ROS
two application. In case an implementation is given, the system can
be run, and runtime information can be recorded during execution
in an execution trace. Such a generated trace can be utilized to parse
the given system and run-time parameters into a model in a chosen
modeling environment. In the modeling environment, a second
metamodel allows the focus on needed parameters and components
for formal verification. To allow automation in the modeling process,
model-to-model transformations can be utilized to automatically
create a model instance of the second model based on an instance
of the first model. The second model can then be automatically
transformed to the formal model representation utilizing formal
model templates and a model-to-text transformation.

Generally, while the traces could be parsed into the second
model representation or even the formal model directly, the
introduction of the second layer of modeling allows extendability
and decouples the process of tracing from the modeling and
verification.

Following the methodology, verification can not only be
automated with a given ROS two system implementation, but the
model-to-text transformation can be used to generate a formal
model from the EMF model automatically. This allows users to start
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with conceptual systems design in the modeling environment before
implementing a system.

To demonstrate and assess the automation, we implement a
toolchain with the model parsing, the model-to-model, and a
model-to-text transformation for verification of callback latency.

We use the tool ROS2_tracing to generate system traces, which
are converted into a ROS two data model using trace_analysis. We
extend trace_analysis by a function that allows automated parsing of
the data model to an EMF instance of the same data model in Eclipse.

We implement model-to-model transformation utilizing QVT-
O and test the generation of the second EMF model representation.
Next, we implement and test the model-to-text transformation using
Acceleo, where we generate runnable UPPAAL code that is used for
formal verification.

Hence, we show that utilizing model-driven engineering
techniques with model parsing, model-to-model, and model-to-
text transformation can automate the process of determining the
parameters and, secondly, the instantiation of formal models.

Furthermore, in the same toolchain, we implement models to
verify end-to-end latency in ROS two processing chains. In this
implementation, the model parsing and the EMF data model can
be reused. We implement the second model and the UPPAAL
templates. The model-to-model and model-to-text transformations
have not been implemented and have only been conducted
by hand. Nevertheless, we demonstrate the automation of such
transformations on the first verification example. Hence, in future
work, the transformations can be automated as well.

RQ2: How can the formal verification process be modularized to
enable domain experts to concentrate on their specific areas of
expertise without requiring deep formal methods knowledge?

In this methodology, we apply model-driven engineering to
decouple the process of formal modeling from systems tracing and
automate significant steps throughout the process. We implement
two different metamodels for each formal verification approach.
The first metamodel allows the import of parameters obtained by
tracing and does not need to be adapted until the tracing approach
changes. The second metamodel focuses on the parameters needed
in a specific verification approach. Hence, such a metamodel is
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added or changed when formal models are adapted or added. Two
consecutive models are connected by the fact that the first model
is an extension of the second model. The models are substitutable
by any other model that obeys the extension mechanism. However,
the transformation needs to be adapted, provided that the
attributes of the substituted class change. This acts as an informal
proof of modularization. In the implementation of the toolchain,
we demonstrate such ability of replacement by implementing
verification of ROS two systems using two different UPPAAL
models. Each of the UPPAAL models has its own implementation
of MM2, but stems from the same implementation of MM1.

Following the proposed methodology, we identify three main
expert domains that are needed in the creation and maintenance of
a toolchain.

1. Robotics Expert: Following the given methodology, the
robotics expert is responsible for the tracing of systems and
runtime parameters, such as the application of the final
toolchain.

The

engineering/modeling expert implements the model-to-model

Software  Engineering/Modeling Expert: software
transformations, such as the definition of the metamodels.
The implementation of the parsing and the model-to-
text transformations needs to be in collaboration with the
robotics expert (parsing) and the formal methods expert
(model-to-text).

Formal Methods Expert: The formal methods expert is
responsible for the creation of the formal model templates that
can be reused for verification. Furthermore, the expert needs
to compose the formal verification queries.

As the transformations between the toolchain components can
be automated, the robotics developer as a practitioner only needs
to learn the execution of such transformations to apply a toolchain
following the proposed methodology.

RQ3: How can a methodology incorporate verification using
different formal models?

With the last research question, we focus on the modularity
and extensibility of the toolchain. The proposed methodology
incorporates multiple steps in a modeling environment. Firstly,
this allows the decoupling of domain expertise needed to design
such a component, but it also allows for the extendability of the
toolchain. The model parsing and implementation of the ROS two
data model, such as the EMF data model, is reusable for different
verification approaches. As long as the parameters are contained
in the trace, multiple formal model representations can be built
upon such parameters. To introduce a different formal model
representation to the toolchain, we add a different EMF model in
the second part of the toolchain. This EMF model represents the
parameters and components needed for the second formal model
representation. To automate the verification process, new model-
to-model and model-to-text transformations have to be created,
incorporating the new EMF model representation and the UPPAAL
templates. When applying the methodology to multiple formal
model representations in the same toolchain, such a toolchain
consists of one tracing and parsing and data model implementation
that can be reused for all formal model representations, as long
as all needed parameters are contained in the trace. Next, there

Frontiers in Robotics and Al

20

10.3389/frobt.2025.1592523

will be their formal models and individual EMF metamodels for
each of the individual approaches with their specific model-to-
model and model-to-text transformations. Hence, when extending
the toolchain with a new formal model, the methodology can be
applied to extend an existing toolchain with the needed components,
while reusing the model parsing and the EMF data model.

6 Related work

The analysis of ROS two execution behavior has been a subject
of interest in recent research. Casini et al. (2019) and Blaf3 et al.
(2021) conduct response time analysis, which is crucial for the
formal verification of ROS two timing behavior. Their work has laid
the foundation for creating formal model templates and modeling
timing requirements.

Halder et al. (2017) propose formal verification of ROS two
communication between nodes using UPPAAL. Their approach
models low-level parameters such as queue sizes and timeouts
to verify queue overflow. While their focus is on modeling and
verification, our toolchain emphasizes the automation of verification
processes.

Carvalho et al. (2020) employ an Alloy extension called
Electrum to implement a model-checking technique that
automatically creates models from configurations extracted in
continuous integration and specifications. Their approach targets
high-level architectural verification, whereas our toolchain aims to
verify low-level behavior such as system execution.

Webster et al. (2016) and Liu et al. (2018) work on formal
verification of requirements for robotic systems and ROS two
message passing in DDS using different model checkers. Although
their approaches are manual and use different model checkers
than UPPAAL, our focus is on automating the verification process.
Extending our toolchain to support other model checkers could be
a valuable future direction.

Kim and Kim (2022) introduce the Robo Fuzz Framework,
which is used for fuzz testing robotic systems to find bugs in
system implementations. Their framework focuses on data type
mutation and violation of physical laws and hardware specifications.
In contrast, our framework focuses on timing and execution
verification of ROS two applications. Additionally, fuzz testing is not
exhaustive.

Anand and Knepper (2015) present ROSCoq, a “correct-by-
construction” approach for developing certified ROS two systems.
While their approach is not applicable to legacy systems, it
complements the verification conducted in our work.

Beckmann and Thoss (2010) explore model-based development
of DDS-based systems such as ROS 2. The work highlights how the
DDS architecture supports model-based development, whereas our
focus is on verification.

Parra et al. (2021) develop Ecore models to specify QoS
requirements for ROS 2. This work is complementary to ours, as we
focus on architectural components and verification related to task
scheduling.

Dal Zilio et al. (2023) propose a toolchain for runtime and
offline verification of general robotic systems beyond ROS. While
the authors focus on general robotic systems and application code
with internal logic, our toolchain targets timing issues induced by
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using ROS 2 as middleware. Additionally, our toolchain leverages
model-driven engineering in the Eclipse environment to support
iterative verification and model-based development.

Teper et al. (2022) provide an end-to-end timing analysis for
ROS two systems, focusing on cause-effect chains and their timing
behavior. The work is significant for understanding the maximum
reaction time and maximum data age in ROS two systems, which
are critical for ensuring real-time performance.

Bédard et al. (2023) utilize ROS2_tracing to allow message flow
analysis of ROS two systems. The work can be used as a ground for
allowing additional analysis in the tracing layer of our toolchain, and
is used as a foundation for the structural analysis of ROS two systems
in our evaluation.

In our previous work (Dust et al., 2023a), we develop reusable
UPPAAL templates to verify timing behavior and buffer overflow
in ROS two systems. Building on this foundation, our current
work aims to further simplify the formal verification process
by automating parameter determination and model initialization,
making formal verification more accessible and less error-prone for
robotics developers.

7 Conclusion and future work

In this article, we introduce a novel approach to automating
model-based verification for ROS 2-based applications using model-
driven engineering techniques. This work extends our paper
(Dust et al., 2024) and builds on our previous work (Dust et al.,
2023b), which identified potential timing issues, and utilizing the
formal model templates proposed in (Dust et al., 2023a). In this
article, we develop a methodology that leverages ROS two system
traces to automate the verification process. Our toolchain uses
ROS two execution traces to initialize pre-defined formal model
templates through models and model transformations.

The toolchain supports the verification of both implemented
and conceptual systems by providing four different model
representations, enhancing traceability throughout the process.
Additionally, it allows for parameter refinement and iterative
verification of system parameters without repeated source code
adaptation.

A key feature of our approach is its flexibility in supporting
different types of formal modeling analyses. We demonstrated
this by comparing two formal modeling approaches: one at the
individual node level and one at the system level (end-to-end
analysis). The individual node level analysis focuses on verifying
the timing behavior of specific nodes, while the end-to-end analysis
examines the timing behavior of cause-effect chains across the entire
system. This comparison showcases the toolchain’s versatility in
accommodating various verification needs.

Our evaluation demonstrates the feasibility of using ROS2_
tracing to capture the necessary trace points for verification.
However, customization may be required to include all needed
parameters. Further evaluation is needed to determine the extent to
which execution times from a single system execution are sufficient
for verification. Nonetheless, our work shows the potential for
automatic parameter determination using system traces and model-
based development for formal verification.
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The toolchain also opens up possibilities for automated model-
based generation of ROS two application code and modeling of
requirements, which are areas for future research. While these
features would enhance automation, they are not essential to
demonstrate the feasibility and novelty of our methodology.

Despite being demonstrated with specific tools (ROS2_tracing,
Eclipse EME, Acceleo, QVT-O, and UPPAAL), our approach can
be implemented using different tools, such as other tracing tools,
model editors, and verification tools. This flexibility makes our
methodology adaptable to various development environments.
As an example, when choosing a different formal modeling
environment, only an additional metamodel with the corresponding
model-to-model and model-to-text transformations is needed. In
contrast, the tracing and parsing components do not need to
be changed.

Given the preliminary state of the toolchain implementation,
this paper serves as a first proposal and proof of feasibility, making
it suitable for researchers and tool developers. More evaluation
and implementation are needed to make the toolchain usable on
real robotics systems. To enable more extensive verification, the
proposed metamodels and transformations need to be refined and
extended. Additional formal model templates should be developed
and integrated into the toolchain. Future work will also involve
modeling requirements and verification properties, which were not
included in this implementation.

In conclusion, our work demonstrates the potential of using
system traces and model-driven engineering to automate the formal
verification of ROS two systems. By refining the data model and
output of ROS2_tracing, and providing formal proof of correctness
for the toolchain implementation, we can further enhance
the robustness and usability of our approach. Future research
will focus on automating verification and simulation feedback,
modeling requirements, and generating ROS two application code.
Additionally, investigating the ease of use of the proposed toolchain
will be essential to ensure its practical applicability in real-world
scenarios.
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