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Error recovery in wearable 
robotic Co-Grasping: the role of 
human-led correction

Erin Y. Chang† , Wilson O. Torres†  and Hannah S. Stuart*

Embodied Dexterity Group, Department Mechanical Engineering, University of California, Berkeley, 
CA, United States

Introduction: Trust in automated systems influences the use and disuse of new 
technologies. Although recent advances in robotics have improved wearable 
devices designed to assist in grasping, perfectly reliable systems have yet to be 
achieved. In this work, we introduce a new strategy for wearable devices called 
Co-Grasping, where both body power and robotics can contribute to grasping, 
but the user controls the allocation of the human and robot roles.
Methods: Our implementation of a Co-Grasping device successfully allows 
the human operator to intervene using body power during simulated robot 
errors, in order to aid in error recovery and continue performing grasping tasks 
without drops.
Results: Here, we also show that the presence of recoverable errors lowers trust 
perception and increases physical engagement behaviors. However, when the 
robot becomes reliable once again, trust rebounds and most behavioral metrics 
return to baseline as well.
Discussion: These results indicate that trust in faulty automation can be repaired 
and that enabling users to assume control over system actuation in response to 
such faults can prevent errors from negatively affecting overall device function. 
Facilitating human-led dynamic changes in human and robot role allocation 
through this Co-Grasping device lays a promising foundation for unique human-
robot interactions that promote high performance and where trust can recover 
quickly, despite existing challenges in developing perfect automated systems.

KEYWORDS

wearable robotics, error recovery, co-grasp, cooperation, collaboration, body power, 
robotic, trust in human-robot interaction 

 1 Introduction

The development of body-worn robots has become increasingly popular as they aim to 
augment the abilities of their human wearers. Wearable devices elicit a sense of embodiment 
in their users, influencing acceptance and use, in addition to their functional benefits 
(Pazzaglia and Molinari, 2016; Xia et al., 2024). These have been used to assist users 
who want additional functional assistance with manual activities, often as a result of 
injury, disability, or other impairments. Robotic devices like prostheses, exoskeletons, and 
supernumerary limbs have been designed to meet these needs and can provide many benefits 
like improved grasp force, stability, or dexterity (Huamanchahua et al., 2021; Noronha and 
Accoto, 2021; Prattichizzo et al., 2021; Lee et al., 2025; Chang et al., 2024a).

While new wearable robotic devices have reached promising accuracy levels above 
90% (Hennig et al., 2020; Fougner et al., 2011; Ryser et al., 2017; Li et al., 2019), even 
1% grasp inaccuracy can be frustrating and dangerous if dropping an item has associated
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hazards, like burns from a spilled cup of hot coffee. Small 
inaccuracies can compound significantly over the course of a 
day, where an estimated 4,000–7,000 grasps may be performed 
(Saudabayev et al., 2018; Bullock et al., 2013; Vergara et al., 
2014). These errors negatively impact users’ trust in robotic 
systems (Salem et al., 2015; Desai et al., 2012; Centeio Jorge et al., 
2023; Hancock et al., 2011), which is a critical factor in the 
adoption and continued use of robotic technology (Parasuraman 
and Riley, 1997; Lee and See, 2004).

In many of these innovative robotic grasping technologies, 
the human user primarily takes on the role of intent generation, 
signaling to the automated system what they want to achieve, 
and then waiting for the robot to process this signal and 
execute the task. This sequential pathway limits the user’s ongoing 
involvement, leaving the system fully reliant on the robot’s 
performance. As a result, any errors made by the robot cannot 
inherently be recovered, unless the robot is programmed to do 
so. Robotic errors can thus be frustrating and confusing, so 
wearable robotic devices that additionally leverage the perceptions 
and capabilities of the human wearer may be better received by 
their intended users. Recent work utilizing EEG signals to identify 
and correct automation errors have shown promise in assisting 
users with robotic error recovery, however, error classification rates 
from these signals remain on the order of 10%–20% (Salazar-
Gomez et al., 2017; Ferracuti et al., 2022).

A special class of body-worn robotic grasping devices has 
recently emerged that places body-powered actuation in parallel 
with robotic actuation, allowing the person and robot to directly 
alter grasp state in tandem. Usually worn on the hand and wrist, 
each agent controls separate transmission mechanisms that converge 
to create the grasp. Exoskeletons have previously used kinematic 
inversion to map finger and thumb motion onto both the wrist and 
motor (McPherson et al., 2020; Chang et al., 2022). These devices 
are unique because they allow task completion even with robot-
related issues, like power failures. A tendon-driven supernumerary 
gripper leverages user wrist strength in extension to apply equal and 
opposite forces against robotic fingers (Lee et al., 2021; 2025). This 
device allows users to release grasped objects rapidly without any 
robotic actuation. In the event of robotic errors or lag, users can still 
move their respective component toward the now-stationary robotic 
component, which provides a non-back-drivable resistive force. 
Thus, it follows that enabling the human operator to productively 
intervene in the event of an error holds the potential to bridge the gap 
between imperfect automation and functional resilience of wearable 
robotic devices.

In the present study, we focus on wrist-driven robotic 
exoskeletons. By placing body power in parallel with robotic 
actuation, these wearables allow for dynamic role changes 
between human and robot during grasping activities. Prior studies 
programmed robotic components to collaborate with the human 
user by following the user’s lead and mirroring their movements at 
all times, like constantly mapping motor motion to wrist motion 
(Chang et al., 2024a; b). Unlike in collaboration, where the human 
and robot perform the same roles, agents within these devices 
can alternatively cooperate. In cooperation, the human and robot 
perform different or unequal roles (Jarrassé et al., 2012), for 

example, if the robot moved the fingers while the wrist remained 
stationary. Depending on the human-robot interaction designed, 
the two agents may contribute simultaneously, sequentially, or 
even independently at times. In this work, we seek to observe 
how the person responds to robotic actuation, whether they 
choose to collaborate or cooperate. Dynamic changes in role 
allocation have been studied in external robotic systems (Losey et al., 
2018), but not in wrist- and motor-actuated exoskeleton grasping. 
Here we present what we call a Co-Grasping device, which 
allows for human-moderated changes between collaboration and
cooperation roles.

To the authors’ knowledge, the effect of robot errors on humans 
has not been studied in wearable robotic Co-Grasp devices where 
body-powered error recovery is possible. Therefore, we conducted 
an experiment with a Co-Grasp device programmed to purposefully 
induce recoverable robotic errors during grasping to: 

1. Characterize user behavior and perceptions during robot error 
situations, and

2. Determine how errors alter trust in the system and 
user behavior.

Understanding how trust and human behavior change when 
users have the ability to lead the recovery of robot errors can 
help improve the way we design effective robots and interactions. 
To understand these responses, we first present the experimental 
Co-Grasp robotic device and details of the experimental setup in 
Section 2. In Section 3, we present the findings of our experiment 
and discuss the results, limitations, and future work in Sections 4, 5. 

2 Materials and methods

Wizard-of-Oz methodology is a popular choice in human-
robot interaction (HRI) experiments, as it allows complex robotic 
interactions to be implemented rapidly and with a seamless 
user experience (Chapa Sirithunge et al., 2018; Rietz et al., 2021; 
Helgert et al., 2024). The researcher, or “wizard,” remotely controls 
the robot while monitoring participant interactions with the 
system; the participant is unaware that a human is controlling 
the system (Helgert et al., 2024). We implement Wizard-of-
Oz control of a custom wearable gripper’s opening and closing 
in response to verbal input commands from the participant. 
Participants in this study were told that the robotic system was voice-
activated and performed 81 grasps using verbal commands. Between 
the 27th and 54th grasping activities, we simulated random errors 
to evaluate user behavior and response before, after, and during 
robot errors.

Robot errors in wearable grasping devices can take on 
many forms and typically result from classification errors 
(Amsüss et al., 2013; Li et al., 2010). These errors can appear as 
incorrectly predicted actions, such as accidental opening or closing, 
incomplete action, excessive action, or no action at all. In this 
work, a single error type was evaluated: an incomplete robotic grasp 
action. We selected this error type to facilitate human Co-Grasping 
responses in this initial study, though investigating other error types 
in the future is recommended.
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FIGURE 1
Robotic device used in study. Both robot and operator can open and close the gripper end effector through motor and wrist movement, respectively. 
User and robot forces are obtained via the load cell in the handle. Wrist movement is measured by a potentiometer located on the interior side of the 
device base plate. EMG data is collected from the dorsal side of the forearm, with a sensor placed approximately on the primary wrist extensors.

2.1 Wearable robotic device

The wearable robotic device design shown in Figure 1 is based 
on the motorized wrist-driven orthoses (MWDO) detailed by 
McPherson et al. (2020) and Chang et al. (2022). We retain the 
four-bar linkage mechanism that actuates the MWDO, where robot 
and human motion contribute to gripper opening and closing 
(Figure 2A). The planar kinematics of this linkage is described in 
Chang et al. (2024a). In prior work, device software mapped motor 
motion directly to wrist movement, constraining the human and 
robot agents to move simultaneously and in constant collaboration. 
However, the software implemented on the Co-Grasping device 
in this work does not map either agent’s movement to the 
other, instead facilitating a range of interaction types. While 
collaboration between the human and robot is still possible in 
this device format, it is no longer required. In Figures 2B–D, 
we show how motion contributions from the human (Δα) and 
robot (Δγ) form the interior angle, β, where β = βt0

− (Δα+Δγ); 
Δα = α− αt0

, Δγ = γ− γt0
, and t0 is the time at the start of the 

grasping phase. The grasping phase begins when the open hand is 
placed around an object and the first grasping action is initiated. 
Decreasing β drives the gripper closed, while increasing β drives 
the gripper open. When the gripper closes around an object, 
the human and robot must apply opposing static reaction forces 
to maintain the grip, regardless of the behaviors (Δα and Δγ) 
used to secure it. Note that αt0

, γt0
, and βt0

 can vary between 
grasps, depending on how each grasp is initiated. In this study, 
we initiate grasps such that βt0 always begins at the same value, as 
detailed in Section 2.1.1.

Participants have the physical ability to move their wrist as they 
wish at any time. This ability determines whether they collaborate 
or cooperate once the robot starts moving. Because the human and 
robot can move at different times after grasping is initiated, the 
moments at which the human and robot agents initiate and complete 
their own grasping actions, i.e., start and stop moving, are defined 
as tαi

, tαf
, tγi

, and tγf
, respectively. In the present work, user voice 

commands initiate the grasp such that the robot moves to close the 
gripper immediately (see Section 2.1.1), so we assume tγi

= t0. We 
additionally define the speeds, including magnitude and direction, 
at which each agent moves at any given moment as α̇ and γ̇, and the 
resulting speed β̇.

Using these terms, we define the possible grasping behaviors. We 
consider grasping as an agonistic task, where both agents contribute 
only to the improvement of the shared activity (Jarrassé et al., 2012), 
such that grasping occurs when β̇ < 0 and is constrained to α̇, γ̇ ≥ 0. 
The human and robot exhibit collaborative grasping whenever they 
move concurrently to reduce β, where α̇ > 0 and γ̇ > 0. The matching 
of these movements by both agents in collaboration is shown in 
Figure 2D. Alternatively, the grasping behavior is cooperative if 
either α̇ = 0 or γ̇ = 0. Figure 2B shows the participant cooperating 
with the robot by letting the robot move entirely while the wrist 
remains stationary (α̇ = 0) and Figure 2C shows the opposite. In 
a single grasp, both cooperation and collaboration can occur at 
different times. For example, if the robot begins to move before the 
human (tγi

< tαi
), the grasp starts in cooperation. Then, if the robot’s 

motion finishes after the human’s motion (tαi
< tγf
), a collaborative 

grasp phase can occur. The grasp may later return to cooperation 
if the agents do not complete their movements at the same time 
(tαf
≠ tγf
).

Measuring how a person chooses to interact with the system 
when both collaboration and cooperation are possible, however, has 
yet to be quantified. Sensors integrated into the current test setup 
allow for this observation. Within the Co-Grasping device, a soft 
rotary potentiometer (Spectra Symbol, Salt Lake City, Utah, USA) 
measures the human’s wrist position (α) and an encoder measures 
the robot’s motor position (γ). These sensors quantify the physical 
participation of each agent through their relative movements and 
effect on β. We also uniquely augment the original design of 
the MWDO to additionally measure forces exerted by and on 
the user. Unlike the original MWDO designs, which actuate the 
user’s own fingers, the linkage structure in the Co-Grasp device 
actuates a two-pronged artificial gripper. The user grasps a handle 
attached perpendicularly to the base plate with a 5 kg load cell 
(SparkFun, Niwot, Colorado, USA) to measure the amount of force 
exerted between the operator and the device (Figure 1). The user 
feels the reaction forces needed to maintain a successful grasp 
through this handle, providing inherent feedback on the state of the 
system that is typically not provided by motorized components of 
other robotic grasping technologies. When forces increase during 
grasping, relative motion of the human or motor indicates which 
agent leads force application. Because wrist muscular exertion is 
necessary to maintain a grasp, we estimate resulting muscle activity 
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FIGURE 2
(A) Device in the open and closed configuration. β is set by both wrist (α) and motor (γ) position and the gripper can be closed or opened with the 
movement of one or both. Transition between these two modalities during grasping can occur via cooperation or collaboration. Examples of 
cooperation behaviors are depicted where (B) the human moves the wrist, but the robot does not move the motor, and (C) the robot moves the motor, 
but the human does not move the wrist. In collaboration, (D) both the human moves the wrist and the robot moves the motor. Dotted lines indicate 
elements controlled by the human and solid lines indicate elements controlled by the robot.

using a Myoware v1.0 electromyography (EMG) sensor (Advancer 
Technologies, Raleigh, North Carolina, USA) on the wrist extensors. 
These EMG measurements add a physiological perspective to the 
measured behavioral changes. 

2.1.1 Control and actuation
The implemented finite state machine (FSM), 

pictured in Figure 3, represents the software used to control the 
robotic agent throughout the study. Participants primarily interacted 
with the system via voice commands, using the key words “open” 
and “close” to indicate to the robot which actions to perform. 
Unbeknownst to the participants, a researcher manually controlled 
these “automated” aspects in response to voice commands using 
buttons to trigger appropriate events. We deliberately implemented 
a Wizard-of-Oz setup to ensure complete researcher control over the 
robotic elements of the system and prevent unintended robotic error 
behaviors that might arise from computerized voice recognition.

To initialize each trial, participants were instructed to hold their 
wrist steady and in a neutral posture for the duration of a robot 
calibration phase and say “calibrate” when they were ready for this 
phase to begin. In response to this voice command, the researcher 
used buttons to close the gripper fingers, then transitioned the device 

control to the Maintain Aperture state in Figure 3A. In this state, the 
user could position their wrist as desired, while the robot tracked 
their wrist position using the potentiometer to maintain the gripper’s 
current aperture. This relationship was defined as: Δγ = −Δα. The 
motor was controlled to achieve Δγ+Δα = 0 using a cascaded hand-
tuned controller consisting of a proportional position outer loop and 
a proportional-integral velocity inner loop. This Maintain Aperture
state was adapted from Chang et al. (2024b), allowing the user to 
position their upper limb comfortably prior to grasp or release by 
freely moving their wrist independently of gripper orientation.

Prior to grasping, the participant said “open” and the researcher 
pressed the open button to transition the system to the Automated 
Open state, where the motor moved at a constant speed (γ̇ = − c)
using a proportional feedback controller, such that Δγ became 
increasingly negative, increasing β. Once β reached βopengoal, 
measured to be 95°, the system automatically returned to the 
Maintain Aperture state, once again allowing free movement of the 
wrist so the user could choose a comfortable grasping posture. The 
user then positioned the open gripper around the target object 
and said “close” to initiate the grasp. At grasp initiation, β = βt0 =
βopengoal. The researcher then pressed the close button once to 
transition the device into the Automated Close state, where the robot 
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FIGURE 3
Device state machine (A) overview and (B) detailed grasping logic. When the switch is down in (B), the probability of Grasp Error is 44% and Reliable 
Grasp is 56%. Following Reliable Grasp, β = βclosegoal is observed by the researcher. Legend: Rectangles outline device states, while transitioning arrows 
are labeled with events, conditions, and responses needed to move between control states. Bold text in quotes are user commands and bold text 
without quotes are researcher actions or observations. Bold text in parentheses denotes conditions that must be met and italic text denote robot 
responses. A slash (/) separates the event or condition from the subsequent response.

began moving the motor at a constant speed (γ̇ = c), such that Δγ
became increasingly positive, decreasing β.

The direction of a control switch determined the subsequent 
automated close behavior shown in Figure 3B. When the control 
switch was up, the system facilitated a Reliable Grasp, where 
the device simulated “ideal” or successful grasping by halting 

motor movement only when the researcher visually determined β =
βclosegoal, which was approximately 65° and when the object was 
secured within the gripper. Upon this observation, the researcher 
pressed the same close button again, thus transitioning to the 
Transfer state. Alternatively, when the control switch was down, the 
system pseudo-randomly facilitated a Grasp Error, 44% of the time. 
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In these instances, γclosegoal was pseudorandomly defined as a motor 
contribution angle varying between 6–18°, or 20%–60% of the γ
needed to securely grasp the test object, resulting in insufficient 
gripper closure (β > βclosegoal). Despite this unsuccessful grasp, the 
system automatically entered the Transfer state after prematurely 
stopping robot motion. Completing grasps successfully after a Grasp 
Error required the participant to move their wrist (+Δα) to actuate 
the device and finish closing the gripper (β = βclosegoal). This error 
type was selected to highlight a unique attribute of this class of 
wearable robotic devices, namely, the potential for error recovery 
by the human operator. In the Transfer state, the robot no longer 
moved the motor (Δγ = 0) until the user said “open” again to initiate 
the open button press by the researcher, which would command the 
motor to move the gripper once again in the Automated Open state. 

2.2 Experimental protocol

Participants grasped and released a set of test objects between 
two sets of elevated platforms. Nine right-handed individuals were 
recruited from the University of California, Berkeley (UCB), with 
a mean age of 22.56 ± 3 years. Six participants identified as 
female and three as male. Three participants ethnically identified as 
Hispanic/Latinx. Four participants racially identified as Asian, four 
as White, one did not provide their race. All work was performed 
under the UCB Institutional Review Board protocol #2020-02-
12983. 

2.2.1 Setup
Figure 4 depicts the experimental workspace. Participants stood 

on one side of the table while wearing the device, while a 
researcher stood on the adjacent side by the device control apparatus 
(Figure 4A). The table height was adjusted so that it always sat 
10 cm below the participant’s elbow joint. Two sets of platforms 
were arranged in front of the participant. Subjects were tasked 
with moving foam blocks in ascending number order from each 
starting platform to the corresponding target platform with the same 
number. Platform surfaces measured 2.5 cm × 2.5 cm with heights 
of 2.5, 5, or 7.6 cm, and each group of starting and target platforms 
was arranged in front of the participant so that platforms were placed 
in ascending height order from left to right (Figure 4B). Each set of 
platforms was labeled 1–9. Foam blocks of three different heights 
(3, 5, and 10 cm) were placed on top of the starting platforms. The 
shortest blocks were placed on top of the shortest starting platforms, 
and the tallest blocks were placed on top of the tallest starting 
platforms. The order of both the platform numbers and heights 
was designed to reduce the risk of knocking nearby blocks during 
grasp and release. However, the close proximity between targets and 
small platform surface areas were selected to encourage grasping 
precision.

To add a sense of urgency, a visible timer was also placed on the 
table and participants were instructed to perform tasks as quickly 
as possible without dropping any blocks. Researchers informed the 
participant that any dropped blocks would incur a time penalty, 
however, this time penalty was not included in analysis. To support 
the illusion of true automation, participants were told that the 
microphone placed on the table in front of them was listening for 
their voice commands. We also placed an LED-based light indicator 

on the table to visually communicate to the user when the robot had 
completed its grasping action. The LED illuminated when the system 
entered the Transfer state. 

2.2.2 Procedure
At the beginning of the experiment, the researcher first 

introduced the robot to the participant by demonstrating the 
robot’s grasping ability, the option to control the gripper with 
wrist movement, and the voice commands needed to operate 
the robotic system. The researcher also demonstrated an error, 
informing the participant that “this device is a prototype and it 
is possible that it may malfunction from time to time.” During 
this demonstration, the researcher maintained a constant wrist 
position (α) until the robot stopped moving, then extended 
their wrist to complete the grasp. Since participants were 
unfamiliar with this device, demonstrating this recovery tactic 
ensured that they knew how to intervene if desired. To measure 
initial trust in the system after these interactions, participants 
completed the 14-item Trust Perception Scale-HRI (TPS), developed 
to subjectively measure trust perception from 0% to 100% 
during HRI studies and across a variety of robotic domains
(Schaefer, 2016).

The device was then fitted onto the participant’s left upper limb 
such that their wrist joint aligned with the device’s wrist joint when 
holding the device handle. The EMG sensor picture in Figure 1 
was applied to the dorsal side of the participant’s forearm, about 
2.5 cm from the elbow and along the muscle belly of the extensor 
carpi radialis. Researchers located this region by palpation while 
the participant extended their wrist. EMG sensor gain was tuned 
such that muscle activation did not saturate the signal. In one 
subject, the EMG sensor failed to properly record data for some 
trials and was thus omitted from their dataset for analysis. For 
this subject, only data from the potentiometer and load cell were 
collected. The potentiometer, load cell, and EMG sensor all recorded 
measurements at 25 Hz.

Device calibration (described in Section 2.1.1) was performed 
prior to the start of every trial. One trial was defined as when the 
participant moved the set of nine foam blocks from the starting 
platforms to the target platforms. The grasp, transfer, and release of 
each foam block made up a subtask, such that nine subtasks made 
up one trial. Each subject performed nine trials, which were divided 
into Pre-error, Error, and Post-error conditions. They performed 
three trials in each condition before proceeding to the next. During 
the Pre-error and Post-error trials, user commands to the robot 
resulted in automated Reliable Grasps. During each Error trial, the 
robot generated automated Grasp Errors during four pseudorandom 
subtasks per trial.

After each trial, participants completed the TPS while 
considering their entire experience with the device since the 
beginning of the study, so we could measure changes in overall 
trust over time. They also completed the NASA Task Load Index 
(NASA-TLX), which measures their perceptions of different 
workload aspects (Hart, 1986); for this survey, they considered only 
their experience during the preceding trial, so we could measure 
changes in task difficulty during different conditions. In total, 
they completed the TPS ten times (once following the researcher 
demonstration and once following each of the nine trials) and the 
NASA-TLX nine times throughout the study (following each trial).
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FIGURE 4
Workspace setup including (A) the relative placements of the participant wearing the device, the researcher operating the robot at the device control 
interface, indicator LED, microphone, and timer, (B) dimensions of the task set up, platforms, and foam blocks.

If a foam block fell during a subtask, participants were instructed 
to leave it behind and proceed to the next subtask. A “drop” 
was defined as any time a foam block fell from the gripper 
and did not land on the target platform, between the subject’s 
“close” and “open” commands. On occasion, foam blocks fell from 
the target platforms due to environmental interferences, like the 
participant bumping onto the block with their forearm/device 
or accidentally moving the table. These were quickly replaced 
by a researcher to prevent time delays and were not recorded
as drops. 

2.3 Data analysis

Wrist angle, force, and EMG sensor data from each subtask 
was parsed into 3 segments: robot grasp, object transfer, and robot 
release. The robot grasp segment began when the robot began closing 
the gripper (start of Automated Close state in Figure 3) and ended 
when the robot stopped closing the gripper (start of Transfer state 
in Figure 3). Object transfer took place immediately after the robot 
finished its closing action, when the human had to lift and transfer 
the object to the next location, lasting the duration of the Transfer
state in Figure 3. Finally, robot release began when the robot began 
opening the gripper and ended when it stopped opening the gripper, 
lasting the duration of the Automated Open state of Figure 3. During 
initial examination of the data, subjects typically remained passive 
during the robot grasp and robot release phases of each subtask. 
Participants only began interacting with the system during the object 
transfer phase, where they took on either a static and resistive role 
to hold the gripper steady while moving the object, or enacted wrist 
motion to recover from the robot’s error before moving the object. 

Therefore, we focused sensor-based analysis efforts on data from the 
object transfer segment.

In post-processing of the sensor data, a moving average filter 
with a window size of 5 data points (0.2 s) was initially applied to 
smooth sensor signals prior to subsequent calculations. Each signal 
was normalized to the lowest value of the current segment, such 
that the resulting processed time-series data represented relative 
changes in signal specific to the current subtask, instead of absolute 
changes in signal. Peaks were defined as the maximum value of 
the normalized signal. Additionally, since the duration of object 
transfer segments varied across subtasks and participants, we scaled 
timestamps to a common range, in order to maintain temporal data 
patterns independent of absolute time. Instead, each timestamp, s, 
was represented as a proportion of the total duration of the object 
transfer phase, stotal, such that normalized time = (s/stotal) ∗ 100.

Objective metrics, taken from data collected during trials, 
included the following: 

1. Total Wrist Motion: the area under the curve (AUC) of the 
normalized potentiometer data, in units of degrees∗ s/stotal.

2. Total Force: the AUC of the normalized load cell data, in units 
of kg∗ s/stotal.

3. Peak Normalized Force: the largest value in normalized load 
cell data, in kg.

4. Relative Time to Peak Normalized Force: the time at which the 
largest value in normalized load cell data occurs, in s/stotal.

5. Initial Force Activity: the slope between normalized load 
cell readings at 10% relative time and 0% relative time, in 
units of kg/(s/stotal). This measures the participants’ immediate 
reactions to experiencing an error, via their applied force to 
the system.
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6. Total Muscle Activity: the AUC of the normalized EMG data, 
in units of mV∗ s/stotal.

7. Peak Normalized Muscle Activity: the largest value in 
normalized EMG data, in mV.

8. Relative Time to Peak Normalized Muscle Activity: the time 
at which the largest value in normalized EMG data occurs, in 
s/stotal.

9. Sustained Peak Normalized Muscle Activity: the AUC of +/− 
5% relative time window around the Peak Normalized Muscle 
Activity, in units of mV∗ s/stotal. This measures whether 
maximum muscle activity is more of an impulse or a sustained 
contraction.

10. Task Completion Time: time it took to complete a single trial 
comprising nine grasping subtasks, in seconds.

11. Object Drops: average number of object drops in a trial.

Subjective metrics taken from surveys in between trials included 
the following: 

12. Trust: participants’ self-reported trust levels out of 100%, as 
measured by the Trust Perception Scale (Schaefer, 2016).

13. Workload: participants’ self-reported perceived workload out 
of 100, as measured by the NASA Task Load Index (Hart, 1986).

For objective metrics 1-9, each subject’s dataset was averaged 
to obtain a single value for each condition during the object 
transfer segment. From the Error condition trials, only data from 
the 12 subtasks where the robot error occurred were pooled 
together, excluding the remaining 15 subtasks during these trials 
where the robot performed normally. Objective metrics 10–11 and 
subjective metrics 12–13 were recorded for each trial and averaged 
by condition for each subject.

An omnibus Friedman’s test was performed to determine if 
the robot behavior condition significantly affected each metric, 
while accounting for individual subject differences. If the result 
of the omnibus test was significant (p < 0.05), a Nemenyi post 
hoc test was performed to determine which conditions differed 
from each other, while accounting for both subject-level differences 
and multiple comparisons. Paired comparisons were considered 
statistically significant when adjusted p-values from Nemenyi’s 
test were < 0.05. For specific comparisons between two trials, p-
values were calculated using the Wilcoxon Signed-Rank test and 
considered statistically significant when p < 0.05. 

3 Results

Prior to donning the device, average participant trust in the 
system was 69.21 +/− 4.26%, however, after donning and using 
the device for the first time, mean trust rose to 85.85 +/− 10.65%, 
with every individual participant’s score increasing. Because use 
increased trust, unfamiliarity with the system may have negatively 
influenced participants’ perception prior to use. 

3.1 Error characterization

Participants successfully recovered from most robot grasp 
errors, shown by one or fewer object drops per trial on average and 

no statistically significant difference in average drops between the 
Pre-error and Error trials (Figure 5A). Despite frequently recovering 
from these errors, errors impacted participants’ perceptions of the 
robot; Error condition trust levels dropped significantly from the 
Pre-error baseline (p = 0.003, Q = 3.30), shown in Figure 5B. 
Perceived workload and trial completion time, however, did not 
significantly change (Figures 5C,D).

Errors significantly affected many user behaviors. During 
the Pre-error condition, we consistently observed robot-led 
cooperation, with no human wrist motion detected at all (Figure 5E), 
meaning α̇ = 0. When errors occurred, total wrist motion 
significantly increased (p = 0.01, Q = 2.83), indicating a change 
to human-led cooperation with the robot (α̇ > 0 and γ̇ = 0). When 
participants did move their wrist, their reaction time occurred 
around 20%–30% of normalized time after robot movement was 
completed. We did not observe any instances of collaboration, where 
human and robot movements overlapped.

Many exertion-related behaviors were also affected by errors. 
Total force, relative time to peak normalized force, peak normalized 
force, and initial force activity all showed increased during error 
trials, shown in Figures 5F–I. Furthermore, the increases in total 
force (p = 0.003, Q = 3.30), relative time to peak normalized 
force (p = 0.0001, Q = 4.01), and initial force activity (p = 0.003, 
Q = 3.30) were statistically significant (Figures 5F,G,I). On the 
other hand, most muscle activity metrics were not significantly 
affected by the errors (Figures 5J–L), with the exception of 
sustained peak normalized muscle activity (p = 0.008, Q = 
3.00), shown in Figure 5M.

During the Pre-error condition, subjects chose to cooperate 
with the robot, holding their wrist stationary and allowing the 
robot to lead by taking complete control of actuating the gripper 
closed. In the Error condition, they also initially opted for robot-
led cooperation, however, during the 44% of instances where the 
robot failed to accomplish the task alone, they utilized body power 
to reverse the roles and lead the remainder of the gripper actuation. 
This human-led motion against a stationary robot agent applying 
passive resistive force allowed the human to successfully recover the 
task from robot error. 

3.2 Post-error effects

Following errors, in the final Post-error condition, subjects 
reverted to constantly utilizing robot-led cooperation, without 
actively moving their wrists. Participants dropped very few objects 
(Figure 6A), and this number did not vary significantly. When 
robot behavior returned to normal in the Post-error trials, trust 
also returned to the original baseline levels, pictured in Figure 6B. 
No significant difference between trust levels was observed in the 
Pre-error and Post-error conditions.

Most behavior metrics paralleled trust and returned to their 
Pre-error baselines, shown by similar value ranges between the 
two conditions and a lack of statistical significance in the 
comparison. Wrist motion returned to the zero motion baseline 
(Figure 6E). Total force, relative time to peak normalized force, 
peak normalized force, and sustained peak normalized muscle 
activity also returned to similar Pre-error baseline measurements
(Figures 6F–H,M).
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FIGURE 5
Comparison of Pre-error and Error conditions for (A) average object drops per trial, (B) trust, (C)) workload, (D) trial completion time, (E) total wrist 
motion, (F) total force, (G) relative time to peak normalized force, (H) peak normalized force, (I) initial force activity, (J) total muscle activity, (K) relative 
time to peak normalized muscle activity, (L) peak normalized muscle activity, and (M) sustained peak normalized muscle activity.

Three metrics did not return to their baseline levels (Figures 
6J–L). As pictured in Figure 6I, initial force activity showed a 
statistically significant increase between the Pre- and Post-error 
conditions (p = 0.048, Q = 2.36). Additionally, users reported 
significantly lower workloads (p = 0.006, Q = 3.06) and completed 
trials significantly faster (p = 0.04, Q = 2.47) toward the end of 
the study, compared to the beginning of the study (Figures 6C,D). 
A comparison of the first and last trials alone for these three 
metrics showed the same statistically significant trends. A similar 
comparison of the other behavioral metrics did not show statistically 
significant differences, except for sustained peak normalized muscle 
activity (p = 0.008, z = 2.52). 

4 Discussion

4.1 Error characterization

Changes in wrist motion clearly indicated increased human 
engagement during robot errors. At the beginning of the experiment, 

participants were reminded that they could move their wrist at 
any time to contribute to the grasping action, and we initially 
expected that they might collaborate with the robot by moving 
their wrist at the same time to close the gripper faster. Despite 
the added pressure of timed trials and experiences with robot 
failures, none of the participants engaged their wrist during 
the robot grasp phase, instead, waiting for the robot to fully 
complete its action before choosing whether or not to move the 
wrist. As such, when the robot performed grasps successfully 
on its own, users chose to cooperate by providing stationary 
resistance for the system and did not move their wrists, but a 
short period after the robot errors occurred, they successfully 
compensated for incomplete grasps by taking the cooperative 
lead and moving their wrist to finish closing the gripper. 
Although the exact cause for this behavior cannot be determined 
here, possible influencing factors could include prioritization of 
reduced workloads or hesitation to interact with the system 
during robotic actions, warranting further investigation of these 
collaborative and cooperative human-robot behaviors in the
future.
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FIGURE 6
Comparison of Pre-error and Post-error conditions for (A) average object drops per trial, (B) trust, (C) workload, (D) trial completion time, (E) total wrist 
motion, (F) total force, (G) relative time to peak normalized force, (H) peak normalized force, (I) initial force activity, (J) total muscle activity, (K) relative 
time to peak normalized muscle activity, (L) peak normalized muscle activity, and (M) sustained peak normalized muscle activity.

Participants engaged more with the system, through wrist 
extension, but trusted it less when the robot exhibited errors. 
Reductions in trust observed in this work align with findings 
of other studies (Esterwood and Robert Jr, 2023; Schaefer, 2016; 
Esterwood and Robert, 2021) indicating the negative influence 
of robot errors on trust. Additionally, our results showed that 
trust was reduced even when the user could correct the robot’s 
error and still successfully complete their task goals. Similar 
perceived workloads, trial completion times, and object drops 
further indicated that errors did not significantly affect performance, 
despite the notable changes in trust during this same time 
period. This suggests that the overall performance of the wearable 
system did not correspond to the user’s trust in the system. 
It is therefore important to consider additional human-centric 
variables beyond device performance alone when evaluating new 
wearable technologies to reduce the risk of overlooking critical 
human factors that could impact device adoption and desirability
(Motti and Caine, 2014).

The compensatory wrist movements after the robot had stopped 
moving caused the human operator to exert higher forces onto 
the device to correct for the robot’s mistake. In wearable devices 
where the applied forces from components controlled by the 
human and the robot are directed toward each other, notable 
human-applied force changes are an important consideration in 
the physical design of the system. The device structure must 
be able to withstand potentially increased forces during errors, 
which can influence material and electronic component selection. 
Related to user-applied force, extensor muscle engagement also 
increased slightly during robot error for all participants. However, 
these changes were not found to be statistically significant. Closer 
examination of the EMG signal indicated that muscle activity 
patterns depended more on the subtask (block position) than 
the robot condition. Since the positions of the forearm and 
wrist orient the hand, it is expected that grasping and moving 
objects from different locations would require varied upper limb
orientations.
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4.2 Post-error effects

Despite insignificant changes in task completion (drops, 
workload, time) during the error cases, trust in our Co-Grasping 
device significantly declined when users faced these robot errors. 
Nonetheless, we found that trust was rebuilt to the original 
levels after the recoverable errors had ceased. This trust recovery 
ability supports the continued study of these devices with the 
potential to foster viable human-robot interactions that sustain 
human engagement. Similarly, findings from another study of 
unexpected errors in robotic prosthetic grasping showed that 
trust declined during operation of the system with errors, and 
increased back to baseline levels in subsequent trials where 
robotic behavior returned to normal (Abd et al., 2019). These 
two studied scenarios indicate that the negative impact of these 
error types on trust is not permanent. Subsequent studies on 
the effect of errors within wearable robotic grasping systems 
should therefore continue evaluating the impacts of other error 
types, like catastrophic errors (ex. if the robot prematurely re-
opens the gripper), and longer interaction times (ex. frequent 
errors over the course of a day). Identifying potential and 
foreseeable problems that do not permanently damage users’ 
trust can be used to guide future human-robot interactive 
designs that are both effective and desirable. In addition to 
trust recovery, most behavior patterns returned to baseline, 
suggesting that users’ perceptions correctly matched their physical
responses.

Lasting changes were observed in three metrics. Of the sensor-
measured behaviors, the initial force activity in the Post-error 
condition remained significantly different than that in the Pre-
error condition. These trends in initial force activity suggest that 
immediate behavioral reactions, whether due to learning effects or 
the unexpectedness of the robot error, should be investigated in 
the future. One perception metric and one performance metric did 
not return to baseline either: subjects reported significantly lower 
workloads and completed trials faster following errors than prior 
to errors, implying a learning effect. The tasks became easier for 
the users over time, and they began to complete the tasks more 
quickly. However, this learning trend was not observed in most 
behavioral metrics. 

4.3 Additional limitations and future work

Wizard-of-Oz studies allow the creation of complex robotic 
interactions with less complex robots. Nevertheless, they can 
unintentionally influence behavior if users realize the robot is not 
autonomous. In our study, most participants seemed convinced 
of the robot’s voice-activated feature, evidenced by participants 
speaking louder or getting closer to the microphone during errors, 
as they believed some errors resulted from their lack of vocal 
accuracy. Additionally, participants expressed positive sentiments 
regarding the idea of a voice-activated robot. Future work should 
include post-study surveys to confirm these perceptions of complete
automation.

We additionally did not collect any internal perception 
information of behavioral changes, like whether users believed 
they were altering their behavior or if their internal mood 

changed based on the robot conditions. Including these data 
points in subsequent works should be considered to obtain 
a more nuanced understanding of how users respond to 
robot error. Other sensory modalities such as EEG could 
be useful in exploring objective cognitive reactions to such 
errors and anchor other time-based physical reactions like 
those measured in this work. Future studies should also look 
to expand the demographic pool of participants to increase
generalizability.

Researchers initially demonstrated the error and recovery 
method to the user in this study. Although we do not believe that this 
demonstration changed robotic perception based on increased trust 
after initial device-worn trials, future work should include unseen 
errors and lengthen the time of the study to allow participants to fully 
discover device functionality and potential robotic flaws, as well as 
how to organically recover from them.

Finally, this work presents an initial investigation into the 
human-led recovery and response to robotic error, however, many 
types of robotic errors may arise beyond the one evaluated here. We 
suspect that human responses may change with respect to different 
types of errors, particularly when considering the context of such 
errors. Studying other error types and varying the situations in 
which they arise will be very informative in the design and adoption 
of new wearable robotic tools. 

5 Conclusion

We presented a strategy for worn robotic- and body-powered 
devices called Co-Grasping that allows both human and robot 
agents to contribute to grasping in parallel in either collaboration 
or cooperation. This approach uniquely positions the user to 
determine how to allocate roles and when to dynamically switch 
between them. The human user can rely on the robot to perform 
grasping tasks or intervene using body-powered wrist motion. 
When robots make errors, this relationship enables a new role for 
human users: the ability to recover from these errors. Through 
a human-subject experiment with simulated robotic errors via 
a custom wearable testbed, we found that the Co-Grasping 
device successfully enabled users to lead the recovery of robot 
errors, and that users chose to respond in cooperation instead of
collaboration.

Specifically, we found that grasp errors changed user 
behavior and trust perception. We characterized responses to 
recoverable robot errors by: change in role allocation from 
robot-led to human-led cooperation, reductions in trust, 
and increases in wrist movement, force, and sustained wrist 
extensor muscle activity. While metrics of engagement, like 
wrist movement, increased with errors, functional performance 
and perceived workload did not change significantly, indicating 
the effectiveness of including the body-powered pathway in 
robotic wearables. The decline in trust, however, was not 
alleviated with body power during errors, emphasizing the 
importance of measuring and studying human factors to 
guide development beyond the feasibility of new solutions 
alone. Collecting both subjective and objective measures of 
performance and perception provides a more comprehensive 
understanding of the human-robot-task interaction than one type
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alone. After users experienced errors, most measured parameters 
returned to baseline once the robot behaved ideally again. These 
findings show the potential benefits of worn robotic devices 
that facilitate new human-robot interactions with dynamic role 
allocation, which can be robust in human perception and behavior 
against robot errors.
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