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Introduction: Autonomous agents increasingly interact within social domains
such as customer service, transportation, and healthcare, often acting
collectively on behalf of humans. In many of these scenarios, individually greedy
strategies can diminish overall performance, exemplified by phenomena such as
stop-and-go traffic congestion or network service disruptions due to competing
interests. Thus, there is a growing need to develop decision-making strategies
for autonomous agents that balance individual efficiency with group equitability.

Methods: We propose a straightforward approach for rewarding groups of
autonomous agents within evolutionary and reinforcement learning frameworks
based explicitly on the performance of the weakest member of the group.
Rather than optimizing each agent's individual rewards independently, we align
incentives by using a “weakest-link” metric, thereby encouraging collective
strategies that support equitable outcomes.

Results: Our results demonstrate that this weakest-member reward system
effectively promotes equitable behavior among autonomous agents. Agents
evolve or learn to balance collective benefit with individual performance,
resulting in fairer outcomes for the entire group. Notably, the introduced
approach improves overall efficiency, as equitably-minded agents collectively
achieve greater stability and higher individual outcomes than agents pursuing
purely selfish strategies.

Discussion: This methodology aligns closely with biological mechanisms
observed in nature, specifically group-level selection and inclusive fitness theory.
By tying the evolutionary and learning objectives to the group’'s weakest
member, we mimic natural processes that favor cooperative and equitable
behaviors. Our findings highlight the importance of incentive structures that
consider the collective well-being to optimize both group fairness and individual
agent success. Future research should explore how this reward framework
generalizes across broader domains and more complex agent interactions.

cooperation, reinforcement learning, neuroevolution, inclusive fitness, group-level
selection, fairness, reward schemes
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1 Introduction

We are increasingly surrounding ourselves with artificial
intelligence-controlled (AI) autonomous systems such as self-
driving cars. These systems must be trained by some mechanism,
which is usually reinforcement (Watkins and Dayan, 1992), deep
reinforcement learning (Sutton and Barto, 2018), or sometimes
neuroevolution (Stanley et al., 2019). Regardless of the optimization
method, performance must be described by an objective function.
While real-world systems like self-driving cars serve as intuitive
examples of multi-agent scenarios where fairness and coordination
matter, our aim is not to claim immediate applicability of our
method to such domains. Rather, we use these analogies to
motivate the underlying problem: how can we design objective
functions that promote cooperative and equitable behavior in
multi-agent systems?

The exploration of such objective functions is not new. The
field of reinforcement learning has a rich history of grappling
with how to effectively incentivise desired behaviors in complex
situations. Specifically, multi-agent reinforcement learning (MARL)
has emerged as the area of study dedicated to understanding
and engineering cooperation among autonomous entities. To fully
appreciate the significance of our proposed minimum reward
scheme, it is essential to understand the existing landscape of
MARL contributions aimed at promoting cooperative behavior. The
following section provides an overview of recent contributions,
categorizing approaches based on how they facilitate information
sharing and coordinate agent interactions through the design of the
objective function.

1.1 Background: reinforcement learning for
incentivising cooperation

We organize the recent multi-agent reinforcement learning
contributions into several broad categories based on how and which
information is shared between the agents through the design of
the objective function: Incentive Design and Credit Assignment,
Coordination and Communication Mechanisms, and Robustness
and Adaptability.

Incentive Design and Credit Assignment methods focus on
addressing the credit assignment problem. This includes approaches
like Intrinsic and Peer Incentives (Zhang et al., 2023), where agents
directly reward or punish peers based on their causal influence, and
Skill Discovery and Assignment (Li et al., 2024), which uses intrinsic
rewards to encourage agents to learn diverse, cooperative skills.

Coordination and Communication Mechanisms methods
facilitate effective interaction and information sharing between
agents during the expression of their policies. This category includes
Mutual Help and Action Expectation (Qiu et al., 2023), where
agents share anticipated actions for selective imitation; Consensus
and Shared Cognition (Xu et al., 2022), which leverages inferred
consensus signals for decentralized cooperation; Communication
and Attention Mechanisms (Pu et al., 2022), utilising attention-
based networks for broader and more complex communication;
and Group-Based Cooperation (Liu et al., 2023), where agents
are dynamically grouped using Graph Neural Networks (GNNs)
for more structured communication and value decomposition.
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Trajectory Correlation (Wang et al., 2024) uses behavioral similarity
to establish collaborative relationships and improve training.

Robustness and Adaptability includes how MARL systems can
maintain cooperation in dynamic or imperfect environments. This
includes Adaptive Policy Downsizing (Zhao et al., 2024), which
handles agent failures by adaptively weighting historical trajectories,
and Weighted Exploration-Exploitation (Liu et al., 2020), which
balances individual exploration with shared information to
accelerate convergence to optimal joint actions in cooperative tasks.

Each of the above multi-agent reinforcement learning
contributions attempts to solve an aspect of behavioral convergence
to a cooperative problem through the design of the method and
selection of information sharing among agents. There are a diversity
of proposed methods because optimality is not necessarily well-
understood, or the number of subtle situational variations are too
great to enumerate. Otherwise, we would not need reinforcement
learning at all. Thus, creating an explosion of enumerated criteria is
either unrealistic or impossible. In the automated car example, it is
difficult to quantitatively encode “be considerate and optimal” into
an objective function.

1.2 Group-level selection and inclusive
fitness

Nature faces a similar problem during the evolutionary
optimization of decision-making. Evolution selects on short-time
rewards, making it hard for the complex behavior of cooperation
to evolve. Thus, different mechanisms have been proposed that
could help cooperation to emerge (Nowak, 2006). The most obvious
ones are kin selection (Queller, 1992), group selection (Smith,
1964), and inclusive fitness (Hamilton, 1964a; Hamilton, 1964b). Kin
selection is a concept that is hard to transfer into the domain of
reinforcement learning, and thus, we leave it out of the discussion
here. In biology, group-level selection requires all members of
the group to replicate together, let alone receive the same payoff.
Inclusive fitness stipulates that the performance of one agent is
dependent on another agent. Both these mechanisms find a way to
award organisms both individually and from the mutual support
of other agents. Group-level and inclusive fitness selection improve
cooperation and emphasize the success of the group over the
success of the individual. Thus, it should be possible to counter the
emergence of selfish AT behavior by using group-level selection or
inclusive fitness.

Multiple examples of group-level selection exist and have
been identified as drivers of major transitions in evolution,
such as the transition from single-to multi-cellular organisms
(Rose, 2020) or social insects (Wilson, 1968). While driving
cooperation, group-level selection often favors efficient division of
labor. Examples include the specialization of soma and germline
in multicellularity, or the specialization of queens and workers
in social insects. Even in less strict situations where groups
of organisms are working together in a synergistic fashion to
receive higher benefits, the rewards may not be distributed equally
(Owens and Owens, 1978). This division of labor from group-
level selection creates a situation where members receive more than
they would alone, but still encounter unequal rewards (Bongard,
2000a); Potter et al. (2001) — typically described as a despotic
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distribution (Andren, 1990). A simple description of despotic
distribution is the distribution of benefit over individuals that arises
when a set of resources of unique varying benefit are distributed
among a population (without sharing, due to contention). The
benefit conferred to each individual can be monotonically sorted.
The slope, or severity, of this sorted distribution, is what we call
the despotic index. A flat slope would indicate a very even and
fair distribution of resources. A steep distribution would indicate
that one population member has better resources than all others,
and the next better than all the remaining, so on down the line.
The steepness of this distribution represents the exaggeration of
inequality.

Interestingly, the fitness function for optimization in a genetic
algorithm can also be applied for optimization in reinforcement
learning (Bloembergen et al, 2015). The concept of group-
level selection and inclusive fitness can thus be transferred to
reinforcement learning. However, inheritance only plays a role
in the context of a genetic algorithm wherein populations of
agents compete and the fitter ones replicate proportionally more
often. This is different from reinforcement learning wherein agents
do not replicate. Instead of optimizing a single agent, a group
of agents can be trained using an objective function rewarding
group performance. This is either accomplished with one policy
controlling the actions of all agents at the same time (Busoniu et al.,
2010), or by training independent agents that share information or
experiences (Tan, 1993). Thus, inclusive fitness is more akin to using
independent policies, while group-level selection is closer to the
optimization of a single policy.

Group performance for foraging agents can be assessed by taking
the summation of the individually collected rewards or by taking
the maximum of those rewards. This typically leads to poor overall
performance, diverse behavior, and a higher despotic index (Balch,
1999). Also, the distributed nature of learning poses problems to
exploration and learning schedules (Hu and Wellman, 2003). On
the other hand, this heterogeneous outcome might be desired to
solve other tasks (Panait and Luke, 2005). It has also been argued
that global reward schemes do not scale to larger groups and that
using individual reward schemes remedies this problem (Wolpert
and Tumer, 2002).

This credit assignment difficulty can be summarized as an act
of finding the balance between local individual reward that can
cause counterproductive interference, and maximizing global group
reward that can lead to self-sacrificial inefliciencies at the local
scale. For this reason many adaptive methods under the name
“shaped reinforcement learning” have been proposed (Mataric,
1997; Bongard, 2000b; Wang et al., 2020), being only a few.

It seems that the literature suggests that a global reward scheme
evaluating the maximal or joint effort of a group neither leads to
optimal performance, nor does it flatten the despotic index.

Regardless, here we show that assessing the performance of
a group by its weakest member leads to optimal performance,
while also resulting in a fair distribution of labor and reward-a
flat despotic index. We show this for both genetic algorithms
and reinforcement learning. The task used here is a foraging
task, and performance is optimized by either a genetic algorithm
or by reinforcement learning of policies controlling groups of
individuals or the entire group. Three different rewarding schemes
are compared.
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e MEAN: the resources are pooled and then fairly distributed
among the four agents

e MINIMUM: each agent gets the same score defined by the
agent who collected the least food

o MAXIMUM: each agent gets the same score defined by the
agent who collected the most food (a control)

We will show that the MINIMUM reward scheme indeed leads
to high performance while also satisfying a low despotic index.

2 Methods
2.1 The foraging task

The foraging task requires four agents to collect food at the
same time, which requires no explicit cooperation. After the foraging
period is over, the amount of food each agent has collected is
evaluated and used to determine either fitness for the Genetic
Algorithm (GA) or rewards for RL. However, when training a policy
using RL, the state and action space must be kept small for feasible
runtimes, so we use a simplified version.

We chose the foraging task because it offers a clear, interpretable
environment where both cooperation and competition can emerge
naturally. Its simplicity allows us to isolate the effect of reward
schemes without introducing confounds from task complexity.
The fixed team size of four agents ensures consistent interaction
dynamics, while the spatial layout (16 x 16 grid) provides ample
opportunity for agents to interfere with, support, or ignore each
other. Each agent is equipped with basic sensors (e.g., detecting
objects ahead and hearing other agents’ beeping signals) and
actuators (e.g., movement, giving food), allowing for both implicit
and explicit forms of coordination. Rewards are determined at the
end of each episode by evaluating the amount of food each agent has
collected. Depending on the reward scheme (MINIMUM, MEAN,
or MAXIMUM), this group-level outcome is then uniformly
assigned to all group members. The inclusion of a give-food
action and a limited communication channel via beeps enables
coordination strategies that directly reflect the constraints imposed
by the reward function, thereby making this task particularly
suitable for evaluating the fairness and effectiveness of cooperative
incentives.

2.1.1 Environment using a genetic algorithm

Four agents are placed in the corners of a rectangular room (16 x
16 tiles). The room is filled with tokens for the agents to collect—for
analogy we can think of these tokens as food. The agents can move
forward onto food and automatically collect it, they can turn left
or right, do nothing, and also utter a far-ranging beeping signal
as a form of communication. Agents can further deposit already-
collected food in front of them, or if an agent is directly in front then
the food is transferred to that agent. Agents receive inputs of how
much food they collected, what is immediately in front of them, and
the beeping signals of other agents.

2.1.1.1 Objective function for the genetic algorithm

The four agents to forage in the environment are either chosen
randomly from the population (without replacement) and evaluated
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once, or each agent in the population is cloned three times to create a
group of four identical agents that are evaluated in the environment.
Agents are allowed to roam the environment and collect food for
100 time points (updates). The amount of food each agent has
at the end is recorded and the fitness functions depend on the
amount of food each agent i collected F,. Regardless of individual
or clonal groups, the performance of the group (W) is based on
the individually collected amount of food (F;) and is determined
using one of three statistical methods: MEAN (see Equation I,
MAXIMUM (Equation 2), and MINIMUM Equation 3).

1
Watpan = ZzFi M
i=1
Wyax = max (Fy, F, F,,F;) (2)
Wy = min (Fy, F, Fy, F;) (3)

2.1.1.2 Markov brain neural networks

Agents are controlled by Markov Brains (MB) (Hintze et al.,
2017). MBs are neural networks that replace the commonly
used aggregation and threshold functions with probabilistic or
deterministic logic gates as well as mathematical operators to
compute the state of nodes. The exact connectivity and use of
computational units is defined by a genome subject to point
mutations, deletions, and gene duplications. These mutations allow
the computational units to connect to seven sensor nodes, three
actuators, and nine hidden nodes. Two of the five sensor nodes
convey what lies in front of the agent, and three for the beeping
of other agents. The two output nodes encode the movement of the
agent (left, right, nothing, and moving forward/eating/giving food).
The nine hidden nodes can store information in a recurrent fashion,
and thus allow memory.

2.1.1.3 Parameters for the genetic algorithm

We randomly generate 100 agents at the start of the experiment
and depending on the chosen method we evaluate their fitness
every generation using only inclusive fitness or group-level selection.
To evaluate inclusive fitness, we randomly select four agents with
replacement and evaluate them as a group. This process is repeated
four times per generation to ensure thorough evaluation. For group-
level selection, we clone each agent three times and evaluate the four
identical agents together. We then remove three of them, so that
the group’s performance only affects the replication of one agent.
Optimization proceeds using roulette wheel selection over 50,000
generations.

2.1.2 Environment using Q-learning

The environment for Q-learning is smaller (8 x 8) and agents
can see the entire area. Empty tiles are encoded as 0, food is I,
other agents are —1, and the agent to be controlled is represented
as —0.5. Thus, the state of the environment s is a tuple of length
64. These continuous values are chosen to also allow for the deep-
Q learning variation. Agents in this environment move in four
cardinal directions (North, South, East, West). When an agent tries
to move to a tile occupied by another agent, then one piece of
food is transferred from the moving agent to the stationary agent.
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Because all agents see each other, then no further communication is
necessary.

The reason for doing this is to allow Q-learning. In Q-learning,
the policy maps each possible environment state to an expected
reward for each possible action. So, the environment state must
be clear and unambiguous. The GA optimization environment is
bigger and has the same states as the Q-learning environment, but
agents only see the environment from their own viewpoint. This can
create ambiguous states for Q-learning. For example, if all agents
see only food in front of them, then this does not tell us whether
other locations are empty or full, which is important for Q-learning.
The mechanisms and rewards are the same for both the GA and
Q-learning environments, but in the GA environment agents have
limited information, while in the Q-learning environment agents
have perfect information.

2.1.2.1 Rewards for reinforcement learning

We distinguish between two types of machine learning policy:
decentralized and centralized. With decentralized policies, each
agent has its own Q-matrix, which is reinforced independently from
other agents. The Q-matrix estimates the rewards for movement of
that agent in each of the four directions. In centralized policies, a
single policy controls all four agents and estimates rewards for all
possible combinations of their movements. With four agents each
able to move independently in four directions, the centralized policy
estimates rewards for 256 (4*) possible actions.

2.1.2.2 Q-learning
Q-learning proceeded by reinforcing actions for agents foraging

for food in a food-saturated environment. The foraging process
consisted of 50 steps for each epoch. Each agent’s action was based
on its respective Q-matrix predictions. We implemented a greedy-
epsilon decay exploration strategy with an ¢ probability initialized
at 1.0 and decaying at a rate of 0.999. A random action was
selected during exploration steps. After each step, we recorded the
rewards, actions, and states for later experience replay. Rewards
were defined according to the three objective functions (MEAN,
MAXIMUM, and MINIMUM) outlined above. Agents were trained
using experience replay, selecting 2,000 experiences randomly from
a buffer with a maximum length of 50,000. We used a deque to record
experiences such that newer experiences replaced older ones.

Q-learning is a stochastic approximation to the Bellman
optimality equation, in which the agent incrementally estimates
action values based on sampled transitions from its experience.
We therefore calculated new rewards using a variant of the
Bellman equation (Equation 4):

Q" (spay) — Q(spa,) + ‘x(rt + ymaaXQ (s100) —Q (St’at)) > (4)
which uses a learning rate « of 0.8 (Equation 5):
Q" (spa,) — (1.0—a) Q(spa,) + (rt + ym{?xQ(sM,a)) (5)

Optimization was performed for 10,000 epochs, and policies
stopped improving after an average of 5,000 generations. We
repeated each stochastic experiment 40 times.

2.1.2.3 Q-matrix pruning
The environment consists of 8 x 8 tiles, which results in 4%

possible states for the agents’ positions. Each tile can have one of
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four possible states: empty, food, other, or self. This implies a dense
Q-matrix of 44 x 256 for the group policy condition. Unfortunately,
we did not have sufficient fast memory storage available during the
research. To overcome this issue, we created a sparse Q-matrix using
a dictionary, which is similar to the method used in (Nishio and
Yamane, 2018). When the policy is consulted, a query is made to
the dictionary for a reward vector based on the hash of an integer
representation of the state. If a state does not exist in the dictionary,
a random reward vector is created for that state. All states are
tagged with a timestamp of the last accessed epoch. Training an
agent’s policy over 50,000 steps would still overflow the memory of a
conventional computer, so we pruned the dictionary of entries that
were unused for at least 2,000 epochs.

Pruning a policy reduces its memory footprint, but may also
detrimentally affect learning. When a state is not visited, then it has
a uniform estimated reward distribution over all possible actions,
while every visited state adapts to the expected reward distribution
due to reinforcement. Removing a previously visited state removes
those adaptations and effectively “pretends” as if the state has never
been reached before. We could imagine other contexts wherein this
pruning could mitigate learning. However, in this study, a non-
rewarding action leads an agent to an empty tile, while a rewarding
action leads an agent to one with food. Thus, the learning landscape
is not too deceptive, and the expected rewards stored in the policy
willlead an agent away from empty tiles and toward food. Therefore,
it is assumed that low-rewarding states will be abandoned quickly by
the policy. This pruning will erase the experience of certain rewards,
likely slowing learning. However, these states remain unrewarding,
so they will again be abandoned quickly by the policy.

Similarly, the exploration probability ensures that agents visit
formerly unvisited states to possibly discover higher rewards. This
exploration probability is conventionally annealed over the course
of learning, allowing the policy to converge on a solution to a static
problem. This progression from exploration to exploitation reduces
the space of possible states visited by the agent, and consequently
a smaller part of the policy is needed. Pruning non-visited states
in a converged policy will not affect the actions of agents or the
rewards they collect. Here, we prune states when they have not been
visited for for 2,000 epochs. If this pruning threshold is very low,
then learning would be seriously limited. If the pruning threshold
is very high, then it would have no effect on learning but result in a
large memory footprint. Because we do find proper solutions, then
we assume that the chosen threshold is a good compromise between
meeting memory constraints and not seriously compromising policy
convergence.

This pruning method also assumes consistent starting locations.
As such, the exploration of the policy can be imagined as a search
tree, where learning will quickly avoid unrewarding choices and
seek out rewarding ones. It will not cause harm to prune these
unrewarding branches. If using arbitrary starting positions, then the
analogy to the search tree falls apart and time until safe pruning may
be prohibitively high.

In summary, a sparse and pruned policy achieves memory
efficiency while allowing reinforcement convergence, and it remains
an open question if this scheme could be applied to other situations.

Policies can be prohibitively large in some Reinforcement
Learning architectures. Deep Q-learning (DQN) was developed
to counter this problem. In DQN the policy does not discretely
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Food Collected

GroupLS
MEAN

inlc.W  GroupLS inlc.W  GroupLS inlc.W
MEAN  MINIMUM MINIMUM MAXIMUM MAXIMUM

FIGURE 1

Average food collected by the entire group of agents that were
optimized by a genetic algorithm, for different reward and selection
regimes. Group-level selection (GroupLS) uses clonal groups whereas
Inclusive Fitness (Incl.W) uses individual selection. Error bars indicate
95% confidence intervals over the 40 replicates performed. An asterisk
() indicates statistical significance of a 2-sample
Kolmogorov-Smirnov test (p < %, Bonferroni corrected) when
comparing to both GroupLS-MEAN and GrouplLS-MINIMUM, which
were not significantly different from each other.

estimate every possible reward and state-action pair, but estimates
the mathematical relationship between rewards and state-action
pairs based on experience using a deep neural network. While DQN
is a powerful method, it couples the learning efficiency of Q-learning
to the learning efficiency of deep neural network backpropagation.
Backpropagation potentially obfuscates results for this experiment
and so it was not used here.

2.1.2.4 Statistical comparisons
We examined the statistical significance between conditions

using the two-sample Kolmogorov-Smirnov (KS) test. The KS test
was chosen because it is a non-parametric method that compares
the full distribution of two independent samples without assuming
normality, making it well-suited for our performance data, which
may be non-Gaussian or multimodal. We compared all experimental
conditions against the GroupLS-MEAN and GroupLS-MINIMUM
baselines, resulting in m = 10 pairwise tests. Bonferroni correction
was applied to control for multiple hypothesis testing with an
adjusted significance threshold of p < 2.

m

3 Results
3.1 Optimization by genetic algorithm

Populations with groups can either experience group-level
selection during agent group reproduction, or experience inclusive
fitness effects through independent reproduction. To distinguish
between both processes in our experiments we created groups
for selection either from random population members (inclusive
fitness effects) or clones of a single member (group-level selection).
We determined which group-selection method and reward scheme
combination leads to the highest performance of a group for the
reward schemes MEAN, MAXIMUM, and MINIMUM. We find
that all three reward schemes generally result in high performance,
but that clonal groups using MEAN or MINIMUM reward schemes
outperform the others (see Figure 1).

We also investigated the effect of replication method and reward
scheme on the despotic index. As expected, the despotic index was
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FIGURE 2

Individual food collected by agents trained using a genetic algorithm. Solid lines indicate group-level selection using clonal groups (GLS), dotted lines
indicate groups composed of genetically independent individuals experiencing only inclusive fitness effects (inlc.W). Individual results are ranked
(x-axis), which is a sorting by the amount of food collected relative to the other agents in the group. The gray shadows indicate the 95% confidence
intervals from the 40 replicate experiments. Three different reward schemes were compared: MEAN, MINIMUM, and MAXIMUM - note the different
y-scale for the MAXIMUM reward scheme, which centralizes all collected food to one agent, while the other regimes ensure that all agents are involved

in collecting the food.

GroupLS
MEAN

inlc.W  GroupLS
MEAN

inlc.W  GroupLS inlc.W
MINIMAL MINIMAL MAXIMAL MAXIMAL

FIGURE 3

Average food collected by groups of agents optimized using
Q-learning. Group-level selection (GroupLS) indicate policies
controlling all agents of the group at the same time, while groups of
policies controlling only one agent at a time are analogous to inclusive
fitness (inlc.W). Error bars indicate 95% confidence intervals over the
40 replicates performed. An asterisk (x) indicates statistical
significance of a 2-sample Kolmogorov-Smirnov test (p < 001
Bonferroni corrected) when comparing to both GroupLS-MEAN and
GroupLS-MINIMUM, which were not significantly different from
each other.

highest when using the MAXIMUM reward scheme regardless of
group-level selection or inclusive fitness (see Figures 2, 3). The next
steepest despotic index can be found when using the MEAN reward
scheme, with group-level selection leading to a flatter hierarchy
than inclusive fitness (see Figure 2). Finally, group-level selection
with MINIMUM reward scheme resulted in a nearly equal resource
distribution, indicating the most fair behaviors and outcomes for
all agents in the group (see Figure 2). Using inclusive fitness and
the MINIMUM reward scheme results in a flatter distribution
of resources compared to MEAN and MAXIMUM, but is still
steeper than group-level selection when using the MINIMUM
reward scheme.

These results show that group-level selection using the MEAN
and MINIMUM reward schemes achieve comparable group
performance, with no statistically significant difference between
them. However, the MINIMUM scheme uniquely results in a
substantially flatter despotic index, highlighting its strength in
promoting equitable workload distribution without compromising
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efficiency. In contrast, while the MEAN scheme also reduces

50 inequality to some extent, it does not achieve the same level of
E 40 fairness as the MINIMUM scheme. Under the MAXIMUM reward
% 30 scheme, group-level selection instead results in a steeper hierarchy,
3 . . . . .

9 20 with one agent typically collecting a disproportionately large share
E 10 of the resources.

3.2 Optimization using reinforcement
learning

As discussed before, the concepts of group-level selection and
inclusive fitness do not perfectly translate to reinforcement learning
since neither policies nor agents “replicate” However, using one
policy to control all four agents contemporaneously can be equated
with group-level selection—called centralized control (Goldman
and Zilberstein, 2003). In centralized control, rewards are used
to reinforce all agent behaviors simultaneously. In contrast,
inclusive fitness resembles using four independent policies—called
decentralized control. Rewards received by one agent only directly
affect the policy of that agent, while the actions of other agents are
only indirectly included through the reward scheme and lifetime
interaction state changes.

In all cases (MEAN, MINIMUM, and MAXIMUM) centralized
control outperforms decentralized control, and MEAN and
MINIMUM reward schemes yield better-performing agents than
MAXIMUM when using centralized control.

Notably the despotic index is flattest when using the MINIMUM
reward scheme and steepest when using the MAXIMUM reward
scheme (see Figure 4). In all cases, using decentralized (group-
level) control policies resulted in flatter hierarchies and thus
“fairer” agents.

4 Discussion

Reinforcement learning and genetic algorithms are powerful
tools that can effectively optimize agent behavior toward a
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FIGURE 4

Individual food collected by agents controlled by Q-learning policies. Solid lines show the centralized control group-level selection condition, where a
single policy controls the actions of all group members (GroupLS). Dotted lines show groups composed of agents controlled by independent policies
(inlc.W). Individual results are ranked (x-axis), which is a sorting by amount of food collected relative to the other agents in the group. The gray shadows
indicate the 95% confidence intervals from the 40 replicate experiments. Three different reward schemes were compared: MEAN, MINIMUM,

and MAXIMUM.

predefined goal. However, designing the fitness function to
achieve this goal is more an art than a science, especially for
genetic algorithms. For instance, there is much research on
how to quantify success for multiple objectives—or difficult-
to-define objectives—with researchers not only engineering
new mathematical algorithms, but drawing inspiration from
grasshoppers, ant colonies, and immune systems, to name a few
(Mirjalili et al., 2018; Ning et al., 2019; Lin et al., 2018). Being
considerate to other members of a group while also maximizing
personal reward is one of these difficult cases. Agents incentivised
to increase their personal rewards may do so at the expense of other
agents, while requiring them to be considerate may hamper their
individual success. The challenge lies in finding the right balance
between these two extremes.

In this study, we focused on three intuitive reward aggregation
schemes: MINIMUM, MEAN, and MAXIMUM. These were
selected to represent canonical strategies for cooperative
behavior—optimizing for the weakest, the average, and the strongest
performer in a group, respectively. Their simplicity allows for
transparent interpretation and comparative analysis of fairness
and performance trade-offs. However, we acknowledge that
other summary statistics may capture different aspects of group
dynamics. For example, the median could offer robustness to
outliers, while the harmonic mean or softmin might interpolate
between the MINIMUM and MEAN regimes. Exploring such
alternatives, including adaptive or learned aggregation functions,
is a promising direction for future research and could uncover
more nuanced control over cooperative behavior and equity
outcomes. We found MINIMUM to be a simple reward scheme
that increases individual rewards while also promoting “fairness”
among agents.

“Fairness” — the minimization of the despotic index—is better
achieved through rewarding a group for the performance of its
weakest member, not by the average of all members or the success
of its strongest member. Group performance under this MINIMUM
reward scheme is on par with rewarding the average, and is better
than rewarding the best, at least for group-level selection. Similar
maximization of a minimum objective in reinforcement learning

has been shown to achieve decent performance (Tang et al., 2020).
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However, the flattening of the despotic index resulting from this
minimum objective was unknown. Here we study exactly this
distribution effect of selection scheme at the interface of group-level
selection and inclusive fitness.

Group-level selection and inclusive fitness are mechanisms
known from biological evolution and thus translate easily to
genetic algorithms. Biological group-level selection is very similar
to reinforcement learning of a single centralized control policy
rewarded for group performance. In a biological context, inclusive
fitness describes the effect of other agents’ behavior on an
individual’s fitness. Using different policies in reinforcement
learning for different agents that receive independent rewards while
still experiencing the effect of each other’s actions resembles this
biological mechanism. However, the exact degree to which these
biological processes align with reinforcement methods remains
open for debate.

To assess how task-dependent our results are, we applied the
same reward schemes to a second task involving agent navigation
across an intersection (see Supplementary Material, Section 1). In
this task, agents receive delayed, sparse rewards based on how
quickly they reach a predefined goal. Despite the structural and
strategic differences from the foraging task, the MINIMUM reward
scheme again led to a flatter payoff distribution and better group
performance, especially under group-level selection. These results
suggest that the benefits of the MINIMUM reward scheme are not
specific to foraging, but may apply more broadly to cooperative
tasks. To better understand the generality and practical utility of the
MINIMUM reward scheme, future studies should apply it to richer
cooperative contexts, including human-agent interactions or groups
of large language model (LLM)-driven agents. The MINIMUM,
MAXIMUM, and MEAN reward schemes were applied to Q-
learning and not to deep Q-learning, which would replace the policy
with a neural network to estimate future rewards based on the
current state. However, our results should easily generalize to the
deep Q-learning domain, as all principles examined here concern
action-reward optimization, and not the recollection accuracy of
these rewards.

The cooperative forging task used here allows for synergistic
behaviors as well as antagonistic inefficient behaviors. For the
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MAXIMUM reward scheme we found some agents collecting
little food, thereby group
performance. This can be interpreted as a form of cooperation

comparatively limiting  overall
due to division of labor, where one agent is collecting resources
while the others get out of the way. Alternatively, since agents can
give resources to other agents, they may actively pool resources
in one agent. As such, the MAXIMUM reward scheme cannot
be directly compared to the MINIMUM reward scheme because
they encourage two entirely different strategies. However, this is
exactly the result of this research: Using the MINIMUM reward
scheme encourages an increase in every agent’s performance in
an equal fashion avoiding an unfair distribution. This flattening of
the despotic index is a consequence that pure individual MEAN
or MAXIMUM reward schemes do not select for. It would be
interesting to test if the MINIMUM reward scheme is equally
effective for economic and social structures to create fair but
profitable resource distributions.

This simple reward scheme is different from other team-based
machine learning reward functions in its simplicity. For instance,
one of the most popular recent proposals in this area is OpenAT’s
Five Heroes algorithm (Berner et al., 2019). This algorithm uses a
teamwork hyperparameter they call “team spirit” that is annealed
during training to balance exploration of individual skill and
exploitation of team strategy. Mathematically defining this trade-off
places the burden of specification in the hands of the experimenter,
who must adapt the annealing schedule to each problem domain.
If they do not, then the algorithm may completely fail for dynamic
problems that fundamentally change at the wrong time during the
annealing schedule. The proposed reward scheme here does not have
this hyperlimitation.

It is important to distinguish between minimizing a global
objective and using the MINIMUM operator as a reward
aggregation scheme. In prior work, multi-agent systems have been
trained to minimize quantities such as distance to goals or total
travel time, but in those cases, the optimization is applied to a
scalar group objective. Our use of the MINIMUM scheme refers
to aggregating individual agent outcomes by assigning the group’s
reward according to the lowest-performing agent. For example, in a
task where all agents seek to reach a goal, traditional minimization
would reduce the average or total distance across the group,
whereas the MINIMUM scheme would evaluate performance
solely based on the agent furthest from their goal. This subtle but
important difference underlies our focus on fairness and workload
equalization, rather than efficiency alone. In practice, using the
MINIMUM reward scheme might not even impose significant
overhead. Imagine reinforcement training of a self-driving car in a
virtual environment also simulating other cars. Using the minimum
reward that any of the virtual cars obtains is a simple addition
to such an simulation, because all car behaviors are modeled
anyway. Whether or not those other cars should be controlled
by a centralized or decentralized policy, or if the MINIMUM
reward scheme functions the same way in a mix of heterogeneous
policies—especially selfish ones—remains an open question for
future research.

We proposed a simple and biologically-inspired reward
aggregation scheme in which the group’s success is determined
by its weakest member. This MINIMUM reward scheme promotes
fairness by flattening the distribution of rewards among agents,
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while maintaining competitive performance across both genetic
algorithms and reinforcement learning frameworks. Its simplicity
makes it easy to implement even in complex simulations, and
it provides a consistent selection or reinforcement signal that
encourages equitable contributions. While our findings demonstrate
the benefits of this approach in controlled environments, its
applicability to more dynamic, heterogeneous, or human-in-the-
loop systems remains an open question. Future work should
investigate how well the MINIMUM scheme generalizes to
real-world multi-agent scenarios.
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