
TYPE Original Research
PUBLISHED 31 July 2025
DOI 10.3389/frobt.2025.1601862

OPEN ACCESS

EDITED BY

Ziliang Kang,
Massachusetts Institute of Technology,
United States

REVIEWED BY

Ruiheng Zhang,
Beijing Institute of Technology, China
Kaoru Yamamoto,
Kyushu University, Japan
Jiajie Qiu,
Massachusetts Institute of Technology,
United States

*CORRESPONDENCE

Luka Peternel,
l.peternel@tudelft.nl

RECEIVED 28 March 2025
ACCEPTED 04 June 2025
PUBLISHED 31 July 2025

CITATION

Becoy AJ, Khomenko K, Peternel L and
Rajan RT (2025) Autonomous navigation of
quadrupeds using coverage path planning
with morphological skeleton maps.
Front. Robot. AI 12:1601862.
doi: 10.3389/frobt.2025.1601862

COPYRIGHT

© 2025 Becoy, Khomenko, Peternel and
Rajan. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Autonomous navigation of
quadrupeds using coverage path
planning with morphological
skeleton maps
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1Department of Cognitive Robotics, Faculty of Mechanical Engineering, Delft University of
Technology, Delft, Netherlands, 2Department of Microelectronics, Faculty of Electrical Engineering,
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This article proposes a novel method of coverage path planning for the purpose
of scanning an unstructured environment autonomously. The method uses the
morphological skeleton of a prior 2D navigation map via SLAM to generate
a sequence of points of interest (POIs). This sequence is then ordered to
create an optimal path based on the robot’s current position. To control the
high-level operation, a finite state machine (FSM) is used to switch between
two modes: navigating toward a POI using Nav2 and scanning the local
surroundings. We validate the method in a leveled, indoor, obstacle-free, non-
convex environment, evaluating time efficiency and reachability over five trials.
The map reader and path planner can quickly process maps of widths and
heights ranging between [196,225] pixels and [185,231] pixels in 2.52ms and
1.7ms, respectively. Their computation time increases with 22.0ns/pixel and
8.17 μs/pixel, respectively. The robot managed to reach 86.5% of all waypoints
across the five runs. The proposed method suffers from drift occurring in the 2D
navigation map.
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1 Introduction

Due to advancements in technology and miniaturization, surface (or ground) robots,
such as wheeled and legged robots, have been increasingly adopted for diverse operations
in harsh and unstructured environments in the past decade. One of the key challenges
in such environments is the lack of infrastructure to support diverse operations. These
environments include, for example, disaster response (Chiou et al., 2022; Lin et al., 2022;
Solmaz et al., 2024), mining operations (Paredes and Fleming-Muñoz, 2021; Ai et al., 2024),
space exploration (Jiang et al., 2022; Candalot et al., 2024; Armet al., 2019; Rajan et al., 2024),
surveillance in remote locations (Miller et al., 2020; Chagoya et al., 2024), or hazardous
industries such as nuclear power plant maintenance (Chen et al., 2022; Sharma et al. 2024).

In such complex environments, legged robots are more versatile and robust than other
surface robots, such as wheeled rovers, and they can adaptively navigate uneven, rugged, or
soft terrain. Legged robots can cover relatively larger spatial areas by choosing safe footholds
within their range of motion and rapidly responding to adjust their kinematic configuration
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FIGURE 1
Commercially available quadrupedal robots from different companies: (a) Boston Dynamics Spot. (b) ANYbotics ANYmal D. (c) Unitree
Robotic Go2 Edu.

(Yin et al., 2023) to achieve their objectives. The number of
legs in a legged robot determines its movement efficiency and
ability to maintain stability (Nitulescu et al., 2016). Compared
to bipedal humanoids, quadrupedal robots demonstrate a greater
load capacity and improved stability due to their broader base of
support. On the other hand, quadrupeds possess simpler structures
and control mechanisms than hexapodal and octopodal robots
(Fan et al., 2024; Chai et al., 2022). For this reason, quadrupedal
robots are ideal for tasks involving the safe navigation of complex
3D environments for (sub-) surface exploration.

Several quadrupedal robots are already commercially available
in the market. We compare three notable examples, namely, Boston
Dynamics’Spot,ANYbotics’ANYmal,andUnitreeRobotics’Go2Edu,
as shown in Figure 1, regarding attributes related to the access of
development, operation durability, and affordability, as provided in
Table 1. Both Spot and ANYmal have garnered significant popularity
and have made substantial contributions to research and engineering
(Portela et al., 2024; Zimmermann et al., 2021) compared to Go2
Edu. However, their operational runtime is limited, and their cost is
considerably higher. Go2 has three modes: Air, Pro, and Edu, costing
1,600 USD, 2,800 USD, and 12,500 USD, respectively. However, only
the Edu mode allows for software development, which is necessary
for custom implementations, including other necessary features.
Furthermore, Go2 Edu has a dedicated Robot Operating System
2 (ROS 2) integration that allows rapid development and testing.
With a factor of two to three in running time, experiments can be
conducted over a long session, and the robot can provide sufficient
battery capacity to power additional sensors. This paper focuses
on the development of software architecture for path planning and
navigation specific to Go2 Edu.

The goal of this research is to enable quadrupedal robots
to map terrain using coverage path planning. To achieve
this, quadrupeds require sensors—most commonly cameras
(Zhang et al., 2022; Zhang et al., 2025a; Zhang et al., 2025b) and
LiDAR (Bouman et al., 2022; Niu et al., 2024). In order to scan with
these sensors, the robot needs to move to various points of interest
(POIs), which requires coverage path planning and navigation
methods. These are examined in the related works section below.

1.1 Related works

Several studies have recently explored the development of
software infrastructure for the Unitree Robotics’ Go2 Edu robot.
Mei et al. (2024) developed a reinforcement learning method to
enable the Go2 Edu robot to navigate narrow pipes using visual
inputs from a depth camera. The navigation process is relatively
straightforward due to the grid-like structure of the pipes, where
each pipe is aligned in a straight path, with occasional protrusions
serving as obstacles. Guo et al. (2024) developed a high-level path
planning using a large languagemodel, namely, OpenAI’s ChatGPT-
4o, which allows the interpretation of human verbal commands and
translates them into a list of executable instructions. The system
integrates a depth camera with a segmentation model to effectively
perceive the environment. In addition, Cheng et al. (2024) developed
a motion controller for the Go2 Edu robot to traverse complex
and unstructured environments using proprioceptive sensing and
collision estimation only.

Autonomous navigation using quadrupedal robots is crucial
for exploring complex environments; however, research on 2D
coverage path planning is limited. Ly et al. (2023) achieved coverage
path planning for loco-manipulation through an integrated end-to-
end pipeline combining perception, optimization, and whole-body
motion planning with RGB-D camera inputs. Bouman et al. (2022)
presented a 2D coverage path planner for investigating unknown
and unstructured environments while accounting for time-bounded
and dynamic constraints and traversability risk. The advantage of
these approaches is that they guarantee timely execution when
the mission is time-bound, and they find a good optimal tradeoff
between the maximum area coverage and the path traveled. The
drawback of these approaches is that they are focused on time
constraints; therefore, they do not work when the task has a variable
execution time and requires time to be defined in advance. In
contrast, our approach enables planning for variable times.

Some navigation methods already enable planning for variable
times. Recently, Niu et al. (2024) developed a novel autonomous
exploration method that uses a topological skeleton of the
environment’s geometry via LiDAR, alongwith a finite statemachine
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TABLE 1 Comparison of commercially available quadrupedal robots.

Feature Spot ANYmal D Go2 Edu

Manufacturer Boston Dynamics ANYbotics Unitree Robotics

Dimensions (L/W/H, mm) 1,100 × 500 × 191 930 × 530 × 890 700 × 310 × 400

Maximum walking speed (m/s) 1.6 1.3 3.7

Average running time (min) 90 90–120 120–240

Integrated LiDAR No Yes Yes

Integrated optical camera Yes Yes Yes

Integrated depth camera Yes Yes No

Connectivity Wi-Fi, Ethernet Wi-Fi, 4G Wi-Fi, Bluetooth, 4G, Ethernet

Custom software development Supported (SDK, APIs) Supported (ROS integration, APIs) Supported (SDK, ROS integration)

Estimated cost (1,000 USD) 74.5 150 12.5

(FSM) to enable an exploratory strategy. This was demonstrated
on a quadrupedal robot in an unstructured environment. These
approaches have the advantage of being very adaptable in an
unknown environment due to the use of a state machine that
continuously checks for undiscovered areas within the map. The
main difference between this work and our approach is that their
method for obtaining topological skeletons uses wave propagation
and Voronoi diagrams, while our method uses a morphological
technique by treating the environment as an image. The impact of
this is that the morphological technique simplifies the mapping and
is thus computationally more efficient.

Furthermore, all the above methods of coverage path planning
have specific map generation algorithms that are an integral part
of the whole approach. Therefore, they are less modular, making it
difficult to replace them with developing state-of-the-art mapping
algorithms. In contrast, our approach can work with different types
of mapping algorithms, thus making it more modular.

1.2 Contribution

In this work, we address the gap in the state of the art through
the following key contributions.

1. We develop a control framework based on a finite state
machine that switches between different operation modes to
enable autonomous navigation and environmental inspection.

2. Using a prior 2D navigation map of the surroundings, the
framework rapidly generates an efficient path based on the
morphological skeleton of the map, which ensures coverage
from small to large areas.

3. We validate the developed system through on-field
experiments involving navigational tasks using the Unitree
Robotics Go2 Edu robot in an indoor environment.

4. We designed an extended interface that enables the Unitree
Robotics Go2 Edu to integrate with the control framework
using ROS 2.

5. The whole application is open source and available at https://
github.com/asil-lab/go2-autonomous-navigation

2 Materials and equipment

2.1 Hardware specifications

TheUnitree Robotics Go2 Edu features three degrees of freedom
(DOFs) per leg, consisting of hip, thigh, and calf hinge joints (from
base to foot). It is equipped with an inertial measurement unit
(IMU), an HD wide-angle camera, and foot-end force sensors. The
robot offers a battery life of 2–4 h and supports fast charging1.

For navigation and perception, the Go2 Edu is fitted with the
Unitree L1—a 4D LiDAR (3D position + 1D greyscale) based on
laser time-of-flight (TOF)—mounted on its mouth. This LiDAR
provides a 360° × 90° field of view (FOV), a measurement accuracy
of ±2.0 cm, and a scanning distance of up to 30 m with 90%
reflectivity. It integrates an IMU with a 3-axis accelerometer and 3-
axis gyroscope, has a proximal blind spot of 0.05 m, and features
a sampling frequency of 43,200 points per second. Additionally, it
operates with a circumferential scanning frequency of 11 Hz and
a vertical scanning frequency of 180 Hz2. The integrated LiDAR
sensor is also used for collision detection, which facilitates the
differentiation between free and occupied spaces in the environment
based on height. Additionally, it enables the generation of a 2D
map for navigation during run-time and self-localization ability with
respect to environmental features and the current state of the map.

Furthermore, the robot includes an expansion dock that houses
an NVIDIA Jetson Orin, providing computing power of 40–100

1 Go2 SDK Development Guide - About Go2 https://support.unitree.

com/home/en/developer/about_Go2

2  4D Lidar L1 Application Scenarios 4D Lidar L1 Efficacy — Unitree Robotic

https://www.unitree.com/LiDAR
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TOPS. It also comes with a manual two-handed joystick controller
for user operation. Additionally, in order to monitor the robot
remotely, a TP-Link TL-WR802N Nano WLAN Router is added
to establish a wireless connection between the robot and the
operator’s computer.

Finally, we also integrated external sensors on the robot
to measure ambiance characteristics such as temperature,
humidity, and light intensity. The integration of these sensors is
discussed in Supplementary Material A, but their usage is outside
the scope of this work and is, therefore, not detailed in this paper.

2.2 Software specifications

The Unitree Robotics Go2 Edu robot has a dedicated software
development kit (SDK), which allows custom implementations to
be programmed. This SDK uses a data distribution service (DDS)
as the networking middleware, which enables reliable and real-time
data exchange between the program and the robot3.

Using DDS, a ROS application (Macenski et al., 2022) is
also implemented to facilitate seamless communication between
distributed robotic components, thus ensuring real-time data
exchange, scalability, and interoperability across diverse hardware
and software platforms.

In particular, we use ROS 2 due to its additional benefits
compared to ROS 1, such as decentralization, simplicity, and user-
friendliness. We use the ROS 2 Foxy on Ubuntu 20.04 to develop
our proposed framework as these specifications are well-established
for the Unitree Robotics Go2 Edu robot.

2.3 SLAM

For the robot to determine its location within the environment
while simultaneously creating a map, we use simultaneous
localization and mapping (SLAM). SLAM allows the robot to
dynamically create a map based on the history of information and
localize the robot as a function of both the current measurement
and the map simultaneously (Stachniss et al., 2016). In our case,
a 2D map is sufficient because the robot can only navigate on the
ground surface in the x and y directions (excluding orientation
in the z direction). It is worth mentioning that Go2 Edu already
comes with its own SLAM implementation. However, at the time
of the development, it was not readily available due to the lack of
documentation. Moreover, we aim to maintain modularity so that
this implementation can be applied to other quadruped platforms,
with only the software modules bridging the proposed method
and the robot needing adaptation. Therefore, we use Macenski’s
SLAM_Toolbox to create a 2D map using a sequence of 2D laser
scans as input (Macenski and Jambrecic, 2021). A 2D laser scan
measures the distance to obstacles based on reflections detected by
the robot’s laser scanner at specific angles and time intervals. Using
a radial laser scanner, it can measure the layout of the surroundings
around the robot simultaneously in one measurement time-step.

3 Go2 SDK Development Guide - SDK Concepts https://support.unitree.

com/home/en/developer/SDK_Concepts

FIGURE 2
Pipeline diagram of filtering the point cloud for SLAM and 3D scanning
per measurement update.

Despite the strengths of Macenski’s SLAM implementation, the
integrated sensor that measures the geometry of the surroundings
is a LiDAR that outputs data as a 3D point cloud. To make
these data interpretable by the SLAM_Toolbox, we process the
LiDARmeasurements to identify the obstacles that the robot cannot
navigate through. To achieve this task, we develop a data processing
pipeline using the Point Cloud Library (PCL) (Rusu and Cousins,
2011), which transforms the input 3D point cloud/point _cloud/raw
into the desired 2D laser scans/scan. An overview of this pipeline is
shown in Figure 2. Notably, this pipeline also outputs another point
cloud/point_cloud/sampled, which is later used for environment
scanning, as described in Supplementary Material C.

2.4 Navigation

We use the Nav2 framework (Macenski et al., 2023) to ensure
that the robot can plan and navigate toward a desired pose (position
and orientation) in the environment, which is also completely
compatible with the SLAM_Toolbox discussed previously. Using the
2D navigation map provided by SLAM, the Nav2 framework can
plan and navigate a path as a function of the destination’s pose,
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the robot’s current pose, and the robot’s kinematic constraints with
respect to its surroundings. A 2Dpose is defined as x ≔ [x y ψ]T,
where x and y define the longitudinal and lateral displacements,
and ψ is the orientation of the robot about the z-axis (vertical
displacement).

TheNav2 framework includes an array of tools such as planners,
recoveries, and controllers. It is outside the scope of this paper
to experiment with different tools. Therefore, we mainly used the
default configurationwithminor adjustments that correspond to the
robot’s kinematics. Since the robot’s movement can be controlled
using 2D velocities ẋ, ẏ, θ̇ as inputs, we can consider the robot to
behave similarly to a differential wheeled robot. With this in mind,
we can use Nav2’s default planner NavFn Planner.

Finally, since the Nav2 framework requires a desired pose as
an input, it serves as a local planner and navigator. Therefore, in
order to achieve autonomy in the robot, we require a higher-level
navigation approach capable of identifying and selecting ROIs to
navigate within the environment.

3 Methods

In this work, we propose a novel framework for the Unitree
Robotics Go2 Edu robot for navigation in unstructured and
unpredictable environments. Figure 3 presents a system overview
highlighting the key modules. The key modules that are responsible
for the autonomous navigation are highlighted in red. To create
a graph of ROIs, the map reader examines the SLAM-generated
map and transforms it into a topological skeleton based on
its geometry (Section 3.1). Path planning is informed by the
graph, which creates an efficient path of ROIs, referred to
as waypoints, that the robot must follow during navigation
(Section 3.2). To control the high-level operation, a state machine
(Section 3.3) is used to switch between actions, e.g., it checks
when/whether each waypoint is complete, whether a fallback
strategy is needed, and whether human operator input is detected.
The communication between the modules is carried out via ROS
2 using an extended interface. More information on the extended
interface can be found in Supplementary Material B.

3.1 Map reader

To effectively cover the environment, the robotmust follow a path
thatensures it traverseseverycornerofthespace.Thispathshouldalign
with the trajectory of the occupied areas, e.g., corridors.This approach
is generally effective under the assumption that the environment is
confinedwithin a bounded, occupied space, such as an indoor setting.
In order to create the path, we process the 2D navigation map as an
8-bit array using the algorithm, as shown in Algorithm 1. M, H, and
W denote the map and the map’s height and width, respectively. The
map is divided into cells using the map resolution R in m/pixel. Each
of these cells is an element in M, mij, which only contains one of the
three types of space: occupied, free, and unknown, represented by the
integers 0, 255, and 128, respectively.

First, an indoor environment is considered. In such cases, most
unknown cells inside the map are located outside the boundaries
of the occupied area, e.g., beyond the walls. This is because

SLAM initially represents the environment as a grid of unknown
cells before any exploration occurs. Furthermore, unknown cells
often persist between occupied and free regions as a result of
occlusions encountered during raycasting-based measurements,
such as those performed using LiDAR, as shown in Figure 6a.
Consequently, this unknown space cannot be reached by the robot
and can be treatedas part of the boundaries—i.e., as occupied space,
as shown in Figure 6b.

To establish a smooth connection between occupied cells affected
by noise in the map, a Gaussian filter (D’Haeyer, 1989) is applied
using a standard deviation parameter σ ∈ ℕ, as shown in Figure 6c.
Subsequently, in order to restore the binary representation of the
occupied and free cells, the filtered result is binarizedusing a threshold
parameter κ ∈ [0,255]. A cell with a value greater than κis classified as
a free cell; otherwise, it is designated as an occupied cell.

Due to residual noise and the presence of transparent obstacles,
such as windows, there may be free cells that are unreachable to the
robot. To mitigate this issue, we assume that the navigable space for
the robot corresponds to the largest 2D contour. First, the contours
within the map are found using the marching cubes algorithm
(Lorensen and Cline, 1998).Themap is then reconstructed by filling
the largest 2D contour with a value of 255, as shown in Figure 6d.
It is worth noting that by filling only the largest contour, obstacles
within that contour are not takeninto account.

To ensure that the robot maintains a safe distance from the
occupied space during navigation, the free space in the map is
reducedusing a morphological filter called erosion (Khosravy et al.,
2017), as shown in Figure 6e. Erosion uses a structuring element
K, also referred to as a kernel, which determines the width to be
removed. For the sake of simplicity, we consider a square matrix
of 1s as our structuring element: K = 1k1Tk , where k determines the
length of the vector and k = 1,2,3,…. The larger the k value, the
larger the safe distance. In addition, the safe distance decreases as
Rdecreases. Therefore, k∝ R. This also removes narrow passages
that prove impassable for the robot.

The remaining free space is reduced to a thin one-pixel-
wide representation containing Opixels, which corresponds to the
topological skeleton of the map’s geometry, as shown in Figure 6f.
In a practical scenario, the time complexity of 2D skeletonization is
mainly proportional to the total number of pixels in an image Pas it
iterates until the object becomes one pixel wide. Therefore, it can be
consideredO(P)(Zhang and Suen, 1984).

The 2D skeleton map MS is then flattened into an unordered
set that describes the x- and y-positions of every 2D point by
transforming the pixel coordinates into real-world coordinates using
the origin o and resolution R of the 2D navigation map. Only those
pixels for which mS,ij = 255 are considered in this transformation.
Considering that the skeleton contains O pixels, it follows that there
areOwaypoints inV . We refer to every such 2D point defined by the
skeleton aswaypoints, which are denoted as vi ∈ ℝ2,where 0 ≤ i ≤ O.
The waypoints serve as points of interest for the robot to visit.

3.2 Path planning

In order to scan the whole environment, the robot should
perform the scanning procedure for each waypoint. Therefore, the
objective is to determine a path that includes every waypoint the
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FIGURE 3
System overview of the proposed autonomous navigation with scanning capabilities in an unstructured environment. Green, hardware modules; blue,
SLAM and Nav2 modules; red, autonomous navigation modules; purple, supplementary modules; and yellow, human agent.

1: Input: Navigation map, i.e., M ∈ ℕH×W

2: Input: Hyperparameters σ,κ,K,o ∈ ℝ2,R

3: V ← ∅
4: fori ∈ {1,…,H} do

5:    forj ∈ {1,…,W} do

6:       if[M]ij < 255 then

7:          [M]ij = 0

8:       end if

9:    end for

10: end for

11: M← GaussianFilter(M′, σ)

12: for i ∈ {1,…,H} do

13:    for j ∈ {1,…,W} do

14:       if [M]ij > κ then

15:          [M]ij = 1

16:       end if

17:    end for

18: end for

19: C← argmax|ci| FindContours(M)

20: M← FillAreaByContour(C)

21: M← Erode(M ∣ K)

22: MS← Skeletonize(M)

23: for i ∈ {1,…,H} do

24:    for j ∈ {1,…,V} do

25:       if [M]ij = 255 then

26:          V ← V ∪ {R[i j]T +o}

27:       end if

28:    end for

29: end for

30: return V

Algorithm1. The8-bit 2DnavigationmapM is processed into anunordered
set of waypoints V ,where each element is a waypoint v ∈ ℝ2.

robot must visit while optimizing for time efficiency. Ultimately,
this can be considered a Traveling Salesman Problem (TSP), which
we approach by formulating a fast and efficient path-planning
algorithm. It takes a connected acyclic graph G as the input and
outputs a path P , which is the ordered set of waypoints. In other
words, P is a sequence of vertices vi traversed by the robot.

In order to construct the graph G, we treat the unordered
set of waypoints V , obtained from the map reader, as the set of
vertices. Each vertex in V uniquely corresponds to the coordinate
vector of a waypoint and can, for the sake of simplicity, be denoted
as vi ∈ ℝ2, ∀i = 1 …,O. Each vertex is then connected to other
vertices if they are neighbors around the map’s resolution R. This
should resemble the skeleton representation of the map, where the
connections define the edges E of the graph G.

Algorithm 2 outlines the procedure for obtaining an efficient
path P

∗
for coverage exploration of the whole environment. First,

there are dead ends found in the skeleton representation of the
map. For the robot to cover the whole environment, we can utilize
these dead ends. Each dead end is identified as a leaf vertex vleaf ∈
Vleaf and is typically defined with degree 1. Assuming the graph
G is connected and acyclic, complete coverage of the map can be
achieved by ensuring that the robot visits every leaf vertex in Vleaf
in sequence. Since all other vertices in the graph lie on the paths
connecting the leaves, traversing to each leaf inherently requires
passing through the intermediate vertices. As a consequence, visiting
all leaf vertices implies that the entire graph has been traversed.

After identifying all leaf vertices, the leaf vertex closest to the
robot’s current 2D position x0 is selected as the initial source
leaf vertex vleaf,start using Algorithm 3. For every source leaf vertex
vleaf,start, we find the next nearest unvisited leaf vertex as the target
vleaf,target using FindNearestLeaf, as defined in Algorithm 3. We find
the shortest path P′ between the source vleaf,source and the target
vleaf,target given the graph G. To achieve this, we use the method
FindShortestPath, which essentially utilizes Dijkstra’s algorithm.
This algorithm has a time complexity of O(|E | + |V | log |V |), where
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1: Input: Define graph G(V ,E)
2: Hyperparameters:R, D, x0

3: Vleaf,total← ∅
4: for vi ∈ V do

5:    if degree(vi) = 1 then

6:        Vleaf,total← Vleaf,total ∪ {vi}

7:     end if

8: end for

9: Vleaf,visited← ∅
10: P ← ∅
11: vleaf,start← FindNearestLeaf(x0,Vleaf,total)

12: while |Vleaf,visited| < |Vleaf,total| do

13:    Vleaf,visited← Vleaf,visited ∪ {vleaf,start}

14:    vleaf,target←

FindNearestLeaf(vleaf,start,Vleaf,total\Vleaf,visited)

15:    P′← FindShortestPath(vleaf,start,vleaf,target ∣ G)
16:    for v′

i
∈P′ do

17:       if v′
i
∉P then

18:          P ←P ∪ {v′
i
}

19:       end if

20:    end for

21:    vleaf,start← vleaf,target

22: end while

23: P∗ ← ∅
24: for k← 0 to ⌊ |P |−1

D/R
⌋ do

25:    P∗ ←P∗ ∪ [P] D
R
k

26: end for

27: return P∗

Algorithm 2. A fast and efficient approach to planning a path P∗, with L
vertices, using the unordered set of waypoints obtained from the map
readerV , map resolutionR, waypoint resolutionD, and the robot’s starting
2D position x0.

|V | and |E | denote the total number of vertices and the total number
of edges in the graph, respectively (Barbehenn, 1998).

Once P′is found, each vertex v′i ∈ P
′is appended into P .

Unless some vertex v′i reappears as a path of a different path P′,
revisiting and scanning this position is unnecessary and should
be avoided to conserve time and computational resources. Once
iterated over all v′i in P′, vleaf,start is inserted into a set of visited leaf
vertices Vleaf,visited, and vleaf,target becomes the next source vleaf,start.
Not only is the shortest path useful for appending vi into P but
also for ensuring a feasible and unobstructed trajectory through
occupied spaces.

This is iterated until all leaf vertices have been added and P
is complete. Nevertheless, because the original distance between
every two waypoints is approximately equal to the map’s resolution,
a significant amountof time is spent on scanning with minimal
displacement. Considering that the robot has a large scanning range
capability of 30 m, which allows it to scan distances greater than
the map resolution, we can increase the distance between every two
waypoints to some arbitrary distance D by reducing P by a factor of
D/R,whereD ≥ R.This is achieved by selecting everyD/R th element
in P .

3.3 State machine

To achieve autonomy that enables the robot to visit the
waypoints and perform a scanning procedure in succession, an
activity diagram is formulated, as shown in Figure 4a. We can group
two or more activities as a singular state if the transitions are
consecutive without interruptions, e.g., a decision node. This state
will perform all activities in their respective order. On the other
hand, each decision node becomes a state that checks whether its
control variable has reached a specified threshold. Each state has a
conditionless trigger that automatically transitions the current state
to the next specified state at the end of its action.

With a FSM, we can achieve the desired autonomous navigation
based on the triggers by handling the sequence of actions. The
implemented state machine diagram is shown in Figure 4b. Each
state is explained as follows:

• In State: Load Map, an existing 2D navigation map is loaded
into SLAM, allowing the robot to localize itselfwith respect
to the map’s metadata (meter-per-pixel resolution, width and
height both in pixels, and origin as (x,y) in meters) and the
robot’s concurrent surroundings using 2D laser scans. After
this map is loaded, it is then analyzed to generate a list of
waypoints, each in (x,y) coordinates, for the robot to visit using
the map reader. An optimal route is then planned to visit all of
these waypoints, which reorders the original list using the path
planner. Finally, it automatically transitions to the next state,
State: Check Waypoints.
• State: CheckWaypoints allows the system to iterate over the list
of waypoints. If there are waypoints remaining, it removes the
waypoint in the first entry of the list and stores it as the current
destination, and it transitions to State: Check Destination. If
there is no waypoint left, it transitions to State: Home.
• In State: Check Destination, the state machine determines
whether the robot is already at the current destination with
some acceptable offset. This is carried out by determining
whether the Euclidean distance between the robot’s 2D pose
x and a destination’s pose xdes is less than or equal to a
set tolerance δ, where x,xdes,δ ∈ ℝ3, since the poses are
defined along the x- and y-axes and the yaw orientation
ψwith respect to the /map frame. If the condition is true, it
transitions to State: Scan. Otherwise, it transitions to State:
Move. It is worth noting that the path planner does not
account for the orientationψ. However, this orientation is likely
a necessary requirement of the scanning procedure, which
ensures that the robot is aligned with the desired orientation,
as described in Supplementary Material C.
• In State: Move, the robot is actuated to navigate toward
the desired destination. Navigation is considered successful
when the Euclidean distance between the robot’s current
pose x and the target destination xdes is less than or equal
to a predefined threshold δ. Alternatively, if the navigation
process exceeds a specified timeout duration Ttimeout, it is also
terminated. In either case, the system transitions back to the
Check Destination state. However, if the system detects an
interruption by a human operator via the joystick controller
mid-operation, the system promptly cancels the ongoing
action and immediately transitions to State: Manual Control.
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FIGURE 4
Comparison of (a) the activity diagram for autonomous coverage path planning and (b) its corresponding FSM diagram. (a) Activity diagram describing
the autonomous coverage path planning given a prior 2D navigation map. (b) FSM diagram based on the activity diagram.

• In State: Scan, the robot performs the procedure to scan
the local environment, which is detailed in Supplementary
Material C. Once it is completed, it transitions to State: Check
Waypoints.
• State: Manual Control allows the human operator to take over
the robot’s navigation and move it toward the destination.This
should happen in a case when the robot is traversing difficult
terrains or when the navigation framework is stuck at finding

the right solution. This state transitions to State: Scan once the
operator presses a button on the controller.
• In State: Home, the robot travels back to its starting position.
Once the robot arrives at the starting position, it lies down on
the ground and waits for new commands.

To sum up, the proposed framework for navigation consists
of three key modules: the map reader to extract POIs using the
2D navigation map as waypoints, the path planner to order the
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1: Function FindNearestLeaf

2: Input:x0 ∈ ℝ2 and V′
leaf

3: vleaf,nearest← 0

4: d←∞

5: forvleaf,i ∈ V′leaf do

6:    if|vleaf,i −x0| < d then

7:        vleaf,nearest← vleaf,i

8:        d← |vleaf,i −x0|

9:    end if

10: end for

11: return vleaf,nearest

12: End Function

Algorithm 3. Amethod to find the nearest leaf vertex vleaf,target from a set of
selected leaf nodes V′leaf to a given source x0 using Euclidean distances.

waypoints as an efficient route given the robot’s current position,
and the state machine to enable the robot to navigate toward every
waypoint and scan consecutively.

4 Results

To demonstrate the proposed framework and evaluate how
well it performs, we conducted the experiment in a level, indoor,
obstacle-free, non-convex environment. For evaluation, we used the
two following metrics:

1. Time efficiency: the time required to process the map to create
a path and reach each waypoint consecutively.

2. Reachability: the number of waypoints that the robot can reach
over the total number of waypoints planned in %.

The Go2 Edu robot was initially manually controlled via a
wireless controller to generate a 2D navigationmap using the SLAM
module.The experiment was then conducted, and the whole process
was repeated over five trials. The SLAM module’s map resolution
was set to 0.10 m. The point cloud buffer time was set to 0.25 s.
The laser scan’s minimal and maximal ranges were set to 0.50 m and
30.0 m, respectively. The smoothing standard deviation was set to
three.The crispification threshold was set to 128.The erosion kernel
K was set to 10 x 10 pixels. The waypoint-to-waypoint distance D
in path planning was set at 1.00 m. The robot’s maximum x-, y-,
and yaw velocities were set to 1.00 m/s, 0.50 m/s, and 0.80 rad/s,
respectively. The 2D navigation position and orientation tolerance
were set to 0.05 m and 0.08 rad, respectively, with a navigation
timeout of 10.0 s to replan. The scanning procedure module was
disabled to demonstrate the navigational tasks.

4.1 SLAM, map reader, and path planning

Before presenting the main results, we first validate the accuracy
of the 2D navigation maps generated by the SLAM module. The
average map is derived by normalizing over the five 2D navigation
maps obtained from five trials, as illustrated in Figure 5. The width
and height of these maps range between [196,225] and [185,231]

FIGURE 5
Derivation by normalizing over the five 2D navigation maps obtained
from five trials, where the inner corner of the left wing of the room is
taken as the origin, which is denoted as a red point. All five maps are
translated and rotated around the red point accordingly.

pixels, respectively. We take the inner corner of the left- wing
(upper left triangle of the map) of the room as the origin to align
the maps in position and orientation accordingly. Analysis of the
averaged map reveals that the right wing exhibits a wider range of
shades of gray about the occupied space, suggesting that this part
of the environment is slightly tilted relative to its actual orientation.
Nonetheless, this does not severely affect the map reader, path
planning, and navigation as the robot mainly localizes itself in its
immediate surroundings and the topological skeleton of themap can
still be found. For instance, as shown in Figure 6, themap reader can
still create waypoints mainly using the map’s geometry, which also
enables the robot to visit the corners by producing branches from
the main path to these corners.

To evaluate the time efficiency of the map reader, we record the
duration required to process each map across five trials, considering
a total of N = 100 instances. We vary the weights in terms of
the dimension per map. To facilitate a clearer representation in
the plot, we use the product of the dimensions, H×W, in pixels.
As shown in Figure 7a, we can observe that the average time taken
for themap reader ranges from2.34 ms to 2.70 ms over the five trials,
with an average standard deviation of approximately 0.30 ms. We
can also observe that the mean time increases by 22.0 ns for every
additional pixel in themap. For instance, with amap of sizeH×W =
106 pixels, the expected mean time is Tread ≈ 23.6 ms.

To remain within a maximum time taken of 1.0 s, the map
should not be larger than the size of H×W = 45.4× 106 pixels.
Assuming a square map with a map resolution of 0.10 m, this
maximum map has a length of 673.4 m. Hence, our proposed map
reader is fast for relatively small to large map sizes (ranging up to
45.4× 106 pixels) within a lead time of Tread = 1.0 s, especially when
the map reader is only run once to produce the waypoints given the
map’s geometry.
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FIGURE 6
Demonstration of the map reader’s pipeline using the 2D navigation map of trial 5 as input. (a) Original map. (b) Adjusted map. (c) Fuzzied map. (d)
Contour map. (e) Eroded map. (f) Skeleton map.
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FIGURE 7
Comparison of the mean time taken for (a) map reader and (b) path planner over five trials. (a) Mean time taken for map reader over five trials, iterated
over N = 100 plotted in blue dots, with standard deviation in 1σ as the vertical blue line. Trend line is 22.0 ns/pixel. (b) Mean time taken for path planner
over five trials, iterated over N = 500 plotted in blue dots, with standard deviation in 1σ as the vertical blue line. Trend line is 8.17 μs/pixel.

To determine the path planner’s time efficiency, we repeat the
same process with the evaluation of the map reader over N = 500
iterations per trial. Instead, we vary the weights in terms of the
number of waypoints per map. In Figure 7b, we can observe that
the mean time taken ranges between 1.40 ms and 2.00 ms. The
variances can be explained by the additional time required to find
the next nearest leaf vertex from a source vertex as it searches the
list sequentially. According to the trend line, the lead time increases
by 8.17 μs for every additional waypoint.Therefore, according to the
trend line, itmeans that for amapwith 1,000waypoints, the planning
time becomes Tplan ≈ 6.18 ms, and for a map of 106 waypoints, the
planning time is Tplan ≈ 8.17 s.

To stay within a lead time of 1.0 s, the number of waypoints
should not be larger than 1.219× 105. The bottleneck appears if the
map resolution R becomes small as it increases the number of pixels
per meter in a map. This can substantially increase the number of
waypoints by a factor of R/R′, where R′ is the new map resolution
and R′ < R. Nonetheless, the path planner can be considered fast
for a small to large number of waypoints, given a reasonable map
resolution R. It is also worth noting that it also runs only once to
produce the necessary path.

To verify the path planner’s performance, we first evaluate
the logic of whether it works as intended. Using one trial as
an example, we observe that the path planner has created an
optimal path in terms of time, based on the given waypoints
and the robot’s current 2D position, as shown in Figure 8a.
Furthermore, according to Figure 8b, we can observe that the mean
waypoint–waypoint distance is approximately 1.00 m, given the
previously set waypoint resolutionD. The variance can be explained
by the fact that the robot skips waypoints that have already been
visited as it is unnecessary to scan the same position twice. This
results in the robot having to travel distances of 1.00 m or more
for some intervals. In contrast to traveling a longer distance, the
robot can also visit the next waypoint in a shorter distance. This
is because the path splicing happens at the end of the algorithm,
whereby it results in a probability that two waypoints are less than
the set waypoint resolution. Nevertheless, this does not heavily affect

navigation, and the average waypoint distance is almost identical to
the set waypoint resolution D.

4.2 Navigational performance

To determine the robot’s navigational performance, we evaluate
it according to the two aforementionedmetrics, as shown in Table 2.
In addition, Figure 9 shows the time taken for each waypoint over all
trials.We can observe that the robot is able to reach 86.5%of the total
waypoints across all trials, with amedian time of 5.38 s perwaypoint.
As shown in Figure 9, this was achieved in an average time of 8.525 s,
with a standard deviation of 11.4 s.

We can see several outliers where the robot took time ranging
from 10.0 s to a few minutes to complete the navigation to the
adjacent waypoint, for instance, at waypoint 17 in trial 1. This
can be explained by Nav2 trying to create a local path that ends
precisely within the desired tolerances in position and orientation,
and because the robot requires a minimal input velocity in order
to move, it overshoots the target, causing Nav2 to replan the local
path. This can result in the robot becoming stuck indefinitely and
requires assistance from a human operator. For some of these
outliers, ranging from 30 s, human assistance is eventually required
to reposition the robot correctly within the desired position and
orientation tolerance.

Furthermore, Table 2 shows that in trials 3 and 5, the robot
failed to reach all of the waypoints. This is mainly due to map
drifts that occur over time and the fact that the SLAM module
was still operating by mapping the robot’s surroundings online.
This can be recognized, e.g., as two identical hallways slightly tilted
relative to one another, as shown in Figure 10. Due to the drift in
the navigation map, since the coordinates of the waypoints remain
the same, SLAM adjusts the 2D navigation map such that the later
waypoints appear in places that the robot cannot reach, such as in
the walls. Drift usually occurs because we only use relative sensors
to localize itself with respect to the surroundings, e.g., IMU, leg
encoders, and LiDAR. This can cause the uncertainty to increase
over time, which is inherent in odometry.
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FIGURE 8
Demonstrations of path planner’s performance. (a) An efficient path to explore the whole environment from the robot’s starting position (green) to the
farthest waypoint (blue) while visiting all other waypoints (black). Each arrow (red) denotes the direction from the source to the target. (b) Mean
distance between every two connected waypoints generated by the path planning per trial, as defined by the waypoint resolution D.

5 Discussion

Coverage path planning allows mobile robots such as
quadrupeds to explore the whole environment. This is especially

useful for applications such as surveillance, inspection, and
search and rescue. Nevertheless, limited work has been carried
out on autonomous navigation using coverage path planning on
quadrupeds. Therefore, we developed an open-source framework
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TABLE 2 Reachability and time taken for each trial, including key observations.

Trial Reachability (%) Total time (s) Median time per waypoint (s) Observations

1 100.0 443.2 5.40 Human assistance required at waypoint 17

2 100.0 397.0 5.30 Human assistance required at waypoint 36

3 82.61 287.2 5.40 Significant map drift occurred after 3 min, such that
the remaining eight waypoints were unreachable
(displaced into the occupied space)

4 100.0 322.3 5.40 Robot stalled at waypoints 6, 10, 18, 23, 28, 35, and
37–39 due to replanning

5 48.72 160.1 5.40 Significant map drift occurred after 2 min, such that
the remaining 19 waypoints were unreachable as they
displaced into the occupied space

FIGURE 9
Time taken in seconds for the robot to reach each possible unique waypoint over five trials. Gray dots describe waypoints that the robot has not been
able to reach. The outliers occurred due to Nav2 getting stuck at replanning, such that the navigation terminates within narrow desired tolerances, or
due to map drift.
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FIGURE 10
Drift in the map where the hall is doubled. The drift occurred
10 min after the autonomous navigation started in trial 3.

using ROS 2 that enables a Unitree Robotics Go2 quadruped to
autonomously navigate and visit every corner using a prior 2D
navigation map. It utilizes a map reader to extract a graph of 2D
waypoints using the topological skeleton of the map and a path
planner to create an efficient path with respect to time and the
starting position. A state machine is used to iterate over the ordered
list of waypoints and navigate them in succession.

The map reader and the path planner can quickly process maps
with widths and heights ranging from 196,225 pixels to 185,231
pixels in 2.52 ms and 1.7 ms, respectively. Their computation times
increasewith 22.0 ns/pixel and 8.17 μs/pixel, respectively. In a closed
and unstructured environment, the robot managed to reach 86.5%
of all waypoints over five runs. The failure can be explained due to
drifts occurring in the maps over time because SLAM still operates
online. Map drifts can be mitigated using absolute sensors such
as global positioning system (GPS) and ultra-wideband anchors.
Another issue that our path planning does not take into account
is obstacles inside the large free space. This can be mitigated by
subtracting the contours of said obstacles from the large free space.
Skeletonization will account for the creation of waypoints around
these occupied spaces. However, the presence of obstacles may
necessitate adjustment to the path planner as they can give rise to
cyclical graphs.

Compared to the state-of-the-art methods that use time-
constrained planning (Bouman et al., 2022; Ly et al., 2023) and
do not enable variable task execution times, our approach is
not constrained by a predefined time. While a time-constrained
approach is useful when the mission time is predefined, the
variable-time approach provides a more adaptable solution when
operating with limited knowledge. Unlike alternative state-of-the-
art approaches that enable time-variable exploration (Niu et al.,

2024), our approach is more computationally efficient due to the use
of a morphological technique to extract the topological skeleton of
the map. Even though the experimental conditions were different,
a rough comparison of the map generation magnitude based on
the results from each paper shows an order-of-magnitude difference
(milliseconds vs. microseconds).

Nevertheless, the proposed method is primarily suited for
known and static environments, rendering it unsuitable for real-
world applications with irregular and moving obstacles within the
environment and varying elevations. Future work will, therefore,
focus on extending the proposed method to incorporate real-time
autonomous coverage exploration in unknown 3D environments,
particularly under diverse environmental conditions and in the
presence of irregular and dynamic obstacles. Additionally, the
influence of variations in key parameters will be systematically
investigated. Moreover, the study will also investigate and aim
to improve drift issues commonly encountered in SLAM. Finally,
the proposed approach will be systematically compared with
existing 2D coverage path planning methods to evaluate its relative
performance and advantages.
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