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Development of automatic
insect-tracking robot system for
measuring local activity changes
in free walking

Ryoko Sekiwa � 1, Tatsuya Ibuki � 1 and
Shunsuke Shigaki � 2*
1Department of Electronics and Bioinformatics, Meiji University, Kawasaki, Japan, 2Principles of
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This study aims to develop a robotic system that autonomously tracks insects
during free walking to elucidate the relationship between olfactory sensory
stimuli and behavioral changes in insects. The adaptability of organisms is
defined by their ability to select appropriate behaviors based on sensory inputs
in response to environmental changes, a capacity that insects exhibit through
efficient adaptive behaviors despite their limited nervous systems. Consequently,
new measurement techniques are needed to investigate the neuroethological
processes in insects. Traditional behavioral observations of insects have been
conducted using free-walking experiments and treadmill techniques; however,
these methods face limitations in accurately measuring sensory stimuli and
analyzing the factors contributing to detailed behavioral changes. In this study,
a robotic system is employed to track free-walking insects while simultaneously
recording electroantennogram (EAG) responses at the location of the antenna of
the insect during movement, thus enabling the measurement of the relationship
between olfactory reception and behavioral change. In this research, we
focus on a male silk moth (Bombyx mori) as the target insect and measure
its odor source localization behavior. The system comprises a high-speed
camera to estimate the movement direction of the insect, a drive system, and
instrumentation amplifiers tomeasure physiological responses. The robot tracks
the insect with an error margin of less than 5 mm, recording the EAG responses
associated with the olfactory reception during this process. An analysis of the
relationship between EAG responses and behavior revealed that the silk moth
exhibits a significant amplitude in its EAG responses during the initial odor
source localization stage. This suggests that themoth does not necessarilymove
toward the strongest odor. Further information-theoretic analysis revealed that
the moth might be moving in the direction most likely to lead to odor detection,
depending on the timing of its olfactory reception. This approach allows for a
more natural measurement of the connection between olfactory sensory stimuli
and behavior during odor source localization. The study findings are expected
to deepen our understanding of the adaptive behaviors of insects.
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1 Introduction

Living organisms can survive and thrive by choosing appropriate
behaviors in a constantly changing environment. This ability
is generally called adaptability. Living organisms support this
adaptability by receiving environmental stimuli through their
sensory organs, processing stimuli in the brain, and converting them
into appropriate movements. The nervous system is responsible for
processing sensory stimuli and converting them into movements.
The basic structure and function of neurons, which are the elements
that make up the nervous system, are common to mammals
and insects. However, owing to their size, the nervous system of
insects is small, with only approximately 100,000–1million neurons,
which is significantly fewer than those of mammals (approximately
100 billion neurons). Even with this small neural system, they
can perceive changes in the environment and their body and
respond to them by generating various movements. Considering
that the diverse and sophisticated behaviors of these insects are
generated by a nervous system comprising only approximately one
million neurons, it is undeniable that they have energy-saving and
highly efficient signal processing and body control mechanisms.
Consequently, several attempts have beenmade to reconstruct insect
adaptability in robotic systems (Pfeifer et al., 2012;Webb et al., 2004).

Careful observation of the behavior of the target insect is
necessary to investigate their adaptability. This allowed us to
analyze themechanismof behavioral outputmodulation in response
to changes in the environment or body. The simplest way to
observe insect behavior is the so-called “free-walking (or flight)
experiment,” in which the insect is placed in an open space
and made to perform a desired task [e.g., (Rutkowski et al.,
2009)]. Behavioral changes can be continuously observed by placing
external cameras above or on the side of the space in which the
insect moves. However, measuring the sensory stimuli experienced
by freely walking insects has long posed a significant challenge.
Although such measurements can be achieved through advanced
electrophysiological techniques, simultaneously recording from
multiple sensory organs remains technically difficult. In response to
this limitation, research utilizing Drosophila melanogaster, which is
highly amenable to tools such as optogenetics and calcium imaging,
hasmade notable strides in the field. For instance, studies employing
systems like “Flyception” have successfully enabled quantitative
monitoring of brain activity via calcium imaging in freely walking
flies (Grover et al., 2016; Grover et al., 2020). Moreover, pioneering
research using geneticallymodifiedDrosophila that exhibit olfactory
behaviors in response to light stimulation has elucidated how flies
exploit the spatiotemporal dynamics of odor stimuli (Kadakia et al.,
2022). While these investigations have advanced our understanding
of how sensory inputs are processed and transformed into
behavior during free movement, there remains a critical demand
to explore navigational behaviors in non-model insects for which
genetic tools are not readily applicable. In the study of insect
behavior modeling, acquiring comprehensive datasets that link
sensory stimuli to behavioral outputs is of paramount importance.
Therefore, a treadmill technology for insects has been developed
to address this issue by measuring the relationship between
sensory stimuli and behavior. The treadmill technology can
be broadly divided into the servosphere (Meyer-Rochow, 1973)
and tethered methods (Dahmen, 1980). Both are behavioral

measurement devices for walking animals, and a virtually infinite
plane can be created by having the target organismwalk on a sphere.
This makes it possible to measure the relationship between sensory
stimuli and movement in animals that move over long distances,
even in laboratories with limited space.

The basic configuration of the servo sphere comprises a
measurement system for capturing the movement of an animal
(insect) and a drive system for controlling the sphere. The servo
sphere uses an observation system, such as a camera, to estimate
the direction of movement of the organism on the top of the
sphere; by controlling the sphere in the opposite direction to the
direction of movement, the measurement target is always kept on
top of the sphere, and the movement trajectory of the organism
is recorded. The target organism can be measured without contact
using this method; therefore, the servo sphere has the advantage
of obtaining a natural movement trajectory similar to that of a
free-walking experiment. A three-degree-of-freedom servo sphere
that compensates for the position and heading angle of the insect
has also been developed recently. Studies have reported that this
methodmakes it possible to simultaneously measure behavioral and
physiological responses (Shigaki et al., 2016). However, this method
has the disadvantage of applying a certain amount of inertial force
to the insect, which causes unnecessary external forces because the
sphere is dynamically controlled at each time step. In response to
this, the tetheredmethod, in which a part of the body of an organism
is fixed and placed on a sphere floating in the air to measure its
behavior, has long been used as a behavior measurement system for
walking organisms. Mechanical and electrical noises are generated
less than in the servo sphere system because the body of an organism
is fixed.Thismethod has beenwidely used as a tool in neuroethology
(Paulk et al., 2015; Guo andRitzmann, 2013; Shigaki et al., 2019b). In
addition, because providing sensory stimuli to organisms at a high
resolution is possible, a virtual reality system for insects has been
proposed, in which multiple stimulators are installed around the
insect and linked to a virtual space (Yamada et al., 2021; Ando et al.,
2021). However, body deformation may be alienated by fixing the
body of the insect. In addition, the insect moves in a different state
than the free-walking state. Moreover, in the case of a virtual reality
system for insects, the virtual space is a modeled environment, and
because the sensory stimuli are artificially reproduced for insects,
the sensory stimuli may differ from natural sensory stimuli. If we
could observe the state of sensory stimuli while the insect is walking
freely, we could obtain a correlation between sensory stimuli and
behavioral output in a more natural state, which would contribute
to a further understanding of the adaptive behavior of insects.

Therefore, this study primarily aims to develop a robot system
that automatically tracks a freely walking insect. This allows us to
simultaneouslymeasure local insect activitywhilemeasuringbehavior
to achieve a global goal. The basis of this robotic system is a large X-
Y stage, whose end effector is equipped with a high-speed camera
to observe the insect. The end effector refers to the moving part of
the X-Y stage shown in Figure 1. This high-speed camera is used
to estimate the moving direction of the insect, and the end effector
can be controlled to track the insect. We evaluated the robot system
by measuring the actual insect movement as it performs the odor
source localization task. Although odor is an invisible substance, it is
a signal that has excellent persistence and diffusibility; therefore, it is a
sensory stimulus that insects generally utilize for communication and
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FIGURE 1
Outline of the proposed automatic insect-tracking robot system.

exploration (Renou, 2014). Owing to technical difficulties, very few
studies have examined the relationship between odor stimuli and the
behaviorofmigrating insects inopenspaces (VickersandBaker, 1994).
In a previous study, an antenna cut from another insect was attached
to an insect scheduled for use in an open-space experiment, and the
odor-reception information at the position where the insect moved
was measured by recording the potential response from the antenna.
The technique of measuring electrical potential responses from the
antenna is called an electroantennogram (EAG), which records the
sum of the physiological responses of the olfactory receptor cells in
theantennatoanodorstimulus.Althoughmeasuringthephysiological
antennal responses of a moving insect is technically difficult, the
measured data are highly valuable because they clearly show which
odors cause the insect to switch its behavior. Therefore, we employed
the insect-tracking robot system proposed in this study to measure
the relationship between odor sensory stimuli and the localization
behavior of walking insects and analyzed this relationship.

2 Problem statement

We aimed to construct a robot system that automatically
tracks a freely walking insect and to clarify the relationship
between odor reception and behavior. In this study, the target
insect was a male adult silk moth (Bombyx mori), which elicits
female localization behavior in response to the sex pheromone
(Bombykol) (Kanzaki et al., 1992). The silk moth moves at an
average speed of 15 mm/s to reach the female (Yamada et al.,
2021). The novel robot system that tracks the silk moth during
female localization comprises the following: (1) An observation
system and a drive and control system that can adequately track
the movement of the silk moth. (2) A measurement system that
can reduce electrical and mechanical noise and stably measure and
record electrophysiological signals.

The components of the robot system are necessary for the
following reasons: The main role of the observation system
is to estimate the direction of insect movement, and tracking
performance is ensured using a high-speed camera to reduce the
amount of insect movement per frame. Moreover, the driving
and control system controls the X- and Y-axis motors based on
results from the observation system to maintain the position of
the end effector of the robot system on top of the insect. The
electrophysiological response measurement system is equipped
with an instrumentation amplifier attached to the moving end
effector, whichmeasures stable electrophysiological responses on the
end effector.

In this study, we conducted evaluation experiments to
simultaneously measure the EAG and behavior of an insect while
it searches for an odor source. Becausewe needed tomeasure the EAG
response at the position of the silkmoth, it was necessary to constantly
move the endeffector above the silkmothandmeasure theEAGat that
time. Since the body length of a silkmoth is approximately 30 mm,we
aimed to maintain a positional error of 5 mm or less. By maintaining
this error range, we can determine the timing and amount of odor
received by the silk moth. Therefore, we designed each element of the
robot system to achieve this control objective.Moreover, wemeasured
the relationship between the odor source search behavior and EAG of
the silk moth and evaluated the robot system.

3 Materials and methods

3.1 Study insect

The silk moths used in the experiments were purchased in
the pupal stage (Kinshu × Showa; Ehine Sansyu Co. Ltd., Ehime,
Japan). Emerged individuals were kept in an incubator at 16°C
and allowed to acclimate to the laboratory room temperature
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(24-26°C) for at least 15 min before the experiment. Silk moths
used for behavioral experiments and EAG recording were 2–5 days
old after eclosion. When attaching markers to the silk moth, an
adhesive (G17, KONISHICo.,Ltd., Osaka, Japan) that does not affect
behavior was used (Shigaki et al., 2016).

3.2 Automatic insect-tracking robot system

The robot system was built based on a commercially available
laser processing machine (FABOOL Laser Mini 150 cm× 150 cm,
SMART DIYs, Yamanashi, Japan). Details will be given in the
following section, and the robot system is equipped with a
high-speed camera (DFK33UX273, The Imaging Source, Bremen,
Germany), an amplifier (ISD2PAD, Oisaka Electronic Equipment
Ltd., Japan) for measuring physiological responses, and a small
microcomputer for log transfer. Operations from acquiring camera
images to controlling the motor of the laser processing machine
are carried out at 100 Hz. The fixtures for attaching the camera and
amplifier to the robot system were created using a 3D printer (ABS;
Creator3 Pro, Flashforge, Zhejiang, China) and laser processing
machine (Etcher Laser Pro, SMART DIYs, Yamanashi, Japan).

3.3 Amplifier for EAG recording

It must be recorded through an appropriate amplifier because
EAG is a small electrical signal. Based on previous research, the
EAG amplifier is equipped with high-pass (0.1 Hz) and low-pass
(300 Hz) filters and has an amplification rate of approximately
1,000 times (Shigaki et al., 2024). Electrodes (L-shaped pin headers,
Useconn Electronics Ltd., Zhejiang, China) for attaching an antenna
are attached to the amplifier, and conductive gel (Spectra360, Parker
Laboratories, United States) is used to promote the connection
between the antenna and the electrodes. EAG was recorded at a
sampling rate of 1 kHz. The acquired EAG data was passed through
a software low-pass filter with a cutoff frequency of 10 Hz.

3.4 Data analysis

R software (R Core Team) was used to create the
histograms. In addition, video footage was analyzed using
DeepLabCut (DLC) (Mathis et al., 2018). After analysis with DLC,
trajectoriesandEAGdatawere integratedusingaself-codedMATLAB
code (2023b, MathWorks, MA, United States). Information entropy
was calculated using Python with a self-coded program.

4 Construction of the automatic
insect-tracking robot system

Figure 1 shows a conceptual diagram of an insect automatic
tracking robot system. The end effector of the robot system was
equipped with a high-speed camera to estimate the movement
direction of the insect and an instrumentation amplifier to
measure electrophysiological responses.The robot system comprises
an observation system, a driving and control system, and an

electrophysiological response measurement system. Each system is
explained in detail below.

4.1 Observation system

The proposed system used a high-speed camera (DFK33UX273,
The Imaging Source, Bremen, Germany) to measure the moving
direction and speed of the insect and tracked the movement of the
silk moth without contact. Images were acquired at 100 fps with
a resolution of 1280× 720. The acquired images were processed
using the open-source library OpenCV (ver. 3.4.7, Intel, CA, United
States). The maximum translational and angular velocities of the
silk moth have been reported to be 32.8 mm/s and 1.0 rad/s,
respectively (Takashima, 2010). By using a high-speed camera
with 100 fps (Hz) to keep the translational error below 5 mm,
the expected error is 0.33 mm/frame, suggesting that the control
objective can be theoretically achieved. Therefore, we expected that
visual feedback could be used to track the insect sufficiently.

However, to set the control cycle to 100 Hz, the process from
measurement to calculation of the control command must be
completed within 10 m. Consequently, we need to minimize the
load on the image processing system. As in a previous study
(Shigaki et al., 2016), we attached two-color markers with diameters
of 2 mm to the silk moth and implemented an algorithm to calculate
the moving speed and direction of the insect using simple color
extraction. In particular, the color of the markers was extracted in
the HSV color space, and the center of gravity of each marker was
calculated as the marker coordinate. The red marker placed near the
head was defined as the position of the moth in the observation
coordinate system, and the approximate line connecting the two
markers was defined as the heading angle of the moth. The markers
were treated as points after image processing. As demonstrated in
a previous study (Shigaki et al., 2016), we confirmed that attaching
these markers did not interfere with the moth movement.

4.2 Driving and control system

This robot system was based on a laser processing machine
(FABOOL Laser Mini 150 cm× 150 cm, SMART DIYs, Yamanashi,
Japan). Stepping motors were attached to the X- and Y-axes, and
the position of the end effector can be controlled by providing
commands to the stepping motors. The position of the end effector
can be controlled by transmitting the relative position information
in G-code. Relative position was defined as the position error
between the origin of the camera coordinate system (Σc) calculated
using the observation system and the insect, as shown in Figure 2A.
This position error has the same meaning as the tracking error for
evaluating tracking performance.

We employed a proportional-integral-derived (PID) controller
to control the robot system. The Ziegler-Nichols’ closed-loop
method was used to determine each parameter of the PID control,
and the final fine parameter adjustment was performed empirically.
The results of calculating the frequency response of the robot
system using PID control are shown in Figure 2B. Consequently, the
bandwidth was found to be approximately 2 Hz for both the x- and
y-axes.The robot systemhas been suggested to be capable of tracking
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FIGURE 2
Components of the automatic insect-tracking robot system. (A) Definition of the camera coordinate system. Calculating the distance and angle from
the camera origin to the silk moth. (B) Frequency response characteristics for each axis of the robot system. Both axes are more than twice as high as
the silk moth’s movement switching frequency, demonstrating sufficient tracking performance. (C) Error when tracking a silk moth performing odor
source localization behavior. Both axes are kept to less than 5 mm, allowing the EAG measurement unit to be placed above the silk moth’s head at all
times. (D) The profile and definition of the EAG response in a static state to a single odor stimulus. Tr: Response time, Td: Recovery time. (E) Typical EAG
response waveform to periodic odor stimulation when the distance between the odor outlet and the antenna is constant. (F) Operational confirmation
of the physiological response measurement system. The EAG responses are shown when the robot system is subjected to periodic motion, with and
without the odor being ejected.

the silk moth while searching for an odor source because the period
during which the silk moth changes its behavior significantly from
side to side is approximately 1 Hz or less.

In addition, in a preliminary experiment, we measured
the tracking error while the silk moth searched for an odor
source. When the tracking error was plotted as a histogram,
as shown in Figure 2C, we found that the errorwhile tracking the silk
moth was less than 5 mm on both axes, indicating that the control
target was achieved.

4.3 Physiological response measurement
system

An instrumentation amplifier (ISD2PAD, Oisaka Electronic
Equipment Ltd., Japan) was attached to the end effector to measure
electrophysiological responses. This study aimed to measure the
odor reception state during an odor source search using an EAG;
therefore, the instrumentation amplifier was customized for EAG
measurement. The instrumentation amplifier was equipped with
a 0.1 Hz high-pass filter and a 3 kHz low-pass filter and had an
amplification rate of approximately 1000 times. The data recorded
using this amplifier were collected on a small microcomputer
(TinyPICO, Unexpected Maker, Melbourne, VIC, Australia) using
an AD converter (MCP3208, Microchip Technology, AZ, United
States) and then wirelessly transferred to a recording PC. The
sampling rate and EAG recording cycle were set to 1 kHz.

The response profile obtained from EAG measurements in
a static condition, where the distance between the odor source
and the antennae is fixed, is illustrated in Figure 2D. As depicted
in Figure 2D, the time taken to reach the peak following odor

stimulation is defined as the response time (Tr), while the time
required for the response to return from the peak to the baseline
is defined as the recovery time (Td) (Shigaki et al., 2019a). In a
static context, for single odor stimuli, the response time is typically
within 10 milliseconds, and the recovery time generally exceeds
100 milliseconds. However, this is an example measured under
static conditions, and these profiles may change if the odor is
received in a dynamic situation. In addition, it is important to
note that different receptor cells respond to different types of
odors; therefore, EAG waveforms differ depending on the odorant.
Moreover, in response to periodic odor stimuli, it shows attenuation
characteristics as shown in Figure 2E. Figure 2F shows the results
of the EAG measurement performed with the robot system turned
on and the motor vibrating slightly. An odor stimulus of 1 Hz was
emitted from an odor source located approximately 10 cm away.
As shown in Figure 2F, the EAG response was measured in response
to odor stimulus, demonstrating that the EAG can bemeasured even
in the presence of electrical or mechanical noise.

5 EAG-behavioral simultaneous
measurement experiment

5.1 Preparation for EAG recording

EAG was used to estimate the level of odor reception by silk
moths during odor source localization. In this study, the EAG
measurements were performed using the antenna of another silk
moth, i.e., the “third antenna,” as in the previous study (Vickers
and Baker, 1994). The antenna used for the EAG was an adult male
silk moth 2–7 days after emergence. The silk moths were purchased
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in the pupal state (Kinshu× Showa; Ehine Sansyu Co. Ltd., Ehime,
Japan). The emerged silkworm moths were managed under a 16:8 h
light:dark photoperiod at 18°C and 50–60% relative humidity using
an incubator (CN-40A, Mitsubishi Electric Engineering Co.).

Theantennaofasilkmothwascut fromitsheadandattachedto the
electrodes on an amplifier using a conductive gel (Spectra360, Parker
Laboratories, NJ, United States). We confirmed in advance whether
the EAG could be correctly recorded from the antenna attached to the
electrodesbyprovidingasingleshotofthesexpheromone(Bombykol).
The antenna was then fixed in the designated position on the end
effector.ApreviousstudyexaminingthesensitivityandstabilityofEAG
recording after antennae isolation has shown that the EAG response
does not deteriorate within an hour after isolation (Martinez et al.,
2014). In the silk moth EAGmeasurements, preliminary experiments
similarly showed that therewasnodifference in responseperformance
within about 45 min after isolation; therefore, we set the time from
antenna isolationtothecompletionof thesimultaneousEAG-behavior
experiment to be within 30 min.

5.2 Conditions for odor-source search
experiment

As illustrated in Figure 3A, odor source localization experiments
were conducted in a flat open area. Bombykol, the sex pheromone
of a female silk moth, was used as the odor source at the origin
of the experimental field (x, y) = (0, 0)[m]; it was placed as the
odor source. A 1000-ng concentration of bombykol was applied to
a filter paper with a diameter of 10 mm. The pheromone-coated
filter paper was replaced after each experiment. Air was blown
over the filter paper at a flow rate of 4.0 L/min to disperse the
odor into the surrounding space. The pheromone concentration
employed in this experiment corresponds to the average amount
of bombykol emitted by female silk moth (Fujiwara et al., 2014).
Furthermore, females have been reported to release bombykol at a
frequency of 0.79 ± 0.05 Hz (Fujiwara et al., 2014), and accordingly,
in past behavioral experiments, a similar value was used, 1 Hz
(duration: 0.2 s, interval: 0.8 s) (Yamada et al., 2021; Kanzaki et al.,
1992). Therefore, in this study, the air used to deliver the odor was
regulated by an electromagnetic valve, and the odor was emitted
at a frequency of 1 Hz (duration: 0.2 s, interval: 0.8 s). A electric
fan (YLS-18, Yamazen Corporation, Osaka, Japan) was positioned
0.5 m behind the odor source to facilitate the diffusion of the
pheromone. The voltage was controlled so that the wind speed
generated by the fan was approximately 0.6 m/s at the odor source.
This wind speed was the same as in previous silk moth behavior
experiments (Kanzaki et al., 1992). The silk moth was positioned at
(x, y) = (150, 0)[mm], and the odor-source localization experiment
commenced. The initial position from the odor source was also
designed based on previous behavioral experiments with silk moths
(Kanzaki et al., 1992). Localization was considered successful when
the silk moth reached a position within a 10-mm radius of the
odor source. However, localization was considered to have failed
if the silk moth failed to achieve localization within 180 s. The
movements of the silk moth were captured using a camera (FDR-
AX45A, Sony, Tokyo, Japan) installed on the side of the field and
converted into trajectory data. These experimental conditions were
set to closely follow those used in previous experiments with freely

walking silk moths (Kanzaki et al., 1992). The silk moths used
in the odor source localization experiments were 2–7 days old
after emergence. Before starting the behavioral experiment, the silk
moths were removed from the incubator, markers were attached,
and they were allowed approximately 1 h to become accustomed to
the temperature of the behavioral experiment space. Fourteen silk
moths were used in the odor source localization experiment.

5.3 Results of the odor-source localization
experiment

The results of the odor-source search experiment revealed
that all 14 individuals successfully localized the odor
source (see Supplementary Video S1). The time required for odor-
source localization was 24.8 ± 16.2 s. Due to interindividual
variation in body size, discrepancies in locomotion speed were
observed, resulting in variability in the time required for odor
source localization. Nevertheless, it was demonstrated that all
silk moths, regardless of differences in body size and associated
locomotor speed, were capable of successfully localizing toward the
odor source.

Figure 3B shows typical time-series data of EAG responses
from a simultaneous EAG measurement experiment and behavior
during odor-source localization. The time-series data revealed that
odor reception began immediately after the experiment began.
The EAG amplitude was defined as the EAG intensity, and the
localization trajectory was displayed in a color corresponding
to the EAG intensity to visualize the relationship between odor
reception and behavior. Figure 3C shows the relationship between
the EAG intensity and trajectory.The EAG intensity was normalized
between 0 and 1; the closer the intensity to 1, the higher the
concentration of the odor received. Places with strong EAG intensity
are marked with numbers, as shown in Figures 3B,C. We found
that strong odor reception resulted in straight-line movement. To
quantitatively assess this phenomenon, we plotted the relationship
between the EAG amplitude and translational speed, as illustrated
in Figure 4A. The results indicate that once the EAG amplitude
exceeds 1 mV, the translational speed becomes markedly greater
compared to conditions in which the amplitude remains lower. This
phenomenon is similar to previous research results that investigated
the relationship between odor reception and straight-line behavior
using a tethered measurement system (Takasaki et al., 2012).
Experiments with this robot system have revealed that the same
phenomenon is observed during actual odor-source localization.
Furthermore, as shown in Figure 3C, the silk moth approached the
odor source by exhibiting cast-like behavior commonly observed
in flying insects, with 7 out of 14 individuals demonstrating this
phenomenon. To quantitatively show which direction silk moths
that exhibited cast-like behavior moved after encountering an odor,
we calculated the moving ratio in the upwind, downwind, or
crosswind direction as shown in Figure 4B. As a result, we found
that while a silk moth moved in the upwind direction about
50%, it also moved in the downwind and crosswind directions.
This is because the behavioral strategy of silk moths differs from
that of flying insects, and when they encounter an odor, they
adopt a surge behavior in which they move in the encountered
direction (Takasaki et al., 2012). However, looking at the global
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FIGURE 3
Results of the simultaneous EAG-behavior measurement experiment. (A) Field conditions for the localization experiment. The silk moth begins
searching from a position 150 mm away from the odor source. (B) A typical example of EAG time series data. We confirmed that the amplitude changes
over time. (C) The relationship between the localization trajectory and EAG intensity. Redder colors indicate larger EAG amplitude, and bluer colors
indicate smaller amplitude. The purple triangles in (B,C) represent EAG timings with large amplitudes, and their numbers correspond to each other. (D)
EAG intensity map for all individuals (N = 14). It is suggestive that EAG intensity is greater at the beginning of searching. (E) Odor map of the
experimental field measured with an odor sensor.

FIGURE 4
Results of behavioral analysis. (A) Relationship between EAG amplitude and translational velocity. (B) Proportions of upwind and crosswind movements
in individuals exhibiting cast-like behavior.

trajectories, it was suggested that they also move in the crosswind
direction to gain a chance to encounter an odor.

The relationship between this trajectory and the EAG intensity
for all individuals is depicted in Figure 3D as a three-dimensional
color map. For comparison, an odor concentration map of the
experimental field, generated using an artificial olfactory sensor
(MiCS-5524 Gas Sensor Breakout, Adafruit Industries, NY, United
States), is presented in Figure 3E. When employing the artificial
sensor, it is evident that odor concentration increases in proximity
to the odor source. However, from Figure 3D, we can see that
for all insects, the EAG intensity tends to be higher during the
early stages of searching, away from the odor source. A new
insight emerged for comprehensive decision-making based on the
time-series data in Figure 3B and the three-dimensional color
map in Figure 3D: The amplitude of the EAG did not necessarily
increase as the insect approached the odor source, where the
odor concentration was expected to be higher. The ratio of the

maximum EAG amplitude observed during localization behavior
to the EAG amplitude measured closest to the odor source was
calculated to be 0.47 ± 0.28 (N = 14). This indicates that, in
proximity to the odor source, the EAG output is reduced to
approximately half of its maximal response. This suggests that
the silk moth does not simply move toward areas with higher
odor concentrations. As one approaches the odor source, exposure
to odor stimuli becomes increasingly periodic; however, EAG
responses exhibit an attenuation characteristic in response to such
periodic stimulation. Figure 2E shows a typical EAG response
to 0.7 Hz odor stimulation, with the amplitude decreasing after
multiple odor stimulations. This decrease in amplitude recovered
to some extent if the antenna did not receive any odor stimulation
for approximately 5 s, suggesting that it reduced the response
sensitivity to continuous odor stimuli near the odor source. Instead,
it effectively reduces the distance to the odor source based on
other cues. Next, we evaluated these experimental results using an
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information-theoretic approach to further analyze the behavior of
the insects in greater detail.

5.4 Information entropy-based analysis

The factors enabling odor source localization in the silk
moth (Bombyx mori) were analyzed from an information theory
perspective. In particular, a quantitative analysis was performed
by calculating the information entropy during the odor source
localization behavior of the silkmoth.The link between information
entropy and odor source localization was first proposed using
infotaxis, which does not rely on odor gradients to locate the
odor source (Vergassola et al., 2007). Hernandez et al. (Hernandez-
Reyes C. A. et al., 2021) reported the basic concept of using
information entropy to analyze insect behavior. In this study, the
analytical method of Hernandez et al. was applied to the results
of the simultaneous EAG behavior measurement experiments. In
this approach, the calculation is based on the timing of the insect’s
encounter with the odor rather than on odor concentration. In
the EAG data, the timing of the peak (falling timing) of the
EAG response was automatically detected using the MATLAB
peak detection function (findpeaks, 2023b, MathWorks, MA,
United States). The peak was then used as the timing for
encountering the odor.

Fundamentally, information entropy St is calculated from a
probability density function, as shown in Equation 1.

St = −∫Pt ln(Pt)dr, (1)

where, r represents the location of the searcher (silk moth). This
probability density function is computed based on Bayes’ theorem,
as expressed in Equation 2. The likelihood function used in the
calculation of the probability density function is updated at each
time step based on the encounter rate with the odor, as shown in
Equation 3.

Pt (r0) =
L(Γt|r0)

∫L(Γt|rx)drx
(2)

L(Γt|r0) = e
(−∑∫ViR(rt′|r0)t

′)
n

∏
i=1

R(rti|r0) (3)

Here, the Vi’s is the time intervals of absence of detections, r0
represents the location of the odor source, and rx represents the
location of the insect in the x direction at time t. The expected rate
of odor encounter, R(r|r0), was calculated using Equation 4 based
on an estimation of the plume parameters, such as the wind speed
W, the emission rate of the source E and the insect position in x
direction.

R(r|r0) =
aE
|r−r0|

e
( −|r−r0|λ )e

(
(x−x0)W

2D )

λ = √ Dτ
1+W2τ/(4D)

(4)

Essentially, the basic principle of infotaxis is that when the
searcher is at Pt(r0|r) at time t, the odor source is represented as a
probability density function, in which the odor source is located at
r0. Herein, the parameters used to calculate the information entropy
are as follows: agent sensor size a = 10 mm, emission rate E =
1, particle lifetime τ = 6.3, and particle difficulty D = 0.057. These

values were obtained from Ref. (Vergassola et al., 2007; Hernandez-
Reyes C. A. et al., 2021). Relative entropy is the ratio of the entropy at
a certain time step to the entropy at the beginning of the search, i.e.,
St/S0. Figure 5A shows the relative entropy trends of all insects. The
gray line in Figure 5A represents the relative entropy of each trial,
the red line represents themean, and the thin red area represents the
standard deviation. After the search began, we found that the insects
all migrated with reduced information entropy. This suggests that
silk moths may approach the target odor source by using the timing
of the odor encounter as an indicator.

Estimating the probability of the odor source (i.e., the estimated
position of the odor source) is possible while calculating the
information entropy. Hence, we visualized the positions at which
the silkmoth estimated the odor source location during localization.
Notably, it is unlikely that a similar mapping of the estimated
location of the odor source occurs in the brain of the silk moth,
which has a smaller number of neurons, and that the visualization
of the estimated location in this study was simply introduced as
an analytical method. Figure 5B shows a graph showing the time
series changes in the error between the true odor source and
the estimated source location for 14 silk moths. The gray line in
Figure 5B represents the relative entropy of each trial, the red line
represents the mean, and the thin red area represents the standard
deviation. On average, the error tended to be smaller 5 s before
localization. Figure 5C and (D) show the results of calculating
the estimated odor source location (see Supplementary Video S2).
The time series changes in information entropy in Figure 5C are
related to the estimation results in Figure 5D, and the numbers on
the triangles in Figure 5C correspond to the results in Figure 5D.
Moreover, this trajectory follows the same data as in Figure 3C.

Theodor source locationwas rather diffused in the early stages of
localization when no information had been accumulated. However,
as localization progressed and more odor information was gathered,
the estimated odor source position moved closer to the actual odor
source location. Finally, the odor source was estimated to be close
to its actual position, suggesting that even the silk moth, which
typically reacts reflexively to odor stimuli, possesses a strategy for
efficiently approaching the odor source.

Thus, we suggest that selecting behavior appropriately based
on the timing of odor encounters rather than simply moving in
the direction of the strongest odor is adaptive for effective odor
source localization. This study contributes to the understanding
of the excellent navigation capabilities of insects by developing
an insect-tracking robot system, enabling the measurement of the
relationship between odor reception and behavior during the odor
source localization of the silk moth, and analyzing the interrelation
between them.

6 Discussion

All organisms, regardless of their size, possess the navigational
abilities required to reach their destinations. This study primarily
focuses on tasks involving navigation, where olfaction plays a
dominant role. As odors propagate through space via the air, their
diffusion is strongly influenced by wind conditions. Consequently,
obstacles blocking the wind may lead to entirely different odor
behaviors compared with open spaces. Therefore, the device
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FIGURE 5
Results of information-theoretic analysis. (A) Changes in information entropy across all trials. (B) Changes in the error between the true odor source
and the estimated source for all individuals. For (A,B), grey represents trials for each individual, the red line represents the mean value, and the light red
area represents the standard deviation. (C) Changes in information entropy for the results in Figure 3C. (D) Changes in the estimated location of the
odor source when calculating information entropy. The numbers represent the same as those in (C).

used to track the insect searching for an odor source must be
positioned away from the insect to avoid acting as an obstacle.
Previous studies proposed an insect-following robot system capable
of omnidirectional movement using omni-wheels, which was
employed to investigate the phototaxis of pill bugs (Shirai et al.,
2022). This robot system has the advantage of being self-propelled,
which means it can follow pillbugs infinitely. However, the system is
unsuitable when targeting a sensory stimulus, such as an odor, as in
this case, because the wheels required for self-propulsion complicate
the diffusion of the odor. In this study, we adopted an X–Y stage
model that ensures that no obstructions surround the insect, thus
providing a setup that closely resembles an open space. This setup
offers the advantage of investigating the olfactory capacity of the
insect while maintaining a close-to-natural environment. However,
the X–Y stage in this study is limited to a size of 1.5× 1.5 m, which
presents a problem: if the insect moves beyond this area, following
it becomes unfeasible. This issue is one of the limitations of our
study. Another option, as seen in a previous study (Pannequin et al.,
2020), is to robotize the entire laboratory space and continue
following the insects. However, such an approach would be costly
in terms of space and financial resources, making it impractical.
Furthermore, the need to install pillars for cameras that continuously
track the insect could create air vortices, potentially disturbing the
surrounding environment of the insect. Another limitation of this
study is that the moving silk moth and EAG could not be recorded
from exactly the same space. As a method for elucidating the
relationship between sensory stimuli and behavioral output during
odor-source localization, one potential approach involves presenting
a light field that simulates odor plumes to optogenetically engineered
silk moths, following precedent set by prior studies in Drosophila
(Kadakia et al., 2022), and subsequently analyzing their localization
behavior. This method allows us to confirm how behavior changes
depending on the odor flow and strength, but it has the weakness
of indirectly measuring odor sensation without looking at the actual

physiological response of the antennae. Alternatively, this problem
may be solved by using an engineering tool called the insect-
controlled robot system that we have proposed (Shigaki and Ando,
2024). The insect-controlled robot is a system that adds mobility
to a conventional tethered behavior measurement device; therefore,
electrodes can be inserted into the antennae of the insect to stably
measure EAG, and the insect can realize odor source localization
by controlling the robot. For larger and more robust insects or
animals, telemetry could be used to measure neural responses
(Ando et al., 2002; Fehlmann and King, 2016). However, developing
telemetry for smaller and less powerful insects will be necessary in
the future.

An analysis of the relationship between the electroantennogram
(EAG) and the behavior measured by our robotic system reveals
a tendency for a stronger EAG amplitude during the initial stages
of localization rather than near the odor source when the insect is
farther from the source. An examination of the EAG response to
periodic odor stimuli revealed that silk and hawkmoths both exhibit
a reduced amplitude (Martinez et al., 2014; Shigaki et al., 2020).
As shown in Figure 2E, upon reviewing these time-series data, we
found that, while a large amplitude was generated in response to the
initial odor stimulus, subsequent stimuli led to a gradual attenuation
of the amplitude. It has been reported that within the primary
olfactory center, the antennal lobe, neural responses tend to exhibit
attenuation following repeated odor stimulations, in comparison to
the initial odor stimulus (Fujiwara et al., 2014). This suggests that
insect olfaction may exhibit nonlinear characteristics in response to
periodic odor stimuli. This nonlinearity could explain why the EAG
amplitude was the largest during the initial stages of localization and
why it did not reach its maximum even as the insect approached the
odor source. Intuitively, in situations where the odor concentration
is extremely high near the source, constant sensitivity may cause the
insect to lose its directional orientation,making it difficult to discern
the correct direction of the odor source. As the male approaches the
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vicinity of the odor source, it is imperative that he reliably localize
the female and initiate mating behavior. Consequently, if the male
silk moth continues to move at high speed, it may lose accuracy
and the certainty of its localization to the female may decrease.
Thus, while a coarse searching strategy may be advantageous in
the initial phase, it becomes increasingly important to adopt a
more cautious and higher-resolution search as the male nears
the target. This modulation of search granularity—from sparse to
dense—has also been reported to enhance odor source localization
performance in robotic systems (Shigaki et al., 2017), suggesting that
it constitutes a critical factor in solving localization tasks. Therefore,
it is plausible that this nonlinear characteristic plays a significant role
in odor-source localization. Investigating the relationship between
the nonlinear characteristics of insect olfaction and their ability
to localize odor sources is a key direction for future research.
To investigate the nonlinearity at the sensor level, one effective
approach would be to use the experimental framework in which
an insect antenna is utilized as an odor sensor to control robots
or drones (Martinez et al., 2013; Anderson et al., 2020). Moreover,
it remains unresolved whether the insect brain indeed modulates
its olfactory threshold during odor-source localization because our
study assessed only the relationship between EAG responses and
behavior. Addressing this question will require future experiments
involving electrophysiological recordings or imaging techniques to
monitor neural activity within the brain in real time.

Methods for analyzing the behavioral experimental
data of organisms, including insects, using an information-
theoretic approach have recently become increasingly prevalent
(Maekawa et al., 2020). By applying an information-theoretic
analysis, it is possible to uncover new insights that may not be
revealed through traditional statistical methods. In this study, we
quantitatively analyzed the odor-source localization strategy of
an insect based on information entropy, revealing that reflexive
behaviors are appropriately modulated in response to sensory
stimuli, allowing the insect to move toward directions where odor
acquisition was likely. In the calculation of information entropy,
the present study identified peaks in the EAG responses and utilized
these as indicators of odor detection timing. However, depending on
environmental factors such as wind dynamics, the frequency of odor
release, and the distance from the odor source, the EAG signal may
not always exhibit distinct peaks. Given such potential conditions,
it seems that insects detect odors by setting a threshold for the
intensity of the odor signal they receive. In-depth investigation
of the information processing required for odor detection will
also contribute greatly to elucidating robust localization behavior.
When implementing biological intelligence as an algorithm in the
context of robotics, it is essential to understand the criteria by
which organisms select their behavior. One approach to achieving
this understanding is inverse reinforcement learning (IRL), which
has been used to model behaviors such as the migratory patterns
of seabirds (Hirakawa et al., 2018), the thermotactic behavior in
the nematode C. elegans (Yamaguchi et al., 2018), and to estimate
reward functions in a moth (Hernandez-Reyes C. et al., 2021). A
key advantage of IRL is its ability to derive the reward function
governing decision-making when considering an organism as an
expert. This enables a generalized representation of the decision-
making process. Moving forward, a promising approach would be
to analyze and model these behavioral experimental data using

machine learning techniques, ultimately aiming to develop more
generalized and capable robotic systems.
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