
TYPE Original Research
PUBLISHED 09 June 2025
DOI 10.3389/frobt.2025.1603729

OPEN ACCESS

EDITED BY

Navneet Kumar,
National Academy of Agricultural Research
Management (ICAR), India

REVIEWED BY

Amlana Panda,
KIIT University, India
Kushagra Agrawal,
KIIT University, India
Puneet Kumar,
ICAR-Central institute of Temperate
Horticulture Srinagar, India

*CORRESPONDENCE

Josie Hughes,
josie.hughes@epfl.ch

RECEIVED 31 March 2025
ACCEPTED 21 May 2025
PUBLISHED 09 June 2025

CITATION

Szymańska E and Hughes J (2025) Robotic
optimization of powdered beverages
leveraging computer vision and Bayesian
optimization.
Front. Robot. AI 12:1603729.
doi: 10.3389/frobt.2025.1603729

COPYRIGHT

© 2025 Szymańska and Hughes. This is an
open-access article distributed under the
terms of the Creative Commons Attribution
License (CC BY). The use, distribution or
reproduction in other forums is permitted,
provided the original author(s) and the
copyright owner(s) are credited and that the
original publication in this journal is cited, in
accordance with accepted academic practice.
No use, distribution or reproduction is
permitted which does not comply with
these terms.

Robotic optimization of
powdered beverages leveraging
computer vision and Bayesian
optimization
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The growing demand for innovative research in the food industry is driving the
adoption of robots in large-scale experimentation, a shift that offers increased
precision, repeatability, and efficiency in product manufacturing and evaluation.
This paper addresses this need by introducing a robotic system that extends
automation into optimization and closed-loop quality control, using powdered
cappuccino preparation as a case study. By leveraging Bayesian Optimization
and image analysis, the robot explores the parameter space to identify the ideal
conditions for producing cappuccinowith high foam quality. A computer vision-
based feedback loop further improves the beverage by mimicking human-
like corrections in preparation process. Findings demonstrate the effectiveness
of robotic automation in achieving high repeatability and enabling extensive
exploration of system parameters, paving the way for more advanced and
reliable food product development.
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1 Introduction

Food science is starting to play a significant role in the worldwide search for life
improvements. Considering the growth of the humanpopulation and the dangers of human-
induced pollution, the need to move towards more sustainable and efficient food sources is
of utmost priority. To address this challenge, it is essential that these products are obtained in
an optimized manner. Moreover, they must satisfy end-users’ sensory perceptions to ensure
widespread acceptance and adoption (Kobayashi and Benassi, 2015; Kang et al., 2022).
Research carried out in this sector requires high repeatability and accuracy in experiments
whose main objective is to understand complex physical and chemical reactions occurring
in food or drink preparation (Juriaanse, 2006; Tuorila andMonteleone, 2009; Buttriss, 2013).

Investigation of these aspects is typically achieved through manual lab experiments
which can be slow and costly because of the extensive exploration of experimental
parameters and conditions (Arteaga et al., 1994). Due to the challenges resulting
from high stochasticity, automation is necessary to be applied to as many aspects
as possible to reduce the influence of external factors on the preparation process.
Additionally, the experimental food and drink preparation should mimic human
behavior, which can be challenging as it requires both sensory and physical
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FIGURE 1
Robot Food Scientist. The robot setup with integrated computer vision is used to optimize the parameters of the beverage preparation, and to simulate
human behavior in response to detection of undissolved powder clumps.

interactions with the product (Tuorila and Monteleone, 2009). One
plausible solution for automating such scientific experiments is
offered by a combination of robotics with computer vision and
optimization (Duong et al., 2020), allowing for precise repetition,
human behavior simulation, and intelligent data capture and
analysis (Khan et al., 2018; Iqbal et al., 2017).

Research exploring robots’ utility in a kitchen still faces a
multitude of challenges, especially in the area of sensory perception.
In the systems employing robots to analyze and optimize food,
a variety of evaluation solutions have been implemented–user
feedback (Junge et al., 2020), salinity sensors (Sochacki et al.,
2021a) or tactile assessment (Sochacki et al., 2021b; Scimeca et al.,
2019). Whilst computer vision has been investigated for use in
the food processing and food science industry (Ma et al., 2016;
Külcü, 2018; Deotale et al., 2020), there has been limited exploration
of the use of computer vision as ameans of providing rapid feedback
into the food optimization process. This could assist in enabling
large scale, fully automated optimization of food products and their
making processeswith non-invasive and cheap sensingmechanisms.

To address this goal, Robot Food Scientist is proposed–a robotic
system which can automatically prepare beverages with various
input parameters, evaluate their quality and optimize their creation,
as presented in Figure 1. The selected case study is powdered
cappuccino, with the foam being regarded as the primary quality
indicator. Computer vision analysis of the foam is leveraged to
simulate human responses to the visual characteristics of the
beverage, with a particular emphasis on detecting and removing
undissolved powder clumps in the closed-loop control system.
Additionally, model-free optimization methods are used to find
the optimal process for reconstitution. For optimization of foam-
based beverages, Bayesian Optimization (BO) is proposed (Nguyen,
2019), as it is particularly suited for sequential analysis and global
optimization of black-box functions without requiring assumptions
on specific functional forms (Shahriari et al., 2015). The use
of automation allowed for experiments with a high repeatability
and also for much larger exploration of the different parameter
combinations.

In summary, the paper makes the following contributions.

• It introduces the application of robotics and computer vision
to conduct large-scale experiments in beverage preparation
and quality analysis in an automated manner. A case study

on powdered cappuccino demonstrates the effectiveness of
this approach, with over a hundred coffees prepared and
systematically evaluated.
• It defines a set of adjustable system parameters andmeaningful
quality metrics for foamed beverages and provides an analysis
of the relationships between metrics.
• It develops a closed-loop control system allowing for the
automated detection and removal of undissolved powder
clumps, successfully mimicking human behavior in addressing
product imperfections.
• It demonstrates that Bayesian Optimization is an effective
method for identifying optimal preparation parameters that
lead to the highest quality in consumable products.

2 Related works

2.1 Culinary robotics

Robots, as a means of addressing repetitive tasks, present
a promising solution for food preparation automation. In the
culinary domain, there has been a noticeable increase in research
on applying robotic solutions for culinary scenarios (Beetz et al.,
2011a; Danno et al., 2021; Bollini et al., 2011a; Beetz et al., 2011a;
Bollini et al., 2011a; Satici A. et al., 2016; Ilic and Hughes, 2023).
That includes such non-trivial tasks as correctly tossing a pizza
dough (Satici A. C. et al., 2016), preparing a stir-fry dish (Liu et al.,
2022), or making an omelet from scratch (Junge et al., 2020).
Various approaches have been proposed for the implementation of
these complex robotic systems. Techniques include demonstration
learning (Schmitz et al., 2023), integrating Internet of Things into
the system (Zhao et al., 2015), or employing Large LanguageModels
to fulfill recipe instructions andmonitor the state of food (Sakib and
Sun, 2024; Kawaharazuka et al., 2024).

In this study, a fixed set of robot sequences is defined, and the
execution of these sequences is enhanced using computer vision as a
feedbackmechanism from the environment.The selected case study
involves the preparation of powdered cappuccino, where hot water
is added while mixing to achieve reconstitution.This process results
in the dissolution of the powder into the liquid and the creation of
foam through aeration. To the best of current knowledge, this is the
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first application of robotics combined with computer vision for the
preparation and analysis of a reconstituted beverage.

A notable challenge in the reconstitution process is the potential
formation of undissolved powder clumps. In typical scenarios,
a human operator would respond with additional mixing or
a squishing motion to eliminate these clumps. Simulating this
behavior in a robotic system is difficult, as it relies on visual detection
of clumps, a phenomenon that does not occur consistently. An
effective closed-loop control approach is introduced in this research
to address this challenge, which, to the best of current knowledge,
has not yet been explored in existing food industry research.

2.2 Foamed beverages analysis

An important area of focus in food optimization and process
automation is the study of powder reconstitution, commonly used in
products like coffee, soups, and other beverages (Fang et al., 2007).
Specifically, the creation of foam is of high importance to both the
drinks industry and consumers (Shweta et al., 2020; Schuchmann,
2007), with many studies focusing on the optimization and the
understanding of the creation and formation of foams. Factors such
as water temperature, amount ofmixing, pour height, and vessel size
all affect the aeration of the beverage and the reconstitution process
(Labbe et al., 2021), thereby impacting the sensory preference among
consumers (Deotale et al., 2020).

Computer vision has made it possible to automatically assess
various quality indicators of foam, including its decay curve
(Cimini et al., 2016), height (Gonzalez Viejo et al., 2016), or the
distribution of bubble sizes (Gonzalez Viejo et al., 2016; Hendriks,
2020). Inspired by research in areas such as carbonated beverages
(Viejo et al., 2019; Barker et al., 2002) and flotation froth analysis
(Aldrich et al., 2022), where algorithms like watershed segmentation
(Zhang et al., 2022), Hough transform (Romachev et al., 2020),
and valley-edge detection (Aldrich et al., 2022) are used for
bubble measurement, a specialized computer vision pipeline
was developed. This pipeline incorporates three preprocessing
approaches specifically designed to analyze bubbles in cappuccino
foam. Additionally, a foam height measurement algorithm was
created to investigate the relationship between foam height and
bubble characteristics.

2.3 Experimental optimization of food
properties

Robotics-driven food preparation optimization remains an
under-explored area of research. The variations of Bayesian
Optimization (BO) have found applications in food processing
optimization (Junge et al., 2020; Banga et al., 2003). Its ability
to efficiently explore complex parameter spaces is particularly
well-suited for optimizing food processing tasks that involve
multiple interacting variables. Tree-Structured Parzen Estimator
(TPE) (Watanabe, 2023) is an alternative black-box method widely
used in optimization tasks. However, due to its poor convergence
in early experiments, BO was ultimately applied in the final
optimization stage, yielding successful results as presented in this
study. Specifically, this study explores how parameters such as the

height of water pouring and the stirring dynamics affect the foam
creation and the reconstitution process of powdered beverages.
Optimization targetsmicrofoam–a foam characterized by numerous
small bubbles, which improves both the visual appeal and the
mouthfeel of the beverage (Huppertz, 2010).

To conclude, despite the promising advances in literature, there
remains a research gap in combining non-invasive image analysis
techniques with a closed-loop robotic system for beverage quality
evaluation and optimization. While various sensor and feedback
methods have already been explored, the use of camera-only input
for decision-making in food preparation is still underdeveloped.
In particular, few studies demonstrate a fully automated pipeline
for large-scale experiments, especially with the focus on parameter
exploration and adaptive correction of beverage reconstitution
based on visual feedback.

To address this gap, the objective of this study is to design
a robotic system capable of preparing powdered cappuccino in
an optimized manner. The system aims to test the applicability
of Bayesian Optimization in identifying preparation parameters
resulting in high-quality foam, and to implement a image-based
feedback loop to correct the beverage imperfections through
additional actions such as stirring.

3 Methods

In this section, the computer vision pipelines, optimization
methods, and robotic setup employed to create beverages with
varying parameters, evaluate foam quality, and detect undissolved
powder are presented. The code implementation along with a
detailed explanation of the hardware and software components
can be found under the following Gitlab repository: https://gitlab.
com/roboccino.

3.1 Coffee preparation setup

Experimental analysis revealed that the parameters significantly
influencing foam formation, while also being easily adjustable, are
the height of water pouring (h), mixing speed (s), and mixing
time (t). The experimental setup that offers the variability of these
parameters is shown in Figure 2. A 6 degree-of-freedom UR5
robot is equipped with a custom end effector which allows cups
to be moved around. The end effector also features a DC-motor-
controlled stirrer and a camera. Transparent cups make the drink
easily visible, and a 3D printed rim has been added to the cups for
easy and reliable movement. Furthermore, self-aligning cup holders
have been designed to ensure cups are placed in a known location.

To dispense the powder, the cup is moved below a dispensing
unit controlled by a stepper motor. The dispenser allows for a fixed
quantity of the powder to be poured into the cup. The cup is
then moved to the hot water dispenser, whose tap is operated by a
servo controlling the duration of the open position period, thereby
regulating the volume of added water. A ramp guides hot water from
the dispenser to the cup, which allows for the pouring height to
be varied with the use of a servo-driven cam mechanism. Water is
added while the end effector’s stirrer mixes the content.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1603729
https://gitlab.com/roboccino
https://gitlab.com/roboccino
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Szymańska and Hughes 10.3389/frobt.2025.1603729

FIGURE 2
Experimental setup. The powder dispenser, water dispenser, water
ramp and robot’s end effector were custom-designed and fabricated
with the 3D printing technology.

After mixing is finished, two cameras capture the state of the
coffee: one overhead cameramounted on the end effector of theUR5,
and the other one fixed on the table to capture the side view of the
coffee. An anti-fog coating was applied to the overhead camera to
prevent the coffee steam from affecting the image. Once the images
are captured, they are analyzed with a computer vision pipeline, and
the main controller makes a decision on to how to proceed with
each experiment before the coffee is returned to its final location.
The flowchart in Figure 3 summarizes the processes and the order of
events that take place to make a single coffee.

The speed of mixing (s) corresponds to the speed of the stepper
motor, with the range of possible speeds experimentally determined
to be between s = [40%,100%] of the maximum stepper speed. The
time of mixing t = [0s,60s] and the height of the water pouring h =
[10cm,14cm] are also adjustable.

3.2 Coffee analysis

To assess the quality of the foam and detect the presence of
undesired undissolved clumps of powder a number of computer-
vision-based pipelines have been created. It is assumed that both the
side view of the transparent cup and the top view of the foam are
accessible.

3.2.1 Foam bubbles
Bubble assessment is challenging due to the varying size of

bubbles, their non-spherical shapes, and the reflective surface of
the coffee. To create a robust bubble detection algorithm, three
different detection pipelines leveraging blob detection are applied
to the same image, and the results are then combined. Ideally, in
the case of microfoam, no bubbles would be visible to this computer
vision system.

The first pipeline directly identifies small bubbles on the input
image. The second one applies preprocessing with median blurring
andK-means clustering to identify larger andnon-spherical bubbles.
The third detector uses grayscale conversion, median blurring,
and adaptive thresholding, which is particularly effective for larger
bubbles or those with reflections. The blobs detected with each of
the three pipelines are then combined into an single black-and-white

image, where the percentage area of blobs is determined by totaling
the area of black pixels. This approach is summarized in Figure 4.

To demonstrate how this proposed method provides a
representative metric for foam quality, coffees with foams of varying
quality were prepared. As shown in Figure 5, the best foam has
a very low area of bubbles (10.41%), whereas the worst foam has
an area of 27.53%. Within this range, the area metric increases
monotonically with the decrease of the quality of the foam. This
indicates that the metric corresponds to the visual quality of the
foam and provides significant differentiation to capture the varying
quality of foams.

3.2.2 Foam height
Foam height is a second metric used to define foam quality.

Accurately assessing the foam height is challenging because, in
the side view, the top of the foam can be difficult to see due to
condensation on the glass and the presence of bubbles on the
surface. To measure the foam height, the image is first converted to
greyscale with an erosion and dilation applied, after which a Canny
edge detector is used to identify the edges corresponding to the
bottom and the top of the foam.The mean difference between these
edges provides an estimation of the foam height. The approach is
summarized in Figure 6.

3.2.3 Clump detection
This detection focuses on the presence of undissolved powder

clumps in both the foam and the bottom of the cup. A robust
approach applicable for both of these cases has been developed. The
images are first converted to greyscale, followed by an application
of a Laplace transform. Then, a customized pooling returns a
matrix filled with sums of absolute values of framed pixels. By
thresholding pixel values, the presence and approximate area of the
clumps can be determined. A demonstration of this approach is
shown in Figure 7.

It is acknowledged that powder clumps forming a very thin layer
at the bottom of the cup may remain undetected due to limited of
visibility from the side. Inclusion of additional viewpoints, such as a
bottom-facing camera, is considered for future work.

3.3 Closed-loop clump removal

To simulate consumer behavior in clump removal, the size of
the clump (in pixels) is first detected (c). Based on it, a proportional
controller in the form of tm = αc determines the additional mixing
time tm required to remove the clump with the stirrer, either in
the foam or at the bottom of the cup. The value of α was selected
based on empirical tuning through informal testing, where various
values were evaluated across representative scenarios. A value of
0.2 consistently presented the most favorable mixing performance,
typically resulting inmixing times ranging from 5 to 20 s, depending
on clump size.

3.4 Coffee optimization

Let us consider the objective function f :X →ℝ, which
measures the quality of the coffee as the percentage of area without
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FIGURE 3
Open-loop coffee preparation steps. This procedure is executed in the optimal parameters search.

FIGURE 4
Bubble coverage determination pipeline. The results of three simultaneous processes are combined to identify the bubble coverage.

bubbles visible in the coffee foam. X denotes a bounded domain
X = [0,60] × [40,100] × [10,14]. A point x ∈ X is expressed as
x = (t, s,h), where t [s] is mixing time, s [%] is mixing speed,
h [cm] is water pouring height. The goal is to maximize the
function f over the bounded domain, i.e., to find argmaxx∈X f(x)
in order to effectively optimize for microfoam. As f(x) is unknown,
Bayesian Optimization (BO), recognized as one of the most efficient
sampling algorithms for black-box functions (Nguyen, 2019), was
selected as the optimization method. It is particularly effective
when only a few parameters need to be optimized (Saar et al.,
2018). With BO, a Gaussian Process GP prior is

placed on f(x):

f (x) ∼ GP (m (x) ,k(x,x′)) ,

wherem(x) is the mean function, in this case set to zero, and k(x,x′)
is a covariance kernel being a Matern kernel with ν = 2.5.

At iteration n, n distinct points {x(i)}ni=1 ⊂ X have been observed,
with corresponding values {y(i)}ni=1, where y

(i) = f(x(i)) + ϵ(i), with ϵ(i)

accounting for observational noise. Given these data, the posterior
predictive distribution for any new point is a normal distribution:

f (x) |{x(i),y(i)}n
i=1
∼N (μn (x) ,σ

2
n (x)) ,
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FIGURE 5
Bubble detection for foams of variable quality. This overview demonstrates that bubble coverage is an effective and reliable metric of the foam quality.

FIGURE 6
Foam height determination pipeline. The analysis is performed using a side-view image of the cup.

FIGURE 7
Clump detection pipeline. Undissolved powder clumps may be present both within the foam and at the bottom of the cup.
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FIGURE 8
Bubble coverage results. The plots display data from over 100 coffees,
prepared with varying stirring speed, stirring time and water
pouring height.

FIGURE 9
Bayesian Optimization for minimizing the bubble coverage. Although
fluctuations are present in the optimization process, there is a
convergence tendency.

where μ and σ respectively correspond to mean and variance,
whose parameters are fitted to the data by maximizing
the Gaussian Process’ log marginal likelihood after each
3 observation.

To decide the next experimental point xn+1, an Upper
Confidence Bound (UCB) acquisition function was selected:

αn (x) = μn (x) + κσn (x) ,

where κ is a parameter for controlling the exploration-exploitation
tradeoff. Hence, at step n, the next point xn+1 is chosen as:

xn+1 = argmax
x∈X

αn (x) = argmax
x∈X
[μn (x) + κσn (x)] .

The value of κ = 8 was chosen, reflecting the need to explore
the design space before exploiting and finding the optimal
solution.

The more observations provided to the optimizer, the more
confident the algorithm becomes regarding its prediction of optimal

FIGURE 10
Parameter exploration in Bayesian Optimization. The proposed
parameters values highly fluctuate, slowly converging from
approximately 42nd iteration onwards.

FIGURE 11
Comparison of the best results achieved by different methods. The
plot presents the resulting average bubble coverage along with the
standard deviation.

FIGURE 12
Quality metrics relationship. The subsequent increase in foam height
and bubble coverage highlights a Pareto-optimal trade-off.
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FIGURE 13
Results of the closed-loop clump reduction with the proportional
controller. The plot illustrates the reduction in clump size and the
absolute change in bubble coverage, with bubble radius in the plot
representing clump size. The dotted line indicates zero change in
bubble area.

parameters. Despite the efficiency of this approach, searching a
design space that has three parameters that exhibit variance and
stochastic nature of the results requires tens or hundreds of trials
to form an accurate model that can also provide a solution with a
good performance.

The specific choices of BO components were inspired by prior
studies and practical recommendations in the related literature
Hertel et al. (2020); Oliveira et al. (2019); Hao et al. (2019); Riche
and Picheny (2021). For example, Matern kernel’s balance between
smoothness and flexibility makes it a commonly used default
in black-box optimization tasks. UCB acquisition function was
selected for its tunable exploration-exploitation trade-off and ease
of implementation. Trial-and-error tests were conducted using
different values of the exploration parameter κ. Among the values
tested, κ = 8 provided a reasonable trade-off between exploration
and convergence speed during early-stage experiments. Future work
could investigate the sensitivity of optimization results with respect
to the selected parameters and alternative acquisition strategies (e.g.,
Expected Improvement or Probability of Improvement) to further
validate robustness.

4 Results

4.1 Coffee preparation and optimization

First, to demonstrate the coffee making process and evaluate
its repeatability, four cappuccinos were automatically prepared with
the same input conditions. The resulting coffees had a bubble
coverage of 22.36 ± 0.32%. While the localization of the bubbles
on the foam surface varied, there were clear similarities in the
density and size of the bubbles present. Although the sample size
was limited, this provided an estimate of the natural variance
introduced by the system. All efforts were made to conduct the
experiments under consistent environmental and setup conditions.
However, minor fluctuations in, e.g., ambient lab temperature

or humidity could have contributed to results variation. This
highlights the need for larger-scale physical experiments and for
the use of BO in the optimization processes, as it can handle
this variability.

Before performing BO, approximately 100 coffees were made
using the experimental setup.This included a mix of grid-based and
random exploration to investigate the design space and the observed
variability. The bubble area of these coffees as a function of the
mixing speed, time and pour height is shown in Figure 8.The results
demonstrate the complexity of the interactions. It is evident that for
the stirring speed lower than 60%–70% and mixing time below 20 s
the coffee quality distinctly drops, resulting in high bubble coverage.
With respect to the water pouring height, it is hard to indicate a clear
trend–it may be due to the too narrow height range or low bubble
area dependence on this parameter. Low pouring height and quick
mixing at high speeds results in some instances of lowest bubble
coverage. However, other combinations of parameters also produce
high quality coffees. This further supports the use of BO, as there
is no single local minimum that can be found with simple gradient
descent-based methods.

Fifty coffees were prepared with the objective function of BO set
to maximize the area without visible bubbles, which is equivalent
to minimizing the bubble coverage. The results in Figure 9 show
that although there are fluctuations in the optimization’s exploration,
the process converges to a minimum value over time, with a
minimal bubble area of around 11% found. This corresponds
to a low water height (11 cm), low mixing speed (65%) and a
high mixing time (50 s). From around 42nd iteration onwards,
these values remain approximately constant with limited further
exploration, particularly in the case of themixing speed as presented
in Figure 10.

As BO provides no guarantee of optimality, the optimal
processing conditions found were compared to others: 1) random
selection of mixing conditions, 2) coffee preparation by a human,
3) robot following the provided producer’s instructions. For
each of these cases, four coffees were made with the results
presented in Figure 11, proving that BO-defined conditions
outperformed the others. Although the human-made coffees had on
average only one percentage point more bubble coverage compared
to BO, they showed higher variance. Given that the human can
use continuous visual feedback to adaptively mix the coffee, this
highlights the quality of the optimal performance found using
BO. The random preparation parameters presented the worst
performance, and the instruction-based performance was inferior
to the one of a human.

While this comparison provides a useful insight into the
performance of the system, it should be noted that the number of
repetitions in each group is limited. Therefore, the results should
be interpreted as preliminary rather than statistically conclusive.
Nevertheless, the observed trends support the method’s potential
and motivate further investigation with larger sample size in
future work.

Additionally, the relationship between bubble coverage and
foam height was investigated. For each of the 50 coffees prepared
in the BO experiment, the foam height against the bubble
coverage is plotted Figure 12. Interestingly, this showed that
an increase in the bubble area is followed by an increase in
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the height of the foam. Therefore, there is a potential trade-
off between foam height and bubble area, showing a Pareto-
optimality problem. This requires further exploration in the future
research.

4.2 Closed-loop clump removal

This experiment examined the ability to detect and remove
clumps, how this process affects the foam bubble area, and how
similar the robot’s closed-loop removal is to human behavior. The
coffees were prepared with the optimal parameters found with BO.
The bubble area was recorded, and if there was a presence of clumps,
their area was identified. The proportional controller was then used
with varying mixing speeds (60%, 80% and 100%). The results from
the twenty experiments with the clump-containing cappuccinos are
presented in Figure 13, showing the reduction in the clump size (i.e.,
the success of clump removal) and the change in bubble coverage
area. For comparison, a humanwas asked to remove the clumpswith
a spoon, and the same metrics were recorded. As the occurrence
of clumps is hard to reproduce on purpose, the clump size varied
every time.

The ideal removal procedure should fully remove the clump and
either reduce the bubble area or have minimal effect on it. Although
high speed mixing removed the clumps, it had a negative impact
on the foam by increasing the bubble coverage. Conversely, a low
speed resulted in less success in removing the clumps, but reduced
the bubble area.The speed of 80% of themaximum showed behavior
most similar to that of humans, where the clumps were mostly
reduced, but the change in bubble area is low. Interestingly, although
the human was very good at removing the clumps, the bubble area
did not decrease.

The results in this section demonstrate that similar behavior
to humans can be achieved with the robotic setup. Additionally,
the proportional controller proved to be a suited tool for the
effective removal of clumps, even contributing to the improvement
of foam quality.

5 Discussion

This work presented an automated approach to optimizing the
foam of reconstituted beverages by leveraging robotics, computer
vision, and optimization algorithms. The setup enabled systematic
experiments under controlled conditions and demonstrated
successful optimization of foam quality over 50 iterations. Another
contribution of the work was the implementation of a computer
vision-aided feedback loop that simulated human behavior in
the removal of clumps and influenced the resulting properties
of the foam.

While the focus was on foam optimization, the methodology
highlights the broader potential of robotics and computer
vision in food science, particularly for identifying optimal
combinations of process parameters. This is increasingly relevant
for developing products optimized for nutrition inclusion,
cost, and processability. Compared to standard laboratory

techniques for quality assessment, computer vision offered a non-
contact, cost-effective, and versatile means of analyzing food
and drinks.

The use of image-based algorithms to detect foam texture
and clumps marks a step toward autonomous visual assessment.
However, challenges remain in handling the stochastic nature of
powdered beverages. Variability in ingredient proportion and foam
formation - due to even slight changes in lab conditions - can
affect optimization convergence, even when using identical input
parameters. These aspects are similar to the challenges encountered
in industrial food processing, where input materials naturally vary
from batch to batch.

The results open several interesting directions for future
investigation. Beyond foam, this study’s framework could be
extended to optimize other food and beverage characteristics, such
as color uniformity or foam stability. The current optimization
considered only a limited number of parameters; expanding this
set (e.g., with water temperature or stirrer geometry) could help
capturemore complex dependencies. Additionally, research onmore
advances fitness functions, such as combining foam quality with
clump minimization, could extend the applicability of Bayesian
Optimization to more real-world use cases. Finally, exploring
alternative learning-based approaches, particularly those designed
for image-based analysis, could offer a promising solution for
generalizing the optimization approach. For example, a robot could
be trained to reproduce the visual qualities of a provided food or
drink sample.

In summary, thiswork demonstrates how robotics and computer
vision can automate not only production steps, but also quality
evaluation in food and beverage preparation. As food products
become increasingly complex and consumer expectations rise, such
technologies could support intelligent product development, assist
in standardized preparation, and guide the creation of consumer
instructions.
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