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Multimodal perception is essential for enabling robots to understand and interact
with complex environments and human users by integrating diverse sensory
data, such as vision, language, and tactile information. This capability plays a
crucial role in decision-making in dynamic, complex environments. This survey
provides a comprehensive review of advancements in multimodal perception
and its integration with decision-making in robotics from year 2004-2024.
We systematically summarize existing multimodal perception-driven decision-
making (MPDDM) frameworks, highlighting their advantages in dynamic
environments and the methodologies employed in human-robot interaction
(HRI). Beyond reviewing these frameworks, we analyze key challenges in
multimodal perception and decision-making, focusing on technical integration
and sensor noise, adaptation, domain generalization, and safety and robustness.
Finally, we outline future research directions, emphasizing the need for adaptive
multimodal fusion techniques, more efficient learning paradigms, and human-
trusted decision-making frameworks to advance the HRI field.

multimodal perception, robot decision-making, human-robot interaction, multimodal
fusion, robust autonomy

1 Introduction

The integration of robots into diverse domains such as healthcare, industrial
manufacturing, transportation, and domestic environments has accelerated dramatically
in recent years. Across these applications, robots serve various purposes—from
providing companionship and assistance to enabling complex collaborations with
human users. Despite this diversity of contexts and functions, a fundamental
requirement remains consistent: robots must interact appropriately with humans in
their specific operational environments. Effective human-robot interaction (HRI)
depends critically on a robot’s ability to accurately perceive and understand human
users’ status, intentions, and preferences, as well as the surrounding environment,
before making appropriate decisions to achieve intended goals. This perception
must then inform appropriate decision-making and action planning to achieve
specific interaction goals. Consequently, the integration of multimodal perception
and decision-making has emerged as a cornerstone of modern HRI research.
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However, achieving accurate perception and robust decision-
making in HRI remains a significant challenge due to the
inherent complexity, dynamism, and variability of human behavior
(Amiri et al, 2020), individual preferences, habits, capabilities
(Ji et al, 2020), and environments (Diab and Demiris, 2024).
Recent advancements in multimodal perception models, such as
those leveraging deep learning and large-scale vision-language
frameworks (Lu et al, 2024; OpenAl, 2023), coupled with
increased computational power, have significantly enhanced robotic
capabilities in these areas (Kim et al., 2024; Zhou et al., 2025). These
developments have enabled robots to process and fuse data from
multiple sensory modalities—such as vision, speech, touch, and
proprioception—to form a more comprehensive understanding
of their environment and human counterparts. Despite these
advancements, the integration of multimodal perception with
decision-making frameworks remains an open and actively
researched problem, particularly in the context of embodied
intelligence for HRI.

While several surveys have explored aspects of HRI, such as
multimodal perception (Wang and Feng, 2024), human behavior
modeling (Robinson et al, 2023; Reimann et al, 2024), and
industrial applications (Duan et al., 2024; Jahanmahin et al,
2022; Bonci et al.,, 2021), there is a notable gap in the literature.
Existing reviews often focus on specific domains, such as
manufacturing (Duan et al, 2024; Wang and Feng, 2024;
Jahanmahin et al., 2022; Bonci et al., 2021), or narrow aspects
of HRI, such as vision (Robinson et al, 2023) or dialogue
management (Reimann et al, 2024). To our knowledge, no
comprehensive survey has systematically examined the interplay
between multimodal perception and decision-making across diverse
application domains, including healthcare, manufacturing, and
transportation. This gap motivates our work.

In this survey, we present a comprehensive review of over
2 decades of research based on Multimodal Perception-Driven
Decision-Making (MPDDM) method in embodied intelligence for
HRI. Our primary objective is to analyze how these systems leverage
multimodal perception to enable more efficient and accurate
decision-making. Specifically, we systematically examine: (1) the
sources and types of multimodal sensing data, (2) methodologies
for data fusion and perception, (3) decision-making frameworks,
and (4) architectures that integrate perception and decision-
making. Through this analysis, we identify key challenges and
limitations in current approaches and propose potential directions
for future research.

Our contributions are threefold:

1. Comprehensive Cross-Domain Coverage: Unlike existing
surveys that focus on specific domains, our work synthesizes
HRI research across diverse application areas, including
industrial manufacturing, healthcare, domestic settings,
transportation, and other application areas. This cross-
domain perspective provides HRI researchers with a holistic
understanding of the current state of technology and
methodology in multimodal perception and decision-
making, potentially enabling cross-pollination of ideas
between domains.

. Focus on Multimodal Perception: While many reviews
emphasize single modalities (e.g., vision or speech), our survey
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highlights the growing importance of multimodal perception
in robotics and HRI. We explore how integrating multiple
sensory modalities can enhance perception and decision-
making.

3. Integration of Perception and Decision-Making: Our review
not only examines multimodal perception but also discusses
decision-making frameworks and their integration with
perception. This dual focus offers valuable insights for
researchers seeking to understand the interplay between these
critical components in HRI systems.

By addressing these aspects, our survey aims to serve as a
foundational resource for researchers and practitioners in the
HRI community, facilitating the development of more robust and
context-aware robotic systems.

This survey is structured as follows: Section 2 introduces
the study selection process, including database searching, search
strategies, and filtering criteria. Section 3 presents the survey
findings, discussing the role of multimodal perception in decision-
making, strategies for multimodal sensing data fusion, the MPDDM
framework, and decision-making methods explored in previous
research. Section 4 highlights key challenges, limitations, and
potential future research directions in MPDDM within the
HRI domain.

2 Methodology
2.1 Search and selection strategy

To ensure a comprehensive and systematic review, we followed
the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) guidelines (Moher et al., 2009). Figure 1 shows
the process of identification, screening, eligibility, and inclusion in
this survey. Our search strategy incorporated multiple electronic
databases, including Google Scholar, SpringerLink, Web of Science,
IEEE Xplore, ScienceDirect, ACM Digital Library, and Scopus,
to identify relevant literature on multimodal perception-driven
decision-making in human-robot interaction (HRI).

We constructed Boolean search queries based on key terms
and their variations to maximize relevant results. The primary
search query used in all databases was: (“multimodal perception”
OR “multi-modal perception” OR “multisensory perception”) AND
“human-robot interaction” AND (“decision-making” OR “decision
making”). To refine our search, we applied the studies published
from 2004 to 2024.

Using this search query, we obtained 502 hits from Google
Scholar, 30 hits from SpringerLink, two hits from Web of Science,
one hit from IEEE Xplore, 43 hits from ACM Digital Library, 30
hits from ScienceDirect, and three hits from Scopus. After removing
duplicates, 511 articles remained for screening. Upon reviewing
the article abstracts and written language, we excluded 233 articles
for the following reasons: (1) non-English language, or (2) lacking
key research elements for this survey (multimodal perception,
human-robot interaction, and decision-making). Thus, 278 articles
proceeded to the eligibility review stage. From these, we selected
66 studies that met the following inclusion criteria: (1) detailed
work on integrating multimodal perception and decision-making,
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FIGURE 1

PRISMA flow diagram of the study selection process.

specifically how multimodal perception aids robots in decision-
making for human-robot interaction, (2) inclusion of technical
implementation details, including multimodal fusion techniques
and perception-driven decision-making methodologies, and (3)
concrete case studies or experimental data demonstrating practical
human-robot interaction applications.

3 Results

To systematically analyze the 66 selected papers following the
PRISMA guidelines, we categorized and synthesized each study
based on its application domain, multimodal data types, data
fusion techniques, and decision-making approaches by leveraging
multimodal perception. Specifically, for each paper, we (1) provide
a concise summary of its application, (2) identify the types of
multimodal data utilized (e.g., vision, audio, language information),
(3) classify and analyze the data fusion techniques, distinguishing
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between Model-Agnostic and Model-Based approaches (see
Section 3.3 for details), and (4) examine the decision-making
strategies employed (see Section 3.5 for further discussion), with
a focus on how multimodal data contributes to improved decision-
making performance. A detailed breakdown of each study is
presented in Table 3.

3.1 Application domains of MPDDM in HRI

Multimodal Perception-Driven Decision-Making (MPDDM)
plays a crucial role in various HRI applications. By integrating
multimodal  perception techniques with decision-making
frameworks, robots can operate in dynamic and complex
environments with improved adaptability, reliability, robustness,
and efliciency. Based on the reviewed literature, MPDDM
applications in HRI can be categorized into four primary domains:

social and assistive robotics, navigation and mobile robotics,
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TABLE 1 Summary of key advantages and limitations/challenges for major MPDDM application domains.

Application domain Key advantages

Limitations/Practical challenges

Social and Assistive Robotics

and rehabilitation

Enhances user engagement, supports emotion
recognition and companionship, assists in healthcare

Sensitive to user diversity (age, culture, cognitive
abilities), vulnerable to environmental noise
(especially audio), privacy and ethical concerns
regarding sensing in healthcare

Navigation and Mobile Robotics

dynamic environments

Improves obstacle avoidance and socially-aware
navigation, compensates for missing modalities in

High computational load for real-time performance,
robustness in crowded/occluded scenarios, variability
of human social behaviors across cultures

Industrial Collaborative Robotics

Enhances worker efficiency and safety, enables object
manipulation via multimodal attribute learning

Dynamic lighting and environmental variability,
human worker behavior unpredictability, cost and
complexity of multimodal sensor integration

General-purpose Robotics with High-level Task
Planning

perception/feedback

Enables robots to understand complex tasks, plan
flexible actions across diverse environments, and adapt
dynamically based on multimodal

Generalization difficulty to unseen environments,
ambiguity in interpreting user intent, computational
overhead for multimodal reasoning and real-time
adaptation

industrial collaboration robotics, and general-purpose robotics with
high-level task planning and reasoning. Furthermore, the MPDDM
application domains mentioned above exhibit distinct strengths
and challenges. Table 1 provides a structured comparison of these
domains, highlighting their key advantages as well as limitations
and practical challenges, to serve as a reference for future research
and application design.

3.1.1 Social and assistive robotics

Social and assistive robotics are extensively employed in social
services, primarily for social interaction, emotion recognition,
speech-based dialogue, assistive healthcare, and rehabilitation
robotics. These systems aim to enhance user experience and
engagement in HRI and provide companion, care, and/or assistance.
For instance, previous work designed proactive social robots capable
of responding to human emotions (Al-Qaderi and Rad, 2018a),
situational states (Vauf et al., 2016), and spatial cues (Ch et al.,
2022). Similarly (Tang et al., 2015), developed a companion robot
based on a multimodal communication architecture for the elderly.
In the field of medical assistance and rehabilitation, researchers
explore the potential of MPDDM, for example (Yuan et al., 2024),
developed a social robotic framework based on Pepper robot
(Pandey and Gelin, 2018) for assisting persons with Alzheimer’s
dementia in executing self-care tasks, aiming to enhance their ability
to complete daily routines. Additionally (Qin etal., 2023), designed a
domestic service interactive robot system, integrating touch, speech,
electromyographic gestures, visual gestures, and haptic information,
explicitly aiming at individuals with declined expressive abilities.

3.1.2 Navigation and mobile robotics

Autonomous navigation and mobile robotics leverage robotic
autonomy and pre-acquired environmental knowledge to facilitate
human convenience. For instance, autonomous mobile robots
utilizing multimodal perception for obstacle avoidance and
navigation (Zhang Y. et al., 2024; Sha, 2024; Wang, 2023; Chen et al.,
2020; Roh, 2022; Xie and Dames, 2023) have been extensively
studied. These studies have experimentally demonstrated that
multimodal perception enhances model robustness, compensating
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for missing sensory modalities in dynamic environments.
Meanwhile, other studies, such as (Panigrahi et al, 2023;
Song D. et al., 2024; Siva and Zhang, 2022), focus on socially
aware navigation. These works integrate vision, speech, and social
signal analysis to enable robots to predict pedestrian trajectories,
facilitating socially adaptive and human-friendly navigation
strategies.

3.1.3 Industrial collaborative robotics

Industrial collaborative robotics primarily aim to enhance
worker efficiency and reduce labor costs by integrating collaborative
robots into manufacturing processes. This field includes classic
human-robot collaborative assembly tasks (Ji et al, 2020;
Forlini et al.,, 2024; Li et al.,, 2021; Belcamino et al., 2024) and
palletizing robot (Baptista et al., 2024). Other research focuses on
leveraging multimodal information to understand and manipulate
objects. For instance (Zhang X. et al., 2023), and (Lu et al.,, 2023)
investigate multimodal attribute learning, where robots combine
visual, auditory, and haptic data to classify and recognize object
properties. Once object attributes are successfully identified, the
next challenge is to determine how to grasp and manipulate
these objects in dynamic environments. Many researchers adopt
Markov Decision Processes (MDP), such as (Amiri et al., 2018) and
(Zhang et al.,, 2021), or reinforcement learning-based models, such
as (Balakuntala et al., 2021), to dynamically update robotic actions
based on multimodal sensory feedback. More recently, end-to-end
learning models, such as (Zhang Z. et al., 2023), have been explored
for policy generation in manipulation tasks.

3.1.4 General-purpose robotics with high-level
task planning and reasoning

Unlike domain-specific applications, some research focuses
on general task planning and decision reasoning across different
HRI scenarios. Here, we examine how MPDDM can enable
high-level planning beyond single-modal approaches. Traditional
task-planning methods in robotics rely heavily on single-modal
decision systems. However, in real-world environments, robots
dynamic human interactions, and

encounter uncertainties,

frontiersin.org


https://doi.org/10.3389/frobt.2025.1604472
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Zhao et al.

ambiguous sensory inputs, making single-modal task planning
insufficient. To address this, previous studies have integrated
multimodal sensing data, such as visual, auditory, linguistic,
and proprioceptive data, to enhance robotic task planning
and situational reasoning. For instance (Forlini et al, 2024;
Zhang Z. et al., 2023; Mei et al,, 2024), and (Song Y. et al., 2024)
leverage GPT/VLM models for semantic task parsing, enabling
robots to utilize large-scale vision-language models (VLMs) for
end-to-end dynamic task planning. Furthermore, these systems
incorporate error correction mechanisms, which allow real-
time task adjustments during execution. Beyond predefined task
planning, robots operating in unstructured environments must
develop situational awareness (Diab and Demiris, 2024), so that
robots can adapt their tasks based on real-time environmental states
(Amiri et al,, 2020; Zhang X. et al., 2024).

3.2 Justification of multimodal perception

3.2.1 Multimodal perception

Multimodal perception refers to the study of methods for
processing heterogeneous and interconnected data, encompassing
both raw signals (e.g., speech, language, images) and abstract
concepts (e.g., emotions). By integrating different modalities,
humans can better perceive and interpret environmental
information. Multimodal perception can be categorized into six
primary types: language, vision, touch, acoustic, physiological,
and mobile (Liang et al., 2022). Over the past decade, the rapid
advancement of deep learning and embodied intelligence has
significantly propelled the progress of multimodal perception-
driven decision-making. In particular, the emergence of large-
scale foundation models such as ChatGPT and Vision-Language-
Action (VLA) frameworks has led to a new peak in multimodal
development. Currently, most multimodal research focuses on
vision and language integration, as researchers aim to enable robots
to communicate and interpret the world similarly to humans,
leveraging both linguistic reasoning and visual observation to
interact with their surroundings. Such cross-modal integration
enhances a robot’s ability to comprehend complex scenarios and
improves system robustness in the absence of certain sensory inputs.
For example, in autonomous driving, if a robot loses radar data in a
complex environment, it must still navigate safely using alternative
sensory inputs (Camera, etc.) (Grigorescu et al., 2020). Thus,
understanding the cognitive processes involved in multimodal data
fusion is essential for the future of embodied artificial intelligence.

3.2.2 Advantages of multimodal perception
Single-modal perception (e.g., vision-only, speech-only, or
touch-only) has played a role in early research applications. Still,
it remains significantly limited in real, complex human-robot
interaction scenarios (Huang et al., 2021). The limitations can be
delineated as follows: (1) Limited Information: A single sensor
provides a restricted perceptual dimension (Wang et al., 2024),
making capturing global or deep semantic information challenging.
(2) Poor Robustness: Single-modal systems are highly susceptible to
noise, lighting changes, occlusions, or hardware failures, leading to
performance degradation (Wang et al., 2024). (3) Lack of Accuracy
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and Generalization: In complex, dynamic environments, single-
modal algorithms struggle to maintain high accuracy or adapt
quickly (Huang et al., 2021). (4) Inability to Capture Multifaceted
Human/Environment Information: Human language, emotions,
intentions, and actions involve multiple signals, which a single
modality alone cannot fully comprehend (Su et al., 2023).

Due to these limitations, researchers have increasingly focused
on multimodal perception (Duncan et al., 2024) in recent years,
aiming to integrate information from different types of sensors
to handle complex, dynamic HRI scenarios. By integrating
different modalities such as text/speech, vision, audio, touch, and
physiological signals, multimodal perception offers advantages
such as information complementarity and enhanced robustness.
For instance (Al-Qaderi and Rad, 2018a), and (Churamani et al,,
2020) demonstrated that combining auditory cues with visual
inputs improved the accuracy of recognizing personal emotion
and location compared to under visual-based detection conditions.
Similarly (Granata et al., 2012), leveraged vision and speech to
enhance the accuracy and robustness of human detection and
interaction in complex scenarios. Furthermore (Wang, 2023),
and (Khandelwal et al., 2017) found that multisensory data
from both RGB-D cameras and LiDAR sensors mitigated the
instability of visual-only systems and improved the robustness
of navigation. Beyond robustness, multimodal perception also
enhances contextual and semantic comprehension in HRI scenarios.
Just like humans, who rely on the integration of multiple
modalities (e.g., hearing, vision, smell) to better interpret their
surroundings, multimodal perception enables robots to achieve
a more comprehensive, accurate understanding of environmental
states. For example (Zhang et al., 2021), enabled robots to explore
and describe objects in the environment as humans by using audio,
haptics, and vision, this approach improved object description
accuracy by 50% compared to vision-only exploration.

In summary, multimodal perception not only addresses
the inherent weaknesses of unimodal perception but also
broadens the scope of MPDDM applications, paving the way
for richer human-robot collaboration. However, alongside these
advantages, multimodal information also introduces challenges,
such as the complexity of data fusion, multimodal representation
learning—how to utilize multimodal information effectively,
alignment—how to model connections across modalities to ensure
accurate understanding and integration, and reasoning—how
different modalities interact to influence the decision-making
process. These challenges and methods will be explored in
Sections 3.3,3.4.

3.3 Multimodal sensing data fusion
strategies

Multimodal data fusion represents the cornerstone of
effective perception-driven decision-making in human-robot
interaction systems. This process involves systematically combining
information streams from diverse sensing modalities to have a
comprehensive representation of the environment. Successful fusion
strategies enable robots to overcome the limitations of individual
sensors, enhance perceptual robustness in challenging conditions,
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and develop a more complete understanding of complex human-
robot interaction scenarios. In this section, we examine the primary
approaches to multimodal data fusion following the framework
established by (Baltrusaitis et al., 2018). The fusion methodologies
can be broadly categorized into two fundamental classes: model-
agnostic methods and model-based methods. Model-agnostic
approaches offer flexibility across different learning paradigms,
while model-based techniques integrate fusion mechanisms directly
within the learning architecture.

Model-agnostic methods typically operate at distinct stages
of the perception pipeline, with fusion occurring at the data
level (early fusion), feature level (intermediate fusion), decision
level (late fusion), or through hybrid combinations spanning
multiple processing stages. Meanwhile, model-based methods
leverage the inherent capabilities of neural networks, kernel
methods, or probabilistic graphical models to learn optimal fusion
strategies during the training process. The following subsections
detail these approaches, examining their theoretical foundations,
implementation considerations, and relative advantages in various
HRI contexts.

3.3.1 Model-agnostic methods

Early Fusion (Data-Level): In early fusion, raw or minimally
processed data from different modalities are combined into a single
input representation at the earliest stage. For example, in a long-
term social interaction bartending robot task (Rossi et al., 2024),
enhanced the robot’s natural interactive operations by incorporating
speech and facial expressions. Similarly (Nan et al., 2019), employed
early fusion of RGB and depth images by aligning them based on
time frames to improve elderly action recognition. The early-fusion
method allows the subsequent model (or pipeline) to learn cross-
modal correlations directly from the original data, but it may become
challenging to handle large discrepancies or noise across modalities.

Intermediate Fusion (Feature-Level): Features are first extracted
independently from each modality, and then these feature
representations are fused. This approach balances flexibility and
complexity—each modality can be processed separately with
tailored feature extraction techniques, and the combined feature
space typically captures richer, modality-specific information before
final decision-making (Ji et al., 2020). Demonstrated that feature-
level fusion of vision, depth, and inertial sensors enables reliable
perception by capturing information about humans, robots, and
the environment in industrial human-robot collaboration (HRC)
(Schmidt-Rohr et al., 2008a). Improved the accuracy of “person of
interest” recognition and ensured stable autonomous navigation
by converting raw sensory inputs (speech, human activity from
RGB-D, and LiDAR) into probability distributions, enhancing
dynamic confidence from different feature levels (Scicluna et al,
2024). Showed that aligning 2D feature bounding boxes from RGB
with LiDAR depth features prevented false positive detections
from leading to incorrect decisions. Similarly, studies such as
(Banerjee et al., 2018), (Zhao et al,, 2024), and (Deng et al., 2024)
enhanced perception capabilities by employing various fusion
strategies, including weighting, concatenation, and heuristic-based
algorithms.

Late Fusion (Decision-Level): Late fusion focuses on merging
the outputs (i.e., decisions or predictions) from multiple models
or classifiers. Each modality is modeled separately and the final
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results are combined (e.g., by voting, averaging, or a learned
ensemble). For example (Siqueira et al., 2018), separately predicted
emotion and language models, then evaluated the recognition
results using a decision framework to resolve emotional mismatches.
Similarly (Granata et al.,, 2013), merged information extracted from
four detectors using weighted criteria based on the field of view,
reducing the instability of motion prediction when sensor data
was incomplete. Late fusion often offers greater robustness if one
modality performs poorly, but it may miss certain cross-modal
interactions that arise earlier in the data or feature space.

Hybrid Fusion (Combining Multiple Stages): Hybrid fusion
integrates multiple fusion strategies. For instance, combining early
or intermediate fusion with late fusion. By doing so, it aims to
leverage the best of both worlds: capturing cross-modal correlations
and ensuring robust final decisions. For example (Sha, 2024),
performed feature-level fusion by assigning weights to RGB object
detection, depth cameras, and ultrasonic sensors, then integrated
obstacle detection and path planning module outputs at the
decision level. Similarly (Dean-Leon et al., 2017), applied fusion at
multiple stages, including signal level, feature level, and symbolic
representation, to enhance collision avoidance, compliance, and
grasping strategies. Overall, hybrid fusion approaches aim to
leverage the advantages of different fusion stages and integrate them
effectively.

3.3.2 Model-based fusion

In this category, the fusion process is driven by a learned
model—often nonlinear—such as probabilistic methods, kernel-
based methods, neural networks (e.g., CNNs, Transformers), or
graph-based models. These approaches learn how to integrate or
attend to relevant information across modalities through training,
allowing more adaptive and potentially more powerful multimodal
representations. For example (Daglarli, 2020), utilized probabilistic
reasoning and attention mechanisms to integrate multimodal
perception data (Zhang et al, 2021). Dynamically constructed
a partially observable Markov decision process (POMDP) that
integrates information from different sensory modalities and actions
to compute the optimal policy.

In the domain of neural network approaches (Yu, 2021),
employed CNNs and GANs for gesture/facial synthesis and a
hybrid classifier for emotion recognition (Wang, 2023). Utilized an
attention mechanism to integrate visual and temporal multimodal
features (Yas et al., 2024). extracted RGB and depth data and fused
them with skeletal features using a context attention mechanism.
Similarly (Al-Qaderi and Rad, 2018b), used spiking neural networks
(SNN) to process feature vectors from different modalities, including
RGB (FERET), RGB-D (TIDIGITS), and RGB-D (3D body
and depth).

Other learning-based approaches include reinforcement
learning and graph-based methods (Cuayahuitl, 2020). Applied
deep reinforcement learning (DQN) to fuse visual perception
and speech interaction (Ferreira et al., 2012). Employed a graph-
based Bayesian hierarchical model to fuse visual and auditory
perception. Similarly (Ivaldi et al., 2013), integrated vision, audition,
and proprioception using graph-based incremental learning and
sensorimotor loops.

More recently, large language models (LLMs) have been
leveraged for multimodal fusion (Menezes, 2024). Leveraged,
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TABLE 2 Summary of multimodal fusion strategies, their advantages, and limitations.

Fusion strategy Advantages

Early Fusion (Data-Level)

Enables learning of cross-modal correlations from original data

Limitations

Sensitive to modality noise, requires careful alignment

Intermediate Fusion (Feature-Level)

Balances flexibility and richer modality-specific information

Dependent on effective feature extraction for all modalities

Late Fusion (Decision-Level) Robust to failure in individual modalities

May miss useful cross-modal interactions present at earlier stages

Hybrid Fusion

Leverages strengths of different fusion stages

More complex implementation and design effort

Model-Based Fusion

Adaptable and powerful multimodal representations

Typically requires large datasets and can exhibit lower
interpretability compared to simpler fusion strategies

Generative Image-to-text Transformer (GIT) and GPT-4 for cross-
modal alignment of visual, textual, and auditory inputs (Forlini et al.,
2024). Utilized GPT-4V for feature extraction and decision-making
based on visual and contextual inputs. And (Ly et al., 2024) employed
an LLM-based planner to generate action sequences by integrating
recognition results with motion feasibility.

In summary, multimodal data fusion can be achieved through
various strategies—from a simple early fusion of raw data to
advanced hybrid and model-based methods that dynamically learn
cross-modal interactions. Table 2 summarizes the main fusion
strategies discussed above, along with their key advantages and
limitations, to provide a concise reference for readers. These
approaches provide the foundation for robust and context-rich
perception in HRI. In the next section, we explore how these fused
representations are integrated into decision-making architectures,
enabling robots to leverage the full potential of multimodal inputs
for more intelligent and adaptive behavior.

3.4 Integration architectures for
multimodal perception and
decision-making

Multimodal perception can be integrated into decision-making
processes for HRI through various architectural frameworks,
ranging from conventional linear pipelines to more advanced
adaptive models incorporating feedback loops and end-to-end
learning. The selection of an appropriate architecture is contingent
on multiple factors, including real-time processing constraints,
system complexity, and the degree of adaptability required for
a given task. For instance, simple feedforward pipelines may
be suitable for low-latency applications (Vauf et al., 2016). In
contrast, end-to-end frameworks or feedback architecture are
often preferred in dynamic and uncertain environments where
continuous adaptation is necessary (Mei et al., 2024; Forlini et al.,
2024). Therefore, in this section, we analyze the rationale behind
the selection of each architectural approach by synthesizing insights
from selected papers and empirical findings. We will discuss how
different architectures align with specific HRI tasks, the trade-
offs they present in performance and adaptability. In multimodal
perception-driven decision systems, both academia and industry
commonly use five types of high-level architectures to integrate
information and execute action decisions for robotics: pipeline
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architecture, feedback-loop architecture, modular architecture, end-
to-end architecture, and hybrid architecture. The first four basic
types of architecture have been shown in Figure 2, which illustrates
the workflow of each approach.

3.4.1 Pipeline architecture

The pipeline processing architecture allows multiple modalities
to be processed simultaneously, reducing processing latency. By
handling different sensory inputs in parallel and integrating them
through a coordination layer, the system can output multimodal
results in real-time, feeding them directly into the planning and
decision-making module, as illustrated in Figure 2 (see Subfigure
a). This architecture is particularly advantageous in real-time
interactive scenarios, where synchronized multimodal processing
ensures fast and adaptive responses (Vauf et al., 2016). Implemented
a multi-channel parallel processing architecture to detect whether a
person intends to initiate interaction with the robot, which enables
social companion robots to respond to human behavior more
naturally in real-time. They enabled the same robot to acquire
and process multiple sensory inputs in parallel, integrating data
from different modalities: Laser scanner: 270° field of view, updated
every 80 m (12.5Hz), mounted at the base of the Kompai robot
(captures spatial position and distance); Kinect sensor: RGB video
(30Hz) for skeleton tracking and facial detection; Depth images
(30Hz) for enhanced skeleton tracking; Microphone array: 8Hz for
sound source localization and voice activity detection. All features
were temporally aligned using an 80 m (12.5Hz) baseline, with data
from different modalities fused via temporal synchronization and
feature concatenation. The unified multimodal representation was
then fed into a classifler (e.g., SVM or neural networks) to recognize
interaction intent. They claimed this approach allows the robot to
robustly and efficiently infer user engagement, ensuring real-time,
natural, and adaptive responses in HRI scenarios.

3.4.2 Feedback-loop architecture

As illustrated in Figure 2 (see Subfigure b), this architecture
incorporates feedback mechanisms where outputs from later stages
(e.g., decision-making) influence earlier stages (e.g., perception
or sensing). This approach enables adaptive and context-aware
behavior, improving robustness by allowing the system to refine
its perception based on decision outcomes. Such an architecture
is particularly well-suited for real-time multimodal perception
scenarios in complex human-robot interaction. For example, social
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robots continuously perceive user emotions and dynamically adjust
their dialogue strategies (Ch et al., 2022), or collaborative robots
refine grasping operations in real-time using force and visual
feedback (Ji et al., 2020; Zhang X. et al, 2023) introduces a
pipeline for robotic interaction and perception—the Multimodal
Embodied Attribute Learning (MEAL) framework. MEAL enables
robots to perceive object attributes—such as color, weight, and
empty—through sequential multimodal exploratory behaviors (e.g.,
observing, lifting, and shaking). The framework is built on a Partially
Observable Markov Decision Process (POMDP) for object attribute
recognition, structured as follows: Action Selection: The robot
selects the next exploratory action (e.g., look, grasp, shake) based
on the current environmental state and its belief about the object’s
attributes. Information Acquisition: The robot executes the chosen
action and collects new sensory data across multiple modalities
(e.g., visual, auditory, and tactile features). Belief Update: The system
integrates new observations and user feedback (e.g., confirming
or correcting attribute recognition) to update the POMDP belief
state. In ONLINE-MEAL scenarios, newly collected data (features
+ labels) are also added to the training set to improve future
perception models. Decision Re-evaluation: After updating its belief
or model, the system reassesses whether further exploration is
needed or if it can confidently report results, forming a closed-
loop perception-decision-feedback cycle. Similarly (Zhang Y. et al.,
2024), employs multi-source perception (RGB-D, QR codes, wheel
odometry, etc.) to obtain the robot’s current state and detect
obstacles ahead. The system continuously feeds obstacle location and
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distance information to the “Safe Manipulation” module in real time.
Based on the relative distance and direction between the obstacle
and the robot, this module dynamically adjusts the robot’s speed or
triggers braking to ensure safe operation.

3.4.3 Modular architecture

The system is divided into independent, self-contained modules,
each responsible for a specific function (e.g., sensing, perception,
decision-making). Therefore, This architecture is well-suited for
scalable robotic systems, particularly industrial collaborative robots.
It consists of independent modules, such as a vision detection
module (for object localization), a force/tactile sensing module
(to ensure safe interaction with humans or objects), a motion
planning module (for generating robotic arm trajectories), and
a high-level decision-making module (for task allocation and
anomaly handling). Each module can be individually upgraded
or replaced without affecting the overall system framework. A
typical implementation involves clear interfaces or communication
protocols between modules, such as topics or services in ROS
(Robot Operating System). For instance (Khandelwal et al., 2017),
developed a modular and hierarchical general-purpose platform
that integrates various independent modules, including mapping,
robot actions, task planning, navigation, perception, and multi-
robot coordination. Each module has a well-defined function
and can be replaced without affecting the overall system. For
example, the perception module uses a Kinect camera for human
and object detection and LiDAR for environment perception.
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During real-world operation, the robot continuously perceives
its surroundings, updating its knowledge state (via knowledge
representation and reasoning nodes) and executing actions based on
high-level planning. The key advantages of this architecture include
ease of maintenance, upgradability, and flexibility for expanding to
more complex tasks. However, a potential drawback is the added
system overhead due to module coordination.

3.4.4 End-to-end architecture

End-to-end methods typically involve designing a unified
neural network that directly maps sensor inputs to decision-
making or action, without requiring manually engineered
intermediate steps (Ly et al., 2024). Introduced an “end-to-end”
high-level task planning architecture, which processes natural
language instructions from humans and integrates visual perception
and action feasibility verification. The system combines user input
(U), visual observations (O), and feasibility scores (F) into a
multimodal context, which is then fed into a fine-tuned Mistral 7B
model to automatically generate and execute robot skill sequences
(e.g., pick object, move to location, place object), directly mapping to
atomic operations from the robot’s existing skill library. Additionally,
the framework incorporates failure recovery and a human-in-the-
loop mechanism. If the visual perception or feasibility detection
module fails, the LLM prompts the user for guidance on handling
the failure. The user can then provide new descriptions, suggest
alternative objects, or manually reposition objects. The LLM
subsequently generates a revised action sequence to ensure task
completion. The advantage of this architecture is that it eliminates
the need for complex feature engineering and pipeline framework
construction. However, its drawbacks include lower interpretability
and higher requirements for hardware and algorithms.

3.4.5 Hybrid architecture

The hybrid architecture combines elements from multiple
architectural paradigms to leverage their respective strengths.
For example, it may incorporate aspects of parallel processing,
pipeline structures, and feedback loops. Effectively integrating
these mechanisms at different stages or levels can balance real-
time performance and flexibility. One example is the brain-
inspired multimodal perception system proposed by (Al-Qaderi
and Rad, 2018a), which follows a hybrid architecture approach:
The system processes different modalities—vision (RGB and depth
cameras) and audio (microphones)—in parallel through Dedicated
Processing Units (DPUs), each responsible for specialized feature
extraction and classification. Within each modality, information
flows through a fixed-sequence pipeline, such as facial detection,
skeletal tracking, feature extraction, and classification. Moreover, at
a higher level, the system integrates spiking neural networks (SNNs)
for temporal binding and top-down influences (e.g., using QR codes
to infer possible identities), enabling a feedback loop to refine lower-
level processing dynamically. This approach allows the system to
handle multi-source inputs in parallel, while selectively activating or
constraining lower layers based on intermediate recognition results.
By doing so, it reduces unnecessary computation and improves
response speed. Such a hybrid framework has demonstrated high
adaptability and flexibility in dynamic HRI scenarios.
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3.5 Decision-making methodologies

In the previous subsection, we examined how multimodal
perception provides rich context for decision-making by integrating
vision, audio, tactile, and other sensory inputs. However, perception
alone does not complete the cycle: once the environment is
understood, the robot must decide how to act in response (see
Section 3.4 for Integration Architectures). Decision-making is a
fundamental capability in intelligent systems, enabling robots
and Al agents to infer contextual information by perceiving
the environment, and then generate appropriate actions. For
MPDDM, the system integrates information from multiple sensory
modalities—such as vision, audio, touch, and language—to enhance
robustness and adaptability in dynamic environments. With the
rapid advancement of deep learning, symbolic reasoning, and
probabilistic models, decision-making methods have become more
adaptive and learning-based paradigms. Table 3 summarizes the
decision-making method used by the MPDDM system. However,
selecting the appropriate decision-making framework depends on
the goal of the task, the level of uncertainty in the environment,
and the training data. In this subsection, we summarize the
decision-making methodologies that have been studied in HRI,
from seven decision-making perspectives. Under each perspective,
we presented each method’s distinct strengths and trade-offs in
handling environmental uncertainty, data requirements, and the
complexity of collaboration:

e Learning-Based Paradigm: Supervised Learning,
Reinforcement Learning, Imitation Learning, etc.

e Problem Formulation Based: Markov Decision Process
(MDP), Partially Observable MDP (POMDP),

Theory, etc.

Game

e Symbolic/Logic-Based Approaches:
(STRIPS,

Rule-Based = Systems,

Automated  Planning HTN), Knowledge
Representation, etc.

e Probabilistic Methods: Bayesian Networks, Hidden Markov
Models (HMMs), etc.

e Search-Based Planning: Path Planning, Monte Carlo Tree
Search (MCTS), etc.

e Generative Al Decision-Making: LLM/VLM-based Decision-
Making, Generative Adversarial ~Imitation
(GAIL), etc.

e Hybrid Approaches: Combine multiple methodologies

Learning

3.5.1 Learning-based paradigm

Learning-based decision-making treats the robot (or agent)
as a system that acquires policies or value functions from
data. Common examples in HRI include supervised learning
approaches (e.g., classification, regression), reinforcement learning
(RL) for interactive tasks, and imitation learning from human
demonstrations. For example, the robot learns to map sensor
inputs to discrete actions (e.g., “stop,” “go,
labeled training sets (Pequenio-Zurro et al., 2022). Similarly, in a

turn”) based on

collaborative assembly scenario, the robot explores different action
strategies, receiving reward signals based on successful or failed
assembly interactions (Chen et al., 2025). Alternatively, the robot
can observe a human performing a skill and imitate it, adapting
its behavior accordingly. For example (Churamani et al., 2020),
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designed an emotion-driven human-robot interaction system
using neural network fusion. Their MCCNN (Multi-Channel
Convolutional Neural Network) model consists of two independent
channels for facial expression recognition and speech emotion
recognition, which are then combined into a unified emotional
representation. And then, reinforcement learning (RL) is employed
to train the robot on negotiation strategies in the ultimatum
game. Similarly (Lu et al, 2023), proposed a vision-language
interactive grasping robot, leveraging a transformer-based cross-
modal attention mechanism. This system integrates vision, text-
based representations, and point cloud processing to enable precise
object localization and interactive grasping. Likewise (Al-Qaderi
and Rad, 2018b), utilized network-based fusion via a spiking neural
network (SNN) to process feature vectors from multiple modalities.
This approach enhances multimodal perception for social robots,
enabling dynamic and reliable human recognition by selecting
the most robust identification method based on the available
sensory data. The core advantages of learning-based decision-
making include adaptability to new tasks and improving with
more data. However, a key drawback is the potentially large data
requirement.

3.5.2 Problem formulation based methods

This approach primarily abstracts decision-making as a
mathematical model, such as Markov Decision Processes (MDP),
Partially Observable MDPs (POMDP), or game theory. Each
formulation represents the agent’s state, actions, rewards, and
uncertainties. For example (Amiri et al., 2018), employs MOMDPs
to integrate multimodal data streams, modeling fully and partially
observable state variables with updates from multimodal sensory
feedback to optimize future decisions (Amiri et al., 2020). focuses
on learning and reasoning for robot sequential decision-making
under uncertainty, using a POMDP planner that leverages sensor
data and contextual knowledge as priors to determine the optimal
action for proactive HRI. Similarly (Zhang et al., 2021), applies a
dynamically constructed POMDP to fuse information from different
sensory modalities and actions to compute the best policy. The
decision-making process is driven by the POMDP framework,
which refines the robots belief state using multimodal sensory
inputs and determines the optimal course of action. This approach’s
advantage lies in its clear mathematical framework for problem
representation. However, a key drawback is that large state spaces
often lead to high computational complexity.

3.5.3 Symbolic/logic-based approaches

This approach relies on symbolic representations (rules, logic
programs, knowledge bases) to plan or reason about actions.
Examples include rule-based expert systems, automated planning
like STRIPS or HTN, and knowledge representation with Answer
Set Programming (ASP) or Programming in Logic (Prolog).
For example (Diab and Demiris, 2024), designed an assistive HRI
robot for daily life scenarios (kitchen tasks), integrating knowledge-
based reasoning to support human-robot collaboration. The system
utilizes object detection, spatial awareness, and environmental state
assessment (e.g., detecting clutter) through a ROS-integrated version
of YOLO trained on the COCO dataset. To enable model-based
fusion, the framework constructs a Knowledge Graph (KG) that
integrates semantic labels, relationships, and properties derived
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from multimodal data. By combining object detection and task
goal identification, the robot understands the scene context and
dynamically adapts its actions to align with human preferences,
ensuring more intuitive and effective collaboration. This decision-
making approach has the advantages of high-level interpretability,
accurate capture of domain knowledge, and logically rigorous
reasoning. The drawbacks include poor robustness to noise and
potential fragility if the rules are incomplete.

3.5.4 Probabilistic methods

This approach primarily uses Bayesian networks, HMMs, factor
graphs, or PGM-based methods to model stochastic processes,
particularly for uncertainty in human states or the environment.
The system continuously updates probabilities as new observations
arrive. For example (Daglarli, 2020), employs Bayesian networks
for cognitive perception, enabling robots to interact with humans
and navigate dynamic environments as personal assistants. Similarly
(Zhou and Wachs, 2019), utilizes HMMs to integrate EEG,
EMG, body posture, and acoustic features, allowing early intent
recognition for predictive decision-making. Likewise (Aly, 2014),
applies CHMM-driven decision-making to synthesize synchronized
gestures and prosody for naturalistic robot behavior. The key
advantage of this approach is its principled handling of uncertainty,
while the main drawback is the potentially high computational cost
for large state spaces.

3.5.5 Search-based planning

Search-Based Planning algorithms (e.g., A", D*, MCTS)
compute a plan or policy by searching the state or action-space.
For example (Khandelwal et al., 2017), combines probabilistic
reasoning and planning (CORPP) to infer missing or ambiguous
information, thereby reducing errors in understanding and
navigation. The advantage of this approach is efficient exploration
and planning in structured environments, while its main drawback
is that it does not handle partial observability or complex uncertainty
as effectively as POMDPs.

3.5.6 Generative Al decision-making

Generative Al-based decision-making leverages LLMs or VLMs
to generate or refine robot actions. The system can dynamically
generate responses and action plans by querying a pretrained GPT-
like model with a prompt such as “Given the environment state, what
is the next best action?* (Menezes, 2024)’s MuModaR framework
integrates multimodal inputs using GIT and GPT-4 for cross-modal
alignment of visual, textual, and auditory inputs, enabling real-
time feedback-driven decision-making (Ly et al., 2024). Employs
an LLM-based planner to integrate recognition results with motion
feasibility, allowing a mobile manipulator (Toyota HSR) to generate
action sequences based on user commands (Forlini et al., 2024).
Uses GPT-4V to process visual and context-aware inputs, enabling
accurate identification of components and their assembly states
(Song D. et al., 2024). Developed a socially aware robot navigation
system leveraging a VLM-based approach (GPT-4V) to allow
adaptive and socially aware decision-making (e.g., recognizing
a stop gesture). The advantages of this approach include great
flexibility and potential zero/few-shot learning capabilities. While
large language models are often perceived as less interpretable than
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classical rule-based systems, recent techniques such as chain-of-
thought (Lu et al., 2024) prompting can improve their transparency
and reasoning interpretability. Furthermore, although these models
can pose computational challenges in latency-sensitive scenarios,
real-time constraints may not be critical in many offline decision-
making contexts.

3.5.7 Hybrid approaches

Hybrid Approaches combine two or more methods above—for
instance, using symbolic rules with a deep RL agent, or
using MDP planning plus an LLM to handle high-level
language instruction. This method can exploit complementary
strengths, e.g., robust uncertainty handling with interpretability.
For example (Zhang X. et al., 2024), developed a robot planning
system for open-world environments, leveraging a pre-trained VLM
and Planning Domain Definition Language (PDDL) to generate
actions. When an action fails (e.g., grasping a cup fails or an object
drops), the system updates the world state and replans accordingly.
However, integration will be complex.

4 Discussion

Building on the previous chapters, we established the necessity
of multimodality, highlighted the advantages of multimodal
perception in dynamic environments, and summarised how
multiple modalities can be fused and integrated into subsequent
decision-making processes. We also systematically reviewed the
major decision-making methodologies for MPDDM commonly
employed in HRI. This section will revisit these findings from
a broader perspective, focusing on the current challenges and
limitations of existing systems and research efforts. Specifically, we
will examine three key areas: technical integration and sensor noise,
domain generalization, and safety and robustness. Finally, based on
these observations, we propose several future research directions
that could guide subsequent investigations and applications in this
evolving field.

4.1 Current challenges and limitations

4.1.1 Technical integration and sensor noise

In multimodal perception-driven decision-making (MPDDM)
systems, the technical integration of sensors and computational
modules remains a significant challenge. First, the need to fuse and
align data from multiple modalities (e.g., vision, LiDAR, audio)
can introduce high computational complexity—the system must
handle large-scale data (see (Zhang X. et al.,, 2023; Al-Qaderi and
Rad, 2018a; Zhang Y. et al., 2024; Vauf et al., 2016; Granata et al.,
2012; Tang et al, 2015; Sha, 2024; Ji et al, 2020; Wang, 2023;
Belcamino et al., 2024)) while ensuring real-time performance.
Studies indicate that unimodal perception (using only LiDAR or
RGB cameras) is less effective in socially rich or dynamic HRI
scenarios (Panigrahi et al., 2023; Zhang Y. et al., 2024; Amiri et al.,
2020), and highlight the necessity of incorporating multiple sensors
(Cai et al, 2024) for robust situational awareness. However,
integrating multiple modalities demands careful calibration, time-
stamping, and data synchronization (Sha, 2024; Forlini et al., 2024).
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A second challenge relates to computational complexity and
real-time constraints. As multiple modalities scale, so do the
demands on both memory and processing power, especially when
advanced deep learning is used for sensor fusion (Daglarli, 2020;
Amiri et al., 2018; Granata et al., 2012). This inevitably leads
to a significant issue—the need to sacrifice some degree of
precision. This trade-off is one of the key reasons why some studies
argue that it is difficult to achieve an accurate representation of
the real world. For instance, systems that combine raw images,
depth maps, and social signals (e.g., speech or gesture data)
can overwhelm onboard hardware if not carefully designed (Sha,
2024; Forlini et al., 2024; Ferreira et al., 2012). Consequently,
many works struggle to maintain low computational overhead
while preserving runtime flexibility and robust decision-making
(Forlini et al., 2024; Khandelwal et al., 2017; Zhang et al., 2021;
Lietal, 2021). In addition, some works claimed that handling partial
observability (e.g., in a mixed-observability MDP) further intensifies
the complexity (Amiri et al., 2018; Ji et al., 2020).

Finally, sensor noise and environmental uncertainties remain a
pervasive obstacle to reliable MPDDM. Vision modules may suffer
inaccuracies from changing illumination or strong reflections, and
LiDAR scans can be corrupted by cluttered or reflective surfaces
(Zhang Y. et al., 2024; Sha, 2024; Scicluna et al., 2024). Tactile or
audio channels can face similar distortions when interacting closely
with humans (e.g., voice overlapping in a crowded environment
(Zhang Z. et al., 2023; Qin et al., 2023), or haptic signals drowned
by mechanical vibration (Forlini et al., 2024)). While some systems
attempt to incorporate uncertainty modeling or real-time sensor re-
calibration (Li et al., 2021; Al-Qaderi and Rad, 2018b), guaranteeing
seamless operation in the presence of sensor noise and incomplete
data still remains an open technical challenge.

4.1.2 Domain generalization
issue for MPDDM in HRI
generalization, i.e., whether a trained or engineered system

Another critical is domain
can maintain effectiveness when deployed in new tasks or
different application contexts (Zhang X. et al., 2023; Wang, 2023;
Baptista et al., 2024; Zhou and Wachs, 2019; Zhang X. et al., 2023).
For example, in personal-assistive robots, user demographics and
cultural factors significantly affect language or gesture recognition
modules (Aly, 2014). Systems that are meticulously tuned to
one environment or set of objects often fail to generalize in a
new industrial or social setting (Tang et al., 2015; Amiri et al,
2018), leading to increased development costs each time the
context changes.

4.1.3 Adaptation

Adaptation is very important in HRI, Despite promising
methods for continual learning, many HRI systems still exhibit
limited adaptation to changes in user needs or environmental
conditions. Trained models may fail when confronted with new
geometries, lighting setups, or people’s behaviors (Amiri et al,
2020; Baptista et al., 2024; Churamani et al., 2020; Yuan et al.,
2024). Beyond physical changes, the social nature of HRI demands
that systems also account for shifting user preferences, habits,
cultural norms, and collaborative task requirements, which can
evolve over time (ZhangY. et al., 2024; Granata et al., 2012).
Therefore, models optimized for a single/short environment or
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user profile often become inadequate once real-world conditions
diverge from those observed during training. Addressing this
challenge calls for robust continual learning strategies that can
fuse on-the-fly sensor data with real-time learning/inference while
preserving previously acquired knowledge. Developing such flexible
adaptation mechanisms remains a key research direction and
challenge.

4.1.4 Safety and robustness

Finally, ensuring safety and robustness in real-world HRI
scenarios is paramount. Many MPDDM systems must handle
close-range human interaction, often in dynamic, unpredictable
environments (Menezes, 2024; Granata et al., 2012; Yas et al., 2024).
Sensing inaccuracies (e.g., uncertain human motion trajectories or
ambiguous gestures) amplify the difficulty of guaranteeing safe robot
operation (Tang et al., 2015), particularly when the robot must
execute complex manipulation or navigation tasks (Forlini et al.,
2024). Although advanced approaches leverage multi-layer sensor
fusion and failover mechanisms, long-term deployment can still face
drift and sensor misalignment (Menezes, 2024; Granata et al., 2012),
leading to cumulative errors over time.

Moreover, real-time failure recovery is frequently overlooked.
Some strategies perform global re-planning upon any anomaly,
but this can be computationally expensive or slow (Ly et al,
2024). Other works rely on users to intervene manually. The
challenge is thus twofold: designing motion-level re-planning or
fallback strategies without incurring excessive latency, and building
a dialogue or feedback loop allowing humans to provide corrective
input (Menezes, 2024; Ly et al., 2024). All these works aim to create
a system that not only meets the real-time demands of dynamic
HRI but also maintains robust performance and safe collaborative
interactions.

4.2 Future research directions

4.2.1 Advancing learning-based approaches

Future work would underscore the need for more efficient
learning paradigms—ranging from generative Al to reinforcement
learning (RL)—to cope with multimodal perception in dynamic
HRI. Several works point to semi-supervised or weakly supervised
techniques that can reduce reliance on extensive labeled data,
thus lowering the costs of large-scale multimodal curation
(Cai et al., 2024; Panigrahi et al., 2023; Zhang X. et al., 2023;
Sha, 2024). Furthermore, robust generative models could help
unify multiple input streams (e.g., vision, audio, haptics) while
automatically aligning them with latent representations (Daglarly,
2020; Menezes, 2024; Vauf et al., 2016). Equally important is
the push to incorporate advanced attention mechanisms and
semantic reasoning for better capturing cross-modal signals
(Daglarli, 2020; Ji et al., 2020; Yas et al., 2024; Aly, 2014), leading
to more context-aware and “cognitive” HRI systems. In parallel,
scaling up sensor coverage while keeping memory overhead
tractable remains a challenge that future work must address by
optimizing sensor fusion and feature extraction (Vauf et al., 2016;
Belcamino et al., 2024; Scicluna et al., 2024).
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4.2.2 Improving explainability and human trust

Ensuring that Al-driven decisions are interpretable is vital
for fostering user acceptance and trust in HRI (Mathur et al,
2025). Although many multimodal models yield high accuracy,
they often behave as “black boxes” making it unclear why a
system chooses a particular action or how it handles ambiguous
inputs (Tang et al.,, 2015; Qin et al,, 2023). Work in (Ch et al,
2022; Li et al, 2021; ZhangZ. et al, 2023) highlights the
importance of building affective and dialogue-based interactions
with the user, so the robot can clarify uncertainties or explain the
reasoning behind certain decisions. Additionally, to promote safer
collaboration (Ly et al., 2024; Lu et al., 2023), propose integrated
motion-level re-planning frameworks that combine transparency
about failure causes (e.g., “object not in view”) with real-time
user feedback. Future research might incorporate social cues
such as facial expressions, body posture, or personal preferences
(Vauf et al.,, 2016; Churamani et al., 2020; Al-Qaderi and Rad,
2018b; Ferreira et al, 2012; Yuan et al, 2024), improving the
system’s ability to provide human-readable justifications and adapt
its behavior accordingly. Ultimately, bridging model decisions and
intuitive explanations can drive deeper user trust in situations that
demand joint decision-making.

4.2.3 Scalable multi-robot collaboration

Another promising direction concerns scalable multi-robot
systems, where tasks span collaborative assembly, multi-robot
coordination, or large-scale monitoring (Khandelwal et al., 2017;
Zhang et al., 2021). While single-robot multimodal perception
has progressed substantially, simultaneously coordinating multiple
robots under uncertain or partially observable conditions
remains underexplored. Key open questions center on robust
joint perception—sharing or transferring learned policies,
sensorimotor features, and knowledge across heterogeneous
platforms (Zhang et al., 2021). In parallel, the complexities of real-
world scheduling, path planning, and dynamic role assignment
amplify in multi-robot teams, as partial failures in one platform can
cascade. Interweaving user interactions—e.g., a human operator or
supervisor who provides on-demand clarifications—poses further
integration challenges (Khandelwal et al., 2017). Addressing these
issues could enable more flexible, self-organized teams of robots that

better adapt to large-scale tasks and diverse users.

4.2.4 Long-term autonomy and continual
learning

Finally, long-term autonomy in dynamic human environments
demands that a robot continuously refine its models and maintain
stable performance over lengthy deployments (ZhangY. et al,
2024; Granata et al, 2012; Amiri et al, 2018; Forlini et al.,
2024). Systems must confront persistent changes in environment
geometry, lighting conditions, or occupant behavior, which can
degrade originally trained models (Amiri et al., 2018). Continual
learning approaches that leverage streaming sensor data could keep
the robot’s perception and action policies up-to-date—though care
must be taken to avoid catastrophic forgetting (Forlini et al., 2024).
Equally important is capturing evolving user preferences, social
context, and task requirements (Zhang Y. et al., 2024; Granata et al.,
2012). Achieving robust online updates for these modules will
demand balancing data quality (potentially from incomplete or
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noisy real-world streams) with computational efficiency, as
pointed out by (Amiri et al,, 2018) and (Forlini et al., 2024).
Future work may combine online transfer learning, policy
gradient RL, and environment mapping methods to sustain
consistent performance in long-duration, continuously changing
settings.

Overall, addressing these four broad directions—advanced
learning paradigms, intuitive human trust, multi-robot scaling
collaboration, and long-term autonomy—holds the potential to
push MPDDM-based HRI toward more natural, capable, adaptable,
and user-aligned HRI systems in real-world practice.

5 Conclusion

In this survey, we have examined how multimodal perception
can enrich decision-making in human-robot interaction from
several application perspectives, thereby demonstrating the
importance of multimodality in improving decision-making. By
synthesizing insights from existing literature, we showed that
leveraging multiple sensory modalities not only increases robustness
against sensor failures and environmental uncertainties but also
provides a richer context for understanding human states and
intentions. Consequently, effectively fusing different data modalities
into decision models that handle partial observability, real-time
constraints, and evolving user behavior has emerged as a critical
direction in achieving natural, robust, and safe human-robot
interaction in the future.

Despite these promising developments, several challenges
remain. Real-world deployments still grapple with sensor noise,
synchronization overhead, and the substantial computational
burden of processing large-scale multimodal data in real time.
Moreover, generalizing systems beyond controlled laboratory
conditions poses considerable difficulties—especially when robots
operate in diverse settings with varied user profiles, tasks, and
cultural norms. Safety and trustworthiness also demand deeper
investigation; while fusion-based models achieve higher accuracy,
they can be opaque, making it difficult for end users/researchers to
understand how a robot arrives at particular choices.

Looking ahead, the ongoing progress of learning-based methods
and large-scale foundational models is poised to broaden the
horizons of what multimodal perception and decision-making can
accomplish. By striking a careful balance among computational
efficiency, explainability, and responsiveness, future research can
produce truly adaptive, socially aware robots that seamlessly
integrate into daily life. Ultimately, overcoming these human-
centered challenges will bring us closer to robots capable of robustly
perceiving complex scenarios, inferring user intentions and needs,
and collaborating safely and intelligently across a wide range
of domains.
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