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Agentic AI refers to autonomous systems that can perceive their environment,
make decisions, and take actions to achieve goals with minimal or no
human intervention. Recent advances in Large Language Models (LLMs) have
opened new pathways to imbue robots with such “agentic” behaviors by
leveraging the LLMs’ vast knowledge and reasoning capabilities for planning
and control. This survey provides the first comprehensive exploration of
LLM-based robotic systems integration into agentic behaviors that have
been validated in real-world applications. We systematically categorized
these systems across navigation, manipulation, multi-agent, and general-
purpose multi-task robots, reflecting the range of applications explored. We
introduce a novel, first-of-its-kind agenticness classification that evaluates
existing LLM-driven robotic works based on their degree of autonomy, goal-
directed behavior, adaptability, and decision-making. Additionally, central to our
contribution is an evaluation framework explicitly addressing ethical, safety,
and transparency principles—including bias mitigation, fairness, robustness,
safety guardrails, human oversight, explainability, auditability, and regulatory
compliance. By jointly mapping the landscape of agentic capabilities and ethical
safeguards, we uncover key gaps, tensions, and design trade-offs in current
approaches. We believe that this work serves as both a diagnostic and a call
to action: as LLM-empowered robots growmore capable, ensuring they remain
comprehensible, controllable, and alignedwith societal norms is not optional—it
is essential.

KEYWORDS

agentic AI, large language models (LLMs), autonomous robots, intelligent machines,
ethical AI, AI transparency, human-robot interaction, real-world applications

1 Introduction

“I propose to consider the question, ‘Can machines think?”’, this is how Alan
Turing, in 1950, began his first published paper focusing exclusively on machine
intelligence. Rather than trying to determine if a machine is thinking, Turing
proposed the well-known Imitation Game, which led to the foundation for Natural
Language Processing (NLP) systems designed to imitate human conversation.
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Modern Large Language Models (LLMs) have opened new
avenues for enhancing robot intelligence and autonomy by enabling
more natural human-robot interactions Zeng et al. (2023). Unlike
traditional robotic systems with hand-coded dialogue or fixed
responses, LLMs can understand and generate open-ended natural
language, allowing robots to engage in human-like conversation and
complex instruction following. This embodiment of LLMs means
using them as part of a robot’s control loop or “brain,” so the
robot benefits from the vast knowledge and reasoning capabilities
learned from text. Researchers have recognized the promise of
this approach in improving robots’ decision-making, planning, and
adaptability.

However, bridging purely text-based LLMs with physically
embodied robots poses significant challenges. A major limitation
is that most LLMs rely on textual input/outputs, which is
insufficient for robots that must perceive images, navigate spaces,
and manipulate objects. While LLMs are designed to understand,
generate, and process human language, they often lack true
comprehension of commonsense or real-world knowledge, leading
to potentially illogical or even biased outputs based on their
training data, escalating the ongoing debate on whether they
actually “think” or merely generate statistical predictions based
on patterns in data. This highlights one of the biggest challenges
in robotics today—developing systems that not only process and
generate language but also achieve true intelligence by grounding
their understanding in real-world perception, enabling them
to sense, interpret, and make decisions in complex, real-world
environments.

To overcome these challenges, agentic AI, the next frontier in
artificial intelligence, is poised to bridge the gap between passive
computation and true autonomy. Unlike conventional AI models
that passively generate responses from learned patterns, “agentic
AI” refers to an artificial intelligence system that can act as an
autonomous agent with the capacity to perceive its environment,
make decisions, and perform actions to achieve goals with minimal
or no human intervention. In robotics, this concept signals a shift
from machines that merely execute pre-programmed commands
toward autonomous agents with higher-level cognitive capabilities.
This introduction provides context for our survey by defining agentic
AI and highlighting why integrating LLMs into robotic systems
could accelerate this transformation.

Recent work addresses this by feeding multimodal inputs
to LLMs or by coupling LLMs with perception modules (see
Figure 1). For example, PaLM-E (Driess et al., 2023) is a 562-billion
parameter embodied multimodal model that accepts continuous
visual observations alongside text, effectively bridging the gap
between language and perception. By treating images and other
sensor readings as just another language” input, PaLM-E enables an
LLM to reason about the physical environment and output action
instructions. This represents a step toward true embodiment, as the
LLM’s internal knowledge is grounded in real-world context.

Several research groups have also proposed system architectures
to integrate agentic LLMs into robots. A common pattern is to
use the LLM for high-level reasoning and task decomposition
while traditional robotics modules handle low-level control. In
Google’s PaLM-SayCan system (Ahn et al., 2022), a pre-trained
LLM (PaLM) is coupled with a set of pre-learned robotic skills and
an affordance function. The LLM provides semantic understanding

of an open-ended instruction, breaking it into feasible steps,
and the affordance model estimates which actions are physically
possible in the current context. This way, the robot “acts as
the language model’s hands and eyes” while the LLM supplies
high-level reasoning. Beyond specific implementations, conceptual
frameworks have been proposed for LLM-based robotic systems.
Some works (e.g., RobotGPT framework) envision a robot “brain”
where an LLM like ChatGPT orchestrates perception and control
modules formulti-modal understanding and action (Jin et al., 2024).
Social robotics researchers foresee replacing traditional pipelines
(speech recognition→ intent parsing→ dialog management) with
unified LLM-based architectures formore fluid interactions. Despite
these visions, embodiment remains an open challenge: an effective
integration requires tight coupling between an LLM’s abstract
reasoning and the robot’s continuous sensorimotor experience.
Ensuring real-time responsiveness, grounding in perceptual reality,
and handling the physical constraints of robots are ongoing
research problems.

1.1 Contributions

Prior surveys often catalog impressive robotic behaviors that
unfortunately only exist in simulation; here we aim to highlight
which approaches have actually been deployed on physical robots
and what outcomes were observed. More specifically, this survey
paper aims to fill the gaps identified above and go beyond the
current literature, by providing an extensive collection of agentic
LLM-based robotic systems and set its boundaries for easier
understanding by a wider audience of researchers, developers, and
policymakers.

We identified relevant papers by searching scholarly databases
(e.g., Scopus, Web of Science, IEEE Xplore, ACM Digital Library,
arXiv) using keywords like “LLMs in robotics”, “Agentic LMMs”,
“LLMs for human-robot interaction,” etc., focusing on the years
2022–2025.We included only thoseworkswhere the LLM-enhanced
robotic system was validated in real-world settings (as opposed to
simulation-only studies) to ensure our review emphasizes practical
deployments. From an initial list of candidates, we applied further
inclusion criteria: works had to explicitly incorporate a large
language model in the robot’s decision-making or control loop and
exhibit at least one of the agentic characteristics (autonomy, goal-
directedness, adaptability, decision-making).This process yielded 30
key papers that span diverse application domains. We acknowledge
that while we aimed for comprehensive coverage, some relevant
works might have been excluded; our selection prioritizes depth of
analysis in real-world contexts. We provide the full list of reviewed
papers both in Figure 1 and in Tables 2–5.

Key contributions of this survey include:

• A transparent survey methodology, resulting in a curated
dataset of 30 recent papers at the intersection of LLMs and
robotics, all validated in real-world contexts,
• A comprehensive study of the techniques and concepts used

in the reviewed LLM-based robotic systems based on their
task domain,
• A comparative agenticness classification of how each work

embodies agentic” characteristics,
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FIGURE 1
A visual summary of recent Agentic LLM-based robotic systems reviewed in this survey.

• An evaluation considering the ethical, societal, and regulatory
issues with adopting agentic AI, including relevant concerns of
responsibility, equity, and transparency,
• Recommendations towards future research, advancing

suggestions on how the issues of scale, context, and ethics
are best integrated into the implementation of agentic AI for
real-world.

This paper’s expected contributions are more than simply a
literature review; rather, they should offer a useful and well-
organized background to classify the LLM-based robotic systems
based on their agentic behavior and understand the ethical and
transparency issues of agentic AI. This paper aims to go beyond
theory and address the real-world challenges of agentic AI in
robotics to promote and sustain the development of ethical agentic
AI systems.

2 Related work: surveys on LLM
integration in robotics

Recent survey papers reveal several overarching themes in
integrating large language models (LLMs) into robotics and agentic
systems (Zeng et al., 2023; Hu et al., 2023; Shavit et al., 2023;
Kim Y. et al., 2024; Huang et al., 2024; Jeong et al., 2024;
Bousetouane, 2025; Acharya et al., 2025; Li et al., 2025). Table 1
compares key themes across representative surveys, highlighting
their focus areas and omissions. We discuss these surveys in terms
of their scope, real-robot deployment, agentic AI aspects, and
treatment of ethics.

2.1 Scope of existing surveys

Each survey has a distinct scope, and collectively, they reveal
important gaps. Some surveys provide broad taxonomies of
applications–for instance, Zeng et al. (2023) lays the foundation
with a broad taxonomy of core robotics functions—such as
control, perception, planning, and navigation—framing LLMs
as enhancers of embodied intelligence. Others focus on specific
aspects: Hu et al. (2023) narrows the focus by employing a
meta-analytical approach to assess foundation models in NLP
and computer vision, particularly emphasizing experimental
outcomes and sim-to-real challenges in general-purpose robot
skills. Shavit et al. (2023) defines agentic AI systems and outlines
safety and accountability best practices, with less emphasis
on technical adaptive autonomy, though. Kim Y. et al. (2024)
take a methodology-centric view, breaking down robotics into
components (communication, perception, planning, control)
and offering integration guidelines for prompt engineering to
enable newcomers to access LLM-based robotics solutions.
Huang et al. (2024) spans multiple domains, including robotics,
healthcare, and gaming, to propose holistic architectures for
continuously evolving agents. Jeong et al. (2024) emphasizes
how foundation models (including both LLMs and vision-
language models-VLMs) improve various robotics subdomains
like reward design in reinforcement learning, low-level control,
high-level planning, manipulation, and scene understanding.
Bousetouane (2025) provides a comprehensive introduction to
agentic systems and actionable insights for deploying vertical AI
agents in driving industry-specific applications, while Acharya et al.
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TABLE 1 Comparison of existing surveys on LLM-based robotics, underscoring their coverage of real-world applications, agentic autonomy, and ethical
considerations.

Survey Scope and focus Real-robot
deployment

Agentic AI Ethics and
transparency

Zeng et al. (2023) Broad overview of LLM
applications in robotics;
positions LLMs as enhancing
“embodied intelligence”

Reviews research prototypes
by acknowledging sim-to-real
gap; no in-depth deployment
evaluation

Agents as embodied AI; does
not analyze adaptive autonomy
in open-ended environments

Briefly notes societal
implications; little on bias or
accountability; ethical
discussion is philosophical and
short-term safety is only
mentioned in passing

Hu et al. (2023) Survey and meta-analysis of
foundation models (NLP/CV)
in robotics; proposes
taxonomy and aggregates
experimental results

Motivated by sim-to-real gaps;
summarizes research
outcomes rather than
long-term deployment

Envisions “general-purpose”
robotic agents; it stops short of
examining cognitive autonomy
or continuous learning in
depth

Focuses on performance
metrics; ethical implications,
bias or safety receive minimal
attention; Governance and
transparency considerations
are out of scope

Shavit et al. (2023) Defines agentic AI systems;
provides safety best practices
and governance frameworks
for ensuring responsible
deployment

Focuses on outlining
governance frameworks rather
than empirical deployment
evaluations

Clarifies what constitutes
agentic AI from a governance
perspective; no technical
adaptive autonomy

Strong focus on safety,
accountability, and
transparency; oriented toward
policy recommendations

Kim et al. (2024b) Component-wise integration
of LLMs into robotics;
practical guidelines for prompt
engineering and system design

Focuses on methodology; no
empirical deployment studies
included

Covers autonomy via
planning/control components;
agentic behavior is not a
dedicated topic

Notes the need for output
filtering; no in-depth coverage
of ethics, bias, transparency or
regulatory issues

Huang et al. (2024) Cross-domain review
(robotics, healthcare, gaming)
for Agent AI”; analyzes
architectures for
comprehensive intelligence

Offers conceptual frameworks
with theoretical scenarios;
lacks real-world deployment
data

Emphasizes on holistic and
adaptive intelligence; fully
agentic systems that learn and
evolve continuously

Addresses ethical challenges
and the need for transparency;
discusses accountability and
oversight

Jeong et al. (2024) Review of how foundation
models (LLMs and VLMs)
enhance robot intelligence;
emphasizes LLMs’
generalization in real-world

Relates to physical-world
scenarios; evaluation of
long-term robustness or field
trials is not systematically
presented

Discusses embodied
intelligence; not explicitly
framed as agentic.”

Strong focus on safety and
ethics: warns of biased or
unsafe outputs from
LLM-powered robots and the
risk of misuse (violent/illegal
instructions)

Bousetouane (2025) Industrial applications of
vertical AI agents; emphasizes
practical design and
deployment strategies

Strong emphasis on integration
and real-world challenges

Targets agentic system design
and adaptive decision-making
for real-world

Industrial applicability over an
in-depth exploration of ethical
issues and transparency
measures

Acharya et al. (2025) Reviews architectures and
methods for autonomous
intelligence and agentic AI in
robotics

Mostly conceptual
architectural views; minimal
real-world deployment
emphasis

Addresses agentic behavior via
goal-directed behavior and
decision-making

Covers safety and
accountability at a high level;
lacks detailed discussion on
transparency and ethical
governance

Li et al. (2025) Focuses on multi-robot
coordination via LLMs

Identifies adaptability and
latency as real-world
challenges; forward-looking
rather than reporting
real-world deployments

Covers collaborative and
adaptive behaviors; lack of
learning strategies
autonomously over time

Notes safety features in LLMs;
does not delve into
multi-robot ethical governance

(2025) explores the foundational concepts, unique characteristics,
and core methodologies of agentic AI across various fields,
including healthcare, finance, and adaptive software systems,
emphasizing the advantages of deploying agentic systems in real-
world scenarios, outlining also the ethical challenges related to goal

alignment, resource constraints, and environmental adaptability.
Last but not least, Li et al. (2025) rounds out the collection
by examining multi-robot coordination via LLMs, identifying
challenges like scalability and latency primarily through simulation-
based studies.
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2.2 Real-robot deployment

Another shortcoming of prior surveys is their limited treatment
of LLM-based robotic systems in real-world deployment.Most of the
surveys discuss systems that have only been tested in simulation or
controlled lab settings. For example, Zeng et al. (2023) acknowledge
that training robotics models purely in games or simulators often
fails to translate to real environments–a model with 90% success
in simulation might drop to 10% in reality. They cite this sim-to-
real gap as a challenge, noting issues like the cost of real-world
data collection and the poor transferability of policies trained in
virtual settings. However, while they raise the point, the survey does
not provide a systematic review of how current research has tried
to bridge this gap while remaining an identified problem rather
than an analyzed one. Many surveys share this pattern: real-world
applicability is acknowledged as a challenge, but not rigorously
evaluated. On the other hand, across Table 1, prior surveys lean
towards describing architectures and potential applications, with
relatively few references to outcomes of real-world experiments.
For instance, Jeong et al. (2024) include scattered examples of
robotics experiments (such as a mobile manipulator executing plans
from natural language, or Google’s RT-2 model for vision-language-
action). Yet, the survey still does not compile results from those
physical deployments into an analysis of how well current LLM-
based robots actually perform when faced with the messiness of
reality. Concisely, the prior surveys provide a strong foundation of
concepts and initial demonstrations of LLM-based robotic systems,
but a survey with a decidedly real-world, deployment-oriented
viewpoint is needed to push the field from promising research to
impactful practice; which approaches have actually been tested in
real robots, what are the outcomes in terms of their agenticness, and
what practical recommendations can bemade.This new perspective
would complement the existing literature by focusing on real-world
applicability of LLM-based robotic systems–the very aspect that
prior surveys largely left as an open challenge.

2.3 Agentic AI overlooked

Despite this coverage, critical aspects are overlooked. The
idea of agentic AI–robots with autonomy, goal-directed behavior,
adaptability, and decision-making – is only superficially addressed
in existing surveys. Most prior works frame LLM-equipped robots
as improved versions of traditional robots, not as fundamentally new
agents with higher-level cognitive autonomy. Most of the surveys,
for instance Kim Y. et al. (2024), structure their survey around
integrating LLMs into four robotics components: communication
(language understanding/generation), perception, planning, and
control. This provides a valuable breakdown of where LLMs can
slot into robot architectures, and the authors offer practical prompt-
engineering tips for each component. Yet, this component-wise
approach means the survey stops short of examining whole-agent
behavior that emerges when these pieces work together. In other
words, the surveys tend to discuss LLM-based robotic systems in
constrained task contexts (e.g., following instructions, generating
plans) rather than as continually learning agents operating in open-
ended environments. There is little discussion of robots exhibiting
long-horizon autonomy, goal-directed behavior, adaptability, and

decision-making–hallmarks of “agentic” AI. In summary, each
existing survey provides pieces of the puzzle (task planning,
language-based control, human-robot interaction improvements,
etc.), but none squarely focus on the adaptive agency aspect. This is
a notable gap: as the community moves toward more autonomous
robot agents, guidance on how LLMs contribute to capabilities
like autonomy, goal-directed behavior, adaptability, and decision-
making is lacking in the survey literature.

2.4 Ethical, safety, and transparency
considerations

Despite rapid advances in LLM-based robotic systems, existing
surveys tend to address ethical, safety, and transparency concerns
only in a cursory manner—leaving a significant gap in both
theory and practice. As our analysis in Section 4 shows, most
prior works mention these issues superficially without integrating
detailed evaluation metrics such as fairness/bias, safety/robustness,
transparency/interpretability, and governance/compliance.

For example, Kim S. S. et al. (2024) briefly notes the need
for filtering and correction mechanisms to mitigate inaccurate
or unexpected outputs, yet it does not elaborate on how such
measures could be systematically evaluated or enforced. Similarly,
Zeng et al. (2023) warns that biased or misconceived outputs
from LLMs might lead to harmful physical actions—like a
kitchen robot inadvertently causing a fire—or even raise data
privacy issues when sensitive information is sent to the cloud.
However, their discussion remains largely at the level of risk
identification rather than proposing concrete mitigation strategies
or accountability frameworks. In contrast, Jeong et al. (2024) offers
a more direct treatment by detailing how LLMs can embed biases
(e.g., biases related to race and gender) and may output unsafe
instructions. Even so, as highlighted in our ethical evaluation
framework (Sections Section 4.2; Section 4.3), this survey stops
short of exploring how to audit an LLM-driven robot for bias or
how to ensure accountability when decision-making is partially
autonomous. Notably, none of the reviewed surveys propose robust
ethical governance measures—such as explainability modules,
comprehensive audit logs, or human-in-the-loop oversight—that are
essential for achieving traceability and accountability in real-world
applications.

Moreover, transparency—a critical factor for building user trust
in autonomous systems—is rarely discussed beyond superficial
mentions. Few surveys analyze whether users can effectively
interrogate the robot’s reasoning process or if the robot can
provide intelligible explanations for its actions. This is particularly
concerning given that, as LLM-based robots transition from
controlled lab environments to dynamic public settings, the practical
implications of bias, accountability, and transparency become
immediate andmultifaceted. Emerging regulatory frameworks (e.g.,
the EU’s proposed AI Act) further underscore the need for stringent
oversight and explainability in high-risk AI systems. Yet, to date,
no survey fully connects these regulatory demands with current
LLM-based robotics practices. As ourmeta-analysis reveals, existing
literature often leaves readers with the simplistic takeaway of be
careful, there are issues” without offering guidance on how to
mitigate them.
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In summary, the current surveys each cover pieces of the LLM-
for-robotics puzzle, but none provides a comprehensive picture of
LLM-based agentic AI in robotics. Critical aspects such as real-robot
deployment, agentic AI capabilities, and depth of ethical, safety,
and transparency considerations are not sufficiently discussed as
standalone themes. This gap is significant because these aspects will
determine whether LLM-based robotic systems can move beyond
demos to become reliable, autonomous agents in the real world.

2.5 Preliminaries and definitions

In this survey, we review only agentic LLM-based robotics
systems that have been validated in real-world applications. We
define the agentic behavior of a robotic system based on the
four following characteristics: i) Autonomy: The ability to operate
without constant human intervention; ii) Goal-directed behavior: A
focus on achieving specific outcomes based on a set of objectives; iii)
Adaptability: The capacity to learn and adjust to new circumstances
or information; iv) Decision-making capabilities: The ability to
evaluate options and choose the best course of action based on
available data. In this paper, we use the term agenticness to refer to
the degree to which these characteristics are embodied in an LLM-
based robotic system. We acknowledge that our agenticness ratings
are based on the authors’ interpretations of each work; developing
quantitative metrics for each characteristic would be an excellent
direction for future research.

2.6 Paper outline

The remainder of this paper is organized as follows: Section 3
presents a thorough literature overview of the relatively recent LLM
works and their integration into robotics. It also introduces a novel,
first-of-its-kind agenticness classification across existing works
regarding the notion of their agentic behavior, Section 4 outlines an
evaluation framework for categorizing current LLM-based robotic
systems in terms of ethics, safety, and transparency, covering aspects
such as bias and fairness, robustness and safety mechanisms, human
oversight, explainability, auditability, and regulatory compliance,
Section 5 classifies the recent agentic LLM-based robotic systems
according to both their level of agenticness and their alignment
with ethical, safety, and transparency principles, and Section 6
provides an overview of the research and delves into its results and
consequences.

3 LLM-based systems applied in
real-world robotics

Recent advances in LLMs have opened new pathways to
imbue robots with such agentic” behaviors, by leveraging the
LLMs’ vast knowledge and reasoning capabilities for planning and
control. More specifically, this survey provides a comprehensive
review of 30 recent papers at the intersection of agentic AI and
robotics for real-world. We organize the discussion into four task
domains – (i) Navigation and Mobility, (ii) Manipulation and
Object Interaction, (iii) Multi-Agent and Collaborative Robotics,

and (iv) General-Purpose Multi-Task Robots–reflecting the range
of applications explored. Each paper is assigned to its primary
domain (and secondary domains, if applicable). In each subsection,
we first overview the domain’s significance and the role of LLM-
based agency, then summarize the key papers (detailing their
methodology, results, and contributions), introducing terminologies
and techniques for subsequent reviews. Finally, for each task
domain, we introduce an agenticness classification framework
to evaluate and compare how agentic these systems are based
on four key characteristics: Autonomy, Goal-Directed Behavior,
Adaptability, and Decision-Making. For each characteristic, we
assigned a qualitative rating (Low , Moderate , and High

) on each agentic dimension based on evidence in the papers.
For example, a system that operates for prolonged periods without
human intervention and can generate its own sub-goals would
rate High in autonomy and goal-directed behavior. One that
only executes pre-specified waypoints with continuous operator
oversight would rate Low in Autonomy. Thus, we consider overall
agenticness as a numeric average; we consider a system ‘High’
overall if it excels in most of the four characteristics without
serious weakness in any. We present our comparative agenticness
classification in the following Tables 2–5, grouped by domain.

3.1 Navigation and robot mobility

Navigation is a fundamental robotic capability–from self-
driving cars to home robots–involving understanding high-level
goals and translating them into safe paths through complex
environments. Traditional navigation requires extensive mapping,
path-planning algorithms (e.g., A∗, RRT), and often, dense human
supervision. LLMs offer a new way to approach navigation by
leveraging human-like reasoning about routes, landmarks, and
commonsense knowledge of environments. For instance, an LLM
can interpret an instruction like “go to the kitchen and then upstairs
to the bedroom” and break it down into waypoints or landmark-
based steps. Key opportunities related to agentic AI include
more natural human-robot communication (using rich language
directions) and zero-shot adaptation to complex environments by
relying on prior knowledge (e.g., understanding what a “kitchen”
typically contains). However, there are notable challenges: i) Spatial
reasoning limitations: LLMs lack direct real-world experience, so
they may generate paths that are spatially invalid or inefficient.
ii) Grounding and perception: The robot must ground the LLM’s
high-level plan to its sensors and maps; misalignment can lead to
execution failures (e.g., an LLM might “imagine” a straight path that
is actually blocked). iii) Real-time adaptation: Dynamic obstacles or
changes require reactive adjustments that pure language reasoning
might not handle. Recent works address these by combining LLM
planning with robotic perception and classical algorithms to ensure
physical feasibility. It should be noted that the navigation domain
also intersects with other frameworks that use navigation in services
like manipulation and others that will be discussed later; here, we
focused only on works primarily targeting the navigation problem.

Shah et al. (2023) present LM-Nav, which composes a navigation
policy from pre-trained models (a vision-based navigator, CLIP for
vision-language grounding, and GPT-3 as the language planner)
without any fine-tuning on navigation data. Given a free-form
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TABLE 2 Agenticness classification for navigation and robot mobility.

Paper – Overall
agenticness

Autonomy Goal-directed
behavior

Adaptability Decision-making

Shah et al. (2023) (LM-Nav) High – Navigates
autonomously using LLM
guidance once given an
instruction

High – Follows long-horizon
routes via intermediate
landmarks

Moderate – Demonstrates
zero-shot navigation in similar
outdoor environments, limited
by the pre-trained domain

Low – Combines
LLM-generated sub-goals with
a low-level navigation policy
for sequential decisions

Tagliabue et al. (2024) (REAL) High – LLM adjusts controller
parameters on the fly

High – Maintains mission
goals and dynamically
reconfigures to stay on task

High – Actively tunes flight
parameters and re-plans in real
time

High – Makes control
decisions (like emergency
landing) beyond the original
design

route instruction, the LLM extracts landmarks which are grounded
in visual observations by the vision-language model, then a low-
level controller navigates to each landmark. Implemented on a
real outdoor robot, LM-Nav successfully followed complex multi-
turn directions over hundreds of meters, disambiguating landmarks
and reaching goals up to 800 m away. The contributions are
demonstrating that purely pre-trained models can be assembled
for real-world navigation and showing that high-level language
understanding can effectively interface with low-level controllers.
A key limitation is the reliance on known visual targets (it uses
CLIP to match described landmarks) – if the instruction mentions
something not visible or known, the system could fail. Nonetheless,
LM-Nav pioneered the idea of zero-shot language-conditioned
navigation in the real world, validating that an LLM can serve as a
route planner when anchored by vision.

Tagliabue et al. (2024) broadens the scope of LLM-driven
navigation by emphasizing resilient and adaptive control for
UnmannedAerial Vehicles (UAVs).Unlike standard approaches that
focus primarily on route planning or semantic understanding, the
authors introduce REAL, an approach for REsilience andAdaptation
using LLM to re-tune low-level flight parameters in real time.
Specifically, it leverages zero-shot LLM prompting to interpret
unexpected failure modes—such as rotor damage or sudden
wind gusts—without explicit prior modeling of these anomalies,
thereby enabling dynamic mission re-planning. As a result, REAL
demonstrates a robust, goal-directed autonomy: the UAV can both
maintain its high-level objectives (e.g., surveying a region) and
adapt to unforeseen faults by adjusting flight parameters based on
LLM recommendations. This higher degree of adaptability stems
from bridging commonsense knowledge captured by pre-trained
language models with sensor feedback describing flight conditions
in textual form. While prompt engineering and validation checks
are needed to guard against unsafe suggestions, REAL’s design
showcases how LLM-based adaptive control can enhance the
resilience of aerial robots toward continuous self-diagnosis and
reconfiguration—an essential stepping stone toward agentic, real-
world AI deployment in domains like drone navigation.

In navigation, agentic LLMs excel at high-level reasoning and
interpreting goals within a rich semantic context as they can infer
intent and environmental context in ways classical planners cannot
(e.g., recognizing that “find the kitchen” likely means moving
through a door and down a hall). The reviewed papers indicate
that even without additional training, LLMs carry useful priors

for robotics–a form of “embedded common sense” about spatial
layouts and routes. Another insight is the necessity of feedback and
grounding for true robustness: the most successful implementations
use the LLM as part of a feedback loop rather than one-shot
output. This is aligned with a broader theme for real-world robotic
applications: LLMs by themselves can plan, but coupling them with
real-world feedback vastly improves reliability.

3.2 Manipulation and object interaction

Robotic manipulation–the ability for a robot to pick up, move,
and use objects–is central to real-world applications from service
robots to industrial automation. It is also a domain where agentic
behavior is crucial: a robot must often decide how to grasp an
unknown object, sequence sub-tasks (open a jar before pouring,
etc.), and handle unexpected outcomes (dropped an item? try again
or ask for help). Traditional approaches rely on planning algorithms
or learning-based policies trained per task, which struggle with
open-world variability. LLMs present an opportunity to drive
manipulation with flexible, real-world knowledge planning: they
can parse complex instructions, break a goal into steps, and even
incorporate commonsense (e.g., knowing you need to hold a cup
upright when moving it). This domain has seen a growing interest
in using LLMs as high-level planners that interface with low-level
motion skills (Cheng et al., 2024).

Despite their strength in reasoning, LLMs lack physical
intuition–they do not inherently understand geometry, dynamics,
or what sensor inputs mean. This can lead to impractical plans (like
pushing an object from the wrong side as a shortcut, which fails
in reality (Cheng et al., 2024) or misidentifying objects. Ensuring
physical feasibility is a core challenge: many works constrain
the LLM’s output by pre-defining low-level skills it can invoke
Cheng et al. (2024), Raptis et al. (2025), and Jin et al. (2024).
Another challenge is multi-modality: manipulation often involves
navigation, vision, touch, etc., so systems must feed these into
the LLM or have parallel modules. There are great opportunities,
though: LLM-driven manipulation opens the door to generalist
robots that can follow human instructions for a variety of tasks
(cook a recipe, tidy a room)without task-specific programming.The
LLM can also impart “commonsense safeguards” (e.g., do not grip a
sharp blade by the edge) if properly encoded, improving safety. In
summary, applying LLMs to manipulation is about combining the
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TABLE 3 Agenticness classification for manipulation and object interaction.

Paper – Overall
agenticness

Autonomy Goal-directed
behavior

Adaptability Decision-making

Ahn et al. (2022) (SayCan) High – Autonomous high-level
planning and execution via
pre-defined skills

High – Decomposes user goals
into feasible steps guided by an
affordance model

Moderate – Limited to the
provided skill set

High – Uses the LLM to plan
step-by-step actions with a
value function to choose the
best action

Singh et al. (2023)
(ProgPrompt)

High – LLM generates
plan-program and robot
executes it without
intervention

High – Focuses on completing
the task defined by the prompt,
producing a structured plan to
reach the goal

Moderate – Generalizes
planning logic to new object
configurations if described;
limited by planning knowledge
in prompt (no learning new
domain dynamics)

High – LLM decision-making
in structured format: chooses
sequence of action by
reasoning over provided
domain state

Jin et al. (2024) (RobotGPT) Moderate – Runtime policy is
fixed; LLM used offline as
teacher for stable execution

High – Trained policy reliably
pursues user-specified tasks

Moderate – Policy inherits
some generality but must be
retrained for new tasks

High – LLM code guides the
policy’s structure, leading to
effective step-by-step
manipulations

Duan et al. (2024)
(Manipulate-Anything)

High – Autonomously plans
multi-step manipulations with
self-verification and retries

High – Breaks user
instructions into sub-tasks,
completes them sequentially

High – Handles diverse objects
and recovers from failures via
reattempts

High – Combines
vision-language reasoning
with motion planning to
decide how, where, and when
to act

Liang et al. (2023) (Code as
Policies)

High – Autonomously
generates and executes robotic
control policies based on user
input; constrained by the
programming environment

High – Explicitly task-driven,
focusing on achieving
manipulation tasks

Moderate – Generalizes well
across tasks but lacks real-time
adaptability

High – Translates high-level
commands into structured,
executable policies with strong
decision-making

Bousmalis et al. (2023)
(RoboCat)

High – Executes manipulation
tasks autonomously and
self-improves via iterative
retraining

High – Consistently pursues
designated manipulation goals
and a meta-goal of
self-improvement

High – Rapidly adapts to new
tasks and robot embodiments
with minimal additional data

Moderate – Uses a decision
transformer for sequential
actions with meta-decision
aspects in self-improvement

Huang et al. (2023) (VoxPoser) High – Generates continuous
action maps autonomously
using a combined LLM and
vision-language model

High – Directly produces
spatial action targets for
manipulation goals

Moderate – Capable of
zero-shot trajectory generation
for novel spatial preferences
within a limited set

Moderate – Computes value
maps to determine precise
action locations

Mees et al. (2023) (HULC++) High – Uses an affordance
model with a policy to act
autonomously based on
language instructions

Moderate – Targets specific
objects/actions as defined by
language input, guided by
affordance predictions

Moderate – Generalizes to
unseen objects but struggles
with complex interactions

High – Decision-making is
embedded in the policy,
constrained by affordance
filtering

Ding et al. (2023)
(LLM-GROP)

High – Automatically
produces task and motion
plans for object rearrangement
without human oversight

High – Explicitly computes a
sequence of symbolic actions
to achieve a desired
configuration

Moderate – Can generalize to
different object arrangements
within a symbolic framework

High – Uses hierarchical
decision-making with an LLM
for planning and a classical
planner for execution

Wang et al. (2024b) (LLM3) High – Iteratively re-plans
based on motion failures
without human intervention

High – Never loses sight of the
user’s goal; modifies plan to
overcome obstacles

Moderate – Handles new
object classes via VLM
detection, but limited skill set

High – Uses LLM to parse
failures and adapts its plan

Stone et al. (2023) (MOO) High – Operates
autonomously with
vision-language assistance for
manipulation tasks

High – Identifies target objects
based on open-world
commands and executes
required actions

High – Handles novel objects
not seen during training by
leveraging broad
visual-language knowledge

High – Combines VLM
outputs and a learned policy to
decide actions in a modular
fashion

Lynch et al. (2023) (Interactive
Language)

Moderate – Executes segments
autonomously but requires
continuous human input and
confirmation

Moderate – Pursues objectives
as defined by the user, though
goals may evolve

High – Highly adaptive to
human feedback with
immediate course corrections

Moderate – Makes decisions
iteratively in response to
human-provided updates
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knowledge and reasoning of language models with the embodiment
and experience of robotic controllers. Recent works explore that
balance from different angles–planning with code, responding to
feedback, learning from demonstrations, etc., - to achieve agentic
manipulation.

Ahn et al. (2022) is one of the first to pair an LLM with a
robotic affordance model for embodied tasks. The idea is simple
yet powerful: use an LLM (Palm 540B) to generate possible next
actions from a high-level instruction, but filter those suggestions
using a learned value function that predicts which actions are
feasible (“affordable”) in the current state. In practice, the robot has
a pre-defined set of low-level skills (such as “pick up cup”, “move
forward”) and the LLM, given a user request, outputs a sequence of
skill suggestions. Each candidate is scored by the affordance model
(learned from robot data), and the highest-rated feasible action is
executed. SayCan was demonstrated on a mobile manipulator for
tasks like “bring me a bottle of water” – the LLM can devise a multi-
step plan (go to kitchen, open fridge, grab bottle, etc.), while the
affordance filter ensures each step is physically possible (it would
not suggest grabbing something that is not there or using a skill
out of context). Results indicated significantly higher success rates
on long-horizon tasks versus policy baselines, and the system could
handle over 100 instructions in a household setting. A limitation
is dependency on the set of pre-implemented skills–SayCan cannot
invent truly novel actions, it can only compose the provided ones.
Also, the affordance model must be trained for each new skill
or environment. Nonetheless, SayCan established a template for
embedding agency in robots by having the LLM reason over actions
and the robot veto or execute, ensuring safety and feasibility.

On the other hand, Singh et al. (2023) proposes ProgPrompt,
a structured prompting method to improve LLM planning for
embodied agents. Instead of giving the LLM a raw text instruction
and letting it free-form, they prompt it with a program-like
specification of the environment and actions. For instance, they
describe the available objects and actions in a pseudo-code format
and provide a few examples of plans as small programs” (like a
sequence of function calls or steps). The LLM then generates a
plan in that programmatic format, which can be directly executed
by the robot’s controller or easily parsed. The key insight is that
by shaping the prompt as a programming problem (with structure
and examples), the LLM’s output becomes more reliable and
unambiguous for situated tasks. They tested it in household tasks
(in simulation) where the robot had to move objects around a
kitchen based on high-level directions. ProgPrompt’s LLM (GPT-3)
produced correct and efficiently structured plans more often than a
baseline prompting method, especially as tasks grew more complex.
The plans also generalized across changes in the environment (like
if an object was not where expected, the LLM could include a
search step). This work contributes a methodology to reduce the
hallucinations” or omissions in LLM-generated plans by giving the
LLM a sort of formal language to work in. It echoes the theme of
constraining the LLM with structure to get safer, more predictable
behavior. Limitations include the need to manually define the
domain specification (you must list all possible actions/objects in
the prompt, which might be hard in an open world), and scaling to
very large environments could make prompts unwieldy. However,
it provides a bridge between classical planning languages and LLM
flexibility.

Jin et al. (2024) propose RobotGPT, a framework that uses
ChatGPT as a “teacher” to train a more stable robotic policy,
addressing the unpredictability of directly deploying an LLM
for manipulation. The authors observed that code generated by
ChatGPT for robot tasks can be inconsistent (different outputs for
the same prompt) and sometimes unsafe or unstable. To leverage
ChatGPT’s problem-solving strengths without these downsides,
RobotGPT generate diverse solution codes for manipulation tasks
(e.g., pick-and-place scripts), and then uses those as synthetic
demonstrations to train a student model. Essentially, ChatGPT’s
knowledge is distilled into a policy network that is less prone
to randomness and can be executed reliably on the robot. In
both simulation and real-world evaluations, RobotGPT achieved a
dramatic improvement in task success rates–e.g., averaging 91.5%
success versus 38.5% when using ChatGPT-generated code directly,
highlighting the key finding that a trained policy (even one trained
on LLM-produced “advice”) is far more repeatable and safer than
calling the LLM at runtime. Limitations of the approach include
the need for a sufficiently rich set of LLM-generated solutions.
Additionally, the student policy’s performance is bounded by the
quality of the LLM “expert”; if the LLM’s outputs are suboptimal, the
policywill reflect that (though training can average out some errors).

Duan et al. (2024) introduce a system for automating general
roboticmanipulation by leveraging vision-languagemodels (VLMs)
to generate action trajectories without hand-crafted skills or
privileged simulation states. Manipulate-Anything uses a multi-
phase pipeline: first, given a scene (via multi-view images) and a
natural language task, a VLM identifies the relevant objects and
suggests sub-tasks needed. For each sub-task, an action generation
module computes a concrete action execution–such as a 6-DoF end-
effector pose or a parameterized motion code–guided by the VLM’s
understanding of affordances and goals. A verification module then
checks via vision whether the sub-task was successful; if not, the
system can recover by reattempting or adjusting the action.

Liang et al. (2023) takes a different approach to LLM-driven
manipulation: instead of outputting plain-language plans, the LLM
generates executable code that serves as the robot’s policy. Here,
the authors prompt the LLM with a few examples of high-level
instructions paired with Python code that calls primitive robot
APIs (functions for moving arms, gripping, etc.). Given a new
instruction, the LLM writes new code by composing those API calls
(and even using libraries for calculations). The result is essentially
a programmatic plan: e.g., for “push the red block to the green
area,” the LLM might generate a code sequence that queries an
object detector for “red block,” computes a path to the green area,
then calls a motion primitive to push in small increments. A major
benefit of this approach is transparency and verifiability: the output
is code that a human can inspect or simulate before executing on
the robot, adding a safety layer. The experiments on real robots
(manipulating blocks, etc.) demonstrated that many tasks could be
achieved without additional training, just via few-shot prompting of
the LLM. Challenges include ensuring the generated code is safe (the
LLM might still produce code that causes erratic movements if not
constrained) and dealing with execution errors–if the LLM writes
a bug or the robot deviates, there must be a mechanism to recover.
Overall, Code-as-Policies is a compelling demonstration of an LLM
acting as a high-level policy programmer, merging symbolic AI
(classical programming) with data-driven language understanding.
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Bousmalis et al. (2023) propose RoboCat, another multi-task,
multi-embodiment agent, but with a focus on continual learning. It
starts by training a vision-based decision transformer on data from
a few types of robotic arms doing many tasks. Then, crucially, it
demonstrates the ability to adapt to a new robotic arm and new
tasks by fine-tuning on a new setup. After fine-tuning, RoboCat
uses that agent to generate more data on the new tasks through
self-play, adds that to its corpus, and retrains the foundation model
(hence “self-improving”). Over iterations, RoboCat gets better and
can handle an expanded set of tasks and new arm morphologies
with minimal human data each time. Authors showed it could learn
to control a new robot arm with different gripper in a new task
with very little new data, and each retraining phase increased its
overall skill set without forgetting old ones. This is significant as
one vision for a generalist agent is the one that grows and learns
over its lifetime, not just a static trained model. Limitations include
large compute for retraining each time and the domain still being
manipulation-centric (it does not do language or navigation, etc.).
But it is a template for how an agentic robot might learn like an
animal–gradually increasing its repertoire by interacting with the
world and consolidating that experience.

Huang et al. (2023) by introducing VoxPoser, addresses the
challenge of grounding LLM plans in continuous 3D space, aiming
to remove the need for predefined motion primitives. In simpler
terms, given an instruction like “open the top drawer,” the system
uses a pre-trained VLM to parse the instruction and scene image
to identify where the action should apply (e.g., the handle of the top
drawer). It then constructs a 3D voxel map (in the robot’s coordinate
frame) with values indicating the desirability of moving the end-
effector to each location–a sort of goal heatmap. A motion planner
uses this “value map” to generate a trajectory to the high-value
region and execute the action. By composing multiple such value
maps in sequence, VoxPoser can perform multi-step tasks. Authors
demonstrate that an LLM+VLM can effectively output continuous
action targets (not just discrete steps) in a zero-shotway, enabling the
robot to do things it was never explicitly trained to do by following
language-informed hints. For example, if told “I am left-handed”
during a table-setting task, the system can adjust the value maps
to place utensils on the left side of plates (the LLM/VLM interprets
this preference and alters the target positions).This showcases a high
degree of adaptability and semantic understanding in manipulation.
This approach improved success on tasks like pushing and object
reorientation as it allowed flexible motion generation rather than
relying solely on fixed primitives. However, VoxPoser requires good
calibration between vision and robot coordinates, and errors in the
value map could cause poor trajectories. In summary, VoxPoser
pushes agentic manipulation further by letting the LLM effectively
paint a target for the robot in 3D space, blending symbolic language
goals with continuous control.

An alternative approach to bridging language and action
is to leverage visual affordances to constrain decision-making.
In this direction, Mees et al. (2023) tackles the problem of
connecting language instructions to actionable perceptions in an
unstructured environment. The authors propose HULC++, using
a visual affordance model (trained on “play” data) to suggest
what interactions are possible with objects in the scene and then
using those as conditioning for an instruction-following policy. For
example, if the command is pick up the toy on the couch,” the

affordance model (which has learned from unlabeled play data how
objects can be grasped ormoved) highlights the toy as graspable and
perhaps where to grasp it. The result is improved sample efficiency
as the affordances restrict the action search space to likely successful
ones. HULC++ is showing that unstructured play data (random
explorations by the robot) can be leveraged to create a grounding
mechanism for language–a practical way to handle novel objects.
In their experiments, the combination of language + affordance
outperformed policies that relied on language or vision standalone
tasks. One limitation is that the affordance model might not cover
very complex interactions (like using a specific tool) unless such
data was in the trained dataset. Nonetheless, this method points
toward self-supervised grounding–robots learning from their own
experience how to interpret language in terms of what can be done
in the real-world.

Ding et al. (2023) introduces LLM-GROP, which integrates
LLMs into classic Task and Motion Planning (TAMP) for object
rearrangement tasks. The LLM is used to generate a high-level
symbolic plan (sequence of discrete actions like “pick A, place
on B, then grasp C”) from a language instruction, and then a
motion planner computes the continuous trajectories for each
action. Essentially, it replaces the task planner with an LLM that
can parse general instructions and output actions in Planning
Domain Definition Language (PDDL)-like form (Haslum et al.,
2019). The novelty is that the LLM can incorporate commonsense
constraints or preferences directly from the instruction Results
on object rearrangement tasks showed that the LLM-planned
sequences were valid and often more efficient than baseline TAMP
planners. A challenge was ensuring the LLM’s output was parseable
and correct for the motion planner–they had to do prompt
engineering and post-checks to avoid nonsensical actions. LLM-
GROP’s contribution lies in marrying LLMs with TAMP: leveraging
the LLM’s flexibility to generate plans for open-world goals while still
using proven motion planning for execution.

Similar to LLM-GROP, Wang S. et al. (2024) proposes LLM3

which also integrates an LLM into classical TAMP. Here, the
pre-trained LLM serves as a universal task planner that suggests
symbolic actions and even continuous parameters for a motion
planner, i.e., grasp positions, Crucially, LLM3 runs in an iterative
loop: if the motion planner fails (e.g., a path is obstructed or a grasp
is invalid), it feeds that feedback to the LLM via prompting, allowing
the LLM to reason about the failure and adjust the plan. This closed-
loop reasoning markedly improved success rates in simulated box-
packing tasks, and the authors demonstrated the approach on a real
manipulator arm, confirming its practicality in physical settings.

Stone et al. (2023) is enabling manipulation of objects
beyond the robot’s training distribution by using pre-trained
vision-language models (VLMs). The approach, called MOO
(Manipulation of Open-World Objects), uses a VLM (trained on
internet-scale image-text data) to extract object identity and relevant
features from a camera image and a language command. For
example, if asked “pick up the spork,” the VLM can identify which

3 https://standards.ieee.org/industry-connections/activities/ieee-global-

initiative/

3 https://standards.ieee.org/industry-connections/activities/ieee-global-

initiative/
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object in the scene is a spork (even if the robot has never seen one in
training) and provide an embedding for “spork”. This information
is then used to condition a learned manipulation policy that was
trained on broad data but with generic object representations. The
main contribution is a system that interfaces learned manipulation
policies with a frozen VLM to achieve open-vocabulary object
manipulation. In trials, the robot could execute commands involving
novel object categories by relying on the VLM to point it to the right
object and sometimes even suggest grasp points via visual cues. This
extends the robot’s capabilities without additional robot training
on those objects–effectively transferring knowledge from internet
data to robot actions. The outcome is moving toward generalist
manipulation where the bottleneck of limited object categories is
removed. Limitations include dependence on the VLM’s accuracy–if
the VLM fails to recognize the object or confuses it, the policy
is conditioned on wrong info. This work aligns with the general
trend of using foundation models to expand robotic perception and
reasoning, here applying it to achieve a greater breadth of object
understanding in manipulation tasks.

Beyond leveraging vision-language models for object
recognition and manipulation, another challenge in robotic task
execution is ensuring that LLM-generated plans are structured
and interpretable. Singh et al. (2023) in ProgPrompt proposes
a structured prompting method to improve LLM planning for
embodied agents. Instead of giving the LLM a raw text instruction
and letting it free-form, they prompt it with a program-like
specification of the environment and actions. For instance, they
describe the available objects and actions in a pseudo-code format
and provide a few examples of plans as small “programs” (like a
sequence of function calls or steps). The LLM then generates a plan
in that programmatic format, which can be directly executed by
the robot’s controller or easily parsed. The key insight is that by
shaping the prompt as a programming problem (with structure
and examples), the LLM’s output becomes more reliable and
unambiguous for situated tasks.They tested it in household tasks (in
simulation) where the robot had to move objects around a kitchen
based on high-level directions. ProgPrompt produced correct and
efficiently structured plans more often than a baseline prompting
method, especially as tasks grew more complex. Singh et al. (2023)
proposed amethodology to reduce the “hallucinations” or omissions
in LLM-generated plans by giving the LLM a sort of formal language
to work in. Limitations include the need to manually define the
domain specification (you must list all possible actions/objects in
the prompt, which might be hard in an open world), and scaling to
very large environments could make prompts unwieldy. However,
it provides a bridge between classical planning languages and LLM
flexibility.

Another key challenge is to enable robots to adapt
their actions dynamically through human interaction.
Interactive Language (Lynch et al., 2023), allows humans to give
incremental instructions and corrections via dialogue to an LLM-
controlled robot. For example, as a robot arm is stacking blocks, the
user might say, “actually, put the blue block on the red one instead”
– the LLM parses this mid-course correction and alters the plan on
the fly.The contribution of this paper is mainly in demonstrating the
feasibility of fluent back-and-forth communication with a robotic
manipulator. In their experiments, users were able to iteratively
guide the robot through complex arrangements by conversation,

achieving goals that would be hard to specify upfront.This approach
leans heavily into the agentic property of adaptability–the robot
is not just executing a fixed plan; it is reacting to human inputs
continuously, effectively sharing control. The challenges include
maintaining coherence in the dialogue (the LLM must remember
prior instructions and the current context) and timing (ensuring
the physical robot’s actions stay synchronized with the dialogue–not
executing outdated commands). While not introducing new
planning algorithms, this work underscores an important aspect of
agentic AI in robotics: interactive guidance and collaboration, where
the “agent” is not an isolated decision-maker but part of a team with
a human. Last but not least, it also raises interesting implications
for safety–a human can step in and correct a mistake verbally,
potentially avoiding failures. In summary, Interactive Language
shows that an LLM-enabled robot can be treated almost like a
human assistant that you can talk to and supervise in real time,
marking a move toward natural human-robot collaboration.

Across manipulation works, we see a spectrum from high-level
planning to low-level control, and different ways of injecting agentic
behavior. The fusion of LLMs with robot manipulation has revealed
that language-based reasoning can dramatically improve multi-step
task performance in unstructured settings. One insight is that LLMs
provide a form of “transfer learning” – they bring a wealth of
commonsense (e.g., knowing tools, typical order of actions) which
allows robots to perform tasks with minimal or no task-specific
training. This is evidenced by successes like assembling simple
structures by following written instructions or handling objects
never seen before. Another insight is the importance of grounding
and feedback for true agentic behavior. Systems that treat the LLM
as a continuously observing and updating agent (rather than a one-
shot planner) achieve far greater robustness. This mirrors human
problem-solving: we do not just execute a plan blindly; we check
and adjust. By giving LLMs a chance to do the same, robots can
behave more “agentically” and can cope with surprises and partial
information in real time.

3.3 Multi-agent and collaborative robotics

Many real-world scenarios include multiple robots working in
coordination. In such settings, communication, coordination, and
division of tasks become as important as individual task execution.
Agentic AI in a multi-agent context means each AI entity not only
plans for itself but also interprets others’ actions, communicates
intentions, and possibly negotiates or assists. LLMs are a natural
fit for the “communication” aspect: they understand and generate
language, which can serve as the medium of coordination. We are
seeing LLMsused as controllers ormediators inmulti-agent systems,
effectively bringing the power of natural dialogue and reasoning into
group settings.

However, multi-agent settings compound the usual difficulties.
Communication can be a double-edged sword: misunderstandings
between agents (even AI ones) can lead to failures. Ensuring a
shared mental model (common knowledge) is tricky. From a safety
perspective, coordinating multiple effectors can be dangerous if
not done carefully (e.g., two robotic arms moving in the same
space). There is also the question of scalability–an LLM orchestrator
might handle a few agents, but does it scale to swarms of 100
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TABLE 4 Agenticness classification for multi-agent and collaborative robotics.

Paper – Overall
agenticness

Autonomy Goal-directed
behavior

Adaptability Decision-making

Mandi et al. (2024) (RoCo) High – Multi-robot system
autonomously coordinates
tasks via LLM-based dialogue

High – Teams unify around a
shared goal

High – Reassigns tasks among
robots if one cannot do it,
dialogues changes plan
dynamically

High – Collaborative
discussion” yields joint
strategies and path planning in
real time

Singh et al. (2024) (MALMM) High – Three specialized LLM
agents handle planning,
coding, supervision
autonomously

High – Focus on fulfilling the
user’s instructions across
multiple sub-steps

High – Adjusts if execution
fails by re-planning or
re-coding

High – Layered: Planner
decides tasks, Coder
implements code, Supervisor
decides how to fix errors

Wang et al. (2024a) (LaMI) High – Robot autonomously
interprets user states and
responds

High – Addresses both the
functional goal (help user) and
social norms

High – Adapts language,
gestures, and actions to user’s
emotional cues

High – Decides how to
respond physically and
socially, adjusting
communication strategy in
real-time

Ahn et al. (2024) (VADER) Moderate – Robot proceeds
until stuck, then autonomously
seeks help from human or
other robot

High – Never abandons the
mission; actively enlists
assistance if blocked

Low – Adapts to unexpected
obstacles by weaving in outside
help

Moderate – Decides when it
cannot solve alone and asks for
help, continuing the plan once
resolved

Lykov et al. (2023)
(LLM-MARS)

High – Generates behavior
trees for multi-robot tasks; no
human control

High – Allocates tasks among
robots to achieve the operator’s
overall objective

Low – Works well within a
competition-style environment
but domain shift may need
re-tuning

High – Plans multi-agent
coordination and explains
rationale to user

Strobel et al. (2024)
(LLM2Swarm)

High – Swarm robots can
collectively reason or have
code synthesized by the LLM

High – They consistently
pursue a swarm-level objective,
adjusting formation or actions

High – Capable of on-the-fly
anomaly handling in the direct
integration mode

High – Robots share
language-based messages to
decide local and global
behaviors, showing emergent
logic

robots? Another challenge is real-time performance: multi-agent
interactions often need timely responses (a delay in communication
can ruin coordination), and LLMs, especially large ones, can be slow.
Additionally, in human-robot collaboration, understanding human
intent (possibly from ambiguous dialogue or partial instructions)
and maintaining trust are important–the AI must know when
to yield control or how to explain its suggestions. Despite these,
opportunities abound:multi-agent LLM systems can bring flexibility
in how we deploy robot teams. They also allow mixing different
types of agents (a vision system, a robot arm, a drone, a database)
because language -as we already know as humans- is a universal
interface.

One approach is using a centralized LLM agent that plans for
all robots. RoCo (Mandi et al., 2024) is an example of a dialectic
multi-robot collaboration framework: a single large language model
is prompted with the goals and observations of two or more robots
and is tasked with outputting coordinated instructions for each
robot. For instance, if two robots must clean a house together, the
prompt to the LLM may describe Robot A’s view (e.g., it sees a dirty
kitchen) and Robot B’s view (a messy living room) and ask for a
plan. RoCo’s LLMmight respond with a detailed strategy like: Robot
A: start cleaning the kitchen counters; Robot B: vacuum the living
room; once done, both meet to take out trash.” The contribution
of this approach is showcasing that a single LLM can implicitly
perform task allocation and scheduling, leveraging its knowledge to

balanceworkloads and sequence tasks logically. Experiments in both
simulation and real-world, demonstrated successful coordination
without explicit symbolic planning–the language model essentially
writes the playbook for the team. However, a limitation is scalability:
as the number of agents or the scenario complexity grows, a
single LLM context may become too large (or the prompt too
complicated), leading to degraded performance or hitting token
length limits.

Shifting toward purely robotic teams, MALMM (Singh et al.,
2024) introduces a framework where multiple LLMs, each with
a specialized domain (e.g., path planning or grasp selection),
communicate to solve zero-shot tasks such as joint assembly.
By distributing responsibilities, MALMM avoids overloading a
single model, and inter-LLM negotiations can produce more
refined solutions. However, the overhead of coordinating multiple
language models can become significant, and misalignments in
knowledge among them may produce contradictory subgoals. A
broader multi-modal angle emerges in Wang C. et al. (2024), which
tackles human-robot interaction involving speech, gestures, and
visual cues. In LaMI, the LLM acts as the central orchestrator,
fusing these diverse inputs into a shared textual representation.
This design enables robots in group assembly tasks to interpret
partial verbal commands plus a pointing gesture or a head nod
and respond accordingly, illustrating the integrative power of
language-based frameworks. However, real-time multi-user settings
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pose scaling issues, as more complex dialogues require advanced
conversation management.

Introducing error recovery via visual signals, VADER (Ahn et al.,
2024) is a framework enabling robots to proactively seek help from
humans or other robots when facing failures in long-horizon tasks.
The system works in a plan–execute–detect loop: it first uses an
LLM to generate a task plan from the instruction. As it executes
each step, visual question answering (VQA) modules continuously
monitor for anomalies or affordance issues–for example, checking
if the action had the intended effect or if an object needed for
the next step is missing. If a robot fails to complete a task, the
system checks whether another robot or a human can execute that
step, swiftly reallocating the task. VADER’s major contribution is
formalizing “seeking assistance” as part of the plan output by an
LLM, rather than as an ad hoc external intervention. This dynamic
fallback mechanism underscores the advantage of an LLM that can
interpret real-time sensor data and reason about which agent is best
suited for the subtask.However, likemany collaborative frameworks,
consistent multi-view perception and accurate affordance detection
remain potential bottlenecks.

An alternative approach is introduced by Lykov et al. (2023).
They propose LLM-MARS, a system that integrates an LLM into a
multi-robot team to handle both strategic planning (via behavior
tree generation) and interactive dialogue-based supervision When
the operator gives a command to a team of robots, the LLM-
MARS will output a behavior tree that allocates tasks among the
robots and sequences their actions logically to achieve the goal.
For instance, if a robot is blocked, a quick textual request triggers
the LLM to alter relevant behavior tree nodes. This fosters flexible
adaptation and transparency into a multi-robot system: the human
can issue complex commands in NLP and get both effective task
completion and clear verbal justifications; however, it underscores
the importance of verifying that automatically generated tree
modifications remain consistent and avoid deadlocks.

Last but not least, Strobel et al. (2024) introduce LLM2Swarm
which examines larger-scale swarms, wherein an LLM suggests
global swarm strategies and each agent partially consults that
blueprint for local decisions. The authors outline two integration
approaches: (1) Indirect, where an LLM is used off-line to write
or verify swarm controller code and (2) Direct, where each swarm
robot runs a local instance of an LLM in real-time, enabling the
robots to communicate in natural language and reason on the fly
during missions. In both modes, the swarm can collaboratively
adjust formation or plan using language as an intermediate
representation. Proof-of-concept showcases demonstrated robots
detecting anomalies that were not pre-specified (like an unexpected
object on the field) and coordinating a response in a human-
like manner, all without explicit anomaly-handling code. A key
limitation in such systems, is scaling to hundreds or thousands
of agents may create severe communication overhead, pointing
to a need for hierarchical communication to keep LLM prompts
manageable in real-time applications.

Across these works, the collaborative use of LLMs reveals that
language is a powerful tool for coordination. An important insight
is that many AI and robotic components can be connected with
near-zero integration effort by using language as the intermediary.
Another insight is the concept of dynamic autonomy: agentic
systems do not have to be all-or-nothing autonomous; the best

outcomes often involve an agent reasoning aboutwhen to take action
independently and when to consult the others. Ren et al. (2023)
formalizes that intuition by giving statistical guarantees, essentially
teaching the AI that sometimes asking for help is the smartest
thing you can do. This is a profound shift from earlier AI,
which often either operated autonomously or relied on scripted
human intervention–now the AI itself decides when and how to
include humans.

3.4 General-purpose multi-task robots

General-purpose multi-task robots represent the “holy grail” of
robotics and AI–agents that can perform a wide variety of tasks
across different domains (locomotion, manipulation, perception,
language) without being re-designed for each new job. Historically,
robots and AI systems have been narrow: excellent at one task,
clueless outside that niche. The recent rise of foundation models
(huge models trained on broad data) suggests a path to generalist
robots. However, to truly achieve general-purpose agency, several
critical challenges must be addressed. First, data collection and
training costs remain a major bottleneck—training such generalists
requires vast and diverse datasets, which are often prohibitively
expensive to acquire. Second, there is the issue of embodiment
mismatch: while LLMs possess vast world knowledge, they often
lack understanding of the specific dynamics of physical robots.
Third, evaluation remains an open problem—these systems may
not outperform specialized models on single benchmarks, yet
they demonstrate impressive versatility across domains, calling for
more holistic metrics of success. Fourth, concerns around safety,
forgetting, and robustness persist; fine-tuning for new tasks risks
erasing prior capabilities, and ensuring safe behavior in unfamiliar
contexts is an ongoing challenge.

PaLM-E (Driess et al., 2023) opens this category by combining
vision, language, and action in one model to allow richer
understanding of tasks. PaLM-E is essentially Google’s large
language model PaLM (which has 540B parameters) extended
with embodied sensor inputs–specifically, images and continuous
states are encoded and fed into the model alongside text. The
result is a colossal 562B parameter model that can take in an
observation (like an image from a robot’s camera) and a command,
and output a plan or action commands in text form. Trained
on a combination of internet-scale language data and robot-
specific multimodal data (from multiple embodiments, e.g., mobile
robots and manipulators), PALM-E can perform a variety of
embodied reasoning tasks–sequential planning for manipulation,
visual question answering about the scene, and even fuse the
two. Notably, it shows positive transfer: training on multi-task
multimodal data improved performance on each individual task
compared to training separate models, indicating synergy between
skills. Limitations are its size (currently impractical for real-time on-
robot use) and the fact it was only tested in relatively structured
environments and simulation for robotics tasks. However, PaLM-E
marks an important step: an existence proof that a beefy language
model can digest real-world inputs and act in a grounded way
across tasks.

Another outstanding approach was introduced by Huang et al.
(2022). Inner Monologue extends the LLM-as-planner concept by
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TABLE 5 Agenticness classification for general-purpose multi-task robots.

Paper – Overall
agenticness

Autonomy Goal-directed
behavior

Adaptability Decision-making

Driess et al. (2023) (PALM-E) High – Model directly takes
sensor input and outputs next
actions; no human supervision

High – Conditioned on user
goal, it produces step-by-step
actions to achieve it

High – Generalizes well to
unseen tasks, bridging
language and vision

High - Multimodal
chain-of-thought lets it
integrate scene understanding
with goal reasoning

Huang et al. (2022) (Inner
Monologue)

High – Operates
autonomously and
incorporates feedback to adjust
its plan in real time

High – Maintains focus on
achieving the final goal by
adjusting sub-goals based on
outcomes

High – Demonstrates real-time
adaptability by revising actions
upon detecting failures

High – Uses continuous
feedback to re-plan and adjust
decisions dynamically

Brohan et al. (2022) (RT-1) Moderate – Executes tasks
autonomously but purely via a
supervised policy (no LLM
loop)

High – Maps goal descriptions
to a series of low-level actions
to accomplish tasks

Moderate – Robust on known
tasks but limited in adapting
beyond extensive training

Moderate – Policy merges
vision and language, but
decisions are pattern-based,
not reasoned in real time

Brohan et al. (2023) (RT-2) High – Uses a large
vision-language model to
produce discrete actions in
open-ended tasks

High – Consistently focuses on
fulfilling user instructions,
even if abstract or unseen

High – Adapts to instructions
and objects outside its training

High – Embeds
decision-making within a deep
policy enhanced by fused
vision-language features

Reed et al. (2022) (Gato) High – Operates
autonomously across diverse
domains using a single
transformer model

Moderate – Pursues
task-specific objectives
inferred from context, though
without explicit planning

High – Adapts to a wide range
of tasks via prompt
modifications and
multi-modal input

Moderate – Uses a learned
transformer policy for
decision-making without
explicit symbolic reasoning

Rana et al. (2023) (SayPlan) High – LLM handles
large-scale environment
planning with minimal human
monitoring

High – Stays focused on the
user’s end goal, divides tasks
into multiple room transitions

High – Iteratively re-plans if
simulator reports a failure or
missing object

High – Scene-graph + LLM
synergy yields complex
multi-step decisions

Vemprala et al. (2024)
(ChatGPT for Robotics)

Moderate – ChatGPT can
output full plans/code, but
guidelines involve human
oversight before execution

High – Goal-oriented as it can
even ask clarifying questions
to refine the goal

High – Adaptable in
conversation: if one approach
fails, it iteratively re-plans

High – In a tool-using
conversation loop, the LLM
handles reasoning to plan,
correct, and finalize actions

Raptis et al. (2025) (RobotIQ) Moderate – Controls tasks
autonomously after a single or
multiple prompt(s)

High – Focuses on fulfilling
user commands from
navigation, perception,
manipulation

High – Updates or extends
plan if environment changes or
new instructions arrive

High – Dynamically generates
code/ROS calls, deciding the
sequence of actions to meet
the goal

Wang et al. (2024c) (RONAR) Low – Narrates robot’s actions;
does not control them

Moderate – Narration tracks
the robot’s progress toward the
goal, but does not direct it

Moderate – Narration can
adapt to sensor changes; it’s
descriptive not transformative

Moderate – Decides how to
phrase explanations; does not
decide the robot’s physical
actions

Ma et al. (2024) (DrEureca) Low – LLM used offline to
design rewards and domain
randomization, no autonomy
at runtime

High – Final RL agent is
indeed goal-driven, shaped by
the LLM’s reward design

Moderate – Learns across
varied sim randomizations,
but once learned, no
re-adaptation via LLM

Moderate – LLM influences
training design decisions; the
trained policy does the
run-time decision-making

incorporating explicit language feedback loops during execution.
In this framework, the LLM does not just output a static plan; it
continually updates its plan (its “inner thoughts”) based on feedback
such as success/failure signals, visual observations, or even Q&A
with a human.The authors introduce various feedback types: passive
scene descriptions (automatic observations like “object X moved”),
active queries (the LLM can ask a vision model or human a question
if uncertain), and success detection (binary signals of whether the
last action achieved its intended effect). Experiments on a real
robot in a kitchen space showed that this closed-loop approach
significantly improves success rates over open-loop LLM plans. For

example, if the instruction is to set a table, the LLM might plan to
place a plate and then a cup. If the cup placement fails (detected by
vision), the LLM’s inner monologue incorporates “the cup fell, try a
different grasp” and adjusts the plan.This ability to react dynamically
to intermediate real-world feedback makes Inner Monologue a
compelling demonstration of how LLMs can function as self-
reflective agents that behave more autonomously and safely, leading
to more robust and adaptable robotic performance. However, one
challenge is the complexity of prompt engineering–the LLM needs
a structured prompt that includes its action history and new
observations each cycle. Poorly designed prompts risk the LLM
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misinterpreting or overlooking crucial feedback. Another limitation
is reliance on the quality of external feedback (if visionmis-describes
a scene, the LLM might be led astray). Yet, Inner Monologue is a
key step toward interactive, situationally aware robot planners using
LLMs, effectively imbuing the robotwith a formof introspection and
adaptability mid-task.

Another avenue for achieving versatile robotic
behavior is training policies on extensive real-world
demonstrations. Brohan et al. (2022) propose RT-1, an example of
training a general policy on a large-scale robot dataset. The authors
collected 130k+ demonstrations (over 700 tasks) with a fleet of
robots–mostly household and manipulation tasks. Thanks to the
massive and varied dataset, RT-1 achieved robust performance
on tasks like picking, placing, opening drawers, etc., and even
showed zero-shot generalization to some new instructions which
they reported 97% success on seen tasks and 76% on unseen tasks.
However, RT-1 lacks explicit reasoning or modularity–it is like
a large implicit library of behaviors. Despite the large training
set, RT-1 is limited to the distribution of its data. It may fail
with completely novel objects or instructions containing words
it has not seen.

On the other hand, RT-2 (Brohan et al., 2023) builds on RT-
1 but pushes generalization further by incorporating web-scale
vision-language data into the training. Instead of training from
scratch on robot data, the authors co-fine-tune a large model on
two types of data simultaneously: (a) the RT-1 robot demonstration
dataset (actions labeled with instructions and images), and (b)
internet-scale vision-language datasets. Crucially, the authors unify
the output format by treating robot actions as another “language”.
They map each discrete action token (from RT-1’s vocabulary)
to a text string, allowing actions to be appended to the same
training corpus as language sentences. For example, an image
with caption “A person holding a bowl” might be in the training
mix, and an image with an instruction “pick up the bowl” would
be paired with output tokens representing the pick action. The
model (a Vision-Language-Action transformer) learns to produce
either natural language or action sequences as appropriate. Results
showcased that RT-2 is one of the first works to show that we can
transfer internet knowledge into direct robotic actions effectively.
A challenge with RT-2 is complexity: these vision-language models
are huge (though smaller than PaLM-E’s full LLM), and integrating
them requires careful fine-tuning so as not to ruin the pre-trained
features. It also still relies on the quality of both web data (which
might have biases) and robot data. However, RT-2 moves closer to
the dream of a robot that “knows what the internet knows” and
can act on it.

Talking about general-purpose multi-tasking, Reed et al. (2022)
introduce Gato: “A Generalist Agent”. Gato from DeepMind is a
landmark model showing a single transformer can handle totally
different domains. The idea is to use one model (with one set of
weights) to control an agent in text-based dialogs, vision-based
games, and robotic control alike. Thus, the authors trained Gato on
a mix of data: images and actions from Atari games, text dialogues,
robot arm trajectories, etc. The impressive result was that with one
set of weights, Gato showed competence ( >50% expert score) on
450+ tasks out of 604 after training. These included controlling
a real Fetch robot arm to stack blocks, playing Atari games at a
decent level, captioning images, chatting about general topics, and

more. Gato is a proof-of-concept that unification is possible–that the
diversity of sensorimotor and language tasks can be addressed by
one architecture.

Another key dimension is the extent of environmental
knowledge. Rana et al. (2023) introduce SayPlan which fuses an
LLM with a 3D Scene Graph (3DSG) of the environment as an
intermediary world model for the LLM. Specifically, the scene
graph is a structured representation of rooms, objects, and their
connectivity (e.g., a graph node for each room and object).The LLM
queries the 3DSG for spatial relationships (e.g., “Is there a doorway
between the living room and the kitchen?”) to produce elaborate
multi-step plans for large-scale tasks. Authors demonstrate that
hooking an LLM to a structured world model extends planning
beyond single-scene or single-step manipulations. Although it
is capable of discovering efficient routes and object-handling
sequences, reliance on a pre-built or updated scene graph remains a
central bottleneck in truly dynamic settings.

Vemprala et al. (2024) proposes ChatGPT for robotics. This
Microsoft report applies ChatGPT to control robots through
dialogue and reasoning, focusing on design principles and model
abilities. One key aspect is iterative prompting and verification:
the approach involves having the LLM first produce a high-level
plan, followed by either refinement through additional prompts
or human verification before proceeding. Afterward, the LLM can
generate specific robot code if required, continuing the process
as needed. This effectively creates a multi-agent loop between
the human, the LLM, and the robot where the LLM sometimes
takes the role of an advisor and sometimes as an executor. Their
contributions lie on: (1) Highlighting the importance of model self-
awareness of uncertainty–ChatGPT can be prompted to express
uncertainty and suggest asking a human (aligning with “robots
that ask for help”), (2) Demonstrating a variety of robot control
examples (drones, arms, home robots) all through one interface:
ChatGPT. While ChatGPT for robotics is not a single unified
system, this work shows that with the right prompts and safety
checks, ChatGPT can successfully handle multi-step instructions
for robotics and interact with a user to clarify goals. It essentially
treats the human and ChatGPT as a collaborative pair jointly
operating the robot where the human provides high-level intent and
oversight and ChatGPT provides detailed reasoning and translation
to code or robot API. A challenge is ensuring ChatGPT does not
produce unsafe instructions; they recommend heuristic filters and
user confirmation for critical actions. The general message is that
conversational LLMs are promising agents” to mediate between
user and robot, plan tasks, and even coordinate multiple actions.
It encourages a paradigm where you can chat with your robot’s AI
to get things done, analogous to how you would coordinate with a
human co-worker.

Similar to the previous, Raptis et al. (2025) introduce RobotIQ,
which proposes a full-stack system where a robot can leverage any
LLM (GPT-4, etc.) to interpret user commands and generate a
task plan, which is then executed via a ROS (Robot Operating
System) pipeline. The architecture has modular components: (a)
Natural Language Interface: The user can give instructions by text
or voice. The LLM receives this instruction along with context
(robot’s capabilities, current world state) in a prompt. (b) Robotic
API Library: Similar to ChatGPT-for-Robotics, they define a
library of ROS actions and services (like “NavigateTo(location)”,
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“FindObject(name)”, “PickUp(object)”) that the LLM can call.
(c) Execution and Knowledge Transfer: RobotIQ emphasizes
transferring knowledge from simulation to reality acting as a
bridge between high-level reasoning and low-level ROS controls,
all mediated by an LLM “brain”. The author’s contributions lie on:
(1) Integrated System in ROS: It is one of the first frameworks
to show end-to-end integration of an LLM with ROS, making
it practical for ROS developers to add language intelligence.
They release an open-source RobotIQ library with ready-to-
use ROS modules and prompts, so one can plug in an LLM
and get a functional system. (3) Human-level planning with
common-sense: The use of a powerful LLM endowed the robot
with some common-sense reasoning. Evaluations in simulation
and real-world settings show that RobotIQ can efficiently handle
multi-step tasks, underscoring the potential of the Robot-as-
a-Service (RaaS) model while incorporating human feedback
and domain-specific knowledge into its prompt-engineering
processes.

Wang Z. et al. (2024) propose RONAR, an LLM-powered
system designed to generate natural language narratives based on a
robot’s sensory and internal data for transparency and facilitating
failure recovery. The system processes multimodal inputs—such
as joint motions, camera images, force sensor readings, and
discrete events—by first converting them into high-level contextual
summaries using heuristics or lightweight models (e.g., anomaly
detection or keyframe extraction). These summaries are then fed
into an LLM, which produces concise descriptions of the robot’s
experiences, such as “I tried to pick up the block, but I dropped it”. Its
contributions include grounding complex sensor data into human-
understandable language, improving failure detection and response
time (users intervened 1.5x faster when narratives were present),
and providing a real-world dataset of annotated robot episodes.
While the LLM does not control the robot’s physical actions, it
exhibits a formofmetacognitive agency by autonomously generating
observations and suggestions, effectively acting as the robot’s “inner
voice”. RONAR’s domain-agnostic design was demonstrated across
scenarios including long-horizon mobile manipulation and tabletop
tasks, covering both nominal operations and failures. RONARopens
up opportunities for tighter integration with instruction-following
systems, customized narrations based on user expertise, and the
use of self-narration as a supervisory signal for training future
policies—pushing forward the role of agentic AI in human-robot
collaboration.

Ma et al. (2024) introduces an LLM-guided framework
that simplifies sim-to-real reinforcement learning by automating
two traditionally manual and expertise-driven processes: reward
function design and domain randomization. By prompting a large
language model (GPT-3) with natural language descriptions of task
goals, DrEureca generates reward function code or pseudocode and
suggests relevant simulation parameters to randomize (e.g., friction,
motor torque, sensor noise). These LLM-derived configurations are
used to train policies in simulation, which are then deployed to
real robots. The framework reduces the need for expert intervention
and achieves performance comparable to hand-crafted setups, even
enabling success in previously unsolved tasks, purely from LLM-
suggested rewards. While the LLM does not control robot actions
directly, it plays an agentic role during the training design phase,
acting as an AI assistant to human developers. Validated across

quadruped locomotion and dexterous hand manipulation tasks,
DrEureca demonstrated sim-to-real transfer on physical robots.
Limitations include sensitivity to prompt quality, potential for
reward hacking or omission of safety constraints, and a reliance on
human input for iteration if trained policies underperform. Overall,
DrEureca points to a future where specifying robot learning tasks
in natural language becomes a practical and powerful alternative to
manual engineering.

In essence, the progress in this domain suggests that robotics
might follow a trajectory similar to NLP: moving from task-specific
models to a few large general models that can be adapted to myriad
tasks. Agentic AI behavior here is about being able to set and pursue
goals in virtually any context, given the right prompting or minimal
experience–a hallmark of higher-level autonomy. We are not there
yet, but these works provide a roadmap.They indicate a future where
robots have a kind of general intelligence substrate (an LLM or
transformer-based policy) that can be directed to tasks via goals or
instructions, much like we humans apply our general intelligence to
whatever task is at hand.

Overall, examining patterns by task domain, we find that
different applications emphasize different facets of agenticness.
In Navigation and Mobility tasks, LLM-equipped robots tend
to excel in Autonomy: once given a destination or instruction,
navigation robots can independently chart routes and traverse
their environments without step-by-step human guidance.
Their Decision-Making requirements, however, are often more
constrained–navigating largely involves spatial decisions (choosing
paths, avoiding obstacles) which, in many implementations, are
assisted bymap-based planners or reactive policies. InManipulation
and Object Interaction, systems typically demonstrate very
strong Goal-Directed Behavior and notable Adaptability. Each
manipulation task has a clear goal (like assembling a part or
retrieving a specific item), and the robot must often handle
variability in objects and environment. Consequently, these works
highlight the LLM’s ability to adapt plans on the fly–for example,
a robot arm might figure out how to open an unfamiliar drawer
mechanism to find a target object, or adjust its grasp if an object slips,
all in service of the specified goal. In Multi-Agent and Collaborative
Robotics, the dominant theme is sophisticated Decision-Making
through communication and dynamic role allocation. Here, an
LLM or a network of LLMs facilitates coordination among multiple
robots, often by having agents communicate in natural language
to share information and divide responsibilities. This leads to very
agentic group behavior: the robots collectively decide who will
do which sub-task and when to assist each other, guided by the
LLM’s high-level reasoning about the team’s objectives. Finally,
the Generalist Multi-Task Robots exhibit the broadest agenticness
across all dimensions. These systems, built on powerful foundation
models, integrate multiple modalities (vision, language, action)
and can perform a wide range of tasks, requiring high Autonomy,
goal-driven flexibility, and context-aware decision-making all at
once. In the surveyed papers, such generalist robots leverage LLMs
to plan and execute across navigation, manipulation, and more
within a single unified framework. As a result, they must achieve a
balance of skills: strong autonomy to handle open-ended missions,
adaptive reasoning to generalize across diverse scenarios, and
careful decision-making to select the right tools or actions for each
robotic task.
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4 Ethics, safety, and transparency

LLM-driven robotic systems must not only perform tasks but
do so in a manner aligned with ethical norms, safety requirements,
and principles of transparency. This section examines how recent
systems incorporate (or overlook) these considerations. We first
define key Ethical, Safety, and Transparency Metrics (Section 4.1).
We then group the surveyed systems into clusters based on how
strongly they emphasize these metrics (Section 4.2) and finally
analyze trends in different task domains (navigation, manipulation,
multi-robot collaboration, and general-purpose robotics) using a
scoring framework (Section 4.3).

4.1 Ethical, safety, and transparency
metrics

To evaluate LLM-based robotic systems on ethics, safety, and
transparency, we consider several metrics that emerge from the
literature and by taking into consideration EU AI Act (Regulation
(EU) 2024/1689)1. Below we define each metric and provide
examples from representative reviewed items.

• Fairness and Bias: Assessing whether an LLM-driven robot’s
decisions or outputs exhibit unfair prejudice or stereotypes
towards certain groups is crucial. Bias detection typically
involves analyzing model behavior across demographic
or contextual variations to uncover systematic favoritism
or discrimination (Azeem et al., 2024). For example,
studies have found vision-language models in robots
less frequently recognize certain races or genders in
specific roles (Hundt et al., 2022). Detecting such biases is
crucial to ensure robotic assistants treat all users and scenarios
equitably and do not perpetuate harmful stereotypes. The EU
AI Act mandates that high-risk AI systems, such as those used
in employment or education, ensure the quality of datasets,
including their relevance, representativeness, and absence of
bias, to prevent discrimination (Article 10).
• Safety Guardrails: Technical and procedural measures that

prevent robots from causing physical or psychological
harm. These guardrails constrain the LLM’s behavior to
a safe operational envelope, for instance by filtering or
modifying potentially dangerous commands and actions
(Dong et al., 2024). Intuitively, guardrails act like a safety
net–monitoring the robot’s inputs and outputs and intervening
if an instruction could lead to unsafe movements or policy
violations (Perez et al., 2022). They can include content filters,
motion feasibility checks, emergency stops, or rule-based
overrides to ensure the robot does not execute hazardous plans.
The EU AI Act requires that high-risk AI systems incorporate
appropriate human oversight to prevent or minimize risks
(Article 14).
• Transparency/Explainability: The degree to which the internal

decision-making of an LLM-based robot is understandable
to humans. A transparent system provides human-
interpretable reasons for its actions or recommendations–for

1 https://eur-lex.europa.eu/eli/reg/2024/1689/oj

example, showing the chain of thought or plan rationale in
plain language (Department of Industry and Science, 2019).
This often involves explainable AI techniques (e.g., natural
language explanations or visualizations of what the robot
“thought”) so that users and developers can trace why the
robot behaved a certain way. Transparency is key for building
user trust and enabling oversight, as people can follow the
robot’s logic and catch potential errors or biases.TheEUAIAct
emphasizes transparency obligations, particularly for high-risk
AI systems, requiring that their capabilities and limitations are
communicated in a clear and accessible manner (Article 13).
• Auditability/Accountability: The capability to log, trace, and

externally review the robot’s decisions and actions after the
fact. An auditable LLM-based system maintains records or
“audit trails” of its reasoning steps and behaviors (Strobel et al.,
2024).Thismeans that regulators or engineers can later inspect
what the robot did and why, facilitating investigations of
failures or undesirable outcomes. Auditability complements
transparency by ensuring retrospective accountability–even
if a robot acts autonomously in real time, its actions leave
a verifiable trail that can be analyzed for compliance, bias,
or error, thus enabling rigorous audits and improvements.
Ultimately, an accountable system has clear provisions so
that someone (or some process) can be held responsible for
decisions and failures (Department of Industry and Science,
2019). The EU AI Act mandates that high-risk AI systems
maintain comprehensive records to ensure traceability and
facilitate post-market monitoring (Article 12).

Notably, the EU AI Act mandates many of these features for
high-risk AI systems—such as robots operating in public spaces or
healthcare—by requiring documented risk management, human-
in-the-loop oversight, and transparency measures for decision-
making. These same principles are reflected in the NIST AI
Risk Management Framework2’s core functions (Identify, Govern,
Detect, Respond, Recover), which prescribe continuous monitoring
of AI performance, bias mitigation, and explainability across an
AI system’s life cycle and in IEEE’s Ethically Aligned Design,
which emphasizes accountability, human agency, and explicability
of autonomous systems3. In our terms, the EU AI Act’s risk-
management and oversight requirements align directly with our
Safety Guardrails and Human Oversight metrics, while NIST’s
Govern” function echoes our emphasis on fairness and auditability,
and IEEE’s calls for explicability” map onto our Transparency and
Explainability dimensions. Moreover, recent work in explainable
neuro-robotics highlights concrete methods for tracing internal
decision flows in embodied agents (Khan and Olds, 2023),
and the field of Explainable Robotics has begun to formalize
how robots should generate human-understandable rationales for
their actions (Setchi et al., 2020). By situating our evaluation
within these established governance frameworks and tapping into
adjacent literature on embodied AI explainability, we demonstrate
that our analysis is notmerely academic: it anticipates—and inmany

2 https://www.nist.gov/itl/ai-risk-management-framework

3 https://standards.ieee.org/industry-connections/activities/ieee-global-

initiative/
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TABLE 6 Clustering of LLM-Based Robotic Systems by Ethical, Safety, and Transparency Metrics. Low , Moderate , and High indicate the
qualitative strength of each metric in the cluster.

Cluster name Papers
(Tables 2–5)

Fairness and bias Safety guardrails Transparency/
Explainability

Auditability/
Accountability

High Ethical Rigor and
Safety Focus

Manipulate-Anything,
VADER, LLM3,
VoxPoser

High High Moderate Moderate

Governance and
Compliance Oriented

MALMM, RoCo, LaMI,
LLM2Swarm

High Moderate Moderate High

Transparency
Interpretability Emphasis

ProgPrompt, RONAR,
Inner Monologue,
LLM-MARS, RobotIQ

Moderate Moderate High Moderate

Robust Safety Measures
and Technical Alignment

SayCan, RT-1, RT-2,
RobotGPT, SayPlan,
MOO

Moderate High Moderate Low

Capability-Focused with
Limited Ethical Measures

DrEureca,
Code-as-Policies,
LM-Nav, REAL,
RoboCat, Gato,
HULC++, Interactive
Language, LLM-GROP,
ChatGPT-for-Robotics,
PALM-E

Low Low Low Low

respects meets—the real compliance requirements that regulators
and policymakers are now putting into place.

4.2 Clustering of LLM-based robotic
systems

Using the above metrics, we qualitatively assessed the LLM-
based robotic systems from Tables 2–5 and grouped them into
five clusters. Each cluster contains systems with similar levels
of ethical safeguards or shortcomings. Table 6 below summarizes
the clusters, listing representative papers and a qualitative rating
(High/Moderate/Low) for each of the five metrics. These ratings are
based on evidence in the papers (e.g., documented bias tests, explicit
safetymodules, explainability features) or, whennot explicitly stated,
our inference from the system’s design and stated capabilities.

4.2.1 High ethical rigor and safety focus
Systems in this cluster systematically integrate ethical

evaluations and explicit safety protocols. They tend to build
in bias mitigation and robust guardrails from the ground up.
For instance, LLM3 (Wang S. et al., 2024) incorporates safety
triggers that automatically replan or halt execution when a
generated plan might fail or go out of bounds. Similarly,
Manipulate-Anything (Duan et al., 2024) performs multi-step
manipulation with continuous self-verification–it actively checks
the outcome of each action and retries or adjusts if an error is
detected. VADER (Ahn et al., 2024) introduces a paradigm of robots
seeking assistance: the robot uses visual checks to detect when it
cannot safely proceed and then either asks a human or delegates to

another robot, rather than risking an unsafe action.These projects all
devote substantial effort to bias checks, fail-safes, and intervention
mechanisms, achieving high fairness and safety by design. Their
transparency and accountability tend to be moderate–for example,
they may log failures for later analysis or provide basic explanations,
but these features are less emphasized than proactive safety. The
result is systems that prioritize aligned, safe behavior even if it
means sacrificing some openness or convenience.

4.2.2 Governance and compliance-oriented
This cluster emphasizes oversight and formal accountability,

especially in complex or multi-robot scenarios. The included
systems establish frameworks to monitor and enforce ethical
behavior during operation. For example, MALMM (Singh et al.,
2024) deploys three specialized LLM agents (Planner, Coder,
Supervisor) that check and balance each other’s decisions, with a
dedicated “Supervisor” agent overseeing executions and catching
errors. RoCo (Mandi et al., 2024) and LLM2Swarm (Strobel et al.,
2024) each maintain detailed audit trails of every agent action,
providing traceability in case of failures or unintended behaviors.
Systems such as LaMI (Wang C. et al., 2024) focus on cultural and
social norm adherence–for instance, LaMI is explicitly designed
to respect social etiquette and user preferences, achieving high
fairness by customizing its responses to individual needs without
bias. Meanwhile, ZeroCap (Venkatesh and Min, 2024) ensures
compliance with external standards (e.g., it might enforce privacy
or safety regulations in its domain). Across this cluster, governance
mechanisms are paramount: they excel in providing human-
in-the-loop checkpoints, rule-based interventions, or multi-agent
consensus to keep the system’s behavior in check. Fairness is
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generally high (e.g., adhering to ethical norms or avoiding biased
outcomes is often an objective), and these systems clearly assign
responsibility for decisions. However, transparency and low-
level safety may be only moderate–they do incorporate some
explainability and basic robustness, but the priority is on structured
oversight and meeting formal compliance criteria.

4.2.3 Transparency and interpretability emphasis
Systems in this group are characterized by making the LLM’s

decision process as understandable as possible to users, sometimes
at the expense of other metrics. The goal in this cluster is to
enhance user trust and facilitate auditing by revealing the robot’s
reasoning. For example, ProgPrompt (Singh et al., 2023) plans robot
tasks by producing human-readable pseudo-code or programs, so
a human can literally read the generated plan to understand the
intended steps. Likewise, LLM-MARS (Lykov et al., 2023) outputs
an explicit behavior tree for multi-robot coordination, clearly
delineating each agent’s role in the plan. RONAR Wang Z. et al.
(2024) takes a different approach by narrating the robot’s actions
in real time; as the robot acts, it provides a natural language
explanation of what it is doing and why. These interpretability-
focused techniques (structured plans, behavior trees, live narration)
significantly enhance transparency–users or developers can follow
along and spot errors or misunderstandings. That said, fairness
and proactive safety are generally secondary in this cluster. The
systems often do not implement advanced bias mitigation or safety-
locking mechanisms, and some (like RONAR) do not even control
actions directly, acting mainly as an explanatory layer. Thus, while
they score high on transparency/interpretability, their safety and
fairness measures tend to be moderate or limited. The implicit
assumption is that by beingmore interpretable, issues can be noticed
and corrected by humans, but the systems themselves currently rely
on that human supervision for ethical assurance. Ongoing work is
needed to integrate the high transparency with stronger built-in
safeguards so that understandability does not come at the cost of
reliability.

4.2.4 Robust safety measures and technical
alignment

This cluster contains systems that tackle safety and reliability
as a technical alignment problem, tightly constraining the robot’s
actions to what is known to be safe or feasible. They achieve
high robustness through methods like skill grounding, strict
constraints, or verification, but often pay less attention to bias or
accountability. For instance, SayCan (Ahn et al., 2022) grounds
the LLM’s high-level instructions in a library of verified skills
and an affordance function–essentially, the LLM can only propose
actions that a pretrained value model deems feasible and safe
for the robot to execute. By filtering out impractical or risky
commands, SayCan maintains a strong safety guarantee (the robot
will not attempt something obviously dangerous or impossible).
The MOO approach (Stone et al., 2023) further illustrates this
technical alignment by explicitly grounding manipulation actions
in vision-language embeddings, significantly enhancing robustness
by constraining actions to objects identified clearly from language
commands. Across this cluster, approaches like these yield high
safety and reliability–the robots are very unlikely to do something
catastrophically wrong, because the design limits them to vetted

actions or heavily-trained policies. On the other hand, these systems
typically offer only moderate transparency (the internal checks
happen behind the scenes, though some may expose a reasoning
trace) and minimal bias mitigation. Fairness is not a major focus
because the tasks (e.g., object manipulation or navigation) do not
inherently involve demographic decisions, and any potential biases
in the LLM’s understanding are not explicitly audited. Governance
or external accountability is also low–many of these works are
technical proofs-of-concept that prioritize performance, so they
often run autonomously without human oversight once deployed.
In summary, this cluster’s philosophy is safety through design: by
aligning LLM outputs with low-level controllers and environmental
constraints, they ensure robust performance, but they do so in a
way that is more implicit (inside the model) rather than through
transparent ethics or oversight structures.

4.2.5 Capability-focused with limited ethical
measures

The final cluster comprises systems that prioritize raw capability
and innovation in LLM-robot control, with minimal built-in ethical
or transparency features. These works demonstrate impressive
robotic performances or new general abilities, but they largely
treat ethical and safety concerns as out-of-scope or leave them
to future work. For instance, DrEureca (Ma et al., 2024) and
Code-as-Policies (Liang et al., 2023) both focus on novel ways
to improve robot learning (sim-to-real transfer in DrEureca’s
case, and language-based policy generation in Code-as-Policies)
and offer little discussion of bias, fairness, or explainability in
their implementations. LM-Nav (Shah et al., 2023) and REAL
(Tagliabue et al., 2024) advance long-horizon robot navigation
and control via LLMs, but aside from using standard obstacle
avoidance in the low-level controller, they do not incorporate
special safety guardrails or ethical reasoning–the emphasis is
on successfully reaching goals in open environments. Likewise,
generalist agents like RoboCat (Bousmalis et al., 2023) and Gato
(Reed et al., 2022) showcase multi-task learning across diverse
domains, yet their design includes no specific mechanism for
bias checking or transparency beyond the basic training data
filtering. For instance, PaLM-E (Driess et al., 2023), despite its
powerful multimodal reasoning capabilities, does not explicitly
address ethical dimensions, relying instead on emergent behaviors
derived from large-scale multimodal training. In this cluster, all
four metrics are rated low. The systems typically run autonomously
with no human oversight loop, have opaque reasoning (e.g., end-
to-end neural policies or black-box prompts), and do not address
potential unfair outcomes or unsafe instructions explicitly. It is
worth noting that even in this cluster, authors often acknowledge
the importance of ethics–for example, the team behind ChatGPT-
for-Robotics (Vemprala et al., 2024) suggests that a human should
review and approve the plans/code that ChatGPT generates before
execution, and Interactive Language (Lynch et al., 2023) allows
a human to iteratively correct the robot via dialogue. However,
such measures are ad hoc or optional, not deeply embedded in
the system’s architecture. Overall, the cluster reflects the reality
that many cutting-edge LLM-robotics projects are still proof-of-
concept level–excelling in capability demonstrations while only
lightly touching on the ethical and safety implications.
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FIGURE 2
Radar plot summarizing the relative strengths of the five clusters of LLM-based robotic systems across four key ethical, safety, and transparency metrics.

4.2.6 Summary of ethical, safety, and
transparency across clusters

Figure 2 provides a concise visual synthesis of the ethical, safety,
and transparency attributes characterizing each of the five clusters
previously discussed. This radar plot clearly highlights the key
trade-offs present in current agentic LLM-based robotic research:
the High Ethical Rigor and Safety Focus cluster distinctly leads
in proactive Safety Guardrails and Fairness mitigation, whereas the
Governance andCompliance-Oriented cluster excels predominantly
in Auditability and Accountability measures. Conversely, clusters
such as the Transparency and Interpretability Emphasis illustrate
the critical role transparency plays in certain systems while still
showing modest gaps in fairness and accountability. The Robust
Safety Measures and Technical Alignment cluster demonstrates
strong safety without correspondingly high transparency or
accountability, reflecting a narrow technical alignment focus.
Finally, the Capability-Focused with Limited Ethical Measures
cluster presents the lowest scores across all dimensions, visually
emphasizing the critical ethical gaps still prevalent in highly capable
but minimally safeguarded robotic systems.

4.3 Ethical, safety, and transparency
insights by task domain

Figure 3 illustrates the comparative analysis of ethical, safety,
and transparency considerations across the four key task domains.
A notable insight is the clear variation in emphasis across these
domains. The Multi-Agent and Collaborative Robotics domain
demonstrates the highest overall ethical commitment, particularly
excelling in Auditability/Accountability and Fairness due to built-in
oversight mechanisms and explicit coordination roles. Conversely,

Navigation and Robot Mobility consistently scored lowest across all
dimensions, highlighting the significant gap between autonomy-
focused applications and explicit ethical integration.

In terms of Manipulation and Object Interaction and General-
Purpose Multi-Task Robots, these domains share moderate scores
across most metrics, underscoring their focus on safety through
technical robustness (particularly in manipulation) and adaptability
via extensive model training (general-purpose), albeit with
limited fairness, transparency, or governance considerations. The
visualization emphasizes how ethical and transparency measures
vary substantially according to the robotic task, clearly identifying
targeted opportunities for advancing responsible AI practices within
each distinct domain.

4.3.1 Navigation and robot mobility
In Navigation and Robot Mobility, agentic LLM-based robots

prioritize autonomy and reliable pathfinding, yet largely omit
explicit ethical considerations. Systems typically integrate classical
robotics methods for physical safety (e.g., obstacle avoidance),
resulting in moderately robust performance. However, fairness is
virtually neglected, mainly because demographic considerations are
rarely acknowledged. Transparency and auditability are minimal,
reflecting limited user insight into route selection and negligible
mechanisms for human oversight or accountability.

Moving forward, there is a clear gap to address: navigation
systems should integrate explanations of path selections and
explicitly handle fairness concerns, particularly in socially sensitive
navigation contexts (e.g., surveillance or assistive scenarios).
Improved transparency would allow users to understand and trust
navigation decisions, while auditability mechanisms (e.g., logging
reasons for path choices) could bolster accountability significantly.
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FIGURE 3
Radar plot summarizing ethical, safety, and transparency metrics across robotic task domains.

4.3.2 Manipulation and object interaction
Manipulation and Object Interaction robots consistently

emphasize technical safety and robustness, effectively integrating
multimodal grounding or affordance-based filtering to limit unsafe
actions. Techniques such as those employed by MOO and SayCan
strongly illustrate this trend, resulting in comparatively high
safety scores. However, the manipulation domain remains weak
in fairness, transparency, and governance; few systems explicitly
address demographic biases, and transparency usually depends on
the specific approach (e.g., code-based outputs like ProgPrompt
offer better interpretability).

Future research in manipulation robotics should explicitly
address potential fairness issues emerging from ambiguous
instructions and prioritize integrating explainability features into
decision-making processes. Additionally, structured governance
practices, like formal audits of robot actions and outcomes, could
significantly enhance user trust and accountability.

4.3.3 Multi-agent and collaborative robotics
Multi-Agent and Collaborative Robotics systems currently lead

in ethical integration, particularly due to inherent coordination
requirements which naturally lend themselves to auditability
and fairness. This domain exhibits the highest governance
scores through explicit supervisory roles, as exemplified by
MALMM and RoCo, where agent interactions facilitate structured
oversight. Transparency is inherently higher due to explicit agent
communication in natural language or behavior trees, providing a
clear trace of reasoning.

Despite these strengths, safety measures are often limited to
systemic safeguards rather than explicit runtime safety constraints.

Thus, opportunities remain to enhance explicit runtime safety
guardrails and fairness considerations, particularly ensuring
equitable task distributions and unbiased decision-making in
team settings.

4.3.4 General-purpose multi-task robots
General-Purpose Multi-Task Robots exhibit significant

variability, with some systems prioritizing impressive adaptability
through large-scale multimodal training (e.g., PaLM-E, RT-2) but
exhibiting minimal explicit ethical safeguards or transparency.
Such model-driven approaches frequently assume ethical alignment
from broad training, an assumption posing substantial real-world
deployment risks due to opaque decision-making and minimal
governance.

Conversely, human-centric or modular frameworks like
ChatGPT-for-Robotics incorporate clearer oversight and
conversational transparency, although fairness remains largely
unaddressed. This domain urgently requires scalable oversight
strategies, more explicit fairness audits, and transparency methods
that enable understanding of complex multimodal model
behaviors, ensuring robust ethical alignment alongside expanding
capabilities.

4.3.5 Integrated observations and remarks
Overall, the domain-specific analysis, presented in Figure 3,

reveals that ethics and safety considerations have not been uniformly
addressed. For example, none of the navigation-focused papers
explicitly tackled algorithmic fairness in path planning, which
might be acceptable for simple tasks but could become a concern
in social navigation (avoiding bias in whom a delivery robot
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FIGURE 4
Competitiveness Graph of LLM-based robotic systems, showing their distribution across “Agenticness” (horizontal axis) and “Ethical, Safety, and
Transparency” (vertical axis). Approaches are color-coded by their task domain highlighting the trade-offs between emergent autonomy and
explainability.

prioritizes, for instance). In contrast, multi-agent robotics papers
frequently discuss accountability mechanisms, since coordination
failures can have safety repercussions in teams of robots or human-
robot collaboration. Manipulation papers often lie in between,
sometimes including safety stops (to avoid harmful actions), but
rarely disclosing decision rationales. This variance suggests that
ethical and transparency measures are driven more by the nature
of the task than by any standard practice–highlighting a need for
broader guidelines that transcend domains.

5 Open problems and emerging
directions

Figure 4maps a variety of LLM-based robotic systems along two
axes: Agenticness (horizontal) and Ethical, Safety, and Transparency
(vertical). The agenticness score was just retrieved from the first
column of the tables 2 - 5, while for the Transparency, an average
over all the metrics defined in subsection 4.1 is utilized.

At a glance, one notices four general clusters—corresponding
roughly to the main task domains covered in this survey—with
each approach occupying a distinct position depending on how

“emergent” its autonomy is and how transparent or interpretable
its decision-making becomes. Among our reviewed works,
the ones that come closest to combining high agenticness
and high transparency might be LLM2Swarm, LaMI, RoCo,
MALMM, and Manipulate-Anything. Systems in Multi-Agent
and Collaborative Robotics and General-Purpose Multi-Task
Robots domains cluster toward high agentic capacity yet fall
significantly short in transparency and ethical safeguards,
whereas navigation and manipulation solutions tend to remain
closer to the center, balancing autonomy with embedded safety
checks.

5.1 Usual practices and trade-offs

Most existing pipelines still follow a design pattern where
an LLM is used for high-level reasoning or planning, while
traditional, rule-based modules handle low-level control and safety
constraints. This hybrid approach has been effective in keeping
systems safe (human or hard-coded control at lower levels) but
inherently constrains the agentic potential of the LLM component.
For example, typical “manipulation + LLM” configurations expose
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parts of their planning process (via affordancemodels or code-based
outputs) but are constrained by pre-scripted motion primitives.
Such a cautious strategy explains why these systems, as seen in the
new graph, tend to lie toward the mid-range of both axes. Our
analysis suggests a fundamental trade-off in current LLM-robotics
architectures: boosting agentic autonomy often means introducing
complexity and opacity that make the system harder to trust or
verify. Conversely, insisting on transparency and strict oversight
tends to limit the system’s autonomy. This trade-off is evident in the
near absence of any system in the “high-high” quadrant of Figure 4.
Bridging this gap is an open challenge. Possible research directions
include: developing explainable LLMs (so that even autonomous
decisions are interpretable) or designing layered control schemes
where an agentic core is monitored by an explainable guardian
system. So far, attempts like using code-generation (ProgPrompt)
or modular policies (i.e., a symbolic planner supervising an LLM)
have had mixed success–achieving some transparency at the cost of
flexibility.

5.2 Void in the literature

A striking observation from Figure 4 is the near-emptiness of
the upper-right quadrant—representing systems that achieve both
high autonomy and robust transparency. In practice, highly agentic
frameworks (especially in general-purpose andmulti-agent settings)
tend to depend on massive, opaque LLMs whose decision processes
are not inherently interpretable. Conversely, systems that emphasize
interpretability (such as code-based planners) often limit autonomy
by confining the system to structured, semi-automatic behaviors.
This gap underscores a crucial open problem: how to design
frameworks that simultaneously deliver self-sufficient, high-level
autonomy and built-in, real-time introspection or self-explanation
capabilities. The graph clearly signals that without such integrated
approaches, advanced robotic systems risk trading off one essential
quality for the other.

Looking ahead, bridging this gap will require novel architectural
innovations. Research should focus on embedding ethical, safety,
and transparency measures as native design principles—not as post
hoc add-ons via prompt engineering or symbolic traces. Emerging
ideas such as self-explaining LLMs, real-time introspection loops,
and open-source model audits appear promising in this respect.
Furthermore, the domain-specific clustering revealed in the Figure 3
suggests that a one-size-fits-all approach is unlikely to succeed;
tailored strategies that account for the inherent trade-offs in
each task domain are needed. In particular, multi-agent and
general-purpose systems must be rethought to mitigate the
opacity of large-scale models while preserving their emergent
capabilities.

In summary, the competitiveness graph of Figure 4 raises the
following questions about the critical research gaps: How can we
design future LLM-driven robotic systems that achieve a high degree
of autonomous decision-making while remaining transparent and
ethically robust? What methodologies can reconcile the inherent
tension between emergent behavior and interpretability? We note
that solving these issues will likely require multi-disciplinary efforts:
advances in machine learning (to make LLMs more interpretable),
in robotics (to ensure safety at the control level), and in governance

(to establish standards and validation protocols for agentic AI).
Early steps such as the EU AI Act’s requirements for transparency
and human oversight are pushing developers in this direction, but
the technical community must respond with innovations that make
transparency intrinsic to highly autonomous systems, rather than an
afterthought.

6 Conclusion

In summary, our survey reveals a field in transition:
early successes in integrating LLMs into robotics hint at the
immense potential for more autonomous, flexible machines,
but they also expose significant gaps in ethical and transparent
design. No current system fully satisfies the dual demand
of high agentic autonomy and high accountability, meaning
there is much work to do before we can trust these robots
as true teammates. Key lessons include the importance of
grounding LLMs in real-world feedback loops, the value of
modular architectures for safety, and the urgent need for built-in
explainability as autonomy increases. Standardised benchmarks
that quantify prompt sensitivity and long-horizon consistency
will be essential to translate agentic LLMs into safety-critical
deployments.

Moving forward, we advocate for research that addresses
these challenges head-on. This includes creating better evaluation
metrics that cover both performance and ethical criteria,
designing new algorithms for real-time robot self-explanation, and
conducting longitudinal real-world trials to study safety in practice.
Achieving the right balance will indeed require multi-disciplinary
collaboration–engineers, ethicists, and regulators must work in
concert. Encouragingly, the very capabilities that make LLM-driven
robots powerful (language understanding and reasoning) could be
harnessed to encode human norms and oversight mechanisms into
their operation. If guided by the insights and recommendations
outlined in this survey, the next-generation of agentic AI robots
could be not only more capable than ever but also demonstrably
safe, fair, and transparent, earning the trust required for widespread
deployment.
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