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Diffusion models for robotic
manipulation: a survey
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Al and Robotics (AIR), Institute of Material Handling and Logistics (IFL), Karlsruhe Institute of
Technology (KIT), Karlsruhe, Germany

Diffusion generative models have demonstrated remarkable success in visual
domains such as image and video generation. They have also recently emerged
as a promising approach in robotics, especially in robot manipulations. Diffusion
models leverage a probabilistic framework, and they stand out with their ability
to model multi-modal distributions and their robustness to high-dimensional
input and output spaces. This survey provides a comprehensive review of state-
of-the-art diffusion models in robotic manipulation, including grasp learning,
trajectory planning, and data augmentation. Diffusion models for scene and
image augmentation lie at the intersection of robotics and computer vision for
vision-based tasks to enhance generalizability and data scarcity. This paper also
presents the two main frameworks of diffusion models and their integration
with imitation learning and reinforcement learning. In addition, it discusses the
common architectures and benchmarks and points out the challenges and
advantages of current state-of-the-art diffusion-based methods.
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1 Introduction

Diftfusion Models (DMs) have emerged as highly promising deep generative models in
diverse domains, including computer vision (Ho et al., 2020; Song J. et al., 2021; Nichol and
Dhariwal, 2021; Ramesh et al., 2022; Rombach et al., 2022a), natural language processing
(Li et al, 2022; Zhang et al, 2023; Yu et al., 2022), and robotics (Chi et al., 2023;
Urain et al., 2023). DMs intrinsically posses the ability to model any distribution. They have
demonstrated remarkable performance and stability in modeling complex and multi-modal
distributions' from high-dimensional and visual data surpassing the ability of Gaussian
Mixture Models (GMMs) or Energy-based models (EBMs) like Implicit behavior cloning
(IBC) (Chi et al., 2023). While GMMs and IBCs can model multi-modal distributions,
and IBCs can even learn complex discontinuous distributions (Florence et al., 2022),
experiments (Chi et al., 2023) show that in practice, they might be heavily biased toward
specific modes. In general, DMs have also demonstrated performance exceeding generative
adversarial networks (GANSs) (Krichen, 2023), which were previously considered the leading

1 In the context of probability distributions, “multi-modal” does not refer to multiple input modalities
but rather to the presence of multiple peaks (modes) in the distribution, each representing a
distinct possible outcome. For example, in trajectory planning, a multi-modal distribution can
capture multiple feasible trajectories. Accurately modeling all modes is crucial for policies, as it

enables better generalization to diverse scenarios during inference
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paradigm in the field of generative models. GANs usually require
adversarial training, which can lead to mode collapse and training
instability (Krichen, 2023). Additionally, GANs have been reported
to be sensitive to hyperparameters (Lucic et al., 2018).

Since 2022, there has been a noticeable increase in the
implementation of diffusion probabilistic models within the field
of robotic manipulation. These models are applied across various
tasks, including trajectory planning, e.g. (Chi et al., 2023), and grasp
prediction, e.g., (Urain et al., 2023). The ability of DMs to model
multi-modal distributions is a great advantage in many robotic
manipulation applications. In various manipulation tasks, such as
trajectory planning and grasping, there exist multiple equally valid
solutions (redundant solutions). Capturing all solutions improves
generalizability and robots’ versatility, as it enables generating
feasible solutions under different conditions, such as different
placements of objects or different constraints during inference.
Although in the context of trajectory planning using DMs, primarily
imitation learning is applied, DMs have been adapted for integration
with reinforcement learning (RL), e.g., (Geng et al., 2023). Research
efforts focus on various components of the diffusion process
adapted to different tasks in the domain of robotic manipulation.
To give just some examples, developed architectures integrate
different or even multiple input modalities. One example of an
input modality could be point clouds (Ze et al., 2024; Ke et al.,
2024). With the provided depth information, models can learn
more complex tasks, for which a better 3D scene understanding
is crucial. Another example of an additional input modality could
be natural language (Ke et al., 2024; Du et al., 2023; Li et al,
2025), which also enables the integration of foundation models, like
large language models, into the workflow. In Ze et al. (2024), both
point clouds and language task instructions are used as multiple
input modalities. Others integrate DMs into hierarchical planning
(Ma X.etal.,2024; Duetal., 2023) or skill learning (Liang et al., 2024;
Mishra et al., 2023), to facilitate their state-of-the-art capabilities
in modeling high-dimensional data and multi-modal distributions,
for long-horizon and multi-task settings. Many methodologies, e.g.,
(Kasahara et al., 2024; Chen Z. et al., 2023), employ diffusion-based
data augmentation in vision-based manipulation tasks to scale up
datasets and reconstruct scenes. It is important to note that one of the
major challenges of DMs is its comparatively slow sampling process,
which has been addressed in many methods, e.g., (Song J. et al., 2021;
Chen K. et al,, 2024; Zhou H. et al,, 2024), also enabling real-time
prediction.

To the best of our knowledge, we provide the first survey of
DMs concentrating on the field of robotic manipulation. The survey
offers a systematic classification of various methodologies related to
DMs within the realm of robotic manipulation, regarding network
architecture, learning framework, application, and evaluation.
Alongside comprehensive descriptions, we present illustrative
taxonomies.

To provide the reader with the necessary background
information on DMs, we will first introduce their fundamental
mathematical concepts (Section 2). This section provides a general
overview of DMs rather than focusing specifically on robotic
manipulation. Then, network architectures commonly used for
DMs in robotic manipulation will be discussed (Section 3). Next
(Section 4), we explore the three primary applications of DMs
in robotic manipulation: trajectory generation (Section 4.1),
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robotic grasp synthesis (Section 4.2), and visual data augmentation
(Section 4.3). This is followed by an overview of commonly used
benchmarks and baselines (Section 5). Finally, we discuss our
conclusions and existing limitations, and outline potential directions
for future research (Section 6).

2 Preliminaries on diffusion models
2.1 Mathematical framework

The key idea of DMs is to gradually perturb an unknown
target distribution p,, . (x) into a simple known distribution, e.g.,
a normal Gaussian distribution, which is first introduced in (Sohl-
Dickstein et al., 2015). To generate new data, points are sampled
from the initial known “simple” distribution, and perturbations are
estimated to iteratively reverse the diffusion process. The forward
and backward diffusion processes are also visualized in Figure I.
There exist two main approaches to diffusion-based modeling, both
based on the original work by Sohl-Dickstein et al. (2015). The
first group of methods is score-based DMs, where the gradient of
the log-likelihood of the data is learned to reverse the diffusion
process. This score-based generative modeling was first introduced
in Song and Ermon (2019). In the other group of methods, a network
is trained to directly predict the noise, which is added during
the forward process. This methodology was first introduced in
Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020).

The original score-based DM by Song and Ermon (2019) is
rarely used in the field of robotic manipulation. This could be
due to its inefficient sampling process. However, as it forms a
crucial mathematical framework and baseline for many of the
later developed DMs, e.g., (SongY. et al, 2021; Karras et al,
2022), including DDPM Ho et al. (2020), we describe the main
concepts in the following section. While DDPM is rarely used
as well, the commonly used method Denoising Diffusion Implicit
Models (DDIM) (Song]. et al, 2021) originates from DDPM.
DDIM only alters the sampling process of DDPM while keeping
its training procedure. Hence, understanding DDPM is crucial for
many applications of DMs in robotic manipulation.

In the following sections, we first introduce score-based DMs,
then DDPM, before addressing their shortcomings.

2.1.1 Denoising score matching using Noise
Conditional Score Networks

One approach to estimate perturbations in the data distribution
is to use denoising score matching with Lagenvin dynamics (SMLD),
where the score of the data density of the perturbed distributions is
learned using a Noise Conditional Score Network (NCSM) (Song
and Ermon, 2019). This method is described in this section, and for
more details, please refer to their original work. During the forward
diffusion process, data x from an unknown distribution p,,. (x) is
transformed into random noise N(0,1), by gradually adding noise.
New data is generated during the reverse process, where the learned
NCSM is used to iteratively denoise the initial samples.

2.1.1.1 Forward process

Let {Uk}kK=1 be a noise schedule with progressively increasing
variance, i.e., 0y < 0y, forall k € {1,...,K}. To get from the true data
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P(Xpr1 | X)) = N (%15 /1 = Brx, Brl)

Po(Xp—1 | Xi) = N (xp_1; o (X, k), Zo(xx, k))

Backward Process (Synthesis)

Illustrations of diffusion (forward) processes on image, trajectories, and grasp poses (Urain et al.,, 2023) and their corresponding synthesis (backward)

distribution pg,, (x) to the perturbed data distribution p, (x;), with
variance oy, noise is added to the data according to a pre-specified
noise distribution p o (x | x). To denoise the data, the gradients of the
logarithmic probability density functions V, logp, (x; | x), i.e., the
scores, are estimated using the NCSM. To train the NCSM sy(xy, 03.),
for all noise scales k € {1, ..., K} the weighted sum of denoising score
matchings is minimized (Song and Ermon, 2019):

K
1
L=z k; Oy 9 p, (55) [V, G 1) =0 (w001
1)

2.1.1.2 Reverse process
Starting with randomly drawn noise samples xy € N(0,1),

Langevin dynamics are applied recursively over all k € {0,...,K}, to
generate samples using the learned score function:

X, = xZ‘l + 089 (xZ'l,ok) +4204z), ne{0,,N}, (2)

where o >0 is the step size and ZZ € N(0,]) is randomly drawn
noise. During one Langevin dynamic for noise scale k, the index n
is increasing until n = N. Then, the final value xfj , of one Langevin

0

dynamic becomes the initial value x; . for the next Langevin

k-1
dynamic with the next lower noise scale k-1, i.e., xg_l = ka . For
small enough step sizes, the final generated samples x;, should be

approximately distributed according to p4, .. (X).
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2.1.2 Denoising Diffusion Probabilistic Models
(DDPM)

In DDPM (Ho et al,, 2020), instead of estimating the score
function directly, a noise prediction network, conditioned on the
noise scale, is trained. Similarly to SMLD with NCSN, new points
are generated by sampling Gaussian noise and iteratively denoising
the samples using the learned noise prediction network.

Notably, there is one step per noise scale in the denoising process
instead of recursively sampling from each noise scale.

2.1.2.1 Forward process

To train the noise prediction network ey, first points xy ~ p ... (x)
are sampled from the true unknown data distribution. The samples
are degraded by adding noise ¢ € N'(0,1) until at degrading step K,
the degraded samples are approximately normally distributed, i.e.
xg ~ N(0,1). As already introduced by Sohl-Dickstein et al. (2015),
the noise is added according to a Markovian process:

P (X1 |%5) = N(Xk; \/1—_[3kxk,/3k1),

where f8,,...,B €[0,1) is the noise variance schedule, which can
either be a hyperparameter (Ho et al., 2020), or optimized as part

3)

of the model training process (Nichol and Dhariwal, 2021). In
practice, instead of adding noise iteratively, the formulation also
allows adding the noise in closed form:

P (X1 1%0) = N (35 VEx0, (1= 3,)1T), (4)

frontiersin.org


https://doi.org/10.3389/frobt.2025.1606247
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Wolf et al.

with a = Hle(oci) and a; =1-p,. This allows first uniformly
sampling a noise scale k ~/{1,K}, and then directly inferring the
corresponding degraded sample.

Adding the noise in closed form facilitates training a noise
prediction network €4(x;, k) by minimizing the mean squared error
forke{l,...,K}:

L=Ey [||‘—‘9 (ka)H;] . (5

2.1.2.2 Reverse process
Similar to the reverse process described in Section 2.1.1, new

samples are generated from random noise xx~A(0,I), using
the learned forward process p(x; | x;_;). As the forward process
is modeled using Gaussian distributions, the reverse process
Po(X_1 | X;) is also a Gaussian distribution if the number of diffusion
steps is sufficiently large, i.e., the step size is small enough (Sohl-
Dickstein et al., 2015):

Po (X1 1 x0) = N (34139 (X1, 5) , Z (x4, ). (6)

In DDPM, the variance-schedule is fixed and thus X(x;, k) =
BiL. Additionally, using reparameterization, it can be shown that
the mean of the distribution at each step can be iteratively
predicted using the previous value x;, and the estimated noise
€9 (Ho et al., 2020):

1 1—(Xk

X1 = —— | X~
VO V1 -&

which is repeated until x; is computed. As in SMLD, for small

o (xpk) |+ oz, (7)

enough step sizes, the final generated samples x, are approximately
distributed according to the true data distribution py, . (x).

2.2 Architectural improvements and
adaptations

One of the main disadvantages of DMs is the iterative sampling,
leading to a relatively slow sampling process. In comparison, using
GANSs or variational autoencoders (VAEs), only a single forward
pass through the trained network is required to produce a sample.
In both DDPM and the original formulation of SMLD, the number
of time steps (noise levels) in the forward and reverse processes
is equal. While reducing the number of noise levels leads to a
faster sampling process, it comes at the cost of sample quality.
Thus, there have been numerous works to adapt the architectures
and sampling processes of DDPM and SMLD to improve both the
sampling speed and quality of DMs, e.g., (Nichol and Dhariwal,
2021; Song J. et al., 2021; Song Y. et al., 2021).

2.2.1 Improving sampling speed and quality

The forward diffusion process can be formulated as a stochastic
differential equation (SDE). Using the corresponding reverse-time
SDE, SDE-solvers can then be applied to generate new samples
(Song Y. et al., 2021). Song et al. (2021b) shows that the diffusion
process from SMLD corresponds to an SDE where the variance of
the perturbation kernels {p(x | xo)}f:1 is exploding with increasing
K. This is referred to as the variance exploding SDE (VE SDE) in
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the literature. The diffusion process from DDPM corresponds to a
variance-preserving SDE, referred to as VP SDE in the literature.
As such, the original formulations of SMLD and DDPM can
be interpreted as specific discretizations of their corresponding
SDEs. Song Y. et al. (2021) also shows that once the score-
network is trained, the reverse-time SDE can be replaced by an
ordinary differential equation (ODE). Using an ODE has several
advantages. As the reverse process is deterministic, it allows for
precise likelihood computation (Song Y. et al., 2021). Moreover,
the deterministic process naturally leads to higher consistency.
Thus, the ODE formulation can be used as a high-level feature-
preserving encoding, which also allows interpolations in latent space
(SongJ. etal., 2021; Karras et al., 2022). Finally, using ODEs enables
faster and adaptive sampling, which is why it forms the baseline for
many of the following methods.

One group of methods aimed at improving sampling
speed (Jolicoeur-Martineau et al, 2021; Song]J. et al, 2021;
Lu et al., 2022; Karras et al., 2022) designs samplers that operate
independently of the specific training process. Using an SDE/ODE-
based formulation allows choosing different discretizations of
the reverse process than for the forward process. Larger step
sizes reduce computational cost and sampling time but introduce
greater truncation error. The sampler operates independently of
the specific noise prediction network implementation, enabling
the use of a single network, such as one trained with DDPM, with
different samplers.

Denoising Diffusion Implicit Models (DDIM) (Nichol and
Dhariwal, 2021) is the dominant method used for robotic
manipulation. It uses a deterministic sampling process and
outperforms DDPM when using only a few (10-100) sampling
iterations. DDIM can be formulated as a first-order ODE solver.
In Diffusion Probabilistic Models-solver (DPM-solver) (Lu et al,,
2022), a second-order ODE solver is applied, which decreases the
truncation error, thus further increasing performance on several
image classification benchmarks for a low number of sampling
steps. In contrast to DDIM, Karras et al. (2022); Lu et al. (2022)
use non-uniform step sizes in the solver. In a detailed analysis
Karras et al. (2022) empirically shows that compared to uniform
step-sizes, linear decreasing step sizes during denoising lead to
increased performance (Karras et al., 2022), indicating that errors
near the true distribution have a larger impact.

Even though DPM-solver (Lu et al, 2022) shows superior
performance over DDIM. It should be noted that in the original
papers (Song J. et al., 2021; Lu et al., 2022), only image-classification
benchmarks are considered to compare both methods. Therefore,
more extensive tests should be performed to validate these results.

A second group of methods addressing sampling speed also
adapts the training process or requires additional fine-tuning.
Examples are knowledge distillation of DMs to gradually reduce
the number of noise levels (Salimans and Ho, 2022), or finetuning
of the noise schedule (Nichol and Dhariwal, 2021; Watson et al.,
2022). While in DDPM and DDIM, the noise schedule is fixed,
in improved Denoising Diffusion Probabilistic Models (iDDPM)
(Nichol and Dhariwal, 2021), the noise schedule is learned, resulting
in better sample quality. They also suggest changing from a linear
noise schedule, like in DDPM, to other schedules, e.g., a cosine noise
schedule. In particular, for low-resolution samples, a linear schedule
leads to a noisy diffusion process with too rapid information
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loss, while the cosine noise schedule has smaller steps during the
beginning and end of the diffusion process. Already after a fraction
of around 0.6 diffusion steps, the linear noise schedule is close
to zero (and the data distribution close to white noise). Thus, the
first steps of the reverse process do not strongly contribute to the
data generation process, making the sampling process inefficient.
Although iDDPM (Nichol and Dhariwal, 2021) also outperforms
DDIM, it requires fine-tuning, which might be a reason why it is
less popular.

There are also several methods (Zhou H. et al., 2024; Li X. et al.,
2024; Wang et al., 2023b; Chen K. et al., 2024) regarding sampling
speed, specifically for applications in robotic manipulation, which
is different from the previously named methodologies, which
were developed in the context of image processing. For example,
Chen K. et al. (2024) samples from a more informed distribution
than a Gaussian. They point out that even initial distributions
approximated with simple heuristics result in better sample quality,
especially when using few diffusion steps or when only a limited
amount of data is available. Others (Prasad et al., 2024) use
teacher-student distillation techniques (Tarvainen and Valpola,
2017), where pretrained diffusion models serve as teachers, guiding
student models to operate with larger denoising steps while
preserving consistency with the teacher’s results at smaller steps.
While this increases training effort, it decreases sampling time at
inference, which is especially important in (near) real-time control.

Recently, flow matching (Lipman et al., 2023) has been used
as an alternative method to diffusion. Like with diffusion, the true
distribution is estimated starting from a noise distribution. However,
instead of learning the time-dependent score or noise, and then
deriving the velocity from noise to data distribution from it, in flow
matching, the time-dependent velocity field is learned directly. This
leads to a simpler training objective, using the interpolation between
the noise sample and true data point, without requiring a noise
schedule. Thus, flow matching is usually more numerically stable
and requires less hyperparameter tuning. However, when using few
sampling steps, with flow matching, there is a risk of mode-collapse
and infeasible solutions, as the ODE-solver averages over the velocity
field. Thus, Frans et al. (2025) conditions the model not only on
the time-step, but also on the step-size. By using the fact that one
large step should lead to the same point as two consecutive steps of
half the size, they maximize a self-consistency objective in addition
to the flow-matching objective. Thus, the model can sample with a
single step, with only a small drop in performance, far surpassing the
performance of DDIM, when only a small number of sampling steps
are used. While this is similar to the above-mentioned distillation
techniques (Prasad et al., 2024), here only a single model has to
be trained.

2.3 Adaptations for robotic manipulation

Two main points must be considered to apply DMs to robotic
manipulation. Firstly, in the diffusion processes described in the
previous sections, given the initial noise, samples are generated
solely based on the trained noise prediction network or conditional
score network. However, robot actions are usually dependent on
simulated or real-world observations with multi-modal sensory
data and the robot’s proprioception. Thus, the network used in
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the denoising process has to be conditioned on these observations
(Chi et al, 2023). Encoding observations varies in different
algorithms. Some use ground truth state information, such as
object positions (Ada et al., 2024), and object features, like object
sizes (Mishra et al., 2023; Mendez-Mendez et al., 2023). In this
case, sim-to-real transfer is challenging due to sensor inaccuracies,
object occlusions, or other adversarial settings, e.g., lightning
conditions, Therefore, most methods directly condition on visual
observations, such as images (Si et al., 2024; Bharadhwaj et al.,
2024a; Vosylius et al., 2024; Chi et al.,, 2023; Shi et al., 2023), point
clouds (Liu et al,, 2023¢; Li et al., 2025), or feature encodings and
embeddings (Ze et al, 2024; Ke et al,, 2024; Li X. et al, 2024;
Pearce et al., 2022; Liang et al., 2024; Xian et al., 2023; Xu et al., 2023),
where the robustness to adversarial setting can be directly addressed.

Secondly, unlike in image generation, where the pixels
are spatially correlated, in trajectory generation for robotic
manipulation, the samples of a trajectory are temporally correlated.
On the one hand, generating complete trajectories may not only lead
to high inaccuracies and error accumulation of the long-horizon
predictions, but also prevent the model from reacting to changes in
the environment. On the other hand, predicting the trajectory one
action at a time increases the compounding error effect and may
lead to frequent switches between modes. Accordingly, trajectories
are mostly predicted in subsequences, with a receding horizon, e.g.,
(Chi et al., 2023; Scheikl et al., 2024), which will be discussed in
more detail in Section 4.1 and is visualized in Figure 2. In receding
horizon control, the diffusion model generates only a subtrajectory
with each backward pass. The subtrajectory is executed before
generating the next subtrajectory on the updated observations.
In comparison, grasps are generated similarly to images. As here
only a single action, usually the grasp pose, is generated, this is done
using a single backward pass of the diffusion model. Moreover, the
grasp pose is usually predicted from a single initial observation.
During execution, possible changes in the scene are not being
taken into account. The backward pass for generating one action
is visualized in Figure 1.

3 Architecture
3.1 Network architecture

For the implementation of the DM, it is essential to select an
appropriate architecture for the noise prediction network. There
exist three predominant architectures used for the denoising
diffusion networks: Convolutional neural networks (CNNs),

transformers, and Multi-Layer Perceptrons (MLPs).

3.1.1 Convolutional neural networks

The most frequently employed architecture is the CNN, more
specifically the Temporal U-Net that was first introduced by
Janner et al. (2022) in their algorithm Diffuser, a DM for robotics
tasks. The U-Net architecture (Ronneberger et al., 2015) has shown
great success in image generation with DMs, e.g. (Ho et al., 2020
Dhariwal and Nichol, 2021; Song Y. et al., 2021). U-net, in general, is
proven to be sample efficient and can even generalize well with small
training datasets (Meyer-Veit et al., 2022b; Meyer-Veit et al., 2022a).
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Training Inference

FIGURE 2

Illustrations of the iterative trajectory generation using receding horizon control. At inference, the trajectory is planned up to a planning horizon H,
conditioned on the past P observations {0,,0, ;,...,0,_p}. Of this plan, only the steps until the control horizon H, < H are executed. In the figure, this is
visualized in the outer loop with the time variable t. In the inner denoising loop, one subtrajectory 7= {r,,7.,4,..., 7,4} at the current time step tis
generated, using a diffusion model. Conditioned on the last P observations and the current noise level k, the diffusion model predicts the noise, or
score, dependent on the model type. Using the predicted noise/score, the trajectory at the next lower noise level k — 1 is calculated. This is then used as
the next input to the diffusion model until the trajectory is completely denoised (k = 0), at which point it is executed. After execution of the
subtrajectory, the time is increased and the next H steps of the trajectory are planned. For training, ground truth trajectories and corresponding
observations are sampled from the data buffer. The diffusion model is also trained on subtrajectories. However, the lookahead H during training may be
chosen larger than during inference, to ensure flexibility. The diffusion model is trained to predict the noise of a noisy trajectory. For this, first, a noise
level k is sampled. Then the noise ¢, is sampled, according to the predefined variance schedule. The noise is added in closed form to the ground-truth
trajectory 1, (see Equation 4) to get the noisy trajectory 7,. The predicted noise ¢y(7,,k) on the trajectory 7, is compared with the true sampled noise ¢,

to compute the loss. Using this, the diffusion model can be updated.

Thus, it has been adapted to robotic manipulation by replacing two-
dimensional spatial convolutions with one-dimensional temporal
convolutions (Janner et al., 2022).

The temporal U-Net is further adapted by Chi et al. (2023) in
their CNN-based Diffusion Policy (DP) for robotic manipulation.
While in Diffuser, the state and action trajectories are jointly
denoised, only the action trajectories are generated in DP. To
ensure temporal consistency, the diffusion process is conditioned
on a history of observations using feature-wise linear modification
(FiLM) (Perez et al., 2018). This formulation allows for an extension
to different and multiple conditions by concatenating them in feature
space before applying FILM (Li X. etal., 2024; Si et al., 2024; Ze et al.,
2024; Li et al., 2025; Wang L. et al., 2024). Moreover, it also enables
the incorporation of constraints embedded with an MLP (Ajay et al.,
2023; Zhou et al., 2023; Power et al., 2023).

Discussed in more detail in Section 4.1.1.6, Janner et al. (2022)
formulates conditioning as inpainting, where during inferences
at each denoising step, specific states from the currently being
generated sample are replaced with states from the condition. For
example, the final state of a generated trajectory may be replaced by
the goal state, for goal-conditioning. This only affects the sampling
process at inference and, thus, does not require any adaptations
of the network architecture. However, it only supports point-wise
conditions, severely limiting its applications. Multiple frameworks
(Saha et al, 2024; Carvalho et al, 2023; Wang et al., 2023b;
Ma X. et al., 2024) directly employ the temporal U-Net architecture
introduced by Janner et al. (2022). However, as this type of
conditioning is highly limited in its applications, FILM conditioning
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is more common. A different but less-used architecture incorporates
conditions via cross-attention mapped to the intermediate layers of
the U-Net (Zhang E. et al., 2024), which is more complicated to
integrate than FiLM conditioning.

3.1.2 Transformers

Another commonly used architecture for the denoising network
are transformers. A history of observations, the current denoising
time step, and the (partially denoised) action are input tokens
to the transformer. Additional conditions can be integrated via
self-and cross-attention, e.g., (Chi et al., 2023; Mishra and Chen,
2024). The exact architecture of the transformer varies across
methods. The more commonly used model is a multi-head cross-
attention transformer as the denoising network, e.g., (Chi et al.,
2023; Pearce et al., 2022; Wang et al., 2023b; Mishra and Chen,
2024). Others (Bharadhwaj et al., 2024b; Mishra et al.,, 2023)
use architectures based on the method Diffusion Transformers
(Peebles and Xie, 2023), which is the first method combining
DMs with transformer architectures. There are also less commonly
used architectures, such as using the output tokens of the
transformer as input to an MLP, which predicts the noise
(Ke et al., 2024).

For completeness, we provide a list of works, using transformer
architectures: (Chi et al., 2023; Pearce et al., 2022; Scheikl et al., 2024;
Wang et al., 2023b; Ze et al., 2024; Feng et al., 2024; Bharadhwaj et al.,
2024b; Mishra et al., 2023; Liu et al., 2023b; Xu et al., 2024; Mishra
and Chen, 2024; Liu et al., 2023¢; Vosylius et al., 2024; Reuss et al.,
2023; Tioka et al., 2023; Huang T. et al., 2025).
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3.1.3 Multi-Layer Perceptrons

Predominantly used for applications in RL, MLPs are employed
as denoising networks, e.g., (Suh et al., 2023; Ding and Jin, 2023;
Pearce et al., 2022), which take concatenated input features, such
as observations, actions, and denoising time steps, to predict
the noise. Although the architectures vary, it is common to use
a relatively small number of hidden layers (2-4) (Wang et al,
2023b; Kang et al., 2023; Suh et al., 2023; Mendez-Mendez et al.,
2023), using e.g., Mish activation (Misra, 2019), following the first
method (Wang et al.,, 2023a), integrating DMs with Q-learning.
It is important to note that most of these methods do not use
visual input. An exception from this is Pearce et al. (2022), which
also evaluates using high-resolution image inputs with an MLP-
based DM. However, for this, a CNN-based image encoder is
first applied to the raw image observation, before the encoding is
fed to the DM.

3.1.4 Comparison

An ongoing debate exists concerning the relative merits of
different architectural choices, with each architecture exhibiting
Chi (2023)
implemented both a U-Net-based and a transformer-based

distinct advantages and disadvantages. et al
denoising network with the application of trajectory planning. They
observed that the CNN-based model exhibits lower sensitivity to
hyperparameters than transformers. Moreover, they report that
when using positional control, the U-net results in a slightly higher
success rate for some complex visual tasks, such as transport, tool
hand, and push-t. On the other hand, U-nets may induce an over-
smoothing effect, thereby resulting in diminished performance
for high-frequency trajectories and consequently affecting velocity
control. Thus, in these cases, transformers will likely lead
to more precise predictions. Furthermore, transformer-based
architectures have demonstrated proficiency in capturing long-
range dependencies and exhibit notable robustness when handling
high-dimensional data, surpassing the abilities of CNNs, which is
particularly significant for tasks involving long horizons and high-
level decision-making (Janner et al., 2022; Dosovitskiy et al., 2021).

While MLPs typically exhibit inferior performance, especially
when confronted with complex problems and high-dimensional
input data, such as images, they often demonstrate superior
computational efficiency, which facilitates higher-rate sampling
and usually requires fewer computational resources. Due to
their training stability, they are a commonly used architecture
in RL. In contrast, U-Nets, and especially transformers, are
characterized by substantial resource consumption and prolonged
inference times, which may hinder their application in real-
time robotics (Pearce et al., 2022).

In summary, transformers are the most powerful architecture
for handling high-dimensional input and output spaces,
followed by CNNs, while MLPs have the highest computational
efficiency. For processing visual data, such as raw images, an
important task in robotic manipulation, a CNN or a Transformer
architecture should be chosen. Also, while MLPs are most
computationally efficient, real-time control is possible with
the other two architectures, integrating, for example, receding
horizon control (Mattingley et al., 2011) in combination with a
more efficient sampling process, like DDIM.
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3.2 Number of sampling steps

In addition to the network architecture, a crucial decision is
the choice of the number of training and sampling iterations.
As described in Section 2.2, each sample must undergo iterative
denoising over several steps, which can be notably time-consuming,
especially in the context of employing larger denoising networks
with longer inference durations, such as transformers. Within the
framework of DDPM, the number of noise levels during training is
equal to the number of denoising iterations at the time of inference.
This hinders its use in many robotic manipulation scenarios,
especially those necessitating real-time predictions. Consequently,
numerous methodologies employ DDIM, where the number of
sampling iterations during inference can be significantly reduced
compared to the number of noise levels used during training.
Common choices of noise levels are 50-100 during training, but
only a subset of five to ten steps during inference (Chi et al., 2023;
Ma X. et al., 2024; Huang T. et al., 2025; Scheikl et al., 2024). Only a
few works used less sampling (3-4) (Vosylius et al., 2024; Reuss et al.,
2023) or more (20-30) (Mishra and Chen, 2024; Wang L. et al,,
2024) sampling steps. Ko et al. (2024) documented a slight decline
in performance when the number of sampling steps is reduced
to 10% with DDIM (Ko et al., 2024). Therefore, it is imperative
to consider an appropriate trade-off between sample quality and
inference time, tailored to the specific task requirements. Still, only a
few evaluations exist that compare DDPM-based, DDIM-based, or
other samplers for robotic manipulation, and further investigation
is required.

4 Applications

In this section, we explore the most dominant applications
of DMs in robotic manipulation: trajectory generation for robotic
manipulation, robotic grasping, and visual data augmentation for
vision-based robotics manipulations.

4.1 Trajectory generation

Trajectory planning in robotic manipulation is vital for enabling
robots to move from one point to another smoothly, safely, and
efficiently while adhering to physical constraints, like speed and
acceleration limits, as well as ensuring collision avoidance. Classical
planning methods, like interpolation-based and sampling-based
approaches, can have difficulty handling complex tasks or ensuring
smooth paths. For instance, Rapidly Exploring Random Trees
(Martinez et al,, 2023) might generate trajectories with sudden
changes because of the discretization process. As already discussed
in the introduction, although popular data-driven approaches, such
as GMMs and EBMs, theoretically pertain to the ability to model
multi-model data distributions, in reality, they show suboptimal
behavior, such as biasing modes or lack of temporal consistency
(Chi et al, 2023). In addition, GMMs can struggle with high-
dimensional input spaces (Ho et al., 2020). Increasing the number
of components and covariances also increases the models’ ability
to model more complex distributions and capture complex and
intricate movement patterns. However, this can negatively impact
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TABLE 1 Taxonomy of imitation learning approaches for trajectory generation with diffusion models.

Subcategory

Perspective | Category

Task Space §4.1.1.1

References

Chi et al. (2023), Pearce et al. (2022), Ze et al. (2024), Ha et al.
(2023), Ke et al. (2024), Xu et al. (2023), Li et al. (2024c),

Si et al. (2024), Scheikl et al. (2024), Xian et al. (2023),

Liu et al. (2023¢)

Actions and pose representations

Joint Space §4.1.1.1

Carvalho et al. (2023), Saha et al. (2024), Urain et al. (2023),
Ma et al. (2024b)

Methodological

Image Space §4.1.1.3 Ko et al. (2024), Yang et al. (2024), Zhou et al. (2024b),
Vosylius et al. (2024), Du et al. (2023), Liang et al. (2024)
2D e.g. Chi et al. (2023), Liang et al. (2024), Scheikl et al. (2024),
Sietal. (2024)
Visual data modality §4.1.1.2
3D Li et al. (2025), Liu et al. (2023c), Wang et al. (2024a), Ze et al.
(2024), Xian et al. (2023), Ke et al. (2024)
Hierarchical Planning §4.1.1.4 Zhang et al. (2024a), Ma et al. (2024b), Xian et al. (2023),
Ha et al. (2023), Huang et al. (2024b), Du et al. (2023)
Skill Learning §4.1.1.4 Mishra et al. (2023), Kim et al. (2024c), Xu et al. (2023),
Long-Horizon and Multi-Task Learning Liang et al. (2024)
Vision Language Action Models §4.1.1.5 Pan et al. (2024a), Shentu et al. (2024), Team et al. (2024),
Functional Wen et al. (2025), Liu et al. (2024), Li et al. (2024b), Black et al.

(2024a)

Classifier guidance

Mishra et al. (2023), Liang et al. (2023), Janner et al. (2022),
Carvalho et al. (2023)

Constrained Planning §4.1.1.6

Classifier-free guidance

Ho et al. (2021), Saha et al. (2024), Li et al. (2025), Power et al.
(2023), Reuss et al. (2024a), Reuss et al. (2023)

the smoothness of the generated trajectories, making GMMs highly
sensitive to their hyperparameters. In contrast, denoising DMs
have demonstrated exceptional performance in processing and
generating high-dimensional data. Furthermore, the distributions
generated by denoising DMs are inherently smooth (Ho et al,
2020; Sohl-Dickstein et al., 2015; Chi et al., 2023). This makes
DMs well-suited for complex, high-dimensional scenarios where
flexibility and adaptability are required. While most methodologies
that apply probabilistic DMs to robotic manipulation focus on
imitation learning, they have also been adapted to their application
in RL, e.g., (Janner et al., 2022; Wang et al., 2023a).

In the following sections, the methodologies of DMs for
trajectory generation will be further discussed and categorized. We
will first explain their applications in imitation learning, followed by
a discussion on their use in reinforcement learning. For an overview
of the method architectures in imitation learning, see Table 2, and
for reinforcement learning, see Table 3.

4.1.1 Imitation learning

In imitation learning (Zare et al., 2024), robots attempt to learn
a specified task by observing multiple expert demonstrations. This
paradigm, commonly known as Learning from Demonstrations
(LfD), involves the robot observing expert examples and attempting
to replicate the demonstrated behaviors. In this domain, the robot
is expected to generalize beyond the specific demonstrations,
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which allows the robot to adapt to variations in tasks or changes
in configuration spaces. This may include diverse observation
perspectives, altered environmental conditions, or even new
tasks that share structural similarities with those previously
demonstrated. Thus, the robot must learn a representation of the
task that allows flexibility and skill acquisition beyond the specific
scenarios it was trained on. Recent advancements in applying
DMs to learn visuomotor policies (Chi et al,, 2023) enable the
generation of smooth action trajectories by modeling the task
as a generative process conditioned on sensory observations.
Diffusion-based models, initially popularized for high-dimensional
data generation such as images and natural languages, have
demonstrated significant potential in robotics by effectively learning
complex action distributions and generating multi-modal behaviors
conditioned on task-specific inputs. For instance, combining with
recent progress in multiview transformers (Gervet et al., 2023;
Goyal et al., 2023) that leverage the foundation model features
(Radford etal.,, 2021; Oquab et al., 2023), 3D diffuser actor (Ke et al.,
2024) integrates multi-modal representations to generate the end-
effector trajectories. As another example, GNFactor (Ze et al., 2023)
renders multiview features from Stable Diffusion (Rombach et al.,
2022b) to enhance 3d volumetric feature learning. Very similar
to diffusion, recently (Rouxel et al,, 2024) flow-matching-based
policies have emerged for trajectory generation, generally leading
to a more stable training process with fewer hyperparameters, as
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TABLE 2 Technical details of trajectory diffusion using imitation learning. The references for the encoders are provided in

Supplementary Appendix Table 1. In the following, the symbols and abbreviations are explained: H: Whether the method is hierarchical (v) or not ().
PCs: Point Clouds, Lan: Language, GTS: Ground Truth State, and whether the visual input modality is from single view or (°) multi-view (V). U-Net:
temporal U-Net (Janner et al., 2022), FiLM: Convolutional Neural Networks with Feature-wise Linear Modulation (Perez et al., 2018), DiT: Diffusion
Transformer, RHC: sub-trajectories with receding horizon control, CT: complete trajectory in task space, J: complete trajectory in joint space. A"/”
indicates that the information is not provided by the cited paper, while a “-" indicates that no specialized encoder is required as ground truth state
information is used.

Reference Diffuser

Chi et al. (2023) RGBMY RHC ResNet FiLM X
Xian et al. (2023) RGB-D MV, Lan CT CLIP DiT & MLP v
Reuss et al. (2023) GTS/RGB Y CT ResNet DiT

Chen et al. (2023a) RGB %Y, Lan RHC ResNet U-Net

Zhou et al. (2023) RGB MY RHC CLIP U-Net

Pearce et al. (2022) RGBSV RHC CNN/ResNet MLP/DiT
Mendez-Mendez et al. (2023) GTS RHC - MLPs v
Ze et al. (2024) PCs Y RHC MLP FiLM X
Ke et al. (2024) RGB-D*Y/MV| Lan CT CLIP DiT X
Power et al. (2023) GTS RHC MLP U-Net X
Ma et al. (2024b) RGB-D %, Lan ] PointNet++, MLP U-Net v
Vosylius et al. (2024) RGB MV RHC Transformer DiT X
Zhang et al. (2024a) RGB®Y, Lan RHC HULC, T5 U-Net v
Reuss et al. (2024a) RGB™MV, Lan RHC ResNet, CLIP DiT X
Scheikl et al. (2024) RGB %V/GTS RHC ResNet DiT X
Chen et al. (2024a) GTS/PCs/RGB®Y RHC — — X
Zhou et al. (2024a) GTS/RGB®Y RHC ResNet DiT v
Lietal. (2025) PCs%, Lan RHC SAM, XMem FiLM X
Li et al. (2024c) RGBMY RHC ResNet FiLM X
Si et al. (2024) RGBY RHC ResNet FiLM X
Saha et al. (2024) GTS RHC - U-Net X
Bharadhwaj et al. (2024b) RGB®Y point tracks — DiT X
Wang et al. (2024b) RGB, Tactile, PCs, Lan RHC ResNet, PointNet, T5 U-Net X
Reuss et al. (2024b) RGB, Lan RHC ResNet, CLIP DiT X

already mentioned in Section 2.2.1. Nguyen et al. (2025) additionally
includes second-order dynamics into the flow-matching objective,
learning fields on acceleration and jerk to ensure smoothness of the
generated trajectories.

In terms of the type of robotic embodiment, most works
use parallel grippers or simpler end-effectors. However, few
methods perform dexterous manipulation using DMs (Si et al.,
2024; Ma C. et al,, 2024; Ze et al., 2024; Chen K. et al., 2024;
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Wang C. et al, 2024; Freiberg et al., 2025; Welte and Rayyes,
2025), to facilitate their stability and robustness, also in this
high-dimensional setting.

In the following sections, we will first repeat the process of
sampling actions for trajectory planning with DMs and discuss
common pose representations. Then we shortly address different
visual data modalities, in particular 2D vs. 3D visual observations.
Afterwards, we look at methods formulating trajectory planning
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TABLE 3 Technical details of trajectory diffusion using reinforcement learning. The references for the encoders are provided in

Supplementary Appendix Table 1. In the following, the symbols and abbreviations are explained: H/S: Whether the method is hierarchical/skill-based ()
or not (X). Lan: Language, GTS: Ground Truth State, and whether the visual input modality is from single view () or multi-view (MV). U-Net: temporal
U-Net (Janner et al., 2022), Eq.: Equivariant FiLM: Convolutional Neural Networks with Feature-wise Linear Modulation (Perez et al., 2018), DiT: Diffusion
Transformer, RHC: sub-trajectories with receding horizon control, Sia = single actions. A “-" indicates that no specialized encoder is required as ground

truth state information is used.

Reference Input Output Encoder ‘ Diffuser ‘ H/S
Janner et al. (2022) GTS RHC - U-Net X
Ajay et al. (2023) GTS RHC - U-Net v
Wang et al. (2023a) GTS SiA - MLP X
Wang et al. (2023b) GTS RHC - DiT X
Ding and Jin (2023) GTS SiA - MLP X
Mishra et al. (2023) GTS RHC - DiT v
Kang et al. (2023) GTS RHC - MLP X
Brehmer et al. (2023) GTS RHC - Eq. U-Net X
Suh et al. (2023) GTS RHC - U-Net X
Ha et al. (2023) RGBMY, Lan RHC ResNet, CLIP FiLM v
Kim et al. (2024b) GTS RHC - U-Net v
Liang et al. (2023) GTS RHC - U-Net X
Ada et al. (2024) GTS SiA - MLP X
Ren et al. (2024) RGB/GTS SiA ViT/- U-Net/MLP X
Huang et al. (2025b) RGBS SiA VQ-GAN VQ-Diffusion Gu et al. (2022) X
Carvalho et al. (2023) GTS RHC - U-Net X

as image generation, before looking at applications in hierarchical,
multi-task, and constrained planning, also looking at multi-
task planning with vision language action models (VLAs). A
visualization of the taxonomy is provided in Table 1. More details
on the individual method architectures are provided in Table 2.

4.1.1.1 Actions and pose representation

As briefly discussed in Section 2.3, the entire trajectory can
be generated as a single sample, multiple subsequences can be
sampled using receding horizon control, or the trajectory can be
generated by sampling individual steps. Only in a few methods
(Janner et al,, 2022; Ke et al., 2024) the whole trajectory is predicted
at once. Although this enables a more efficient prediction, as the
denoising has to be performed only once, it prohibits adapting to
changes in the environment, requiring better foresight and making
it unsuitable for more complex task settings with dynamic or open
environments. On the other hand, sampling of individual steps
increases the compounding error effect and can negatively affect
temporal correlation. Instead of predicting micro-actions, some use
DMs to predict waypoints (Shi et al., 2023). This can decrease the
compounding error, by reducing the temporal horizon. However, it
relies on preprocessing or task settings that ensure that the space in
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between waypoints is not occluded. Thus, typically, DMs generate
trajectories consisting of sequences of micro-actions represented
as end-effector positions, generally encompassing translation and
rotation depending on end-effector actuation (Chi et al., 2023;
Ze et al., 2024; Xu et al,, 2023; Li X. et al., 2024; Si et al., 2024;
Scheikl et al., 2024; Ke et al., 2024; Ha et al.,, 2023). Once the
trajectory is sampled, the proximity of the predicted positions
enables computing the motion between the positions with simple
positional controllers without the need for complex trajectory
planning techniques. The control scheme is visualized in detail in
Figure 2. Although more commonly applied in grasp prediction,
here the pose is sometimes also represented in special Euclidean
group (SE(3)) (Xian et al, 2023; Liu et al, 2023¢; Ryu et al,
2024). Explained in more detail in Section 4.2, the group structure
of the SE(3) Lie group enables continuous interpolation and
transformations between multiple object poses. As Liu et al. (2023¢),
Ryu et al. (2024) performs complex tasks involving trajectory
planning and grasping for aligning multiple objects, these properties
are important to ensure physically and geometrically grounded
actions. However, as the prediction of SE(3) poses with DMs
requires a more complex model structure and training in imitation
learning, it is more usual to use representations, such as Euler angles
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or quaternions, in trajectory planning. Not only diffusion, but also
flow matching has been adapted to use representations in SE(3) or
Riemannian manifolds in general (Braun et al., 2024).

Although not common, sometimes actions are predicted
directly in joint space (Carvalho et al., 2023; Pearce et al., 2022;
Saha et al., 2024; Ma X. et al., 2024), allowing for direct control of
joint motions, which, e.g., reduces singularities.

4.1.1.2 Visual data modalities

As already discussed in Section 2.3 to ground the robots actions
in the physical world, they are dependent on sensory input. Here, in
the majority of methods visual observations are used. In the original
work (Chi et al., 2023), combining visual robotic manipulation with
DMs for trajectory planning, the DM is conditioned on RGB-image
observations. Many methods, e.g., (Si et al., 2024; Pearce et al., 2022;
Li X. et al,, 2024), adopt using RGB inputs, also developing more
intricate encoding schemes (Qi et al., 2025).

However, 2D visual scene representations may not provide
sufficient geometrical information for intricate robotic tasks,
especially in scenes containing occlusions. Thus, multiple later
methods used 3D scene representations instead. Here, DMs are
either directly conditioned on the point cloud (Li et al, 2025;
Liu et al, 2023¢; Wang C. et al,, 2024) or point cloud feature
embeddings (Ze et al., 2024; Xian et al, 2023; Ke et al,, 2024),
from singleview (Ze et al., 2024; Li et al., 2025; Wang C. et al,,
2024), or multiview camera setups (Ke et al., 2024; Xian et al,
2023). While multiview camera setups provide more complete scene
information, they also require a more involved setup and more
hardware resources.

These models outperform methods relying solely on 2D visual
information, on more complex tasks, also demonstrating robustness
to adversarial lighting conditions.

4.1.1.3 Trajectory planning as image generation

Another category formulates trajectory generation directly in
image space, leveraging the exceptional generative abilities of DMs
in image generation. Here (Ko et al, 2024; Zhou S. et al., 2024;
Du et al,, 2023), given a single image observation, a sequence of
images, or a video, sometimes in combination with a language-
task-instruction, the diffusion process is conditioned to predict
a sequence of images, depicting the change in robot and object
position. This comes with the benefit of internet-wide video
training data, which facilitates extensive training, leading to good
generalization capabilities. Especially in combination with methods
(Bharadhwaj et al., 2024b) agnostic to the robot embodiment, this
highly increases the amount of available training data. Moreover,
in robotic manipulation, the model usually has to parse visual
observations. Predicting actions in image space circumvents the
need for mapping from the image space to a usually much
lower-dimensional action space, reducing the required amount of
training data (Vosylius et al., 2024). However, predicting high-
dimensional images may also prevent the model from successfully
learning important details of trajectories, as the DM is not
guided to pay more attention to certain regions of the image,
even though usually only a low fraction of pixels contain task-
relevant information. Additionally, methods generating complete
images must ensure temporal consistency and physical plausibility.
Hence, extensive training resources are required. As an example
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(Zhou S. et al., 2024), uses 100 V100 GPUs and 70k demonstrations
for training. While still operating in image space, some methods
do not generate whole image sequences, but instead perform
point-tracking (Bharadhwaj et al, 2024b) or diffuse imprecise
action-effects on the end-effector position directly in image space
(Vosylius et al., 2024). This mitigates the problem of generating
physically implausible scenes. However, point-tracking still requires
extensive amounts of data. Bharadhwaj et al. (2024b), e.g., uses 0.4
million video clips for training.

4.1.1.4 Long-horizon and multi-task learning

Due to their ability to robustly model multi-model distributions
and relatively good generalization capabilities, DMs are well suited
to handle long-horizon and multi-skill tasks, where usually long-
range dependencies and multiple valid solutions exist, especially
for high-level task instructions (Mendez-Mendez et al., 2023;
Liang et al, 2024). Often, long-horizon tasks are modeled using
hierarchical structures and skill learning. Usually, a single skill-
conditioned DM or several DMs are learned for the individual
skills, while the higher-level skill planning does not use a DM
(Mishra et al, 2023; Kim W. K. et al, 2024; Xu et al., 2023;
Liang et al, 2024; Li et al, 2023). The exact architecture for
the higher-level skill planning varies across methods, being,
for example, a variational autoencoder (Kim W. K. et al., 2024)
or a regression model (Mishra et al, 2023). Instead of having
a separate skill planner that samples one skill, Wang L. et al.
(2024) develops a sampling scheme that can sample from
a combination of DMs trained for different tasks and in
different settings.

To forego the skill-enumeration, which brings with it the
limitation of a predefined finite number of skills, some works
employ a coarse-to-fine hierarchical framework, where higher-level
policies are used to predict goal states for lower-level policies
(Zhang E. et al,, 2024; Ma X. et al., 2024; Xian et al., 2023; Ha et al,,
2023; Huang Z. et al., 2024; Du et al., 2023).

The ability of DMs to stably process high-dimensional input
spaces enables the integration of multi-modal inputs, which is
especially important in multi-skill tasks, to develop versatile and
generalizable agents via arbitrary skill-chaining. Methodologies
use videos (Xu et al., 2023), images, and natural language task
instructions (Liang et al., 2024; Wang L. et al., 2024; Zhou S. et al.,
2024; Reuss et al., 2024b), or even more diverse modalities, such
as tactile information and point clouds (Wang L. et al., 2024), to

prompt skills.
Although these methods are designed to enhance
generalizability, achieving adaptability in highly dynamic

environments and unfamiliar scenarios may require the integration
of continuous and lifelong learning. This is a widely unexplored field
in the context of DMs, with only very few works (Huang J. et al.,
2024; Di Palo et al., 2024) exploring this topic. Moreover, these
methods are still limited in their applications. DiPalo et al
(2024) are utilizing a lifelong buffer to accelerate the training of
new policies for new tasks. In contrast, Mendez-Mendez et al.
(2023) continually updates its policy. However, they only conduct
training and experiments in simulation. Additionally, their
method requires precise feature descriptions of all involved
objects and is limited to predefined abstract skills. Moreover,
for the continual update, all past data is replayed, which is
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not only computationally inefficient but also does not prevent
catastrophic forgetting.

4.1.1.5 Multi-task learning with vision language action
models

Another approach to enhance generalizability in multi-task
settings is the incorporation of pretrained VLAs. As a specialized
class of multimodal language model (MLLM), VLAs combine the
perceptual and semantic representation power of the vision language
foundation model and the motor execution capabilities of the action
generation model, thereby forming a cohesive end-to-end decision-
making framework. Being pretrained on internet-scale data, VLAs
exhibit great generalization capabilities across diverse and unseen
scenarios, thereby enabling robots to execute complex tasks with
remarkable adaptability (Firoozi et al., 2025).

A predominant line of approaches among VLAs employs
next-token prediction for auto-regressive action token generation,
representing a foundational approach to end-to-end VLA modeling,
e.g., (Brohan et al., 2023b; Brohan et al., 2023a; Kim M. J. et al,,
2024). However, this approach is hindered by significant limitations,
most notably the slow inference speeds inherent to auto-regressive
methods (Brohan et al., 2023a; Wen et al., 2025; Pertsch et al.,
2025). This poses a critical bottleneck for real-time robotic systems,
where low-latency decision-making is essential. Furthermore,
the discretizations of motion tokens, which reformulates action
generation as a classification task, introduces quantization errors
that lead to a decrease in control precision, thus reducing
the overall performance and reliability (Zhang et al, 2024g;
Pearce et al., 2022; Zhang S. et al., 2024).

To address these limitations one line of research within
VLAs focuses on predicting future states and synthesizing
executable actions by leveraging inverse kinematics principles
derived from these predictions, e.g., (Cheang et al, 2024;
Zhen etal., 2024; Zhang et al., 2024c). While this approach addresses
some of the limitations associated with token discretization,
multimodal states often correspond to multiple valid actions, and the
attempt to model these states through techniques such as arithmetic
averaging can result in infeasible or suboptimal action outputs.

Thus, showing strong capabilities and stability in modeling
multi-modal distributions, DMs have emerged as a promising
solution. Leveraging their strong generalization capabilities, a VLA
is used to predict coarse action, while a DM-based policy refines
the action, to increase precision and adaptability to different
robot embodiments, e.g. (Pan C. et al,, 2024; Shentu et al., 2024;
Team et al, 2024). For instance, TinyVLA (Wen et al, 2025)
incorporates a diffusion-based head module on top of a pretrained
VLA to directly generate robotic actions. More specifically, DP
(Chi et al., 2023) is connected to the multimodal model backbone
via two linear projections and a LayerNorm. The multimodal
model backbone jointly encodes the current observations and
language instruction, generating a multimodal embedding that
conditions and guides the denoising process. Furthermore, in order
to better fill the gap between logical reasoning and actionable
robot policies, a reasoning injection module is proposed, which
reuses reasoning outputs (Wen et al., 2024). Similarly, conditional
diffusion decoders have been leveraged to represent continuous
multimodal action distributions, enabling the generation of diverse
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and contextually appropriate action sequences (Team et al., 2024;
Liu et al., 2024; Li Q. et al., 2024).

Addressing the disadvantage of long inference times with DMs,
in some recent works instead, flow matching is used to generate
actions from observations preprocessed by VLMs to solve flexible
and dynamic tasks, offering a robust alternative to traditional
diffusion mechanisms (Black et al, 2024a; Zhang and Gienger,
2025). While Black et al. (2024a) takes a skill-based approach, where
the vision-language model is used to decide on actions, Zhang and
Gienger (2025) uses a vision-language model to generate waypoints.
In both approaches, flow matching is used as the expert policy,
generating precise trajectories.

VLAs offer access to models trained on huge amounts of
data and with strong computational power, leading to strong
generalization capabilities. To mitigate some of their shortcomings,
such as imprecise actions, specialized policies can be used for
refinement. To not restrict the generalizability of the VLA, DMs
offer a great possibility, as they can capture complex multi-model
distributions and process high-dimensional visual inputs. However,
both VLAs and DMs have a relatively slow inference speed. Thus,
especially in this combination with VLAs, increasing the sampling
efficiency of DMs is important. One example was provided in the
previous paragraph. But the topic of higher sampling speed with
DMs is also discussed in more detail in Section 2.2.1.

4.1.1.6 Constrained planning
Another line of methods focuses on constrained trajectory

learning. A typical goal is obstacle avoidance, object-centric, or
goal-oriented trajectory planning, but other constraints can also be
included. If the constraints are known prior to training, they can be
integrated into the loss function. However, if the goal is to adhere to
various and possibly changing constraints during inference, another
approach has to be taken. For less complex constraints, such as
specific initial or goal states (Janner et al., 2022), introduces a
conditioning, where, after each denoising time step (Equation 7), the
particular state from the trajectory is replaced by the state from the
constraint. However, this can lead the trajectory into regions of low
likelihood, hence decreasing stability and potentially causing mode
collapse. Moreover, this method is not applicable to more complex
constraints.

One approach, also addressed by Janner et al. (2022), is classifier
guidance (Dhariwal and Nichol, 2021). Here, a separate model is
trained to score the trajectory at each denoising step and steer it
toward regions that satisfy the constraint. This is integrated into the
denoising process by adding the gradient of the predicted score.
It should be noted that for sequential data, such as trajectories,
classifier guidance can also bias the sampling towards regions
of low likelihood (Pearce et al, 2022). Thus, the weight of the
guidance factor must be carefully chosen. Moreover, during the
start of the denoising process the guidance model must predict
the score on a highly uninformative output (close to Gaussian
noise) and should have a lower impact. Therefore, it is important
to inform the classifier of the denoising time step, train it also
on noisy samples, or adjust the weight with which the guidance
factor is integrated into the reverse process. Classifier guidance is
applied in several methodologies (Mishra et al., 2023; Liang et al.,
2023; Janner et al, 2022; Carvalho et al, 2023). However, it
requires the additional training of a separate model. Furthermore,
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computing the gradient of the classifier at each sampling step
adds additional computational cost. Thus, classifier-free guidance
(Ho et al., 2021; Saha et al., 2024; Li et al., 2025; Power et al., 2023;
Reuss et al., 2024a; Reuss et al., 2023) has been introduced, where
a conditional and an unconditional DM per constraint are trained
in parallel. During sampling, a weighted mixture of both DMs is
used, allowing for arbitrary combinations of constraints, also not
seen together during training. However, it does not generalize to
entirely new constraints, as this would necessitate the training of new
conditional DMs.

As both classifier and classifier-free guidance only steer the
training process, they do not guarantee constraint satisfaction.
To guarantee constraint satisfaction in delicate environments,
such as surgery (Scheikl et al., 2024), incorporate movement
primitives with DMs to ensure the quality of the trajectory. Recent
advances in diffusion models also delve into constraint satisfaction
(Romer et al., 2024), integrating constraint tightening into the
reverse diffusion process. While this outperforms previous methods
(Power et al., 2023; Janner et al., 2022; Carvalho et al., 2024) in
regards to constraint satisfaction, also in multi-constraint settings
and constraints not seen during training, the evaluation is done
only in simulation on a single experiment setup. Thus, constraint
satisfaction with DMs remains an interesting research direction to
further explore.

Few methods also perform affordance-based optimization for
trajectory planning (Liu et al, 2023c). However, most work in
affordance-based manipulation concentrates on grasp learning,
which is discussed in more detail in Section 4.2.

4.1.2 Offline reinforcement learning

To apply diffusion policies in the context of RL the reward term
has to be integrated. Diffuser (Janner et al., 2022), one early work
adapting diffusion to RL, uses classifier-based guidance, which is
based on classifier guidance described in Section 4.1.1.6. Let 7=
{(sg»a9)>...>(sp>ar)} be a trajectory with one state-action pair per
timestep in a planning horizon {0, ..., T}. To incorporate the reward
term during sampling, a regression model Ry(7; ) is trained to predict
the return, i.e., the cumulative future reward, over the trajectory 7,
at each denoising time step k € {0, ...,K}. This is incorporated into
the sampling process by adding the guidance term at each iteration
of the reverse diffusion process (Janner et al., 2022):

P (51 1 76 Oy.1) zN(Tk—ﬁ/HZVRqa (#)’2) (8)

Moreover, to ensure that the current state observation s is not
changed by the reverse diffusion on the trajectory, Tfu"l is set to
the current state observation after each reverse diffusion iteration.
In the same way, goal-conditioning or other constraints, which can
be accomplished by replacing states from the trajectory with states
from the constraint, can be integrated into the method. This, is done
in several methodologies (Janner et al.,, 2022; Liang et al., 2023).
However, it has to be done with care, as it can lead to trajectories
in regions of low likelihood which may cause instability and mode-
collapse (Janner et al., 2022; Song Y. et al., 2021). After the reverse
process is completed and 7° has been predicted, the first action a,, of
the plan is executed. Then, the planning horizon is shifted one step
forward, and the next action is sampled.

In Diffuser (Janner et al,, 2022) and Diffuser-based methods
(Suhetal., 2023; Liang et al., 2023), the DM is trained independently
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of the reward signal, similar to methods in imitation learning with
DM. Not leveraging the reward signal for training the policy can lead
to misalignment of the learned trajectories with optimal trajectories
and thus suboptimal behavior of the policy. In contrast, leveraging
the reward signal already during training of the policy, can steer the
training process, consequently increasing both quality of the trained
policy and sample efficiency.

To  mitigate these  shortcomings, one  approach,
Decision Diffuser (Ajay et al., 2023), directly conditions the DM
on the return of the trajectory using classifier-free guidance.
This method outperforms Diffuser on a variety of tasks, such
a block-stacking task. However, both methods have not been
evaluated on real-world tasks. Directly conditioning on the return,
limits generalization capabilities. Different to Q-learning, where
the value function is approximated, which generalizes across all
future trajectories, here only the return of the current trajectory
is considered. Sharing some similarity to on-policy methods, this
limits generalization as the policy learns to follow trajectories from
the demonstrations with high return values. Thus, this can also be
interpreted as guided imitation learning.

A more common method (Wang et al., 2023a) integrates offline
Q-learning with DMs. The loss function from Equation’5 is a
behavior cloning loss, as the goal is to minimize error with respect
to samples taken via the behavior policy. Wang et al. (2023a)
suggests including a critic in the training procedure, which they
call Diffusion Q-learning (Diffusion-QL). In Diffusion-QL a Q-
function is trained, by minimizing the Bellman-Operator using the
double Q-learning trick. The actions for updating the Q-function
are sampled from the DM. In turn a policy improvement step
Le= =B pgog, [Qq,(s, ao)] is included in the loss for updating
the DM (Wang et al., 2023a):

©)

m=argmin, Ly =argmin, L£+al,

where £ is the diffusion loss from Equation 5 and the parameter
o regulates the influence of the critic. Several methods (Ada et al.,
2024; Kim S. et al., 2024; Venkatraman et al., 2023; Kang et al., 2023),
build on Diffusion Q-learning. To increase the generalizability
to out-of-distribution data, a common problem in offline RL
(Levine et al., 2020), Ada et al. (2024), include a state-reconstruction
loss, into the training of the DM. An overview of the architectures
of methods combining diffusion and reinforcement learning is
provided in Table 3.

One characteristic of methodologies combining RL with DMs
is that they are offline methods, with both the policy, i.e., the DM,
and the return prediction model/critic being trained offline. This
introduces the usual advantages and disadvantages of offline RL
(Levine et al, 2020). The model relies on high-quality existing
data, consisting of state-action-reward transitions, and is unable
to react to distribution shifts. If not tuned well, this may also
lead to overfitting. On the other hand, it has increased sample
efficiency and does not require real-time data collections and
training, which decreases computational cost and can increase
training stability. Compared to imitation learning (Levine et al.,
2020; Pfrommer et al.,, 2024; Ho and Ermon, 2016), offline RL
requires data labeled with rewards, the training of a reward function,
and is more prone to overfitting to suboptimal behavior. However,
confronted with data containing diverse and suboptimal behavior,
offline RL has the potential of better generalization compared to
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imitation learning, as it is well suited to model the entire state-
action space. Thus, combining RL with DMs has the potential of
modeling highly multi-modal distributions over the whole state-
action space, strongly increasing generalizability (Liang et al., 2023;
Ren et al,, 2024). In contrast, if high-quality expert demonstrations
are available, imitation learning might lead to better performance
and computational efficiency. To overcome some of the shortcoming
of imitation learning, such as the covariate shift problem (Ross and
Bagnell, 2010), which make it difficult to handle out of distribution
situations, some strategies are devised to finetune behavior cloning
policies using RL (Ren et al., 2024; Huang T. et al., 2025).

Skill-composition is a common method, to handle long-horizon
tasks. To leverage the abilities of RL to learn from suboptimal
behaviors multiple methodologies (Ajay et al., 2023; Kim W. K. et al.,
2024; Venkatraman et al., 2023; Kim S. et al., 2024) combine skill-
learning and RL with DMs.

Only little research (Ding and Jin, 2023; Ajay et al., 2023) in
online and offline-to-online RL with DMs has been conducted,
leaving a wide field open for research. Moreover, in the context of
skill-learning (Ajay et al., 2023), the DMs, used for the lower-level
policies, are trained offline and remain frozen, while the higher-level
policy are trained using online RL.

It should be noted that, apart from Ren et al. (2024);
Huang T. et al. (2025), none of the aforementioned methods process
visual observations and instead rely on ground-truth environment
information, which is only easily available in simulation. Moreover,
while all methods have also been tested on robotic manipulation
tasks, only a few (Ren et al., 2024; Huang T. et al., 2025) have been
deliberately engineered for these specific applications. Expanding
the scope to encompass all methodologies devised for robotics
at large, there is a more substantial body of work that integrates
diffusion policies with RL.

4.2 Robotic grasp generation

Grasp learning, as one of the crucial skills for robotic
manipulation, has been studied over decades (Newbury et al,
2023). Starting from hand-crafted feature engineering to statistical
approaches (Bohg et al., 2013), accompanied by the recent progress
in deep neural networks that are powered by massive data collection
either from real-world (Fang et al., 2020) or simulated environments
(Gilles et al., 2023; Gilles et al., 2025; Shi et al., 2024). The current
trend in grasp learning incorporates semantic-level object detection,
leveraging open-vocabulary foundation models (Radford et al,
2021; Liu et al., 2025), and focuses on object-centric or affordance-
based grasp detection in the wild (Qian et al., 2024; Shi et al,
2025). To this end, DMs, known for their ability to model complex
distributions, allow for the creation of diverse and realistic grasp
scenarios by simulating possible interactions with objects in a variety
of contexts (Rombach et al., 2022b). Furthermore, these models
contribute to direct grasp generation by optimizing the generation
of feasible and efficient grasps (Urain et al., 2023), particularly in
environments where real-time decision-making and adaptability
are critical.

Grasp generation with DMs can be categorized into several
key approaches: From methodological perspective, one category
focuses on explicit diffusion on 6-DoF grasp poses that lie
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on the SE(3) group, directly modeling spatial transformations
to generate feasible grasps (Urain et al, 2023; Song et al,
2024; Wu et al,, 2024b; Weng et al, 2024; Singh et al, 2024;
Lim et al, 2024). Another line of approaches involves implicit
grasp diffusion within latent space, enhancing adaptability and
versatility (Barad et al., 2024). A recent trend focuses on language-
guided diffusion for task-oriented grasp generation, where natural
language inputs shape the generation process (Nguyen N. et al.,
2024; Vuong et al.,, 2024; Nguyen T. et al., 2024; Chang and Sun,
2024). Other approaches emphasize affordance-driven diffusion,
targeting specific functional goals, such as object pose diffusion for
rearrangement (Liu et al., 2023b; Zhao et al., 2025), affordance-
guided object reorientation (Mishra and Chen, 2024), imitation
learning (Wu et al., 2024a; Ma C. et al., 2024) or multi-embodiment
grasping (Freiberg et al., 2025). Apart from these categories, hand-
object interaction (HOI) specifically prioritizes the synthesis of
realistic, functional interactions by modeling the hand’s adaptive
responses to various object shapes and affordances with dexterity
(Ye et al., 2024; Wang Y.-K. et al, 2024; Zhang et al., 2024d;
Cao et al,, 2024; Li P. et al., 2024; Zhang et al., 2025; Lu et al., 2025;
Zhang et al., 2024b). In addition to the diffusion on grasp generation
or trajectory planning, DM as sim-to-real generator (Li Y. et al.,
2024) or foundational feature extractor (Tsagkas et al., 2024) such
as stable diffusion (Rombach et al., 2022a) may provide semantic
information to enhance downstream grasp generation tasks. Table 4
summarizes the aforementioned categories. Notably, we include the
applications of diffusion in HOI, imitation learning for pre-grasp,
and tasks related to image generation in the graph, which will not
be further discussed in the rest of this survey due to their relevance
to the field of computer vision. While readers are still encouraged to
refer to the relevant literature according to our illustration (Table 4:
HOI Synthesis). More details on the architectures of the individual
methods in grasp learning are provided in Table 5.

4.2.1 Diffusion as SE(3) grasp pose generation
Since the standard diffusion process is primarily formulated in
Euclidean space, directly extending it to SE(3) poses, represented by:

R

H= is inherently challenging due to potential numerical

0 1

instability (to satisfy HH™! = I***), since typical Langevin dynamics
cannot be applied for non-Euclidean manifolds such as the SE(3)
Lie group. Here, R € SO(3) represents the rotation matrix and t €
RR? the translation vector. Applying diffusion to SE(3) poses requires
accounting for the manifold’s non-Euclidean nature, where standard
Gaussian noise, as used in vanilla diffusion, fails to retain stability
over rotations and translations.

To tackle this, SE(3)-Diff (Urain et al., 2023) introduced a
smooth cost function to learn the grasp quality via the energy-based
model (EBM), where the score matching for EBM is applied on the
Lie group to bridge the gap between diffusion processes on the vector
space R® and the SE(3). In contrast, Song et al. (2024) condition
the 6-Dof grasp poses on the grasp locations t and corresponding
volumetric features for grasp generation in clutter following GIGA
framework (Jiang et al., 2021), without explicit consideration
on the SE(3) constraint. Moreover, one advantage of the EBM
model in SE(3)-Diff is the direct grasp quality evaluation and
integration into the entire grasp motion planning and optimization.
However, training EBM-based models demands extensive sampling
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TABLE 4 Taxonomy of grasp generation approaches with diffusion models.

Perspective | Category

Parallel jaw grasp

10.3389/frobt.2025.1606247

Subcategory References

Urain et al. (2023), Song et al. (2024),
Singh et al. (2024), Lim et al. (2024),
Carvalho et al. (2024), Ryu et al. (2024),
Freiberg et al. (2025), Huang et al. (2025a)

Diffusion on SE(3) grasp poses

Dextrous grasp

Wu et al. (2024b), Weng et al. (2024),
Wang et al. (2024c¢), Freiberg et al. (2025),

HOI synthesis -

Methodological Zhong and Allen-Blanchette (2025), Zhang et al.
(2024h), Wu et al. (2023)
Diffusion in latent space - Barad et al. (2024)
Diffusion as feature encoders and image - Li et al. (2024d), Tsagkas et al. (2024)
generators
Language-guided grasp diffusion Nguyen et al. (2024a), Vuong et al. (2024),
Nguyen et al. (2024b), Chang and Sun (2024),
Affordance-driven diffusion Zhang et al. (2025)
Pre-grasp manipulation via imitation learning Wau et al. (2024a), Ma et al. (2024a)
Functional

Ye et al. (2024), Wang et al. (2024c), Zhang et al.
(2024d), Cao et al. (2024), Li et al. (2024a),
Zhang et al. (2025), Lu et al. (2025)

Object pose diffusion for reorientation and -
rearrangement

Liu et al. (2023b), Simeonov et al. (2023),
Mishra and Chen (2024), Zhao et al. (2025)

and poses significant challenges for generalization. We noticed
that flow matching (Lipman et al., 2023) is employed in recent
studies, such as EquiGraspFlow (Lim et al., 2024) and Grasp
Diffusion Network (Carvalho et al., 2024), which use continuous
normalizing flows (CNFs) as ODE solvers to learn angular (SO(3))
and linear (R(3)) velocities for denoising. This preserves the SE(3)-
equivariance conditioned on the input point cloud given the time
schedule. In contrast to SE(3)-Diff, which relies on additional
supervision in the form of signed distance functions, they achieve
competitive performance without requiring this auxiliary module,
leading to more efficient training. In general, although CNF-based
approaches exhibit promising performance on grasp generation
for a single object, more studies on generalizability to highly
occluded environments (Freiberg et al., 2025) and uncertainty
quantification (Shi et al., 2024) are expected in future work.

In contrast to explicit pose diffusion, latent DMs for
grasp generation (GraspLDM (Barad et al, 2024)) explore
latent space diffusion with VAEs, which does not explicitly
account for the SE(3) constraint. They follow VAE-based 6-
Dof Graspnet (Mousavian et al., 2019) to model the distribution
of grasp latent features by a denoising diffusion process, which
is conditioned on the point cloud and task latent for the grasp
generation. This implicit modeling may potentially limit the models
ability to generate physically plausible and geometrically consistent
grasp poses.

Furthermore, the SE(3) bi-equivariance property is critical for
efficient grasp generation (Huang et al., 2023), as it requires that
any transformation applied to the input space correspondingly
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transforms the output space in a consistent manner. Specifically, this
property implies that the generated poses from a SE(3)-invariant
distribution should maintain the same spatial and geometric
relationships under transformations over the time schedule,
ensuring that the learned grasp distribution remains invariant across
various orientations and positions. For instance, Ryu et al. (2023)
consider bi-equivariance in Lie group representation to construct
the equivariance descriptor field (EDF) (Ryu et al., 2023), taking the
transformations of both observation (target) space and initial end-
effector frame into account. This principally improves the sample
efficiency on pick-and-place tasks via Imitation learning. Upon this,
they extend the EDF to bi-equivariant score matching (Ryu et al.,
2024) to be applied in the context of diffusion, which consists
of both translational and rotational fields on se(3) Lie algebra.
Moreover, Freiberg et al. (2025) adapts the approach from Ryu et al.
(2024) to generalize to multi-embodiment grasping through an
equivariant encoder that captures gripper embeddings. In terms
of the theoretical background to equivariant robot learning, we
identify a recent survey (Seo et al., 2025) as a recommendation for
interested readers.

4.3 Visual data augmentation

One line of methodologies focuses on employing mostly
data
manipulation tasks. Here, the strong image generation and

pretrained DMs for augmentation in vision-based

processing capabilities of diffusion generative models are utilized
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TABLE 5 Technical details of grasp diffusion methodologies on SE(3) grasp synthesis. The references for the encoders are provided in

Supplementary Appendix Table 1. The references for the benchmarks are listed in Supplementary Appendix Table 2. In the following, the abbreviations
used are explained: SDF: Signed Distance Function, TSDF: Truncated SDF, PCs: Point Clouds, FiLM: Convolutional Neural Network with Feature-wise
Linear Modulation (Perez et al., 2018), DiTs: Diffusion Transformers, Eq.: Equivariant, VN: Vector Neuron.

Reference Encoder Diffuser Benchmark
Urain et al. (2023) SDF Shape encoder FILM Acronym
Barad et al. (2024) PCs PointNet++ FiLM Acronym
Song et al. (2024) TSDF OccNet FiLM VGN

Singh et al. (2024) PCs OccNet FiLM DA?

Lim et al. (2024) PCs VN-DGCNN FLM Acronym
Freiberg et al. (2025) PCs + Gripper PCs Eq. U-Net Eq. FILM Self generated
Carvalho et al. (2024) PCs PointNet++ DiT Acronym
Huang et al. (2025a) PCs + Guidance VN-PointNet DiTs OakInk
Weng et al. (2024) PCs + Gripper PCs BPS DiTs DexGraspNet
Zhong and Allen-Blanchette (2025) PCs + Gripper PCs Eq. Models Eq. DiTs MultiDex
Zhang et al. (2024h) PCs PointNet++ DiTs MultiDex

to augment data sets and scenes. The main goals of the visual data
augmentation are scaling up data sets, scene reconstruction, and
scene rearrangement.

4.3.1 Scaling data and scene augmentation

A challenge associated with data-driven approaches in robotics
relates to substantial data requirements, which are time-consuming
to acquire, particularly for real-world data. In the domain of
imitation learning, it is essential to accumulate an adequate number
of expert demonstrations that accurately represent the task at hand.
While, by now, many methods, e.g., (Reuss et al., 2024a; Ze et al,,
2024; Ryu et al, 2024) only require a low number of five to
fifty demonstrations, there are also methods, e.g., (Chen L. et al,
2023; Saha et al, 2024) relying on more extensive data sets.
Especially offline RL methods, e.g. (Carvalho et al., 2023; Ajay et al.,
2023) usually require extensive amounts of data to accurately
predict actions over the complete state-action space, also from
suboptimal behavior. Moreover, increasing the variability in training
data also has the potential to increase the generalizability of
the learned policies. Thus, to automatically increase the variety
and size of datasets, without additional costs on researchers and
staff, or other more engineering-heavy autonomous data collection
pipelines (Yu et al., 2023), many methodologies, e.g., (Chen Z. et al.,
2023; Mandi et al, 2022), use DMs for data augmentation. In
comparison to other strategies, such as domain randomization
(Tremblay et al, 2018; Tobin et al, 2017), data augmentation
with DMs directly augments the real-world data, making the data
grounded in the physical world. In contrast, domain randomization
requires complex tuning for each task, to ensure physical plausibility
of the randomized scenes, and to enable sim-to-real transfer
(Chen Z. et al., 2023).
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Given a set of real-world data, DM-based augmentation
methods perform semantically meaningful augmentations
via inpainting, such as changing object colors and textures
(Zhang X. et al.,, 2024), or even replacing whole objects, as well
as corresponding language task descriptions (ChenZ. et al,
2023; Yu et al,, 2023; Mandi et al., 2022). This enables both the
augmentation of objects, which are part of the manipulation process,
and backgrounds. The former increases the generalizability to
different tasks and objects, while the latter increases robustness
to scene information, which should not influence the policy.
Some (Zhang X. et al, 2024) also augment object positions
and the corresponding trajectories to generate off-distribution
demonstrations for DAgger, thus addressing the covariate
shift problem in imitation learning. Others (ChenL.Y. et al,
2024) augment camera view, robot embodiments, or even
(Katara et al, 2024) generate whole simulation scenes from
given URDF files, prompted by a Large Language Model
(LLM). Targeted towards offline RL methods, DiPalo et al.
(2024) combines data augmentation with a form of hindsight-
experience replay (Andrychowicz et al., 2017) to adapt the visual
observations to the language-task instruction. This increases
the number of successful executions in the replay buffer, which
potentially increases the data efficiency. The method is used to learn
policies for new tasks, on previously collected data, to align the data
with the new task instructions.

From a methodological perspective the methods mostly
employ frozen web-scale pretrained language (Yu et al, 2023),
and vision-language models, for object segmentation (Yu et al.,
2023), or text-to-image synthesis (Stable Diffusion) (Rombach et al.,
2022a; Mandi et al, 2022), or finetune (Zhang X. et al., 2024;
DiPalo et al, 2024) pretrained internet-scale vision-language
models. Apart from ZhangX. et al. (2024) the methods,
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do not augment actions, but only observations. Thus, the
methodologies must ensure augmentations, for which the
demonstrated actions do not change, which highly limits the
types of augmentations. Moreover, large-scale data scaling via
scene augmentation also requires additional computational cost.
While this might not be a severe limitation, if it is applied once
before the training, it may highly increase training time for
online-RL methods.

4.3.2 Sensor data reconstruction

A challenge in vision-based robotic manipulation pertains to
the incomplete sensor data. Especially single-view camera setups
lead to incomplete object point clouds or images, making accurate
grasp and trajectory prediction challenging. This is exacerbated by
more complex task settings, with occlusion, as well as inaccurate
sensor data.

Multiple methods (Kasahara et al., 2024; Tkeda et al., 2024)
reconstruct camera viewpoints with DMs. Given an RGBD image
and camera intrinsics Kasahara et al. (2024) generates new object
views without requiring CAD models of the objects. For this, the
existing points are projected to the new viewpoint. The scene is
segmented using the vision foundation model SAM (Kirillov et al.,
2023), to create object masks. On these masks missing data points
are inpainted using the pretrained diffusion model for image
generation Dall-E (Kapelyukh et al, 2023). As Dall-E does not
ensure spatial consistency, consistency filtering is applied across
viewpoints. Moreover, Dall-E, only processes 2D images. Thus, to
also complete the missing depth information, a model is trained
to predict the missing depth information from the projected
depth map and the reconstructed image. In this method the
viewpoints are sampled on evenly spaced directions along a viewing
sphere. However, generating the point clouds for many viewpoints
is computationally expensive, and might not be necessary for
successful task completion. Thus, view-planning is applied to
generate a minimal set of views Pan S. et al. (2024), Pan et al. (2025).
use a DM to generate geometric priors from a 2D image, enabling a
view-planner to sample a minimum set of viewpoints that minimize
movement cost. The views are then used to train a Neural Radiance
Field (NeRF) (Mildenhall et al., 2020) to reconstruct 3D scenes
from 2D images.

In the field of robotic manipulation, not many methods consider
scene reconstruction. A possible reason for this is its relatively
high computational cost. However, expanding to the areas of
robotics and computer vision, more methodologies in the field of
scene reconstruction exist. In robotic manipulation instead more
methods focus on making policies more robust to incomplete or
noisy sensor information, e.g., (Ze et al, 2024; Ke et al, 2024).
However, the limited number of occlusion in the experimental
setups indicate that strong occlusion are still a major challenge.
Moreover, scene reconstruction is unable to react to completely
occluded objects.

4.3.3 Object rearrangement

The ability of DMs for text-to-image synthesis offers the
possibility to generate plans from high-level task descriptions.
In particular, given an initial visual observation, one group of
methods uses such models to generate target-arrangement of
objects in the scene, specified by a language-prompt (Liu et al.,
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2023b; Kapelyukh et al., 2023; Xu et al., 2024; Zeng et al., 2024;
Kapelyukh et al., 2024). Examples of applications could be setting
up a dinner table or clearing up a kitchen counter. While the
earlier methodologies (Kapelyukh et al., 2023; Liu et al., 2023b)
use the pretrained VLM Dall-E (Black et al., 2024b) to generate
rearrangements in a zero-shot manner, this has the disadvantage
of possibly introducing scene inconsistencies and incompatibilities,
due to the lack of geometric understanding and object permanence.
Thus, the later methods (Xu et al., 2024; Kapelyukh et al., 2024) use
combinations of pretrained LLMs and VLMs like CLIP (Meila and
Zhang, 2021), together with other non-diffusion visual processing
methods like NeRF (Mildenhall et al., 2020) and SAM (Kirillov et al.,
2023), and custom DMs. The described methodologies are similar
to the methods for object pose diffusion (Mishra and Chen,
2024; Simeonov et al.,, 2023; Zhao et al., 2025) mentioned in
Section 4.2. The main difference is that the methods here focus
on the rearrangement of multiple objects specified by a sparse
language input, not exhaustively describing the geometric layout of
the target arrangement. Different to the methods from Section 4.2,
the integration with grasp or motion planning to achieve the
target arrangement is not the focus. However, nonetheless for
all of the above listed methodologies for object rearrangement
their
experiments.

effectiveness is also demonstrated in real-robot

5 Experiments and benchmarks

In this section, we focus on the evaluation of the various DMs
for robotic manipulation. Details on the employed benchmarks and
baselines are listed in the separate tables for imitation learning
(Table 6), reinforcement learning (Table 7) in the Appendix, and
grasp learning (Table 5). Separately, the references for all applied
benchmarks are listed in Supplementary Appendix Table 2.

Various benchmarks are used to evaluate the methods.
Common benchmarks are CALVIN (Mees et al., 2022), RLBench
(James et al., 2020), RelayKitchen (Gupta et al., 2020), and Meta-
World (Yu et al., 2020). Primarily in RL, the benchmark D4RL
Kitchen (Fu et al., 2020) is used. One method (Ren et al., 2024)
uses FurnitureBench (Heo etal, 0) for real-world manipulation
tasks. Adroit (Rajeswaran et al., 2017) is a common benchmark
for dexterous manipulation, LIBERO (Liu B. et al, 2023) for
lifelong learning, and LapGym (Maria Scheikl et al, 2023)
for medical tasks.

Many methods are only being evaluated against baselines,
which are not based on DMs themselves. However, there are some
common DM-based baselines. For methods operating in SE(3)-
space (Chen K. et al.,, 2024; Song et al., 2024; Ryu et al.,, 2024),
SE(3)-Diffusion Policy (Urain et al., 2023), probably the first paper
using DMs for grasp generation, is commonly used as baseline.
For RL-based methods, the RL-based Diffuser (Janner et al., 2022),
Diffusion-QL (Wang et al., 2023a), and Decision Diffuser (Ajay et al.,
2023) are commonly used as baselines. It should be noted that
in the original paper, Decision Diffuser (Ajay et al, 2023) is
evaluated against Diffuser (Janner et al., 2022) and outperforms it
on almost all tasks, particularly on the manipulation tasks, block
stacking, and rearrangement. However, neither of these methods
is evaluated on real-world tasks. Another common baseline is DP
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TABLE 6 Benchmarks of trajectory diffusion using reinforcement learning.

10.3389/frobt.2025.1606247

Reference Diffusion Baseline Simulation Real World
Benchmark Real #Demos

Diffuser (Janner et al., 2022) X KUKA (custom) 10k X -
Decision Diffuser (Ajay et al., 2023) X D4RLKitchen, KUKA /,10k X -
Diffusion-QL (Wang et al., 2023b) X D4RLKitchen 10000 trans*! X -

Wang et al. (2023b) Diffuser custom 8k X -

HDMI (Li et al., 2023) X v - X -

Ding and Jin (2023) Diffusion-QL D4RLKitchen, Adroit / X -

Mishra et al. (2023) Decision Diffuser STAP / v /

Kang et al. (2023) Diffusion-QL Adroit, D4RL Kitchen / X -
Brehmer et al. (2023) Diffuser KUKA / X -

Suh et al. (2023) Diffuser v - v 100

Ha et al. (2023) Diffusion-QL X - v 50

Kim et al. (2024b) Diffuser, Decision Diffuser, HDMI Fetch env / X -

Liang et al. (2023) Diffuser, Decision Diffuser KUKA / X -

Zhang et al. (2024a) Diffuser CALVIN, CLEVR-Robot / X -

Ada et al. (2024) Diffusion-QL v / v -

Ren et al. (2024) Diffusion-QL Robomimic, D3IL, FurnitureBench 100-300, 96,50 Vs 50
Huang et al. (2025b) Diffusion-QL MetaWorld, Adroit 20, 50 v 50
Carvalho et al. (2023) X custom 25 X -

For each benchmark, the numbers of demonstrations are listed in the same order. In the column “Diffusion Baselines” only those baselines, which are diffusion methods themselves, are listed.
Methods not evaluated against a diffusion-based baseline, indicated by an (X), are only evaluated against non-diffusion baselines or ablations of the method. The references for the benchmarks
are listed in Supplementary Appendix Table 2. In the following, the symbols are explained: *! As the number refers to the number of transitions, not demonstrations, this high number is
expected. A (v) in the column “Benchmark” indicates that the method is evaluated in simulation, but not with a robotic manipulation task, while a (X) indicates that the method is not
evaluated in simulation. The column “Real” indicates whether methods are evaluated in the real world (v), or not (X). A “/” indicates that the information is not provided by the cited paper,

while a ”-” indicates that the information does not apply.

(Chi et al., 2023), as many methods are developed based on it. A
common baseline for methods integrating 3D visual representations
is 3D Diftusion Policy (Ze et al, 2024). 3D Diffusion Policy is
evaluated against DP, and outperforms it on a huge variety of
tasks in the benchmarks Adroit, MetaWorld, and Dexart with an
average success rate of 74.4%, outperforming DP by 24.2%. It
is also evaluated on four real-world manipulation tasks: rolling
and pinching a dumpling, drilling, and pouring. With an average
success rate of 85.0% it outperforms DP by 50%. 3D Diffusion
Policy is greatly outperformed by 3D Diffuser Actor (Ke et al,
2024) on the CALVIN benchmark, especially for zero-shot long-
horizon tasks. However, no comparison for real-world tasks
is provided.

The majority of methods are evaluated in simulation as well as in
real-world experiments. For real-world experiments, most policies
are directly trained on real-world data. However, some are trained
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exclusively in simulation and applied in the real world in a zero
shot (Yu et al., 2023; Mishra et al., 2023; Ren et al., 2024; Liu et al.,
2023b; Kapelyukh et al., 2024; Liu et al., 2023c¢), utilizing domain
randomization, or real-world scene reconstruction in simulation.
Few, predominately RL methods, are only evaluated in simulation
(Yang et al., 2023; Power et al., 2023; Wang et al., 2023a; Janner et al.,
2022; Pearce et al., 2022; Wang et al., 2023b; Mendez-Mendez et al.,
2023; Kim S. et al., 2024; Brehmer et al,, 2023; Liang et al., 2023;
Zhou H. et al., 2024; Mishra and Chen, 2024; Ajay et al., 2023; Ding
and Jin, 2023; Zhang E. et al., 2024).

6 Conclusion, limitations and outlook

Diffusion models (DMs) have emerged as state-of-the-art
methods in robotic manipulation, offering exceptional ability in
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TABLE 7 Benchmarks of trajectory diffusion using imitation learning.

Reference Diffusion Baseline Simulation Real World
Benchmark ‘ #Demos ‘ Real #Demos
Diffusion Policy (DP) (Chi et al., 2023) X FrankaKitchen, Robomimic, custom 566,500, / v /
ChainedDiffuser (Xian et al., 2023) X RLBench 100 v 10-20
BESO (Reuss et al., 2023) DP, Diffusion-BC Relay Kitchen, CALVIN, custom 566, /,1000 X -
Chen et al. (2023a) X CALVIN, FrankaKitchen, Ravens 200K, 566, 1000 v /
Zhou et al. (2023) Diffuser*l,Decision Diffuser 2 RLBench X -
Diffusion-BC (Pearce et al., 2022) X D4RLKitchen 566 X -
Mendez-Mendez et al. (2023) X BEHAVIOR - X -
3D-DP (Ze et al., 2024) DP e.g. Adroit, MetaWorld, DexDeform 10 - 100 v 40
Ke et al. (2024) 3D-DP, ChainedDiffuser RLBench, CALVIN 24h v 15
Liu et al. (2023c¢) DP, SE(3)-DM Custom / v /
Power et al. (2023) X custom / X -
Ma et al. (2024b) DP, Diffuser RLBench 100 v 20
Vosylius et al. (2024) DP RLBench 20 v 20
Zhang et al. (2024a) Diffuser CALVIN / X -
Reuss et al. (2024a) X CALVIN, LIBERO 24 h, 50 v 45h
Scheikl et al. (2024) DP, BESO LapGym 90 - 200 v 90 - 200
Chen et al. (2024a) DP, SE(3)-DM FrankaKitchen, Adroit 16k - 64k, 1.25k -5k | v 60
Zhou et al. (2024a) DP, BESO, Consistency Models™ Relay Kitchen, XArm Block Push, 566, 1k,96 - 2 k X -
D3IL
Lietal. (2024¢) DP, 3D-DP Robomimic, custom 500,100 v 100
Sietal. (2024) DP X - v 25-50
Saha et al. (2024) X MrnNets 6.54Mil X -
Bharadhwaj et al. (2024b) X EpicKitchens, RT1, BridgeData 400k™ v 400
Wang et al. (2024b) X custom 50 K trans ® v 50 K trans ®
Li et al. (2025) DP, 3D-DP RLBench 40 v 40
Reuss et al. (2024b) DP CALVIN, LIBERO, Relay Kitchen, 22966, 50, 566, 1000 X -
Block Push

For each benchmark, the numbers of demonstrations are listed in the same order. In the column “Diffusion Baselines” only those baselines, which are diffusion methods themselves, are listed.
Methods not evaluated against a diffusion-based baseline, indicated by an (X), are only evaluated against non-diffusion baselines or ablations of the method. The references for the benchmarks
are listed in Supplementary Appendix Table 2. In the following, he symbols are explained: Methods by and *! Janner et al. (2022), and ** Ajay et al. (2023),and ** (Song et al., 2024). * The
diffusion model is trained using uncurated video data. ** As the number refers to the number of transitions, not demonstrations, this high number is expected. The column “Real” indicates
whether methods are evaluated in the real world (v), or not (X). A “/” indicates that the information is not provided by the cited paper, while a ”-” indicates that the information does not apply.

» »

with DMs remain unsolved. A prevalent issue is the lack of
generalizability. The slow inference time for DMs also remains a

modeling multi-modal distributions, high training stability, and
stability to high-dimensional input and output spaces. Several tasks,

challenges, and limitations in the domain of robotic manipulation ~ major bottleneck.
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6.1 Limitations

6.1.1 Generalizability
While a lot of methods relatively good
generalizability in terms of object types, lightning conditions,

demonstrate

and task complexity, they still face limitations in this area. This
prevalent limitation shared across almost all methodologies in
robotic manipulation remains a crucial research question.

The majority of methods using DMs for trajectory generation
rely on imitation learning, using mostly behavior cloning. Thus,
they inherit the dependence on the quality and diversity of training
data, making it difficult to handle out-of-distribution situations
due to the covariate shift problem (Ross and Bagnell, 2010). As
most methodologies combining DMs with RL use offline RL,
they still rely on existing data, mapping a sufficient amount
of the state-action space, and are thus also unable to react to
distribution shifts. Moreover, offline RL requires more careful fine-
tuning than imitation learning to ensure training stability and
prevent overfitting. Still, the advantage of RL is that it can handle
suboptimal behavior Levine et al. (2020).

While data scaling offers improved generalizability, it typically
demands large training datasets and substantial computational
resources. One recent solution is to use pre-trained foundation
models. Moreover, as the majority of current methods for
data augmentation in DMs do not augment trajectories, e.g.,
(Yu et al., 2023; Mandi et al.,, 2022), it only increases robustness
to slightly different task settings, such as changes in colors,
textures, distractors, and background. VLAs can generalize
to multi-task and long-horizon settings but often lack action
precision, thus requiring finetuning and the combination with more
specialized agents (Zhang et al., 2024g).

6.1.2 Sampling speed

The principal limitation inherent to DMs can be attributed
to the iterative nature of the sampling process, which results in
a time-intensive sampling procedure, thus impeding efficiency
and real-time prediction capabilities. Despite recent advances
that improve sampling speed and quality (Chen K. et al., 2024;
Zhou H. et al., 2024), a considerable number of recent methods use
DDIM (Song J. et al., 2021), although other methods, such as DPM-
solver (Lu et al., 2022) have shown better performance. However,
this comparison has only been performed using image generation
benchmarks and would need to be verified for applications in robotic
manipulation. Numerous works have demonstrated competitive
task performance using DDIM, but do not directly investigate the
decrease in task performance associated with a lower number of
reverse diffusion steps. Ko et al. (2024) analyzes their approach
using both DDPM and DDIM sampling, reporting a sampling
process that is ten times faster with only a 5.6% decrease in
task performance when using DDIM. Although such a decline
might appear negligible, its significance is highly task-dependent.
Consequently, there is a need for efficient sampling strategies and
a more comprehensive analysis of existing sampling methods,
particularly regarding the domain of robotic manipulation.
It should, however, be noted that already in DP (Chi et al,
2023), one of the earlier methods combining DMs with
receding-horizon control for trajectory planning, real-time
control is possible. Using DDIM with 10 denoising steps
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during inference, they report an inference latency of 0.1 s on a
Nvidia 3080 GPU.

6.2 Conclusion and outlook

This survey, to the best to our knowledge, is the first survey
reviewing the state-of-the-art methods diffusion models (DMs) in
robotics manipulation. This paper offers a thorough discussion of
various methodologies regarding network architecture, learning
framework, application, and evaluation, highlighting limits and
advantages. We explored the three primary applications of
DMs in robotic manipulation: trajectory generation, robotic
grasping, and visual data augmentation. Most notably, DMs
offer exceptional ability in modeling multi-modal distributions,
high training stability, and robustness to high-dimensional input
and output spaces. Especially in visual robotic manipulation,
DMs provide essential capabilities to process high-resolution
2D and 3D visual observations, as well as to predict high-
dimensional trajectories and grasp poses, even directly in
image space.

A key challenge of DMs is the slow inference speed. In the field
of computer vision, fast samplers have been developed that have not
yet been evaluated in the field of robotic manipulation. Testing those
samplers and comparing them against the commonly used ones,
could be one step to increase sampling efficiency. Moreover, there are
also methods for fast sampling, specifically in robotic manipulation,
that are not broadly used, e.g. BRIDGeR (Chen K. et al., 2024).
While the generalizability of DMs remains also an open challenge,
the image generation capabilities of DMs open new avenues in
data augmentation for data scaling, making methods more robust
to limited data variety. Generalizability could be also improved by
the integration of advanced vision-language, and vision-language
action models.

We believe continual learning could be a promising approach
to improve generalizability and adaptability in highly dynamic
and unfamiliar environments. This remains a widely unexplored
problem domain for DMs in robotic manipulation, exceptions
are (Di Palo et al., 2024; Mendez-Mendez et al., 2023). However,
these methods have strong limitations. For instance, Di Palo et al.
(2024) relies on precise feature descriptions of all involved objects
and is restricted to predefined abstract skills. Moreover, their
continual update process involves replaying all past data, which is
both computationally inefficient and does not prevent catastrophic
forgetting. Morover, to handle complex and cluttered scenes, view
planning and iterative planning strategies, also considering complete
occlusions, could be combined with existing DMs using 3D scene
representations. Leveraging the semantic reasoning capabilities of
vision language and vision language action models could be a
possible approach.
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