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Vision driven trailer loading for 
autonomous surface vehicles in 
dynamic environments

Jianwen Li, Jalil Chavez-Galaviz and Nina Mahmoudian*

School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States

Automated docking technologies for marine vessels have advanced significantly, 
yet trailer loading, a critical and routine task for autonomous surface vehicles 
(ASVs), remains largely underexplored. This paper presents a novel, vision-based 
framework for autonomous trailer loading that operates without GPS, making 
it adaptable to dynamic and unstructured environments. The proposed method 
integrates real-time computer vision with a finite state machine (FSM) control 
strategy to detect, approach, and align the ASV with the trailer using visual 
cues such as LED panels and bunk boards. A realistic simulation environment, 
modeled after real-world conditions and incorporating wave disturbances, was 
developed to validate the approach and is available1. Experimental results using 
the WAM-V 16 ASV in Gazebo demonstrated a 100% success rate under calm to 
medium wave disturbances and a 90% success rate under high wave conditions. 
These findings highlight the robustness and adaptability of the vision-driven 
system, offering a promising solution for fully autonomous trailer loading in 
GPS-denied scenarios.

KEYWORDS

autonomous surface vehicle (ASV), autonomous trailer loading, vision-based navigation, 
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 1 Introduction

Autonomous surface vehicles (ASVs) are typically launched and recovered using a crane 
or a trailer, with human operators overseeing the process. While trailer loading may seem 
straightforward, it is a technically challenging task that requires precise alignment between 
the ASV and the trailer, often performed by the operator from a constrained or limited 
point of view, such as the shore. This task demands skilled maneuvering, particularly in 
the presence of environmental disturbances like wind and waves. This paper examines the 
complexities of automating the trailer loading process, focusing on the key challenges in 
achieving reliable and efficient autonomous docking.

One of the major challenges in ASV docking lies in managing complex problems 
simultaneously, such as trajectory planning, environmental disturbances, and control 
constraints. Docking requires precise maneuvering in confined spaces, often near static 
obstacles, making collision-free trajectory planning a critical component Bitar et al. (2020). 
However, due to the underactuated nature of most ASVs, their ability to correct lateral 
errors (sway direction) is limited, necessitating anticipatory alignment to avoid significant 
corrections near the docking zone. Some of the work of ASV docking balances between

1 https://github.com/lijianwen1997/trailer-loading-sim
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minimizing energy consumption and time constraints, as 
optimizing for one can negatively impact the other Djouani 
and Hamam (1995). External disturbances, such as waves and 
currents, further complicate docking by introducing dynamic 
perturbations, affecting both perception and control and demanding 
robust feedback mechanisms to maintain trajectory accuracy 
Martinsen et al. (2019). Traditional PID-based controllers struggle 
with such dynamic conditions, requiring model predictive control 
(MPC) or other optimal control strategies to dynamically adjust 
the ASV’s motion in real-time Martinsen et al. (2019). Despite 
advancements in trajectory optimization and dynamic positioning, 
achieving fully autonomous, reliable, and efficient docking remains 
challenging due to the need for real-time adaptability and robustness 
against environmental uncertainties.

Automated trailer loading can be seen as a special case of 
automated docking of autonomous surface vehicles, where an ASV 
is maneuvered onto a mobile trailer platform. In this study, the 
platform is carried by a pickup truck, adding unique challenges 
not present in conventional docking scenarios. A map-based or 
purely GPS-based approach, such as those used in Bitar et al. 
(2020) and Martinsen et al. (2019), is insufficient for this application, 
as the position of the trailer can vary with each attempt due 
to manual operation of the pickup. Additionally, unlike berthing, 
which typically occurs in deeper waters, trailer docking happens 
near the shore, increasing the risk of collisions and potential damage 
to the propellers of the ASV. These constraints require a precise and 
adaptive docking strategy.

In particular, some advancements aim to enhance robustness, 
precision, and operational safety using vision-based and sensor-
integrated positioning systems in ASV docking. A vision-based 
docking approach integrating a virtual force-based strategy and 
target segmentation has shown promise in coordinated ASV 
docking with underwater vehicles Dunbabin et al. (2008). The 
authors of Pereira et al. (2021) propose a volumetric convolutional 
neural network (vCNN) for detecting docking structures from 3D 
data, achieving over 96% accuracy in commercial harbors through 
synthetic datasets combining LiDAR, stereo, GPS, and IMU data. 
Complementary to this, fiducial marker-based strategies enable 
ASVs to augment GNSS-RTK and INS systems, providing accurate 
positioning even in GNSS-compromised areas Digerud et al. (2022). 
For enhanced redundancy and reliability, a visual-inertial navigation 
system fuses camera-tag pose estimates with inertial data using an 
error-state Kalman filter, achieving robust state estimation under 
urban and challenging weather conditions Volden et al. (2023). 
Collectively, these innovations provide a foundation for more robust 
detection and localization of the dock in automated docking tasks.

For Trajectory planning and control, advanced algorithms based 
on imitation learning Wang et al. (2024), reinforcement learning 
Lambert et al. (2021); Li et al. (2023), and model-based control 
Chavez-Galaviz et al. (2024); Li et al. (2024) have been developed 
for mobile robots in marine and riverine environments. Specifically 
for the ASV docking, Ahmed and Hasegawa (2013); Im and Nguyen 
(2018) proposed an artificial neural network (ANN) as a function 
approximator for the policy, learning to imitate pre-recorded 
docking demonstrations, and hence learning how to perform the 
docking maneuvers. In Wang and Luo (2021); Holen et al. (2022); 
Pereira and Pinto (2024), the ASV docking task was modeled as 
Markov decision process (MDP) and a deep reinforcement learning 

agent was trained to perform the docking of an ASV by interacting 
with the environment. Optimization-based planning Djouani and 
Hamam (1995); Mizuno et al. (2015); Martinsen et al. (2019); Li et al. 
(2020) also achieves promising results in ASV docking. These 
methods allow for explicitly including dynamics and constraints 
when planning a trajectory using convex optimization.

Despite the growing body of literature on automated docking, 
studies specifically focused on docking and loading onto trailers 
remain scarce. The author Abughaida et al. (2024) defined the 
problem of autonomous trailer loading and explored GPS and 
AprilTag-based localization, Dubin’s path planning, and model-
based trajectory optimization to address autonomous trailer loading 
tasks. Experiments conducted using a commercial pontoon boat 
validate the framework’s effectiveness, achieving an 80% overall 
success rate despite challenges from localization errors and wind 
disturbances. The method proposed in this work focuses on the 
perception side of trailer loading without using the GPS or AprilTag, 
making it more low-cost and easy to adapt to different ASVs 
and trailers.

The contributions of this paper are threefold. First, we propose 
a vision-based pipeline for trailer localization, which includes 
trailer identification, approaching, and loading. Unlike GPS-based 
methods, this approach does not require prior knowledge of the 
trailer’s position, making it more adaptable to real-world scenarios 
where the trailer’s placement may vary. Second, we develop a finite 
state machine (FSM) control strategy inspired by human experience, 
where transitions are triggered by the information acquired through 
the perception system rather than absolute positioning. This strategy 
accounts for vehicle actuation limitations, practical constraints, 
failures, retries, and environmental conditions, ensuring robust 
docking performance. Finally, we introduce an open-source trailer 
loading simulation environment to validate the proposed automated 
trailer loading algorithm without relying on GPS, demonstrating 
its effectiveness under wave disturbances and varying ASV initial 
placements.

The remainder of this paper is organized as follows: Section 2 
formalizes the problem setting in this study. Section 3 details 
the methodology and system architecture. Section 4 presents 
the validation results. Finally, conclusions and future work are 
discussed in Section 5. 

2 Background

2.1 ASV dynamics

A 6-DOF mathematical model of an ASV, is given in Equations 1, 
2, can be presented as described in Fossen (2011) when considering 
that gravity and buoyancy generate restoring forces that cancel out 
the pitch, roll, and heave motions.

η̇ = J (η)ν (1)

Mν̇+C (ν)ν+D (ν)ν = τ+ τwaves (2)

where η = [x,y,z,ϕ,θ,ψ]T defines the ASV’s position and orientation 
in an inertial coordinate system. The speed vector in the body-
fixed frame ν = [u,v,w,p,q, r]T consists of the linear velocities 
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(u,v,w) in the surge, sway, and heave directions, and p,q, r is the 
rotation velocity. The thrust vector τ contains the force and moment 
produced by the port and starboard trolling motor commands a =
[ap,as], respectively. The disturbance τw is produced by the wave. The 
matrix J(η) includes the rotation matrix and transformation matrix 
and is used as a transform from the body-fixed frame to the earth 
(inertial) fixed frame. M, C(ν), and D(ν) represent the inertia matrix, 
the Coriolis and centripetal force matrix, and the damping matrix, 
respectively. 

2.2 Problem definition

The problem of trailer loading for ASVs involves developing 
a system that enables the ASVs to autonomously and accurately 
dock onto a trailer in dynamic and uncertain environments. The 
trailer is fixed in position and orientation at ηt. The ASV must 
detect and localize the trailer’s position using onboard sensors. The 
objective is to generate control commands that minimize the error 
between ASV’s η and the trailer’s ηt while avoiding collision. The 
trailer loading is successful if errors in the x-axis, y-axis, and yaw are 
smaller than the terminal error thresholds ϵlong, ϵlat, and ϵang. Loading 
is considered a failure if the ASV fails to reach the trailer loading 
zone within the termination time Tmax. 

2.3 Digital twin

A simulation environment for the trailer loading scenario has 
been created, as shown in Figure 1. A trailer and a pickup truck 
model are created in Autodesk Inventor. A field test environment 
is also modeled to mimic Lake Harner, IN, using Blender. The 
dimensions of the boat and trailer have been measured accurately, 
ensuring that the spatial relationships in the simulation match those 
in reality. This is important for docking and loading scenarios, 
where even small errors in dimensions could affect the system’s 
performance. The trailer loading environment is built based on the 
Virtual RobotX (VRX) simulator Bingham et al. (2019). Plugins 
from VRX are used to calculate the wave forces, and Open Dynamics 
Engine (ODE) Smith (2005) provides the simulation of the rigid-
body dynamics.

The sensor noise of IMU has been measured from real-world 
tests and injected into the simulation, making the simulation more 
realistic. The noise profile included Gaussian-distributed random 
errors with standard deviations matching the real-world IMU data. 
Camera noise was also modeled by injecting per-pixel Gaussian 
noise into the image stream, with zero mean and a standard 
deviation of 0.007, approximating the visual noise observed in 
real camera feeds. The motor delay was modeled using the default 
settings in the VRX simulator, which treats the motor as a second-
order system. This approach captures the dynamic response of the 
motor, including its rise time and settling time.

The simulation is also able to generate wind and wave 
disturbances. Since wind disturbance mainly affects the control 
accuracy and rejecting wind disturbance has been widely studied 
Pereira et al. (2008); Chavez-Galaviz et al. (2023); Abughaida et al. 
(2024), this study focuses exclusively on wave disturbances, which 
pose greater challenges to vision-drive system during trailer 

loading. The simulation uses the Pierson-Moskowitz wave spectra 
Fréchot (2006) to generate realistic wave patterns. The spectrum 
SB(ω) in Equation 3 captures the mean energy in a wave field as 
a function of angular frequency ω and is specified by the peak 
frequency ωp and an independent significant wave height H̄s

SB (ω) =
1.25

4
(

ω4
p

ω5)(H̄s)
2 exp[−5

4
(

ωp

ω
)

4
] (3)

A user-specified non-dimensional gain value KH =
H̄s
Hs

 is defined 
as the ratio of the desired significant wave height to the significant 
wave height. In this work, we validate the trailer loading system’s 
performance using different gain values from 0 to 0.5 to generate 
different wave disturbances. 

3 Methodology

In this section, we present the system architecture and 
methodology for autonomous trailer loading as depicted in Figure 2, 
focusing on the integration of image processing and control 
strategies. The primary challenge lies in accurately detecting and 
localizing the trailer’s features (e.g., the LED panel and bunk boards) 
in real-time, despite varying environmental conditions such as wave 
disturbances. Our approach leverages a flat finite state machine 
(FSM) to guide a modular control structure, ensuring precise 
alignment and loading of the boat onto the trailer. The following 
subsections detail the image processing pipeline for feature detection 
and the control strategy for error correction.

3.1 Perception system

The image processing sequence of the perception system is 
illustrated in Figure 3. One front-facing camera is used to detect the 
features of the trailer for autonomous loading. We mainly focus on 
two features: an LED panel and black horizontal bunk boards. The 
LED panel is 350 by 200 mm. It is mounted on the trailer, displaying 
a sequence of colors with a specific timing. There are 8 bunk boards 
in total, 4 long ones to support the hull of the vehicle and 4 short 
ones to support the bow of the vehicle.

While Olson (2011) are a reliable and widely used visual fiducial 
system for precise object detection and localization, An LED panel 
might be more suitable for this scenario due to the following reasons: 
LED panels emit light, making them highly visible even in low-light 
or challenging environments, where AprilTags may be hard to detect 
without sufficient external illumination. LED panels can display 
time-based color patterns (e.g., red for 2 s followed by green for 1 s in 
a repeating cycle), providing an additional layer of information for 
dynamic localization, an advantage not available with static fiducial 
markers like AprilTags. LED panels can be detected with lower-
resolution cameras due to their brightness, while AprilTags often 
require higher-resolution cameras for reliable recognition, especially 
at long distances.

The detection of the target LED panel involves capturing video 
frames and processing them in real-time. The panel displays a 
repeating color sequence: red for Tred seconds, followed by green 
for Tred seconds, and repeating. The total cycle time is denoted 
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FIGURE 1
Illustrations of the trailer loading setup and simulation environment: (A) Real-world trailer loading with the ASV, (B) Gazebo-based simulation 
environment, (C) Physical trailer hardware, and (D) Blender trailer model.

FIGURE 2
Overview of the proposed vision-based trailer loading system. The architecture integrates real-time image processing and a finite state machine 
(FSM)-based control strategy to enable robust alignment and docking in dynamic environments.

as Tcycle. Each frame IRGB is converted to HSV color space as 
IHSV for effective color segmentation. Binary masks Mred and 
Mgreen, given by Equations 4, 5 are then applied to isolate red and 
green regions based on predefined HSV thresholds θred and θgreen,
respectively.

Mred (x,y) =
{
{
{

1 if IHSV (x,y) ∈ θred ,

0 otherwise
(4)

Mgreen (x,y) =
{
{
{

1 if IHSV (x,y) ∈ θgreen ,

0 otherwise
(5)

The contours of these regions are extracted, and their centers 
are tracked to distinguish the target panels. The panel candidate 
is defined as a tuple Pi = (xi,yi,wi,hi, ti,coli). For each candidate, 
the center, shape, detection timestamps, and corresponding colors 
are recorded, retaining only recent k detections within the 
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FIGURE 3
Image processing pipeline for the perception system: (A–B) Panel detection sequence when the panel is green; (C) region of interest (ROI); (D)
Detected panel; (E–F) detection sequence when the panel is red; (G) mask to detect green or red color within the ROI, (H) detected panel with a line to 
the robot to calculate heading error, (I) bird’s-eye view (BEV) transformation of the scene; (J–L) detection of bunk boards and centerline extraction for 
lateral error estimation.

defined timing window. The candidate set is denoted as P =
{Pi−k+1,Pi−k+2,…,Pi}.

A pattern-matching algorithm is then applied to verify whether 
the panel follows the red-to-green timing sequence. Let Pred and 
Pgreen denote the subsets of P  corresponding to red and green 
detections, respectively. The first detected candidates in the red and 
green subsets are defined in Equation 6.

Pred
1 = arg min

Pi∈Pred

ti, Pgreen
1 = arg min

Pi∈Pgreen

ti (6)

As the first detected candidates in the red and green subsets, 
respectively. A set P  is considered valid Pvalid if it meets the 
condition from Equation 7:

|tred
1 − tgreen

1 | ≥min(Tgreen,Tred) (7)

Then, the target panel is identified by Equation 8 as the latest 
candidate in Pvalid:

Ptarget = arg max
Pi∈Pvalid(t)

ti. (8)

The position of the identified panel (xtarget,ytarget) is returned 
as the center of the region of interest (ROI). We assume the ROI 
is a rectangle and its shape is decided by the height and width 
of the panel (htarget,wtarget). To account for the movement of the 
vehicle, the ROI needs to be larger than the target panel. Let α = 2
be the scaling factor. The shape of the ROI becomes (hROI,wROI) =
(α ⋅ htarget,α ⋅wtarget). This approach ensures accurate detection of 

the target panel in scenarios involving multiple segments of similar 
color, size, and shape.

Using the ROI as a mask, we effectively filter out objects with 
colors similar to those of the LED panel, focusing exclusively 
on potential target panels within the defined area. By applying 
color segmentation and contour detection within the ROI, we 
accurately identify the LED panel and determine its center 
point as (xpanel,ypanel). The camera is at (xcamera,ycamera). The 
angular offset between the camera’s optical axis and the panel’s 
center is then calculated, providing the angular error denoted as 
eang from Equation 9:

eang = arctan(
xpanel − xcamera

ypanel − ycamera
) (9)

This angular error is critical for aligning the camera or robot’s 
orientation with the detected panel. Additionally, the position and 
shape of the panel, determined from its bounding contour, are used 
to dynamically refine and update the ROI in subsequent frames. 
This adaptive ROI ensures that the system maintains focus on the 
correct panel while excluding irrelevant objects, even in complex 
environments with multiple similarly colored or shaped elements.

The bird’s-eye view (BEV) transformation is essential for 
simplifying spatial understanding and enabling accurate distance 
measurements. By removing perspective distortion, BEV allows 
objects to appear at their true scale and relative positions, making 
it easier to measure distances and plan motions. This is particularly 
useful for tasks such as collision avoidance and alignment with 
the trailer.
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FIGURE 4
Bird’s-eye view (BEV) transformation process. A homography matrix is 
used to convert the camera image to a top-down view, enabling more 
accurate spatial measurements for alignment and motion planning.

Figure 4 depicts the process of BEV transformation. Once the 
raw RGB image IRGB is captured from the camera, it is transformed 
into the BEV. Equation 10 according to Szeliski (2022), is used to 
transform a point (x,y) in the image plane to a point (x′,y′) in the 
bird’s-eye view plane is:

[[[[

[

x′

y′

w

]]]]

]

=H
[[[[

[

x

y

1

]]]]

]

(10)

Where H is the homography matrix and w is the scale factor 
used for normalization. To get the normalized BEV coordinates 
(xBEV,yBEV), divide the point (x′,y′) in the bird’s-eye view plane by 
w: xBEV =

x′

w
,yBEV =

y′

w
.

Once the conversion is complete, the position of each pixel in the 
image becomes the same as the actual position of the feature with 
respect to the real-world camera frame. In this way, BEV removes 
perspective distortion, making objects appear at their true scale and 
relative positions. This representation makes it easier to measure 
distances and relative orientations between objects, thus simplifying 
collision avoidance and motion planning by reducing the complexity 
of interpreting depth and perspective.

Once a BEV image IBEV is generated, the black bunk boards 
are extracted by masking defined in Equation 11 with the threshold 
θbunk and blob detection.

Mbunk (x,y) =
{
{
{

1 if IBEV (x,y) ∈ θbunk ,

0 otherwise
(11)

The bunk boards are classified into left and right groups 
based on their centroids and slopes. The center line of bunk 
boards is calculated as y =m ⋅ x+ c. We calculate the distance 

TABLE 1  Table of pixel count and longitudinal error pairs for 
interpolation.

LED panel pixel count 
cpanel

Longitudinal error 
elong(m)

72 20.0

84 15.0

264 10.0

793 5.0

1739 3.0

2,475 2.0

8,345 1.0

32,189 0.5

42,012 0.3

56,552 0.1

from the camera to the center line as the lateral error, which is 
described by Equation 12:

elat =
m ⋅ xcamera − ycamera + c

√m2 + 1
(12)

The longitudinal error elong is determined by interpolating from 
a pre-constructed table as shown in Table 1 that relates pixel counts 
from the LED panel cpanel to corresponding elong values. This table 
contains pairs of pixel counts and the associated longitudinal errors 
elong, representing the relationship between the area of the LED panel 
and the actual longitudinal error. When a pixel count is observed 
from the LED panel, the closest values in the table are identified, 
and linear interpolation is used to estimate the corresponding elong. 
The interpolation process is given by Equation 13:

elong = Interpolate(cpanel) (13)

Where cpanel is the observed pixel count from the LED 
pthe image plane to a panel, and elong is the interpolated 
longitudinal error. 

3.2 Control strategy

We chose a hierarchical control structure to control the ASV to 
load on the trailer. The hierarchical control structure includes a finite 
state machine (FSM), as shown in Figure 5, and low-level controllers 
for each state.

The FSM control strategy is designed by incorporating operator 
experience and encoding intuitive methods for docking and 
navigation. It is capable of handling unexpected disruptions during 
the loading process. The FSM defines six high-level states and 
four state variables. The states are: Detect LED Panel (initial state), 
Correct Heading Error, Correct Lateral Error, Correct Longitudinal 
Error, Replan, and Mission Complete.
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FIGURE 5
Finite State Machine (FSM) for autonomous trailer docking which is 
designed based on operator experience. The FSM consists of 6 
high-level states. Transitions between states are driven by real-time 
perception feedback and threshold-based error conditions. The FSM 
ensures robust error correction, failure recovery, and mission 
completion.

The four state variables are: (1) LED panel detected, (2) lateral 
error below threshold elat, (3) heading error below threshold eang, 
and (4) longitudinal error below threshold Ex. Transitions between 
states are governed by the values of these variables. A dedicated 
low-level controller is implemented for each state to carry out the 
required maneuvers.

In the starting state, it will rotate itself until it detects the LED 
panel. Once the LED panel is detected, it will enter the Correct 
Heading Error state. A PI controller is utilized to minimize the 
heading error eang so that the ASV can align with the trailer. The 
PI controller for heading error correction was tuned to achieve a 
balance between responsiveness and stability. The proportional gain 
was set to ensure rapid convergence, while the integral gain was 
chosen to minimize steady-state error. This combination allows the 
ASV to align with the trailer efficiently. After the eang is smaller than 
the threshold ϵang = 0.05rad, the system will first try to minimize 
the lateral error elat, and then minimize the longitudinal error 
elong. In the Correct Lateral Error state, a time-based controller is 
used to decrease elat. The ASV will turn clockwise if elat > 0 or 
counterclockwise if elat < 0 for |k1elat| steps with constant angular 
velocity r1, then move forward for |k2elat| steps with a constant linear 
velocity u1 where k1 and k2 are tunable parameters to make the time-
based controller and minimize the elat efficiently. However, when 
misalignment happens due to sudden wave of perception error, if 
elat is larger than the threshold ϵang = 0.1m and the boat is closer 
than 0.5m to the bunk boards, the system will enter the Replan state, 
in which the boat moves backwards with a constant linear velocity 
u2 until it has enough space to realign itself with the target so that 
the boat can keep correcting the error while avoiding collision to 
the trailer. Once sufficient space is achieved, the system re-enters 
the Correct Heading Error state to correct its position and resume 
the docking process. If the ASV briefly loses visual contact with the 
LED panel, it stops its motion and transitions to the Detect LED 
Panel state.

Finally, if both the elat and eang are smaller than the thresholds, 
the boat will enter the moving forward state. In the Correct 

Longitudinal Error state, the boat uses another PI controller to 
decrease the elong. If elong is smaller than the threshold ϵlong = 0.1m, 
we consider the loading to be successful and stop the motors. 

4 Results

This section examines the impact of wave disturbances on the 
behavior of the autonomous surface vehicle (ASV) and evaluates 
the performance of the autonomous trailer loading system under 
varying environmental conditions. The experiments were designed 
to assess how the ASV’s trajectory and replanning behavior adapt 
to increasing wave disturbances and how these adaptations affect 
overall docking success, task completion time, and operational 
efficiency. All simulations were conducted on a desktop computer 
equipped with a GeForce RTX 2080 GPU and an Intel Core 
i7-8700 CPU. By systematically varying the wave disturbance 
gain KH and analyzing the ASV’s responses, the results provide 
insights into the robustness and adaptability of the control and 
replanning strategies for safe and reliable autonomous docking
operations. 

4.1 Impact of wave

The result in Figure 6 reveals the impact of wave amplitude 
on the system’s displacement and rotational dynamics. Starting 
with linear displacement, the displacement on the x-axis shows 
a clear linear increase in the amplitude of the wave, highlighting 
that forward movement is significantly influenced by wave 
intensity. Similarly, the displacement on the z-axis exhibits a 
noticeable upward trend, indicating that the system experiences 
a greater heave motion as wave amplitudes grow. In contrast, 
the displacement on the y-axis remains nearly constant across 
all wave values, suggesting that the lateral displacement is 
minimally affected and the system maintains stability in the lateral
direction.

For rotational dynamics, the roll angle shows the most 
significant variation, increasing substantially with wave amplitude. 
This indicates that the system undergoes considerable tilting about 
the x-axis as the waves intensify, likely caused by uneven wave forces 
acting on the structure. The pitch also increases steadily, though at 
a lower rate than the roll, reflecting the forward-backward tilting 
caused by the waves. The yaw angle, on the other hand, shows only 
minimal variation, suggesting that the system experiences very slight 
rotational motion about the z-axis, with minor asymmetries in wave 
interaction causing this effect.

These observations have important physical implications, 
particularly for systems such as maritime vehicles. The changes 
in z-axis displacement, roll, and pitch with wave amplitude suggest 
potential stability issues under rough sea conditions, with the system 
becoming more prone to tilting and heaving, which can significantly 
affect the ASV’s perception systems, especially cameras. These 
rotations may introduce noise and misalignment in sensor readings, 
reducing the accuracy of object detection, localization, and tracking.

Additionally, the varying wave heights in Figure 7 will 
significantly affect image processing for autonomous trailer loading. 
As the waves rise, the trailer and its bunks become increasingly 
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FIGURE 6
Effects of varying wave disturbance gains on ASV state variables. Plots show standard deviation in position and orientation, revealing increased roll and 
heave under higher wave amplitudes, which impact perception and stability.

FIGURE 7
Visualization of trailer submersion under increasing wave heights. (A) Low waves: bunk boards remain fully exposed. (B) Moderate waves: partial 
submersion of long bunk boards. (C) High waves: complete submersion of long and side bunk boards, reducing visibility for detection.

submerged. The submerged bunks make it difficult for the image 
processing system to accurately detect the trailer’s position and 
orientation. Therefore, autonomous trailer loading systems will 
need to employ robust image processing techniques that can handle 
these challenges.

4.2 Trailer loading

To evaluate the performance of the proposed autonomous trailer 
loading system under varying environmental conditions, a total of 

80 experiments were carried out. Each trail corresponds to one 
of four wave disturbance gain levels KH:0.0,0.1,0.3,0.5, with 20 
tests per condition. The termination time Tmax was set to 100s. 
In all tests, the wave’s direction was aligned with the AVS’s x-
axis. The ASV was initialized at a distance of 30 m from the 
trailer, with a fixed longitudinal offset of 29m and a lateral distance 
variation ranging from −9.5m and +9.5m. The resulting docking 
trajectories are illustrated in Figure 8, and performance metrics are 
summarized in Table 2.

The docking system achieved a 100% success rate in calm, 
mild, and moderate wave conditions (KH levels 0.0, 0.1, and 
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FIGURE 8
ASV docking trajectories under varying wave disturbance levels including (A) calm wave disturbances (KH = 0.0), (B) mild wave disturbances (KH = 0.1),
(C) moderate wave disturbances (KH = 0.3), and (D) high wave disturbances (KH = 0.5). The initial positions are distributed 30m longitudinally and span 
and ±9.5m laterally from the trailer. Red rectangle highlights the docking zone, and the zoomed-in view emphasizes the final approach and docking 
accuracy near the trailer. The highlighted trajectories correspond to trials with replanning or failures.

TABLE 2  Performance of the autonomous trailer loading system under 
varying wave disturbance gain levels, highlighting the system’s 
robustness across increasing environmental disturbances. Metrics 
include docking success rate, average completion time (± standard 
deviation), number of replanning events, cumulative time spent 
replanning, and number of failed docking attempts. Results are based on 
20 trials per condition.

Wave gain 0 0.1 0.3 0.5

Success Rate(%) 100 100 100 90

Avg. 
Completion 
Time (s)

609.1± 79 591.2± 99.1 624.3± 91.7 728.5± 168.2

Replan Events 
(#)

2 7 5 6

Avg. Replan 
time (s)

7.3 28.5 23.0 34.1

Failures (#) 0 0 0 2

0.3, respectively). Under the high wave disturbance condition 
(KH = 0.5), the success rate dropped slightly to 90%, with two 
docking failures recorded.

Average task completion time ranged from (591.2± 99.1s) to 
(728.5± 168.2 s). The shortest times were observed at KH = 0.1, 
while the longest occurred at KH = 0.5—reflecting the additional 
complexity in maintaining alignment under severe wave motion. 
Replanning events were triggered when the ASV deviated 
significantly from its intended trajectory due to perception errors 
or environmental forces. As expected, both the frequency and 
the duration of replanning increased with higher wave gain. For 
example, the number of replan events increased from 2 to 6, with 
the average replanning time increasing from 7.3 to 34.1 s between 
calm (KH = 0.0) and severe (KH = 0.5) scenarios. Throughout these 
trials, the system operated in real time with an image processing 
rate of 30 FPS. The mean image process time was 0.0078 s, with a 
standard deviation of 0.0015 s, indicating the system’s capability to 
process sensor data and make decisions in real-time.

To better understand how wave disturbances affect system 
performance, we compared success rates, completion times, and the 
frequency of replanning events across different wave gain levels. 
The data revealed clear trends: as wave intensity increased, task 
completion times generally rose, with the most noticeable difference 
occurring between the low disturbance case (KH = 0.1) and the 
high disturbance case (KH = 0.5). While the system maintained high 
success rates of 90% or greater across all scenarios, performance 
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FIGURE 9
Heatmaps comparing lateral error accuracy (A) Calm disturbances (KH = 0); (B) High wave disturbances (KH = 0.5). The heatmaps illustrate the spatial 
distribution of the accuracy of lateral error measurements. Brighter regions indicating higher errors between the perceived and actual lateral position of 
the trailer.

FIGURE 10
Examples of ASV docking failures under high wave disturbances. (A) ASV reaches the trailer but is misaligned; (B) ASV fails to load onto the trailer. 
Failures are caused by significant perception errors and large pose deviations.

declined under the most challenging conditions. At KH = 0.5, the 
system experienced a 10% failure rate and a 23% increase in average 
completion time compared to calm conditions. Additionally, the 
number of replanning events increased alongside wave intensity, 
suggesting that replanning plays a key role in maintaining robust 
docking performance in dynamic environments.

Figure 9 shows heat maps of the lateral error accuracy in 
scenarios with calm wave disturbance and high wave disturbance. 
As wave intensity increased, the perception error grew - especially 
in estimating lateral alignment - lowering the accuracy of the 
lateral error measurements and contributing directly to the two 
observed failures. Figure 10 illustrates these failure scenarios. The 
first failure case is shown in 10 (A). The ASV successfully docked 
but was misaligned. Due to friction between the hull and the 
trailer bunks, it was unable to correct its heading and realign after 
docking, resulting in a misaligned final position. For the second 
failure case in Figure 10B, the ASV failed to board the trailer entirely. 

After initially correcting the erroneous lateral error estimate, it 
encountered the short bunk supporting the bow of the vehicle, 
causing it to get stuck before completing the docking process. These 
failures highlight the critical impact of wave-induced perception 
errors on docking performance.

Despite these challenges, the FSM-based control system 
successfully handled most alignment errors, demonstrating 
robustness in the presence of moderate to severe environmental 
disturbances. Figure 11 presents state trajectories for four 
representative trials. These plots provide valuable insight into the 
dynamic behavior of an ASV during autonomous loading onto 
a trailer under varying wave disturbance conditions. The plots 
show increased oscillations in the ASV’s pose and control signals 
as wave intensity rises. While the control system remained stable 
in mild and moderate scenarios, large disturbances introduced 
substantial deviations that exceeded the system’s ability to
compensate.
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FIGURE 11
State plots showing ASV pose and control responses during trailer loading under varying wave conditions. (A–C) Successful trials with increasing wave 
intensity; (D) failed trial under large disturbances. Red lines indicate target values; black lines represent ASV state trajectories.

To contextualize these results, we also qualitatively compared 
our system to the existing GPS- and AprilTag-based trailer loading 
framework by Abughaida et al. (2024). That method achieved an 
80% success rate in physical experiments but relied on GNSS 
infrastructure and fiducial markers. In contrast, our vision-only 
approach reached a 100% success rate in mild and moderate 
conditions and maintained a 90% success rate under high wave 
disturbances—all without GPS or external markers. These results 
highlight the adaptability, cost-effectiveness, and infrastructure 
independence of our method, making it highly suitable for real-
world, unstructured environments. 

5 Conclusion and future work

This paper presents a novel vision-based framework for 
automating trailer loading of autonomous surface vehicles (ASVs) 
in GPS-denied environments. The proposed system leverages a 
camera-based perception pipeline and a finite state machine (FSM) 
paired with PID controllers to achieve precise alignment and 
docking. Evaluated in a high-fidelity simulation environment with 
realistic disturbances and sensor noise, the framework achieved a 
high success rate of 97.5%, demonstrating strong robustness against 
wave-induced challenges.

While the system performed reliably in most scenarios, 
occasional failures under high wave disturbances were observed 
due to occlusion or submersion of trailer features, which affected 
perception accuracy. These were partially mitigated by the FSM’s 
replan mechanism, though reliance solely on vision introduces 
limitations in extreme conditions. Future work will explore sensor 
fusion and adaptive control strategies to further enhance robustness.

The modular architecture of the framework enables scalability to 
different ASV sizes and trailer designs. The LED-based localization 
system provides a consistent visual reference, while the FSM and 
PID control components can be retuned to account for changes 
in dynamics. Although the current system assumes full LED 
panel visibility, planned extensions include adding redundancy, 
fallback strategies, and real-world testing. In addition, the system’s 
lightweight computational requirements make it well-suited for 
deployment on embedded platforms, reducing dependence on high-
performance computing hardware and enhancing its practicality for 
real-world ASV applications.

However, several limitations remain. Larger ASVs typically 
exhibit different inertial and hydrodynamic properties, requiring 
more precise system identification and control retuning. The risk of 
LED marker occlusion increases with vessel size or environmental 
complexity, which may necessitate redundancy in marker placement 
or sensor fusion with alternative modalities. Furthermore, the 
current system relies on black lumber as reference landmarks, which
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are difficult to detect under low-light conditions, limiting nighttime 
operation. Addressing these challenges is crucial for enabling robust, 
scalable deployment in diverse real-world environments.

Overall, this work contributes a practical, extensible solution to 
autonomous trailer docking, laying a strong foundation for more 
intelligent, robust, and scalable maritime autonomy systems.
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