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Vision driven trailer loading for
autonomous surface vehicles in
dynamic environments

Jianwen Li, Jalil Chavez-Galaviz and Nina Mahmoudian*

School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States

Automated docking technologies for marine vessels have advanced significantly,
yet trailer loading, a critical and routine task for autonomous surface vehicles
(ASVs), remains largely underexplored. This paper presents a novel, vision-based
framework for autonomous trailer loading that operates without GPS, making
it adaptable to dynamic and unstructured environments. The proposed method
integrates real-time computer vision with a finite state machine (FSM) control
strategy to detect, approach, and align the ASV with the trailer using visual
cues such as LED panels and bunk boards. A realistic simulation environment,
modeled after real-world conditions and incorporating wave disturbances, was
developed to validate the approach and is available!. Experimental results using
the WAM-V 16 ASV in Gazebo demonstrated a 100% success rate under calm to
medium wave disturbances and a 90% success rate under high wave conditions.
These findings highlight the robustness and adaptability of the vision-driven
system, offering a promising solution for fully autonomous trailer loading in
GPS-denied scenarios.

KEYWORDS

autonomous surface vehicle (ASV), autonomous trailer loading, vision-based navigation,
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1 Introduction

Autonomous surface vehicles (ASVs) are typically launched and recovered using a crane
or a trailer, with human operators overseeing the process. While trailer loading may seem
straightforward, it is a technically challenging task that requires precise alignment between
the ASV and the trailer, often performed by the operator from a constrained or limited
point of view, such as the shore. This task demands skilled maneuvering, particularly in
the presence of environmental disturbances like wind and waves. This paper examines the
complexities of automating the trailer loading process, focusing on the key challenges in
achieving reliable and efficient autonomous docking.

One of the major challenges in ASV docking lies in managing complex problems
simultaneously, such as trajectory planning, environmental disturbances, and control
constraints. Docking requires precise maneuvering in confined spaces, often near static
obstacles, making collision-free trajectory planning a critical component Bitar et al. (2020).
However, due to the underactuated nature of most ASVs, their ability to correct lateral
errors (sway direction) is limited, necessitating anticipatory alignment to avoid significant
corrections near the docking zone. Some of the work of ASV docking balances between

1 https://github.com/lijianwen1997/trailer-loading-sim
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minimizing energy consumption and time constraints, as
optimizing for one can negatively impact the other Djouani
and Hamam (1995). External disturbances, such as waves and
currents, further complicate docking by introducing dynamic
perturbations, affecting both perception and control and demanding
robust feedback mechanisms to maintain trajectory accuracy
Martinsen et al. (2019). Traditional PID-based controllers struggle
with such dynamic conditions, requiring model predictive control
(MPC) or other optimal control strategies to dynamically adjust
the ASV’s motion in real-time Martinsen et al. (2019). Despite
advancements in trajectory optimization and dynamic positioning,
achieving fully autonomous, reliable, and efficient docking remains
challenging due to the need for real-time adaptability and robustness
against environmental uncertainties.

Automated trailer loading can be seen as a special case of
automated docking of autonomous surface vehicles, where an ASV
is maneuvered onto a mobile trailer platform. In this study, the
platform is carried by a pickup truck, adding unique challenges
not present in conventional docking scenarios. A map-based or
purely GPS-based approach, such as those used in Bitar et al.
(2020) and Martinsen et al. (2019), is insufficient for this application,
as the position of the trailer can vary with each attempt due
to manual operation of the pickup. Additionally, unlike berthing,
which typically occurs in deeper waters, trailer docking happens
near the shore, increasing the risk of collisions and potential damage
to the propellers of the ASV. These constraints require a precise and
adaptive docking strategy.

In particular, some advancements aim to enhance robustness,
precision, and operational safety using vision-based and sensor-
integrated positioning systems in ASV docking. A vision-based
docking approach integrating a virtual force-based strategy and
target segmentation has shown promise in coordinated ASV
docking with underwater vehicles Dunbabin et al. (2008). The
authors of Pereira et al. (2021) propose a volumetric convolutional
neural network (VCNN) for detecting docking structures from 3D
data, achieving over 96% accuracy in commercial harbors through
synthetic datasets combining LiDAR, stereo, GPS, and IMU data.
Complementary to this, fiducial marker-based strategies enable
ASVs to augment GNSS-RTK and INS systems, providing accurate
positioning even in GNSS-compromised areas Digerud et al. (2022).
For enhanced redundancy and reliability, a visual-inertial navigation
system fuses camera-tag pose estimates with inertial data using an
error-state Kalman filter, achieving robust state estimation under
urban and challenging weather conditions Volden et al. (2023).
Collectively, these innovations provide a foundation for more robust
detection and localization of the dock in automated docking tasks.

For Trajectory planning and control, advanced algorithms based
on imitation learning Wang et al. (2024), reinforcement learning
Lambert et al. (2021); Li et al. (2023), and model-based control
Chavez-Galaviz et al. (2024); Li et al. (2024) have been developed
for mobile robots in marine and riverine environments. Specifically
for the ASV docking, Ahmed and Hasegawa (2013); Im and Nguyen
(2018) proposed an artificial neural network (ANN) as a function
approximator for the policy, learning to imitate pre-recorded
docking demonstrations, and hence learning how to perform the
docking maneuvers. In Wang and Luo (2021); Holen et al. (2022);
Pereira and Pinto (2024), the ASV docking task was modeled as
Markov decision process (MDP) and a deep reinforcement learning
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agent was trained to perform the docking of an ASV by interacting
with the environment. Optimization-based planning Djouani and
Hamam (1995); Mizuno et al. (2015); Martinsen et al. (2019); Li et al.
(2020) also achieves promising results in ASV docking. These
methods allow for explicitly including dynamics and constraints
when planning a trajectory using convex optimization.

Despite the growing body of literature on automated docking,
studies specifically focused on docking and loading onto trailers
remain scarce. The author Abughaida et al. (2024) defined the
problem of autonomous trailer loading and explored GPS and
AprilTag-based localization, Dubin’s path planning, and model-
based trajectory optimization to address autonomous trailer loading
tasks. Experiments conducted using a commercial pontoon boat
validate the frameworK’s effectiveness, achieving an 80% overall
success rate despite challenges from localization errors and wind
disturbances. The method proposed in this work focuses on the
perception side of trailer loading without using the GPS or AprilTag,
making it more low-cost and easy to adapt to different ASVs
and trailers.

The contributions of this paper are threefold. First, we propose
a vision-based pipeline for trailer localization, which includes
trailer identification, approaching, and loading. Unlike GPS-based
methods, this approach does not require prior knowledge of the
trailer’s position, making it more adaptable to real-world scenarios
where the trailer’s placement may vary. Second, we develop a finite
state machine (FSM) control strategy inspired by human experience,
where transitions are triggered by the information acquired through
the perception system rather than absolute positioning. This strategy
accounts for vehicle actuation limitations, practical constraints,
failures, retries, and environmental conditions, ensuring robust
docking performance. Finally, we introduce an open-source trailer
loading simulation environment to validate the proposed automated
trailer loading algorithm without relying on GPS, demonstrating
its effectiveness under wave disturbances and varying ASV initial
placements.

The remainder of this paper is organized as follows: Section 2
formalizes the problem setting in this study. Section 3 details
the methodology and system architecture. Section 4 presents
the validation results. Finally, conclusions and future work are
discussed in Section 5.

2 Background
2.1 ASV dynamics

A 6-DOF mathematical model of an ASV, is given in Equations 1,
2, can be presented as described in Fossen (2011) when considering
that gravity and buoyancy generate restoring forces that cancel out
the pitch, roll, and heave motions.

=] 1)

Myv+C()v+D(V)V=T+T, @)

where 77 = [x,,2,¢,0,y] T defines the ASV’s position and orientation
in an inertial coordinate system. The speed vector in the body-
fixed frame v=[u,v,w,p,q,r]" consists of the linear velocities
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(u,v,w) in the surge, sway, and heave directions, and p,q,r is the
rotation velocity. The thrust vector 7 contains the force and moment
produced by the port and starboard trolling motor commands a =
[a,,a,], respectively. The disturbance 7, is produced by the wave. The
matrix /(1) includes the rotation matrix and transformation matrix
and is used as a transform from the body-fixed frame to the earth
(inertial) fixed frame. M, C(v), and D(v) represent the inertia matrix,
the Coriolis and centripetal force matrix, and the damping matrix,
respectively.

2.2 Problem definition

The problem of trailer loading for ASVs involves developing
a system that enables the ASVs to autonomously and accurately
dock onto a trailer in dynamic and uncertain environments. The
trailer is fixed in position and orientation at 7,. The ASV must
detect and localize the trailer’s position using onboard sensors. The
objective is to generate control commands that minimize the error
between ASV’s 1 and the trailer’s 5, while avoiding collision. The
trailer loading is successful if errors in the x-axis, y-axis, and yaw are

smaller than the terminal error thresholds ¢,,,, ¢4, and ¢,,,. Loading

ang*
is considered a failure if the ASV fails to reach the trailer loading

zone within the termination time T,,,,..

2.3 Digital twin

A simulation environment for the trailer loading scenario has
been created, as shown in Figure 1. A trailer and a pickup truck
model are created in Autodesk Inventor. A field test environment
is also modeled to mimic Lake Harner, IN, using Blender. The
dimensions of the boat and trailer have been measured accurately,
ensuring that the spatial relationships in the simulation match those
in reality. This is important for docking and loading scenarios,
where even small errors in dimensions could affect the system’s
performance. The trailer loading environment is built based on the
Virtual RobotX (VRX) simulator Bingham et al. (2019). Plugins
from VRX are used to calculate the wave forces, and Open Dynamics
Engine (ODE) Smith (2005) provides the simulation of the rigid-
body dynamics.

The sensor noise of IMU has been measured from real-world
tests and injected into the simulation, making the simulation more
realistic. The noise profile included Gaussian-distributed random
errors with standard deviations matching the real-world IMU data.
Camera noise was also modeled by injecting per-pixel Gaussian
noise into the image stream, with zero mean and a standard
deviation of 0.007, approximating the visual noise observed in
real camera feeds. The motor delay was modeled using the default
settings in the VRX simulator, which treats the motor as a second-
order system. This approach captures the dynamic response of the
motor, including its rise time and settling time.

The simulation is also able to generate wind and wave
disturbances. Since wind disturbance mainly affects the control
accuracy and rejecting wind disturbance has been widely studied
Pereira et al. (2008); Chavez-Galaviz et al. (2023); Abughaida et al.
(2024), this study focuses exclusively on wave disturbances, which
pose greater challenges to vision-drive system during trailer
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loading. The simulation uses the Pierson-Moskowitz wave spectra
Fréchot (2006) to generate realistic wave patterns. The spectrum
Sg(w) in Equation 3 captures the mean energy in a wave field as
a function of angular frequency w and is specified by the peak
frequency w, and an independent significant wave height H,

e[

() mren] 3

. . . . H, .
A user-specified non-dimensional gain value Kj; = = is defined

w

“)]

1.25
SB ((A)) = T

3)

as the ratio of the desired significant wave height to the significant
wave height. In this work, we validate the trailer loading system’s
performance using different gain values from 0 to 0.5 to generate
different wave disturbances.

3 Methodology

In this section, we present the system architecture and
methodology for autonomous trailer loading as depicted in Figure 2,
focusing on the integration of image processing and control
strategies. The primary challenge lies in accurately detecting and
localizing the trailer’s features (e.g., the LED panel and bunk boards)
in real-time, despite varying environmental conditions such as wave
disturbances. Our approach leverages a flat finite state machine
(FSM) to guide a modular control structure, ensuring precise
alignment and loading of the boat onto the trailer. The following
subsections detail the image processing pipeline for feature detection
and the control strategy for error correction.

3.1 Perception system

The image processing sequence of the perception system is
illustrated in Figure 3. One front-facing camera is used to detect the
features of the trailer for autonomous loading. We mainly focus on
two features: an LED panel and black horizontal bunk boards. The
LED panel is 350 by 200 mm. It is mounted on the trailer, displaying
a sequence of colors with a specific timing. There are 8 bunk boards
in total, 4 long ones to support the hull of the vehicle and 4 short
ones to support the bow of the vehicle.

While Olson (2011) are a reliable and widely used visual fiducial
system for precise object detection and localization, An LED panel
might be more suitable for this scenario due to the following reasons:
LED panels emit light, making them highly visible even in low-light
or challenging environments, where AprilTags may be hard to detect
without sufficient external illumination. LED panels can display
time-based color patterns (e.g., red for 2 s followed by green for 1 s in
a repeating cycle), providing an additional layer of information for
dynamic localization, an advantage not available with static fiducial
markers like AprilTags. LED panels can be detected with lower-
resolution cameras due to their brightness, while AprilTags often
require higher-resolution cameras for reliable recognition, especially
at long distances.

The detection of the target LED panel involves capturing video
frames and processing them in real-time. The panel displays a
repeating color sequence: red for T,,; seconds, followed by green
for T, seconds, and repeating. The total cycle time is denoted
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A) (B)

© (D)

FIGURE 1
Illustrations of the trailer loading setup and simulation environment: (A) Real-world trailer loading with the ASV, (B) Gazebo-based simulation
environment, (C) Physical trailer hardware, and (D) Blender trailer model.

Perception system

AV‘ Image data Trailer Target features Pose
'Av Cemee detector estimation
Trailer pose

l

Guidance | Reference Control | Controlinputs . i
sl Disturbances
system system

Feedback signals

FIGURE 2
Overview of the proposed vision-based trailer loading system. The architecture integrates real-time image processing and a finite state machine
(FSM)-based control strategy to enable robust alignment and docking in dynamic environments.

as T, Each frame Ipgp is converted to HSV color space as 1 if Iy (%)) € Ogreens

Iy for effective color segmentation. Binary masks M,,; and Mgreen (%) = 0 therwi ®)
Myee> given by Equations 4, 5 are then applied to isolate red and otherwise

green regions based on predefined HSV thresholds 6, and 6,,,,,, The contours of these regions are extracted, and their centers

respectively. are tracked to distinguish the target panels. The panel candidate

. i1 (ny) € 0 is defined as a tuple P; = (x;,y;,w;,h;,t;,col;). For each candidate,

i X, ) Lo .
M,y (x,y) = HSV %)) € Ured (4)  the center, shape, detection timestamps, and corresponding colors
otherwise are recorded, retaining only recent k detections within the
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Image processing pipeline for the perception system: (A—B) Panel detection sequence when the panel is green; (C) region of interest (ROI); (D)
Detected panel; (E-F) detection sequence when the panelis red; (G) mask to detect green or red color within the ROI, (H) detected panel with a line to
the robot to calculate heading error, (I) bird's-eye view (BEV) transformation of the scene; (J-L) detection of bunk boards and centerline extraction for

lateral error estimation.

defined timing window. The candidate set is denoted as P =
{Pigr1s Pigss oo Pk

A pattern-matching algorithm is then applied to verify whether
the panel follows the red-to-green timing sequence. Let P4 and
Pgreen denote the subsets of P corresponding to red and green
detections, respectively. The first detected candidates in the red and
green subsets are defined in Equation 6.

. reen .
P =argmint, P¥°" =arg mint (6)
PiePrq PieP,

green

As the first detected candidates in the red and green subsets,
respectively. A set P is considered valid P, ,;q if it meets the
condition from Equation 7:

d  green .
t‘ie - | 2 min (Tgreem Tred) )

Then, the target panel is identified by Equation 8 as the latest
candidate in P,4:

P

target = AIg Max f;. (8)

PiePia(t)

The position of the identified panel (Xyygers Viarger) is returned
as the center of the region of interest (ROI). We assume the ROI
is a rectangle and its shape is decided by the height and width
of the panel (A,
vehicle, the ROI needs to be larger than the target panel. Let o =2

s Wiarger)- 10 account for the movement of the

be the scaling factor. The shape of the ROI becomes (hpop, Wror) =
(@ Biargerr @ Wiarger)- This approach ensures accurate detection of
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the target panel in scenarios involving multiple segments of similar
color, size, and shape.

Using the ROI as a mask, we effectively filter out objects with
colors similar to those of the LED panel, focusing exclusively
on potential target panels within the defined area. By applying
color segmentation and contour detection within the ROI, we
accurately identify the LED panel and determine its center
point as (XpguepYpane)- The camera is at (x The
angular offset between the cameras optical axis and the panel’s

camera’ ycamem) N

center is then calculated, providing the angular error denoted as
€ang from Equation 9:

Xpanel ~ Xcamera
€ang = arctan| ————— 9)
Ypanel ~ Ycamera

This angular error is critical for aligning the camera or robot’s
orientation with the detected panel. Additionally, the position and
shape of the panel, determined from its bounding contour, are used
to dynamically refine and update the ROI in subsequent frames.
This adaptive ROI ensures that the system maintains focus on the
correct panel while excluding irrelevant objects, even in complex
environments with multiple similarly colored or shaped elements.

The birds-eye view (BEV) transformation is essential for
simplifying spatial understanding and enabling accurate distance
measurements. By removing perspective distortion, BEV allows
objects to appear at their true scale and relative positions, making
it easier to measure distances and plan motions. This is particularly
useful for tasks such as collision avoidance and alignment with
the trailer.
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FIGURE 4

Bird's-eye view (BEV) transformation process. A homography matrix is
used to convert the camera image to a top-down view, enabling more
accurate spatial measurements for alignment and motion planning.

Figure 4 depicts the process of BEV transformation. Once the
raw RGB image I3 is captured from the camera, it is transformed
into the BEV. Equation 10 according to Szeliski (2022), is used to
transform a point (x,) in the image plane to a point (x,y') in the
bird’s-eye view plane is:

y |=H]|y (10)

Where H is the homography matrix and w is the scale factor
used for normalization. To get the normalized BEV coordinates
(XpEvsYppy)» divide t}}e point (x',y") in the birds-eye view plane by
W: Xppy = x;’)’BEV = y;

Once the conversion is complete, the position of each pixel in the
image becomes the same as the actual position of the feature with
respect to the real-world camera frame. In this way, BEV removes
perspective distortion, making objects appear at their true scale and
relative positions. This representation makes it easier to measure
distances and relative orientations between objects, thus simplifying
collision avoidance and motion planning by reducing the complexity
of interpreting depth and perspective.

Once a BEV image Iy is generated, the black bunk boards
are extracted by masking defined in Equation 11 with the threshold
Opunk and blob detection.

1 if Ippy (%,) € Opunic>
Mg (%)) = (11
0 otherwise

The bunk boards are classified into left and right groups
based on their centroids and slopes. The center line of bunk
boards is calculated as y=m-x+c. We calculate the distance
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TABLE 1 Table of pixel count and longitudinal error pairs for
interpolation.

LED panel pixel count

Longitudinal error

Cpanel elong(m)
72 20.0
84 15.0
264 10.0
793 5.0
1739 3.0

2,475 2.0
8,345 1.0

32,189 0.5

42,012 0.3

56,552 0.1

from the camera to the center line as the lateral error, which is
described by Equation 12:

M X camera ™ Yeamera T € 12)

Clar =
m?+1

The longitudinal error ¢, is determined by interpolating from
a pre-constructed table as shown in Table 1 that relates pixel counts
from the LED panel ¢, to corresponding ey, values. This table
contains pairs of pixel counts and the associated longitudinal errors
€jong representing the relationship between the area of the LED panel
and the actual longitudinal error. When a pixel count is observed
from the LED panel, the closest values in the table are identified,
and linear interpolation is used to estimate the corresponding e,

The interpolation process is given by Equation 13:

€jong = Interpolate (cpane,) (13)

Where c,,,, is the observed pixel count from the LED
pthe image plane to a panel, and ¢, is the interpolated
longitudinal error.

3.2 Control strategy

We chose a hierarchical control structure to control the ASV to
load on the trailer. The hierarchical control structure includes a finite
state machine (FSM), as shown in Figure 5, and low-level controllers
for each state.

The FSM control strategy is designed by incorporating operator
experience and encoding intuitive methods for docking and
navigation. It is capable of handling unexpected disruptions during
the loading process. The FSM defines six high-level states and
four state variables. The states are: Detect LED Panel (initial state),
Correct Heading Error, Correct Lateral Error, Correct Longitudinal
Error, Replan, and Mission Complete.
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FIGURE 5
Finite State Machine (FSM) for autonomous trailer docking which is

designed based on operator experience. The FSM consists of 6
high-level states. Transitions between states are driven by real-time
perception feedback and threshold-based error conditions. The FSM
ensures robust error correction, failure recovery, and mission
completion.

The four state variables are: (1) LED panel detected, (2) lateral
error below threshold ¢, (3) heading error below threshold e,,,,,
and (4) longitudinal error below threshold E,. Transitions between
states are governed by the values of these variables. A dedicated
low-level controller is implemented for each state to carry out the
required maneuvers.

In the starting state, it will rotate itself until it detects the LED
panel. Once the LED panel is detected, it will enter the Correct
Heading Error state. A PI controller is utilized to minimize the
ang SO that the ASV can align with the trailer. The
PI controller for heading error correction was tuned to achieve a

heading error e

balance between responsiveness and stability. The proportional gain
was set to ensure rapid convergence, while the integral gain was
chosen to minimize steady-state error. This combination allows the
ASV to align with the trailer efficiently. After the e, is smaller than
the threshold ¢,,, = 0.05rad, the system will first try to minimize
the lateral error ey, and then minimize the longitudinal error
€jong- 10 the Correct Lateral Error state, a time-based controller is
used to decrease e;,,. The ASV will turn clockwise if e, >0 or
counterclockwise if ¢, < 0 for |k;ey,| steps with constant angular
velocity r,, then move forward for |k,e,,| steps with a constant linear
velocity u, where k; and k, are tunable parameters to make the time-
based controller and minimize the e, efficiently. However, when
misalignment happens due to sudden wave of perception error, if
€jq is larger than the threshold ¢,,, =0.1m and the boat is closer
than 0.5m to the bunk boards, the system will enter the Replan state,
in which the boat moves backwards with a constant linear velocity
u, until it has enough space to realign itself with the target so that
the boat can keep correcting the error while avoiding collision to
the trailer. Once sufficient space is achieved, the system re-enters
the Correct Heading Error state to correct its position and resume
the docking process. If the ASV briefly loses visual contact with the
LED panel, it stops its motion and transitions to the Detect LED
Panel state.

Finally, if both the e, and e, are smaller than the thresholds,
the boat will enter the moving forward state. In the Correct
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Longitudinal Error state, the boat uses another PI controller to
decrease the ¢j,,,. If €}, is smaller than the threshold ¢, = 0.1m,
we consider the loading to be successful and stop the motors.

4 Results

This section examines the impact of wave disturbances on the
behavior of the autonomous surface vehicle (ASV) and evaluates
the performance of the autonomous trailer loading system under
varying environmental conditions. The experiments were designed
to assess how the ASV’s trajectory and replanning behavior adapt
to increasing wave disturbances and how these adaptations affect
overall docking success, task completion time, and operational
efficiency. All simulations were conducted on a desktop computer
equipped with a GeForce RTX 2080 GPU and an Intel Core
i7-8700 CPU. By systematically varying the wave disturbance
gain Ky and analyzing the ASV’s responses, the results provide
insights into the robustness and adaptability of the control and
replanning strategies for safe and reliable autonomous docking
operations.

4.1 Impact of wave

The result in Figure 6 reveals the impact of wave amplitude
on the system’s displacement and rotational dynamics. Starting
with linear displacement, the displacement on the x-axis shows
a clear linear increase in the amplitude of the wave, highlighting
that forward movement is significantly influenced by wave
intensity. Similarly, the displacement on the z-axis exhibits a
noticeable upward trend, indicating that the system experiences
a greater heave motion as wave amplitudes grow. In contrast,
the displacement on the y-axis remains nearly constant across
all wave values, suggesting that the lateral displacement is
minimally affected and the system maintains stability in the lateral
direction.

For rotational dynamics, the roll angle shows the most
significant variation, increasing substantially with wave amplitude.
This indicates that the system undergoes considerable tilting about
the x-axis as the waves intensify, likely caused by uneven wave forces
acting on the structure. The pitch also increases steadily, though at
a lower rate than the roll, reflecting the forward-backward tilting
caused by the waves. The yaw angle, on the other hand, shows only
minimal variation, suggesting that the system experiences very slight
rotational motion about the z-axis, with minor asymmetries in wave
interaction causing this effect.

These observations have important physical implications,
particularly for systems such as maritime vehicles. The changes
in z-axis displacement, roll, and pitch with wave amplitude suggest
potential stability issues under rough sea conditions, with the system
becoming more prone to tilting and heaving, which can significantly
affect the ASV’s perception systems, especially cameras. These
rotations may introduce noise and misalignment in sensor readings,
reducing the accuracy of object detection, localization, and tracking.

Additionally, the varying wave heights in Figure 7 will
significantly affect image processing for autonomous trailer loading.
As the waves rise, the trailer and its bunks become increasingly
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FIGURE 6

Effects of varying wave disturbance gains on ASV state variables. Plots show standard deviation in position and orientation, revealing increased roll and

heave under higher wave amplitudes, which impact perception and stability.

A)

FIGURE 7

(B)

©

Visualization of trailer submersion under increasing wave heights. (A) Low waves: bunk boards remain fully exposed. (B) Moderate waves: partial
submersion of long bunk boards. (C) High waves: complete submersion of long and side bunk boards, reducing visibility for detection.

submerged. The submerged bunks make it difficult for the image
processing system to accurately detect the trailer’s position and
orientation. Therefore, autonomous trailer loading systems will
need to employ robust image processing techniques that can handle
these challenges.

4.2 Trailer loading

To evaluate the performance of the proposed autonomous trailer
loading system under varying environmental conditions, a total of
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80 experiments were carried out. Each trail corresponds to one
of four wave disturbance gain levels K};:0.0,0.1,0.3,0.5, with 20

tests per condition. The termination time T, was set to 100s.

max
In all tests, the wave’s direction was aligned with the AVSs x-
axis. The ASV was initialized at a distance of 30 m from the
trailer, with a fixed longitudinal offset of 29 and a lateral distance
variation ranging from —9.5m and +9.5m. The resulting docking
trajectories are illustrated in Figure 8, and performance metrics are
summarized in Table 2.

The docking system achieved a 100% success rate in calm,

mild, and moderate wave conditions (Kj levels 0.0, 0.1, and
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ASV docking trajectories under varying wave disturbance levels including (A) calm wave disturbances (K = 0.0), (B) mild wave disturbances (K, = 0.1),
(C) moderate wave disturbances (K, = 0.3), and (D) high wave disturbances (K, = 0.5). The initial positions are distributed 30m longitudinally and span
and +9.5m laterally from the trailer. Red rectangle highlights the docking zone, and the zoomed-in view emphasizes the final approach and docking
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accuracy near the trailer. The highlighted trajectories correspond to trials with replanning or failures.
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TABLE 2 Performance of the autonomous trailer loading system under
varying wave disturbance gain levels, highlighting the system'’s
robustness across increasing environmental disturbances. Metrics
include docking success rate, average completion time (+ standard
deviation), number of replanning events, cumulative time spent
replanning, and number of failed docking attempts. Results are based on
20 trials per condition.

Wave gain (0] 0.1 0.3 ’ 0.5
Success Rate(%) 100 100 100 90

Avg. 609.1+79 591.2+£99.1 624.3+91.7 728.5+168.2
Completion

Time (s)

Replan Events 2 7 5 6

(#)

Avg. Replan 7.3 285 23.0 34.1

time (s)

Failures (#) 0 0 0 2

0.3, respectively). Under the high wave disturbance condition
(K =0.5), the success rate dropped slightly to 90%, with two
docking failures recorded.
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Average task completion time ranged from (591.2 +99.1s) to
(728.5+168.25). The shortest times were observed at Ky =0.1,
while the longest occurred at Ky = 0.5—reflecting the additional
complexity in maintaining alignment under severe wave motion.
Replanning events were triggered when the ASV deviated
significantly from its intended trajectory due to perception errors
or environmental forces. As expected, both the frequency and
the duration of replanning increased with higher wave gain. For
example, the number of replan events increased from 2 to 6, with
the average replanning time increasing from 7.3 to 34.1 s between
calm (K = 0.0) and severe (Kj; = 0.5) scenarios. Throughout these
trials, the system operated in real time with an image processing
rate of 30 FPS. The mean image process time was 0.0078 s, with a
standard deviation of 0.0015 s, indicating the system’s capability to
process sensor data and make decisions in real-time.

To better understand how wave disturbances affect system
performance, we compared success rates, completion times, and the
frequency of replanning events across different wave gain levels.
The data revealed clear trends: as wave intensity increased, task
completion times generally rose, with the most noticeable difference
occurring between the low disturbance case (K =0.1) and the
high disturbance case (Kj; = 0.5). While the system maintained high
success rates of 90% or greater across all scenarios, performance
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the trailer.

Heatmaps comparing lateral error accuracy (A) Calm disturbances (K = 0); (B) High wave disturbances (K, = 0.5). The heatmaps illustrate the spatial
distribution of the accuracy of lateral error measurements. Brighter regions indicating higher errors between the perceived and actual lateral position of
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FIGURE 10

Examples of ASV docking failures under high wave disturbances. (A) ASV reaches the trailer but is misaligned; (B) ASV fails to load onto the trailer.
Failures are caused by significant perception errors and large pose deviations.

(B)

declined under the most challenging conditions. At K;; = 0.5, the
system experienced a 10% failure rate and a 23% increase in average
completion time compared to calm conditions. Additionally, the
number of replanning events increased alongside wave intensity,
suggesting that replanning plays a key role in maintaining robust
docking performance in dynamic environments.

Figure 9 shows heat maps of the lateral error accuracy in
scenarios with calm wave disturbance and high wave disturbance.
As wave intensity increased, the perception error grew - especially
in estimating lateral alignment - lowering the accuracy of the
lateral error measurements and contributing directly to the two
observed failures. Figure 10 illustrates these failure scenarios. The
first failure case is shown in 10 (A). The ASV successfully docked
but was misaligned. Due to friction between the hull and the
trailer bunks, it was unable to correct its heading and realign after
docking, resulting in a misaligned final position. For the second
failure case in Figure 10B, the ASV failed to board the trailer entirely.
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After initially correcting the erroneous lateral error estimate, it
encountered the short bunk supporting the bow of the vehicle,
causing it to get stuck before completing the docking process. These
failures highlight the critical impact of wave-induced perception
errors on docking performance.

Despite these challenges, the FSM-based control system
successfully handled most alignment errors, demonstrating
robustness in the presence of moderate to severe environmental
disturbances. Figure 11 presents state trajectories for four
representative trials. These plots provide valuable insight into the
dynamic behavior of an ASV during autonomous loading onto
a trailer under varying wave disturbance conditions. The plots
show increased oscillations in the ASV’s pose and control signals
as wave intensity rises. While the control system remained stable
in mild and moderate scenarios, large disturbances introduced
substantial deviations that exceeded the system’s ability to

compensate.
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To contextualize these results, we also qualitatively compared
our system to the existing GPS- and AprilTag-based trailer loading
framework by Abughaida et al. (2024). That method achieved an
80% success rate in physical experiments but relied on GNSS
infrastructure and fiducial markers. In contrast, our vision-only
approach reached a 100% success rate in mild and moderate
conditions and maintained a 90% success rate under high wave
disturbances—all without GPS or external markers. These results
highlight the adaptability, cost-effectiveness, and infrastructure
independence of our method, making it highly suitable for real-
world, unstructured environments.

5 Conclusion and future work

This paper presents a novel vision-based framework for
automating trailer loading of autonomous surface vehicles (ASVs)
in GPS-denied environments. The proposed system leverages a
camera-based perception pipeline and a finite state machine (FSM)
paired with PID controllers to achieve precise alignment and
docking. Evaluated in a high-fidelity simulation environment with
realistic disturbances and sensor noise, the framework achieved a
high success rate of 97.5%, demonstrating strong robustness against
wave-induced challenges.
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While the system performed reliably in most scenarios,
occasional failures under high wave disturbances were observed
due to occlusion or submersion of trailer features, which affected
perception accuracy. These were partially mitigated by the FSM’s
replan mechanism, though reliance solely on vision introduces
limitations in extreme conditions. Future work will explore sensor
fusion and adaptive control strategies to further enhance robustness.

The modular architecture of the framework enables scalability to
different ASV sizes and trailer designs. The LED-based localization
system provides a consistent visual reference, while the FSM and
PID control components can be retuned to account for changes
in dynamics. Although the current system assumes full LED
panel visibility, planned extensions include adding redundancy,
fallback strategies, and real-world testing. In addition, the system’s
lightweight computational requirements make it well-suited for
deployment on embedded platforms, reducing dependence on high-
performance computing hardware and enhancing its practicality for
real-world ASV applications.

However, several limitations remain. Larger ASVs typically
exhibit different inertial and hydrodynamic properties, requiring
more precise system identification and control retuning. The risk of
LED marker occlusion increases with vessel size or environmental
complexity, which may necessitate redundancy in marker placement
or sensor fusion with alternative modalities. Furthermore, the
current system relies on black lumber as reference landmarks, which
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are difficult to detect under low-light conditions, limiting nighttime
operation. Addressing these challenges is crucial for enabling robust,
scalable deployment in diverse real-world environments.

Opverall, this work contributes a practical, extensible solution to
autonomous trailer docking, laying a strong foundation for more
intelligent, robust, and scalable maritime autonomy systems.
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