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Towards applied swarm robotics:
current limitations and enablers

Miquel Kegeleirs* and Mauro Birattari*

IRIDIA, Université libre de Bruxelles, Brussels, Belgium

Swarm robotics addresses the design, deployment, and analysis of large groups
of robots that collaborate to perform tasks in a decentralized manner. Research
in this field has predominantly relied on simulations or small-scale robots
with limited sensing, actuation, and computational capabilities. Consequently,
despite significant advancements, swarm robotics has yet to see widespread
commercial or industrial application. A major barrier to practical deployment
is the lack of affordable, modern, and robust platforms suitable for real-world
scenarios. Moreover, a narrow definition of what swarm robotics should be has
restricted the scope of potential applications. In this paper, we argue that the
development of more advanced robotic platforms—incorporating state-of-the-
art technologies such as SLAM, computer vision, and reliable communication
systems—and the adoption of a broader interpretation of swarm robotics could
significantly expand its range of applicability. This would enable robot swarms
to tackle a wider variety of real-world tasks and integrate more effectively with
existing systems, ultimately paving the way for successful deployment.
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1 Introduction

Swarm robotics investigates the design, deployment, and evaluation of large groups of
robots that collaborate in a decentralized manner to complete their tasks (Dorigo et al.,
2014). Research in swarm robotics has rapidly advanced in recent years. One of
the main challenges in the field—designing control software for robot swarms—has
been thoroughly investigated, with many successful approaches proposed. In particular,
(semi-) automatic design (Francesca and Birattari, 2016; Bredeche et al., 2018; Birattari et al.,
2019; Birattari et al., 2020) has proven effective in addressing this challenge, with
evolutionary robotics (Floreano et al., 2008; Haasdijk et al., 2014; Trianni and López-Ibáñez,
2015; Divband Soorati and Hamann, 2015; Nolfi, 2021) and automatic modular design
(Francesca et al., 2014; Spaey et al., 2020; Hasselmann et al., 2021; Mendiburu et al., 2022;
Kuckling et al., 2022; Hasselmann et al., 2023; Salman et al., 2024) receiving extensive
attention. Researchers have also proposed hybrid solutions that combine evolution and
automaticmodular design (Ligot et al., 2020; Cambier and Ferrante, 2022;Hasselmann et al.,
2023). A promising development is the recent integration of multi-level modeling into the
automatic design of control software (Baumann et al., 2022a; Endo et al., 2023). Beyond
(semi-) automatic design, various model-based approaches have been proposed, including
probabilistic (Correll and Martinoli, 2007; 2011), space-time continuous (Hamann and
Wörn, 2008; Hamann, 2010), property-driven (Brambilla et al., 2014), and curiosity-
driven models (Kaiser and Hamann, 2022).

Alongside the development of design methods, a better understanding of the reality gap
and its effects (Jakobi et al., 1995; Floreano et al., 2008; Francesca and Birattari, 2016) has
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enhanced their robustness to the sim-to-real transfer. Notably,
research has demonstrated that effects akin to those of the reality gap
can be replicated in simulation (Ligot andBirattari, 2020), giving rise
to the notion of “pseudo-reality.” A pseudo-reality is a simulation
model distinct from the one used during the design process. The
underlying idea is that control software capable of successfully
transferring from the design-phase model to a pseudo-reality is
more likely to cross the reality gap than software that cannot (Ligot
and Birattari, 2022).

As noted by several authors (Schranz et al., 2020; Dorigo et al.,
2021; Dias et al., 2021; Cheraghi et al., 2022; Kuckling, 2023),
significant progress has also been made in other areas of the
field. Swarms have been developed using underwater (Zahadat
and Schmickl, 2016; Connor et al., 2020; Berlinger et al., 2021)
and aerial robots (McGuire et al., 2019; Soria et al., 2020;
Pavliv et al., 2021; Schilling et al., 2022); heterogeneous swarms
have been explored (Dorigo et al., 2013; Zhu et al., 2024);
machine learning techniques—such as deep (Hüttenrauch et al.,
2017; Hüttenrauch et al., 2019; Yasuda and Ohkura, 2019) and
inverse (Gharbi et al., 2023; Szpirer et al., 2024) reinforcement
learning—have been integrated into swarm design; advanced
capabilities like SLAM (Kegeleirs et al., 2021; Lajoie and Beltrame,
2023) and computer vision (Verlekar and Joshi, 2017; Kegeleirs et al.,
2024a; Kegeleirs et al., 2024b) have been tested in swarm
contexts; studies on human-swarm interaction have been conducted
(Kolling et al., 2016; Podevijn et al., 2016); and swarms of
pico-satellites have been investigated (Pinciroli et al., 2008a;
Pinciroli et al., 2008b; Fdhila et al., 2012). Moreover, although
this paper focuses on macrorobots—i.e., robots at the centimeter
to meter scale—swarm robotics holds considerable promise for
applications in nanotechnology (Hauert and Bhatia, 2014; Law et al.,
2023), albeit with unique challenges of its own.

However, despite these advances, real-world applications of
swarm robotics remain extremely limited. To date, no commercial
or industrial deployment of robot swarms has been reported. Swarm
robotics appears to be at a critical juncture—understanding the
reasons for this lack of application and identifying possible enablers
could help steer the field toward practical deployment.

2 Towards applied swarm robotics

2.1 The practical issues

2.1.1 Platform limitations and experimental
constraints

A major obstacle to real-world swarm deployment is the
lack of modern, affordable, and reliable experimental platforms.
Experiments with physical robots remain costly and time-
consuming—challenges that scale with swarm size. Researchers
also face practical limitations: large spaces are often unavailable or
expensive, and acquiring many robots is financially prohibitive.
Common platforms used in single- or multi-robot systems are
typically too large and costly for swarm use. This has driven
the development of swarm-specific platforms that favor low
cost and compactness, but at the expense of sensing, actuation,
and computational power. The E-Puck (Mondada et al., 2009),
Kilobot (Rubenstein et al., 2012), and Crazyflie (Giernacki et al.,

2017) are among the most widely used platforms, but they
remain limited—plagued by noisy sensors and unreliable
actuators. As a result, researchers frequently resort to abstraction
(Dorigo et al., 2021), simplifying missions to work around
hardware constraints. For instance, two of the most common
swarm robotics missions—aggregation and foraging—demonstrate
clear limitations.1 Aggregation—robots gathering at a single
location—is achievable with minimal capabilities but has limited
relevance for real-world applications. Foraging—moving objects
from one location to another—has greater potential in domains
such as logistics, warehouse operations, or search and rescue. Yet,
current platform limitations often force researchers to abstract
away essential components, such as object manipulation. In both
simulation (Wei et al., 2016; Harwell and Gini, 2018; Song et al.,
2020; Jimenez Romero et al., 2024) and physical experiments
(Rubenstein et al., 2014; Francesca et al., 2015; Hecker and Moses,
2015; Pitonakova et al., 2018; Talamali et al., 2020), robots typically
do not carry real objects, undermining the practical credibility of
the task. Moreover, while robot swarms typically operate at high
densities in lab experiments, envisioned real-world applications
often involve sparse swarms, which would call for different control
strategies to perform their intended tasks (Tarapore et al., 2020;
Kwa et al., 2023b). This results in a disconnect between the long-
term ambitions of swarm robotics—space exploration, search and
rescue, ocean cleaning—and the highly abstracted, constrained
experiments that currently dominate the field. Compounding this
issue, platforms like the E-Puck and Kilobot rely on outdated
hardware and software architectures. Although efforts have been
made to modernize them, such as the Pi-Puck extension for the
E-Puck (Allen et al., 2020) or the ROS-ready operating system
DeimOS (Kegeleirs et al., 2025), they still fall short of overcoming
fundamental limitations.

Researchers are often left with two choices: build custom
robots or rely exclusively on simulation. Custom-built robots are
costly and time-consuming to develop, often tailored to specific
research needs—limiting reusability and reproducibility. These
efforts are frequently undervalued and rarely supported by thorough
documentation. Achieving both capability and compactness is
challenging: advanced components demand more space or power,
resulting in form factors unsuited to large-scale swarms. Moreover,
affordability depends on mass production, which custom robots
cannot achieve, while miniaturization requires investments only
feasible at industrial scale. Newer platforms such as the S-
Drone (Oguz et al., 2022), Mercator (Kegeleirs et al., 2022), and
Summit XL (Arregi and Secco, 2023) offer improved capabilities,
but none have resolved these trade-offs well enough to gain
widespread adoption.

2.1.2 Simulation tools and the deployment gap
Resorting exclusively to simulations is not an ideal solution

either. Few simulators are well-suited to swarm robotics. ARGoS3
(Pinciroli et al., 2012) and SwarmLab (Soria et al., 2020),

1 These missions are extensively cited in the literature (Brambilla et al.,

2013; Bayındır, 2016; Nedjah and Silva Junior, 2019; Schranz et al.,

2020; Calderón-Arce et al., 2022), with foraging receiving special

attention (Lu et al., 2020).
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while specifically designed for this purpose, lack the extensive
documentation and community support of more general-purpose
tools like Gazebo (Koenig and Howard, 2004). Gazebo itself,
however, is poorly optimized for large-scale swarm simulations,
often struggling to handle more than a few dozen robots efficiently.
More critically, the reality gap remains a central concern, especially
in the evolutionary approach (Jakobi et al., 1995; Hasselmann et al.,
2021). Recent applications of reinforcement learning to robot
swarms (Hüttenrauch et al., 2017; Hüttenrauch et al., 2019; Yasuda
and Ohkura, 2019) appear to face similar challenges. This is
suggested by the scarcity of convincing experiments conducted
with real robots in the current literature. More generally, even in
single-robot contexts, reinforcement learning methods are known
to struggle with sim-to-real transfer due to their sensitivity to
modeling inaccuracies and environmental variability (Zhao et al.,
2020; Salvato et al., 2021). Consequently, studies conducted solely
in simulation provide only limited insight into whether the
system will function as expected with real robots. Pseudo-reality
(Koos et al., 2013; Ligot and Birattari, 2020) might offer a partial
mitigation by exposing controllers to model variations, but it cannot
fully guarantee real-world reliability.

Recent studies (Kegeleirs et al., 2024c) have shown that even
when a designmethod succeeds on one physical platform, it may fail
to transfer to another.This challenge extends beyond the sim-to-real
gap and also affects deployment across physical platforms. We refer
to this broader issue as the deployment gap: regardless of whether
control software is developed in simulation or on a specific robot, its
effectiveness is not guaranteed when applied to another platform.
Although some methods robust to the reality gap show partial
resilience to the deployment gap, further performance degradation
still occurs. Consequently, developing control software using overly
simplistic robots increases the risk of failure when moving to more
capable, field-ready systems.

Resource-sharing infrastructures such as the Robotarium
(Wilson et al., 2020) offer partial relief by enabling remote access to
real robot swarms. However, these services have notable limitations:
users cannot directly interact with the robots or their environment,
iterative debugging is more difficult, and demand can restrict timely
access. Moreover, the robots—though more modern than Kilobots
or E-Pucks—still have limited capabilities, and the system does not
easily accommodate complex missions or environmental changes.
Scaling up such services would likely require commercial backing,
introducing additional costs for users.

2.1.3 Integration challenges: SLAM, vision, and
communication

Then, the limitations of current swarm platforms hinder the
integration of key robotics technologies such as SLAM, computer
vision, and communication. Although its potential was envisioned
by early work (Schmickl et al., 2006), only recently has swarm
SLAM (Kegeleirs et al., 2021) begun to show practical results (Lajoie
and Beltrame, 2023)—and even then, only under constrained,
highly structured conditions that are not typical of swarms.
Reliable localization remains a significant challenge, especially in
the absence of global positioning systems (Quraishi and Martinoli,
2022; Braga et al., 2024). Similarly, while computer vision is
ubiquitous in general robotics, it remains underutilized in swarms,
largely due to technical limitations. Basic applications have been

demonstrated, such as color-based signaling (Nouyan et al., 2009;
Chen et al., 2015; Jones et al., 2019; Garzón Ramos and Birattari,
2020) and human-robot interaction based on simple gesture and
face recognition (Nagi et al., 2014; Suresh and Martínez, 2019).
However, more advanced vision capabilities, like person tracking
and re-identification, have only recently been explored in distributed
systems (Popovici et al., 2022) and swarms (Kegeleirs et al., 2024a;
Kegeleirs et al., 2024b), with modest results so far. Communication
also remains underdeveloped (Di Caro et al., 2005; Cianci et al.,
2006). Many swarm experiments omit communication altogether,
or rely on highly abstracted models such as neighbor detection
without actual data exchange. In rare cases, robots share small
amounts of numerical data (Ducatelle et al., 2011; Ducatelle et al.,
2014; Hasselmann and Birattari, 2020; Garzón Ramos and Birattari,
2020; Talamali et al., 2021; Kuckling et al., 2022). Stigmergy
has gained renewed interest (Hunt et al., 2019), but existing
implementations often depend on fixed infrastructures that are
costly and limited to specific environments (Khaliq et al., 2014;
Reina et al., 2021; Na et al., 2021), or materials like wax and alcohol
(Russell, 1997; Fujisawa et al., 2014), which pose safety risks due
to their flammability and are impractical for most applications.
More recently, alternatives based on photo-chromatic pigments have
shown potential (Salman et al., 2020; Salman et al., 2024).

Communication between the swarm and external
systems—other robots (Dorigo et al., 2013; Kegeleirs et al.,
2024b; Zhu et al., 2024) or humans (Nagi et al., 2014;
Kolling et al., 2016; Mondada et al., 2016)—is also rare. Again,
this is largely due to the lack of suitable communication hardware
and protocols. Yet, such capabilities are critical for many envisioned
applications.

2.1.4 Regulatory, ethical, and societal barriers
Finally, the deployment of robot swarms remains constrained

by ethical and regulatory considerations, particularly regarding
their potential ecological and societal impacts (Garzón Ramos and
Hauert, 2024; Winfield et al., 2025). This is especially pronounced in
the context of aerial drones: although the underlying technology is
sufficiently advanced to perform tasks such as aerial surveillance
and object detection or recognition, the operation of UAV
swarms typically necessitates regulatory waivers and exemptions,
which vary significantly across jurisdictions (UK Civil Aviation
Authority, 2022; Australian Civil Aviation Safety Authority, 2024;
Code of Federal Regulations, 2025). A key factor underlying
the reluctance of regulators and operators is the inherent
uncertainty surrounding swarm behavior, compounded by a lack of
transparency and explainability in their collective decision-making
processes (Hussein et al., 2020; Naiseh et al., 2024). Accordingly, it
is critical to investigate how swarms are perceived by human users
(Carrillo-Zapata et al., 2020) and to develop strategies for fostering
(Nam et al., 2019; Lyons et al., 2025) and maintain (Liu et al., 2019)
trust, thereby enablingmore effective collaboration betweenhumans
and robots (Divband Soorati et al., 2022). Public skepticismmay also
be exacerbated by the increasing use of drones in military contexts,
as well as by dystopian portrayals of robots and AI in popularmedia,
both of which may hinder acceptance of swarm technologies in
everyday settings.
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2.2 The conceptual issues

2.2.1 Rigid interpretations of swarm principles
At a conceptual level, swarm robotics often clings to

foundational conventions, treating core principles as fixed rules and
defaulting to standard design choices without critical reflection.
The canonical definition emphasizes fault tolerance, flexibility,
and scalability—emerging from redundancy, self-organization,
and locality of sensing and communication (Dorigo et al.,
2014). These principles have driven progress but can become
limiting when treated as strict requirements. Due to technical
and economic constraints, achieving them in practice is often
difficult, prompting researchers to simplify experiments just to
preserve the “swarm” designation. Moreover, while these features
offer clear advantages, they are often seen in industry as impractical
compared to centralized, high-performance systems. This rigidity
discourages hybrid approaches that might be more viable in real-
world settings. A swarm can—and arguably should—leverage
centralized components when useful, without losing its distributed
character.

2.2.2 Verification and assumptions about swarm
properties

Equally important, fault tolerance, flexibility, and scalability are
often assumed rather than formally or empirically verified. Formal
verification remains a major challenge. Early approaches based on
temporal logic (Rouff et al., 2004; Winfield et al., 2005; Dixon et al.,
2012; Gjondrekaj et al., 2012) are highly sensitive to the state
explosion problem, limiting their scalability. Later methods—such
as probabilistic model checking (Konur et al., 2012), statistical
model checking (Massink et al., 2013), and property-driven design
(Brambilla et al., 2014)—enabled more scalable analyses but often
lacked consistent implementation of system models that support
practical simulation and testing. More recent techniques come with
trade-offs: some require extensive expert knowledge (Coppola et al.,
2019), others focus solely on software-level verification (Merlo et al.,
2022), and some reintroduce scalability issues (Leofante et al.,
2019). Consequently, researchers often fall back on qualitative
demonstrations—for example, showing stable performance across
different swarm sizes or different environments, or resilience
to robot failures. Recent findings indicate that scalability
(Kuckling et al., 2024) and possibly other key properties (Hunt et al.,
2019) may have practical limitations—even in systems specifically
designed to exhibit them. While these properties are definitely
an asset of robot swarms, making unexamined assumptions
about them without rigorous validation risks misleading
future research.

2.2.3 Isolation vs integration with external
systems

Rigid thinking in swarm robotics also affects how swarms are
composed and interact with other systems. Most studies focus on
homogeneous swarms operating in isolation. Even heterogeneous
swarms—where different types of robots collaborate (Ducatelle et al.,
2011; Dorigo et al., 2013)—are typically treated as self-contained
entities (Kwa et al., 2020; Wang et al., 2021; van Diggelen et al.,
2024), broadening capabilities but not addressing isolation from
external actors such as humans, other robots, ormachines. Although

some exceptions exist (Zhu et al., 2024), it remains rare for swarms
to operate alongside—let alone in support of—other systems. Yet,
one of their key strengths is distributed environmental sensing:
swarm robots can rapidly gather and update mission-specific data
through peer-to-peer sharing (Jones et al., 2020). This swarm
perception is often studied in the context of collective behavior
(Brambilla et al., 2013; Trianni and Campo, 2015) and decision-
making (Valentini et al., 2016b; Valentini et al., 2016a; Strobel et al.,
2018; Zakir et al., 2022), but its potential to assist external agents
remains underexplored (Naghsh et al., 2008; Kegeleirs et al., 2024b).
Acknowledging that swarms need not be self-contained could
unlock a wide range of new applications.

2.2.4 Overlooked aspects: navigation,
heterogeneity, and data security

Several critical topics remain underexplored. Navigation, for
instance, is often treated as an implementation detail, despite its
central role in robotic behavior and its influence on experimental
outcomes. Random walk is the default strategy in many studies,
yet this term covers a range of behaviors—Brownian motion
(Feynman et al., 2011), correlated random walk (Renshaw and
Henderson, 1981), Levy walk (Zaburdaev et al., 2015), and Levy
taxis (Pasternak et al., 2009)—each with different performance
characteristics depending on the platform and context. For instance,
a configuration optimized for Kilobots (Dimidov et al., 2016)
performs poorly on E-Pucks (Kegeleirs et al., 2019). More advanced
strategies such as flocking (Hauert et al., 2011; Toshiyuki et al.,
2016; Baumann et al., 2022b; Brandstätter et al., 2024) and
connected locomotion (Mamei et al., 2004; O’Grady et al., 2009;
Slavkov et al., 2018; Carrillo-Zapata et al., 2019) are promising
alternatives and deserve further attention.

Finally, secure data storage and sharing (Hunt and Hauert,
2020) remains overlooked in robot swarms. Their decentralized
nature provides inherent advantages: sensitive data is fragmented,
stored locally, and often shared as processed outputs rather
than raw streams—all of which reduce vulnerability to
unauthorized access. Still, swarms are susceptible to attacks,
including infiltration by byzantine robots (Strobel et al., 2023)
or physical capture of units to access onboard data. Practical
deployments rely on centralized infrastructure, introducing
additional risks when interfacing with external systems. Blockchain-
based solutions have been proposed (Dorigo et al., 2024), but
robust, field-tested security mechanisms for swarms remain an
open challenge.

2.3 Key enablers for real-world
deployment

2.3.1 Bridging the deployment gap
From a practical standpoint, swarm robotics research must

align more closely with real-world conditions. First, providing
evidence that a robot swarm can bridge the deployment gap
should become standard practice. It remains uncertain whether
findings obtained on current research platforms are transferable
to the advanced robots required for real-world applications. In
particular, it is unclear whether artificial evolution could effectively
generate behaviors for more capable, sophisticated swarms. Hence,
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simulation experiments should be systematically validated by real-
robot experiments or, at a minimum, in pseudo-reality (Ligot and
Birattari, 2020; Ligot and Birattari, 2022). In addition, hardware-in-
the-loop approaches can also yield valuable insights and strengthen
the connection between simulation and reality (Zhang et al., 2020;
Khaliq et al., 2021; Jiang and Patil, 2022). Automatic modular
design approaches like AutoMoDe (Birattari et al., 2019; 2021) have
shown promise in narrowing the deployment gap (Francesca et al.,
2014; Kegeleirs et al., 2024c). Another promising strategy is to
use a smaller, less powerful platform as a proxy for a more
advanced one (Kegeleirs et al., 2024c). If control software can
transfer between the two, the smaller platform can be used for
large-scale testing—albeit with limited capabilities.

2.3.2 Modernizing swarm platforms
Second, standard research platforms in swarm robotics should

evolve toward modern, more capable robotic systems. Hardware
for sensing, actuation, and computation has become increasingly
compact and affordable. Additionally, adopting standard
frameworks—such as ROS—or developing alternatives (Baumann
and Martinoli, 2021) would enhance robot capabilities, encourage
benchmarking, and improve reusability of research outputs.
The long-standing image of swarm robots as simplistic, near-
useless individuals—once a powerful metaphor for emergent
intelligence—is now becoming a liability. Even without competing
with industrial systems, designing research-dedicated robots with
similar capabilities would support emerging technologies like
swarm SLAM and enable the integration of computer vision. More
capable platforms would also allow researchers to design more
complex missions that demand richer and more relevant behaviors.
In particular, robot-to-robot communication should be more
prominent in experiments to fully leverage collective intelligence.
Collaboration with industry could help align platform design with
real-world needswhile contributing valuable expertise and technical
resources.

Moreover, the concept of robot swarms can extend to systems
beyond the traditional focus on mobile robots—whether terrestrial,
aerial, or aquatic. Stationary systems—including intelligent
structures, embedded objects, or even non-autonomous robots
like wearables—can also operate as swarms. For example, a
swarm of smart solar panels could use self-organization and self-
assembly to maximize energy production. Recent studies also
envision swarms of intelligent objects in artistic and architectural
applications (Alhafnawi et al., 2021), or to enhance human-
swarm interaction in activities such as brainstorming and opinion
gathering (Alhafnawi et al., 2022).

2.3.3 Breaking swarm stereotypes
Conceptually, the idealized definition and role of robot swarms

should be re-examined to better leverage their unique strengths.
Even systems that only partially conform to traditional swarm
constraints can offer significant value. A semi-autonomous swarm
guided by a leader—be it a centralized system or another robot—can
still exhibit self-organization, redundancy, and local interactions at
the agent level. Such swarms may be ideally suited for environments
like warehouses or monitoring systems. Recent research on ad
hoc hierarchical structures emerging through self-organization

offer another promising direction, closer to swarm definitions
(Mathews et al., 2017; Zhang et al., 2023).

The expected level of flexibility in swarms may also
warrant reconsideration. While adaptability is a clear
strength—especially in unknown environments—many real-
world applications involve (semi-)structured settings where
adapting the environment to suit the swarm may be more
practical. Indeed, adapting the environment to accommodate
robotic systems is already common in domains such as social
and assistive robotics (Šabanović, 2010; Kyrarini et al., 2021;
Tsunoda and Premachandra, 2021; Kodate, 2023; Yoshikawa,
2024). In light of these shifting assumptions and hybrid
designs, researchers should be more deliberate in defining the
properties they expect from swarm systems and should more
frequently employ formal verification methods. To support
this, the development of standardized metrics and evaluation
frameworks is particularly important (Ferreira Cruz et al., 2021;
Kwa et al., 2023a; Milner et al., 2023).

2.3.4 Rethinking swarm’s role
Expanding beyond traditional swarm structures—through

heterogeneity or support for external systems—could greatly
broaden the field’s applications. In particular, leveraging swarm
perception to collect and relay data for other systems is
highly promising. A swarm can act as a distributed sensor
network, continuously collecting and updating mission-specific
environmental data. Although such data is usually used internally to
refine collective behavior, it can also be viewed as a shared, dynamic
environmental database. Providing this information to external
systems—for instance, through communication with a separate
agent—could supply critical data for completing other tasks. For
instance, a robot swarm may not be ideal as a standalone search-
and-rescue solution, but could still play a vital role by supporting
human rescuers.

Human-swarm interaction already partially explored this
concept (Kolling et al., 2016; Hussein and Abbass, 2018), enabling
operators to use swarm-generated information to improve safety
and efficiency. For example, a rescuer could locate victims based on
swarm data, or a speleologist might rely on swarm-generated maps
to plan an exploration.

Finally, swarm SLAM holds strong potential for supporting
external systems. While swarms typically excel at creating coarse,
abstract maps—less useful within the swarm—they are ideal for
scouting missions where the swarm’s objective is to quickly relay
basic mapping information to another system. Such maps can
provide valuable navigational support for other robots or situational
awareness for human operators, underscoring swarm SLAM’s role in
exploration and reconnaissance.

Ultimately, realistic applications will require swarm robotics
to integrate modern technologies and rethink some of its core
assumptions. Combined with SLAM, tracking individuals across
large spaces is one particularly promising use case. Multi-target,
multi-camera tracking (MTMCT) and person re-identification (Re-
ID) remain challenging, especially in uncontrolled environments
(Amosa et al., 2023; Tang et al., 2017; Ristani and Tomasi, 2018;
Gaikwad and Karmakar, 2021; Ye et al., 2022). Robot swarms
offer a unique advantage: they can reposition themselves to
overcome occlusions and capture richer visual data, in particular in
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TABLE 1 Practical and conceptual barriers in swarm robotics, and their corresponding enablers.

Category Barrier Key enabler

Practical

Outdated platforms with limited sensing, actuation, and computation Develop modern research platforms with enhanced sensors and computing
capabilities

Simulator limitations and deployment gap Apply pseudo-reality testing, hardware-in-the-loop validation, and
platform generalization techniques

Poor integration of SLAM, vision, and communication Embed advanced SLAM, vision, and communication stacks in new
standard platforms

Regulatory, ethical, and trust-related concerns Promote transparency, human-swarm trust, and early engagement with
regulators

Conceptual

Rigid adherence to canonical swarm properties Rethink the paradigm: allow hybrid or leader-guided designs while
preserving decentralization

Unverified assumptions about swarm properties Introduce formal validation, empirical testing, and standardized
performance metrics

Isolationist mindset (self-contained swarms only) Reposition swarms as task enablers or data providers within broader
multi-agent systems

Overlooked aspects (e.g., navigation strategies, heterogeneity, security) Prioritize these topics to enable richer, more realistic applications and
robust deployments

unknown environments where strategies dependent on fixed sensor
placements or path planning are impractical (Robin and Lacroix,
2016). They can also share data in real time to maintain robust
identification and localization, enabling support for other robots’
navigation. For example, a hospital delivery robot could use swarm-
generated data to locate the requesting doctor. In surveillance
or crowd monitoring, swarms could cover blind spots left by
fixed infrastructure. Crucially, swarm robots can do more than
detect—they can act. Unlike passive systems, swarms can initiate
local responses—eithermitigating an issue until human intervention
arrives or resolving it autonomously.

3 Conclusion

In this paper, we have reviewed the key challenges that
currently limit the adoption of swarm robotics in real-world
applications (see Table 1). In particular, progress is hindered by
the lack of affordable, modern research platforms and by a rigid
adherence to conventional definitions of swarm robotics. As a
result, many swarm experiments remain overly simplistic and offer
limited guarantees of reproducibility on real or more sophisticated
robotic systems. There is also a tendency to overestimate
swarm properties without sufficient empirical validation. We
argue that developing reliable, modern platforms—potentially
through industry collaboration—would empower researchers to
perform more realistic and impactful experiments, accelerating
progress in navigation, vision, and communication. We further
contend that rethinking the conceptual foundations of swarm
robotics could open up novel application domains. In particular,
loosening strict adherence to traditional swarm principles could
significantly broaden the scope of the field. For example, developing

semi-autonomous swarms or swarms designed to support
external systems offers promising pathways toward real-world
deployment.
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