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This paper presents a general framework that integrates visual and acoustic
sensor data to enhance localization and mapping in complex, highly dynamic
underwater environments, with a particular focus on fish farming. The pipeline
enables net-relative pose estimation for Unmanned Underwater Vehicles (UUVs)
and depth prediction within net pens solely from visual data by combining
deep learning-based monocular depth prediction with sparse depth priors
derived from a classical Fast Fourier Transform (FFT)-based method. We further
introduce a method to estimate a UUV’s global pose by fusing these net-relative
estimates with acoustic measurements, and demonstrate how the predicted
depth images can be integrated into the wavemap mapping framework to
generate detailed 3D maps in real-time. Extensive evaluations on datasets
collected in industrial-scale fish farms confirm that the presented framework
can be used to accurately estimate a UUV’s net-relative and global position
in real-time, and provide 3D maps suitable for autonomous navigation and
inspection.
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1 Introduction

The aquaculture industry has seen rapid growth over the last decades. Fish farming,
in particular, has emerged as a vital source of the global seafood supply (FAO, 2018). This
growth, however, presents new challenges in terms of ensuring efficient, safe, and sustainable
operations (Føre et al., 2018). Fish farming often involves a significant amount of manual
labor, which can be physically demanding and dangerous. Tasks such as net inspection,
maintenance, and repairs expose workers to hazardous underwater conditions, including
rough seas, low visibility, and the presence of potentially harmful marine life. Addressing
some of these problems, the interest in robotic systems for aquaculture has also grown
significantly in recent years (Kelasidi and Svendsen, 2023).

Current robotic solutions often involve the use of manually operated UUVs, such as
Remotely Operated Vehicles (ROVs) for inspection and intervention activities in fish farms,
which are expensive to deploy as they can only be operated by highly trained ROV pilots
(Føre et al., 2018; Kelasidi and Svendsen, 2023). As the number of fish farms increases, and
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with the trend toward deploying these farms in increasingly
remote locations (Bjelland et al., 2015), the automation of
such tasks becomes crucial for enhancing operational efficiency
(Schellewald et al., 2021). Autonomous UUVs offer a promising
solution to these challenges, reducing weather and manual labor-
dependent risks and allowing for more efficient and sustainable
procedures (Kelasidi and Svendsen, 2023). However, deploying
autonomous UUVs in fish farms requires robust methods for
localization and mapping in net pens, which remains an open
research problem.

Traditional UUV navigation systems rely heavily on acoustic
sensors, such as echo-sounders, Ultra-short baseline (USBL)
acoustic positioning systems, and Doppler Velocity Loggers (DVLs)
(Fossen, 2011; Kelasidi and Svendsen, 2023). While effective
in many underwater scenarios, these sensors face significant
limitations in fish farms. The permeable nature of fish nets
can lead to weak or distorted acoustic reflections, resulting in
poor target signal strengths (Amundsen et al., 2022). The high
density of fish within these environments further disturbs acoustic
measurements (Rundtop and Frank, 2016). Recent research has
explored the use of stereo vision systems and image processing
techniques to enhance UUV localization (Skaldebø et al., 2023).
Stereo cameras, for example, have been employed to achieve 3D
spatial awareness, which is crucial in environments where precise
positioning relative to net structures is required. Techniques such
as the FFT-based method for relative pose estimation in net pens
(Schellewald et al., 2021) and the TRU-depth network for depth
estimation (Ebner et al., 2024) have shown promising results in
underwater applications. Additionally, methods for pose estimation
using laser triangulation have demonstrated accuracy comparable
to DVL systems at a fraction of the cost, making them a viable
option for short-distance ranging in fish farming environments.
However, these methods also encounter similar issues with
interference from fish and are additionally sensitive to light changes
(Bjerkeng et al., 2023).

Simultaneous Localization and Mapping (SLAM) is widely
used for mobile and aerial robotics applications (Ebadi et al.,
2024). Map representations generally fall into two categories: sparse
feature-based methods and dense methods. Sparse representations,
which rely on a small set of distinctive features, are well-
suited for odometry and localization tasks and efficiently scale to
large environments (Abaspur Kazerouni et al., 2022). In contrast,
dense methods–including point clouds, surfels, meshes, and
volumetric maps–provide rich representations of the environment’s
geometry, making them ideal for navigation and inspection tasks
(Mascaro and Chli, 2024). Volumetric maps (Izadi et al., 2011;
Oleynikova et al., 2017; Vespa et al., 2018; Duberg and Jensfelt,
2020; Reijgwart et al., 2023) facilitate safe navigation in unknown
environments, as they can represent objects of arbitrary shape
and explicitly differentiate observed free space from unobserved
space. In this work, we adopt wavemap (Reijgwart et al., 2023)
due to its hierarchical structure and advantageous mathematical
properties, enabling state of the art accuracy and efficiency in
mapping and downstream applications, such as reactive collision
avoidance (Reijgwart et al., 2024).

Compared to land and flying robots, the majority of mapping
approaches in the underwater domain rely on acoustic sensors
(e.g., imaging sonars) to generate the map of the inspected

areas (Xu et al., 2022; Jiang et al., 2019; Arnesen et al., 2018).
Lately, interest has increased in integrating visual, inertial, and
acoustic sensors for underwater SLAM (Kelasidi and Svendsen,
2022). SVin2 is a state-of-the-art underwater SLAM method
fusing camera, sonar, IMU and a barometer (Wang et al., 2023).
However, it struggles to provide accurate results in low-texture
environments. Joshi and Rekleitis (2024) proposed a visual-inertial
odometry method fusing measurements from the magnetometer.
Song et al. (2024) proposed TURTLMap, and investigated a real-
time localization and dense mapping for UUVs for low texture
applications by also integrating DVL measurements, yet it was
only tested in a controlled lab environment. Cardaillac et al.
(2024) presented an offline approach utilizing multi-beam sonar
data for mapping of net pens. However, very limited research
exists on SLAM for autonomous operations in dynamic underwater
environments such as fish farms, which remains an open research
challenge.

To address these challenges, this paper investigates monocular
vision-based methods to: 1) obtain point-wise distance and
orientation estimates with respect to a flexible, deformable net
structure, 2) predict dense depth images frommonocular visual data
for subsequent use in pose estimation, UUV navigation, and 3D
mapping in dynamic environments, 3) estimate the global pose of
an UUV within the net pen by fusing the relative pose observations
with the robot’s additional onboard sensors, and 4) create detailed
3Dmaps of the net-pen environments for navigation and to identify
irregularities such as holes, or biofouling in industrial-scale fish
farms. Evaluations on large datasets recorded in industrial scale fish
farms showcase the potential of combining learning-based depth
prediction methods (Ebner et al., 2024; Job et al., 2024), FFT
based net-relative pose estimationmethod (Schellewald et al., 2021),
and wavemap (Reijgwart et al., 2023) to estimate both net-relative
and global position of the UUV, and produce accurate maps, even in
such dynamic environments.

2 Methods and theoretical
background

This section provides a brief overview of the proposed
underwater localization and mapping framework, which allows
UUVs to operate in dynamic underwater environments.

2.1 Fast Fourier Transform (FFT)-based
method

Schellewald et al. (2021) proposed an FFT-based method to
estimate the pose of a net structure relative to the camera attached
on an UUV, utilizing only monocular visual information. In
particular, this method analyzes the frequency spectrum of captured
images to determine the distance and orientation of the camera
based on characteristic regular patterns within the image, as well
as the knowledge of the actual dimensions of the net squares.
In order to analyze the image I in the frequency domain, I is
converted using the Fourier Transform (FT), denoted as F(I).
To efficiently compute F(I), the FFT-based method utilizes the
FFT algorithm, developed by Cooley and Tukey (1965), which
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computes the Discrete Fourier Transform (DFT) of an N×N image
(u,v ∈ [0,N− 1]) using the following expression:

F (u,v) = 1
N

N−1

∑
x=0

N−1

∑
y=0

I (x,y)e−i2π(
ux
N
+ vy

N
), (1)

where N = 2m andm being an integer.
As proven by Schellewald et al. (2021), repeated textures,

such as a net’s squares, lead to peaks within the FT’s magnitude
image |F{I}| (see Figure 1a). This method therefore splits the
image into Regions of Interest (ROIs), computes each region’s
FFT, and counts how many of its local maxima lie on a regular
grid. If a certain threshold is exceeded, the ROI is assumed
to contain a subsection of the net. The grid of local maxima
can then be used to reconstruct the base vectors of a single
parallelogram that approximates the mesh squares. In combination
with knowledge of the net’s grid size and the camera’s intrinsics,
this parallelogram can, in turn, be used to estimate the camera’s
net-relative translation and orientation. Note that the original
paper (Schellewald et al., 2021) concludes that we do not need
to define the threshold for each region since the FFT-based
method does not depend on a fixed threshold value, as it detects
regular grid patterns based on local maxima in the frequency
domain. Therefore, the method performs well as long as the regular
structure is (partly) visible in the region, even if the contrast in
the areas is low. In addition, we need to emphasize that while
generic nets are flexible in principle, commercial salmon pens
are typically more rigid and tend to maintain (local) regularity,
especially over small ROIs used by the suggestedmethod. For further
details, see Schellewald et al. (2021).

2.2 Depth image prediction methods

Several depth image prediction methods have been proposed in
the scientific community suited for applications in the underwater
domain, such as DepthAnything (Yang et al., 2024a), RAFT-
Stereo (Lipson et al., 2021), UDepth (Yu et al., 2023), TRU-depth
(Ebner et al., 2024) and RadarMeets Vision (RMV) (Job et al., 2024).
This paper adapts the TRU-depth and RMV methods to obtain
depth image predictions of the inspected net pen, as both methods
enablemetrically scaled real-time depth estimation and thus surpass
the inherent problem related to scale ambiguity of monocular
camera systems, while also addressing the issue of generalizability
of supervised deep learning models to predict metric depth from
monocular RGB images.

2.2.1 TRU-depth method
TRU-depth is a deep learning-based approach that generates

dense depth images from monocular RGB images by fusing
additional sparse depth information, such as depth priors from
external measurements. The network utilizes these sparse depth
priors tomitigate scale ambiguity, producingmetrically scaled depth
images. Figure 1b illustrates the steps of the TRU-depth method.
In the first step, the sparse depth measurements are converted into
a dense format that can be used as a network input. To achieve
this, the method uses two types of dense prior maps. The first map,
denoted as S1, is created through nearest-neighbor interpolation,

where each pixel in the map is assigned the depth of its closest key
point. The second map, S2, represents the probability distribution
of distances from each pixel to the nearest key point, modeled as
a normal distribution (see Figure 1b). These maps are concatenated
into a dual-channel image and fed into the depth prediction network
together with the monocular image.

The network architecture combines a lightweight encoder-
decoder backbone with a vision transformer. The encoder-decoder,
based on MobileNetV2, processes the input image and the dense
prior maps, extracting features at various resolutions. The vision
transformer then refines these features by dividing the depth range
into adaptive bins and predicting the depth values based on the bin
probabilities. This approach allows for efficient and accurate depth
estimation.

The training of the network involves several loss functions
to ensure robust performance: a) A Root Mean Squared Error
loss function to guide the model in learning accurate metric
scale predictions, b) A Scale Invariant Logarithmic Loss to
balance the focus between close-range and distant depth accuracy,
and c) A Chamfer Distance Loss to regularize the bin sizes,
ensuring that they align with the actual depth distribution in
the images. In summary, the TRU-depth method significantly
improves depth prediction accuracy by effectively integrating
sparse depth priors into a lightweight real-time deep learning
framework, making it suitable for deployment on mobile and
embedded systems, and therefore highly relevant in context of the
investigated scenario. For more detailed information, we refer to the
original paper (Ebner et al., 2024).

2.2.2 Radar meets vision method
Job et al. (2024) recently proposed a method for learning-based

depth image prediction using sparse priors. The method is designed
for millimeter-wave radar sensors, which have become increasingly
used in ground and aerial robotics applications. Since the point
clouds produced by such low-cost radar sensors are relatively sparse,
themethod is designed to operate with a low number of point priors:
five or fewer points are supplied during training. Radar sensors are
generally not designed for underwater usage, given the conductivity
of water. However, the method described by Job et al. (2024) does
not make strict assumptions specific to the radar modality and
generalizes well to depth priors from other sources.

Figure 1c provides a high-level overview of this method.
The input data for this method are comparable to the TRU-
depth method (Ebner et al., 2024) and consist of a single, 640×
480 pixel RGB image concatenated along the channel axis with the
single-channel sparse depth image. As the network is tailored to
a few priors; it is sufficient to sample up to five points from the
available depth prior points. If there are less than or equal to five
points available, all points can be used directly. If there aremore than
five depth prior points, a greedy furthest-point sampling algorithm
is applied to maximize the distance between the priors in the image
plane.The intuition behind this selectionmethod is tomaximize the
depth prior coverage across the scene.

In a second stage, the selected points are projected into the
image plane using the camera’s calibration and converted into a
densified depth image, following the process described by Job et al.
(2024). The prior points are expanded to a circular shape in the
image plane. This expansion accounts for the inherent uncertainty
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FIGURE 1
Overview of the Dense Image Prediction Methods. The TRU-depth method (Ebner et al., 2024) uses the available depth priors and converts them to
two dense network inputs. The output is a dense metric depth map. The Radar Meets Vision method (Job et al., 2024) limits the number of input depth
prior points to five. Using a dense representation of the sparse depth priors and the monocular image, the network predicts dense metric depth as well.
(a) Overview of the FFT-based method for net-relative pose estimation. (b) Overview of the TRU-depth method. (c) Overview of the Radar Meets
Vision method.

of the actual location for the prior points.This four-channel image is
input into the network, split into 14× 14 pixel patches, following the
architecture of Yang et al. (2024b). Multiple patches can use the scale
information by extending the prior points to a 5-pixel radius circular
shape. The patches are fed into an image encoder, and the encoder’s
embeddings are used in a transformer-style network. The decoder
produces metric depth image out of a two channel output image.We
refer to the original study for more details on the implementation
and considerations (Job et al., 2024).

2.3 Wavemap method

Mapping is crucial for UUVs operating in underwater
environments, ensuring safe navigation and facilitating inspection
tasks. Real-time mapping enables the robot to localize,
autonomously explore the environment or plan paths to specific
points of interest, and avoid collisions along the way. Additionally,
detailed maps created by UUVs are valuable for inspection
purposes, as they accurately document spatial relationships among
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underwater structures, including the net and its supporting
elements. Beyond single inspections, maps can be compared across
multiple missions to monitor environmental changes and assess
structural conditions over time.

Volumetric maps are particularly well-suited to fish-farm
operations. Unlike maps based on sparse features or geometric
primitives, volumetric representations accurately capture the
environment’s geometry and can model obstacles of arbitrary
shape. Compared to dense point-cloud, surfel, or mesh-based maps,
volumetric maps explicitly distinguish observed free space from
unobserved regions. This distinction is crucial in practice, as the
robot’s limited sensor field of view and occlusions caused by fish
and infrastructure often render large sections of its immediate
surroundings unobservable. Explicit modeling of unobserved
regions allows human operators or autonomous algorithms to
reason about their potential traversability or exploration value, while
also accounting for possibly hidden obstacles. Thus, volumetric
maps enable safe UUV deployments in fish farms without relying
on accurate prior maps.

This paper uses wavemap (Reijgwart et al., 2023), a volumetric
mapping framework that simultaneously achieves state-of-the-art
accuracy, memory efficiency, and computational efficiency. It can
fuse depth images, point clouds, and additional sparse depth
measurements to generate a 3D occupancy map in real time. The
method is specifically designed to handle the large amounts of data
generated by modern robotic sensors, addressing this challenge by
leveraging multi-resolution analysis using wavelets.

The core idea behind wavemap is to represent and update the
occupancy grid in a compressed wavelet space. The coefficients
obtained from Haar-wavelet decomposition align naturally with
an octree structure, enabling efficient hierarchical storage. As
new sensor data is received, the map’s occupancy probabilities
are updated using a linear log-odds formulation. Because the
wavelet transform itself is linear, updates can be performed
directly in the compressed domain, avoiding costly decompression
and recompression steps. Additionally, wavelet-based encoding
implicitly keeps all resolution levels synchronized.This significantly
improves uponpriormulti-resolution frameworks, such asOctomap
(Arnesen et al., 2018) or Supereight (Vespa et al., 2018), which
update the occupancy at one resolution per point in space and
require all remaining resolution levels to be synchronized explicitly.

Wavemap leverages its implicitly synchronized, hierarchical
structure to perform measurement updates in a coarse-to-fine
manner. By deriving error bounds through multi-resolution
analysis, wavemap dynamically determines the necessary resolution
at each point, focusing computational resources only where
additional detail is required. This ensures particularly high recall
of thin structures, such as rods and wires, which represent critical
obstacles in underwater environments. Additionally, wavemap
employs a “saturated region skipping” mechanism, efficiently
skipping updates in areas where occupancy probabilities have
already converged to the same value as the measurement update.
This significantly reduces computational load in regions with partial
or infrequent changes.

Wavemap’s hierarchical and always synchronized multi-
resolution representation also provides significant performance
benefits in downstream applications. In navigation tasks, it
enables multi-resolution search-based planning, hierarchical

traversability checking in sampling-based planners, hierarchical
frontier extraction for exploration, and low-latency reactive
collision avoidance. For inspection, wavemap’s wavelet-compressed
maps can be efficiently transmitted over bandwidth-constrained
and unreliable communication channels and naturally support
progressive loading and interactive refinement over ROIs.

3 Proposed framework

This section presents the full framework and discusses each of
the pipeline’s components in detail. In particular, it covers how the
robot’s net-relative pose, depth images, and global pose are estimated
and how they are combined to create a 3D map of the net pen’s
inspected area (Figure 2).

3.1 Field trials and datasets

Field trials have been performed in two different locations,
namely Rataren (October 2023, Cage 2) and Singsholmen (August
2024, Cage 15), at SINTEF’s ACE facilities SINTEF (2023). The
vehicle in Configuration 1 has been deployed during trials in
2023, while the system in Configuration 2 has been deployed
for field trials in 2024 as shown in Figure 3 and described in
Ohrem et al. (2025). The BlueROV2 with integrated sensors (Ping
Echosounder, Ping360, Waterlinked DVL, Nortek DVL, Stereo
Camera, Mono Camera, Multi-beam sonar), has been deployed
and commanded to execute both manually controlled motions
and net-relative autonomous navigation using Waterlinked DVL
measurements (Haugaløkken et al., 2024). The specifications of the
camera systems of the robotic systems are discussed in detail in
(Ohrem et al., 2025), while four Lumen Subsea Lights were set on
during the data acquisition (see Figure 3). As shown in Figure 3,
Configuration 2 does not integrate the 360 Ping sonar while
additional sensors such as Nortek DVL and Multi-beam sonar are
integrated compared to Configuration 1. Note that in this study
while we have considered datasets from both configurations of the
system, we did not utilize DVL measurements from Nortek and the
Multi-beam sonar.

During the trials, the net pen contained approximately
190,000 Atlantic salmon. Several datasets have been recorded
in different locations inside the net pens. All datasets are
logged with time-synchronization using ROS (Robot Operating
System). The two field trials show contrasting biofouling levels,
with the 2023 net pen being nearly biofouling-free and the
2024 net pen exhibiting moderate levels of biofouling. More
information about the experimental setup and access to the
datasets can be found in (Ohrem et al., 2025). The net’s grid
cells during the trials were 20 mm × 20 mm and 27.5 mm
× 27.5 mm in 2023 and 2024, respectively. In this paper,
results are presented for several cases in which the vehicle
was commanded to perform net-relative navigation at different
depths and distances from the net. The following case studies
are investigated; note that in this paper results are presented for
Case 1 - Case 8, while cases from additional datasets have been
presented in the Supplementary Appendix:
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FIGURE 2
Overview of the proposed general framework for localization and mapping for UUVs operating in dynamically changing environments.

FIGURE 3
A multi-modal sensor platform for data collection and autonomous operations: BlueROV2 with integrated sensors used in the field trials.

Case 1: Net-relative autonomous navigation at 3 m depth, with
varying speed and reference distances set to 1 m, 2.1m and
1.4 m (data from field trials in 2023),

Case 2: Net-relative autonomous navigation at 1.8 m depth, with
varying speed and at a constant reference distance of 2 m
(data from field trials in 2023),

Case 3: Net-relative autonomous navigation at 2.5 m depth with
UUV speed of 0.1 m s−1, with reference distances set to 1 m
and 1.5 m (data from field trials in 2024),

Case 4: Net-relative autonomous navigation at 4.8 m depth with
UUV speed of 0.1 m s−1, with reference distances set to
1.5m and 1 m (data from field trials in 2024),

Case 5: Net-relative autonomous navigation at 2.2 m depth with
UUV speed of 0.2 m s−1, with reference distances set to 1 m
and 1.5 m (data from field trials in 2024),

Case 6: Net-relative autonomous navigation at 2.4 m depth with
UUV speed of 0.1 m s−1 with reference distances set to 1 m
and 1.5 m (data from field trials in 2024),

Case 7: Manual navigation by an experienced operator at changing
distances ranging from 0.5m to 5 m (data from field trials
in 2023), and

Case 8: Net-relative autonomous navigation at 5.2 m depth with a
UUV speed of 0.2 m s−1, with reference distances set to 1 m
and 1.4 m (data from field trials in 2024).
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3.2 Net-relative pose estimation

Thefirst component of the proposed framework aims to estimate
the net-relative position of the UUVs inside the net pen. Note that
(visual) SLAMmethods require that unique features can reliably be
matched across subsequent frames (odometry) and when revisiting
the same place (loop closure). Fish nets and their support structures
generate a very large number of features that correspond to different
3D points but have identical descriptors (environmental aliasing).
Fish farms generally contain very few or no non-repetitive visual
landmarks (Kelasidi and Svendsen, 2022). Furthermore, the fish
themselves are visually striking but moving. This makes it very
challenging to achieve sufficiently high recall and low false-positive
rates to accurately estimate an ROV’s pose while robustly rejecting
the dynamic features corresponding to fish–especially under real-
time constraints. Furthermore as mentioned earlier, DVL sensors
are sensitive to occlusions and erroneous measurements caused by
moving fish (Amundsen et al., 2022). The accumulation of drift can
be slowed down by relying on a high-end IMU, but this solution is
very expensive and only extends the time frame within which the
drift remains acceptable. This motivated our work to obtain relative
pose estimates from camera images, to remove the dependency on
DVL and accurate IMU measurements.

As shown in Figure 4, the relative pose can be obtained either
from acoustic sensors (e.g., DVL (Haugaløkken et al., 2024)) or
by utilizing vision-based methods such as the FFT (i.e., FFT
points), TRU-depth, and RMV (i.e., depth images). Besides using
the estimated net-relative distances from the modified FFT-based
method as priors for the depth estimation methods, as described
in the following section, the obtained 3D points have also been
used to estimate the robot’s relative pose. As shown in Figure 5, the
FFT-based method proposed by Schellewald et al. (2021) has been
modified in this paper to obtain multiple distance estimates to nets
with a known net grid size. In particular, instead of outputting a
single pose estimate, the modified version outputs multiple distance
estimates, at known pixel locations (e.g., center of the ROIs spanning
in the area of the image after disregarding 50 pixel around the image,
as shown in Figure 5). Given the camera calibration, these can also
be transferred to 3D point estimates. This is achieved by not only
computing the FFT of a single ROI but also 20× 15 ROIs, thus
recreating multiple net squares and estimating the distance to each
of them (see Figure 5). By fitting a plane to the 3D points, utilizing
the least-squares method, one can compute the net-relative heading
and pitch.The outcome of themodified FFT-basedmethod provided
the priors (distances) and then by applying plane and parabolic
fitting and using the camera calibration parameters, it is possible to
estimate the relative pose of the UUV (see Figure 4).

As it can be seen in Figure 6, the resulting relative estimates are
less noisy, and more precise than the results of the original method,
therefore, in this paper, we will only compare the results from the
modified version with the results from the other methods. From the
comparison results shown in Figure 6c, it is obvious that both the
original and the modified FFT-based methods underestimated the
distances (especially when the robot keeps further distance from
the net pen) compared to the results from 2023 (Figure 6a). The
biofouling growth presence during the trials in 2024 could explain
such observed errors since this will directly result to errors on the
measured actual net grid size required from the FFT-based method.

Other source of observed errors could be related to precise camera
calibration, which can be investigated extensively in future studies.

To reduce runtime, the re-scaling of the ROI, as implemented
in the original method (Schellewald et al., 2021), was omitted. This
omission becomes evident when estimating distances close to the
net (d < 70 cm), as the ROI becomes too small, resulting in the
modified method failing to provide estimates (see Figure 6b). Note
that as mentioned earlier the FFT-basedmethod for pose estimation
requires knowledge of the net grid size and this consequently affects
the choice of ROI. Therefore, for the results obtained in this paper,
ROI of 300× 300 pixels and 512× 512 pixels has been adapted
for the data with net grid size of 20 mm × 20 mm (data from
2023) and 27.5 mm × 27.5 mm (data from 2024), respectively. The
ROI size could be further optimized to maximize the detectable
range or dynamically adjusted using DVL or Ping measurements,
thereby eliminating the need for manual or iterative ROI size
optimization. Interestingly, despite the lack of ROI resizing, the
modified method performs better at the range limit of the original
method, as shown in Figure 6.

3.3 Depth image prediction

In fish farming environments, estimating the net location is
essential for understanding the surrounding environment for both
self-localization and inspection purposes, meaning that, in addition
to focusing on net-relative poses, there is also interest in obtaining
dense depth information, particularly for scene reconstruction and
mapping purposes. Several methods have been demonstrated to
be effective in other underwater environments (Ebner et al., 2024;
Skaldebø et al., 2024).This paperwill discuss in detail the integration
of twomethods, TRU-depth (Ebner et al., 2024) and RMV (Job et al.,
2024) respectively, into the underwater localization and mapping
framework. The TRU-depth method trains on real data from
the underwater domain, while the RMV method fine-tunes on
synthetic data from aerial photogrammetry. We compare and
adapt the two methods due to the challenging nature of the
underwater domain in combination with semi-transparent net
pens. On a high-level, both methods employ an encoder-decoder
architecture, and the embeddings of the encoder are fed into a
vision transformer to then produce metric depth predictions in
the decoder.

Since the TRU-depth method is tailored to the underwater
domain, it presents a natural choice for our problem as well.
However, applying the method to images that primarily contain a
net is challenging. As mentioned earlier, the method requires RGB
images and additional point priors as inputs, necessitating a robust
approach for generating these sparse depth estimates. Meaning that
the TRU-depth network, not trained for such particular applications
where we have structures with repeated textures requires a relatively
large and consistent number of depth priors (the minimum number
of required priors are set to 10). Classic feature-matching methods
often fail when applied to repetitive, regular structures such as net
grids (see Botta (2024) where both classical feature-matching and
dense-matching approaches have been adapted and tested on the
datasets obtained from industrial scale fish farms). The modified
FFT-based method has therefore been used instead. This method
provides reliable, uniformly distributed, and accurate net-relative
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FIGURE 4
Relative pose estimation from either FFT generated points or from depth images.

FIGURE 5
Modifications on the FFT-Method, resulting in depth priors and 3D point estimates.

distance estimates, which are then used as priors for the TRU-
depth network (see Figure 2). Note that the TRU-depth method
rescales the images to 320× 240 pixels; therefore, the FFT-based
priors were scaled accordingly to match the expected pixel locations
for the priors. With these priors, the TRU-depth method was able
to generate the dense depth images that accurately represent the 3D
shape of the net pen. In an attempt to further enhance the results,
the network was re-trained on images from the newly obtained
dataset. Note that due to the lack of an absolute ground truth, DVL
net-relative distance measurements were used to create uni-colored
depth maps as ground truth for the re-training.

Since the FFT-based method can only detect the net, the TRU-
depthnetwork solely focused on the net aswell, which disregards fish
or other objects that might partially occlude the view.This demands
research to explore how alternative methods would respond when a
larger structure occludes a significant portion of the net, preventing
the FFT-basedmethod fromdetecting it in those areas. In particular,
in cases where the net is not in the field of view (i.e. when
approaching or leaving the net), fish pass the field of view, or
biofouling occludes the net-grid structure, an alternative solution
is required.

To address such situations, the RMV method
is adapted (Job et al., 2024). As described previously, the method
is designed to operate with few depth priors and can therefore
provide dense depth predictions in situations where the FFT-based
method fails completely or partly to provide sufficient number of
priors required fromTRU-depthmethod. In case that the FFT-based
method fails completely, very sparse depth sources such as DVLs
can be used as a replacement.

3.4 Global pose estimation

For the case studies for which the modified FFT-based method
provided robust relative pose estimates (e.g., no occlusions from
fish), the data has also been utilized to estimate the global pose of the
UUV. Note that direct measurements of the global pose of the UUV
from relevant sensors can also be used, provided the measurements
are precise and readily available during UUV operations.

The global pose is defined as the robot’s 3D position and
orientation within a fixed reference system in the net pen. The
chosen coordinate system is aligned with the centerline of the net
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FIGURE 6
Comparison between the original and the modified FFT-based method for net-relative pose estimation in Case 1, Case 7 and Case 8. (a) Case 1. (b)
Case 7. (c) Case 8.

pen and is positioned at the water level, with the z-axis oriented
downward and the angular coordinate ρ of the global coordinate
system is defined such that ρ0 = 0 corresponds to the robot’s starting
location at time step k = 0. The points obtained from the modified
FFT-based method are fitted to a cylinder of known diameter
(e.g., the cage diameter provided from the fish farm) of 50 m

(Ohrem et al., 2025) under the assumption that the net pen exhibits
no deformation. Note that this is a reasonable assumption, given that
the deformation is generally small and the results demonstrate the
efficacy of the simplemethod for global pose estimation proposed in
this paper. In this work, at least 30 detection points are required.This
thresholdwas found to yield reliable estimates.The radial coordinate
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FIGURE 7
Estimation of the global radial coordinate. (a) The resulting net pen radial coordinate rfft using the known net pen radius Rnet in xy-body coordinates
(coordinate frame unit vectors shown as eb). (b) The resulting global radial coordinate rfft in the global coordinate frame shown with unit vectors eg,
which is based on the radial estimates obtained in eb. Note that ρk is set to zero here, as this coordinate is obtained from integration of DVL velocities.

rk of the global coordinate system at time step k is estimated by fitting
a circle to the obtained points projected onto the xy-plane in body
coordinates. This is visualized in Figure 7a. Subsequently, the global
position vector in Cartesian and polar coordinate system is pkg =
(xk,yk,zk) = (rk,ρk,zk), where the superscript k denotes the time
step and the subscript g the global frame. The relative heading ψk

rel
at the time step k is computed by transforming to the global frame.
Since the robot’s roll and pitch were controlled to be zero during
the trials, the problem reduces to 2D, simplifying the estimation.
The global attitude then simplifies to ηk = (0,0,ψk). Note that this
is a common process for UUVs with integrated roll and pitch
stabilization modes.

The angular coordinate ρk cannot be obtained directly from
the FFT output and is therefore initialized to ρk = 0 for the first
computation step, as illustrated in Figure 7b.The angular coordinate
of the UUV is obtained by utilizing the DVL velocities in body

frame vkb,DVL, since these measurements were much less noisy than
the IMU sensor data of the BlueROV2. In particular, integrating
the DVL velocities over one time step results in a new angular
coordinate estimate ρk+1.The zk-coordinate is obtained directly from
the pressure sensor. The rotation matrix Rk

g,b rotates the horizontal
DVL body velocity to the global frame, which is then used to obtain
a new position estimate pk+1g through integration:

Rk
g,b =(

cosρk − sinρk 0

sinρk cosρk 0

0 0 0

) (2)

pk+1g = p
k
g +Δt ⋅R

k
g,bv

k
b,DVL (3)

ρk+1 = atan2(yk+1g ,x
k+1
g ) (4)
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FIGURE 8
Global pose and mapping pipeline visualisation. (a) Integration pipeline to obtain a global pose estimate of the UUV within the net pen. (b) Pipeline to
obtain volumetric 3D maps utilizing the wavemap method.

The radial coordinate rk+1 is obtained with the computed rk+1fft
fromFFT for the current time step k, effectively rotating the situation
from Figure 7b according to the velocity integration. The global
heading angle is calculated as ψk = ρk +ψk

rel. Combining these results
yields the global position pk and orientation ηk estimates for the
current time step k (see Figure 8a).

3.5 3D map representation

In this paper, twomapping approacheswere tested: first, stacking
of RGB point clouds generated from global pose estimates and
camera images, which allowed for visual inspection of stacking
quality and, by extension, the precision of the pose estimates.
Second, the wavemap method was applied (see Reijgwart et al.,
2023) to evaluate whether this technique, in combination with the
predicted depth images, can provide a valuable mapping solution
for underwater applications. All methods have demonstrated
real-time capability (Ebner et al., 2024; Reijgwart et al.,
2023), suggesting they offer promising directions for
future development.

Figure 8b presents the pipeline to obtain volumetric 3D maps
utilizing the wavemap method. To integrate the 3D pose estimates,
each estimate, initially represented as {t = (r,ρ,z),R = (ϕ,θ,ψ)}, was
transformed into a 4× 4 homogeneous transformation matrix T.
Additionally, the timestamps of the different pose estimates were
extracted from the dataset. Utilizing a ROS data player, the wavemap
methodwas then executed using eachT and its corresponding depth
image, generated by dense depthmap estimationmethods using FFT

priors, along with the associated timestamps (see Figure 8b). This
resulted in an incrementally built 3D volumetric map.

4 Results

This section presents evaluations across four key areas: relative
poses, depth image predictions, global pose estimates, andmapping.
To improve clarity and reduce noise, a sliding window smoothing
filter has been applied to the plots of relative distance and orientation
measurements. This technique enhances trend visibility and data
variation by averaging points within a defined sliding window,
offering a better representation of the methods’ performance. In
contrast, the results for depth images, global pose estimates, and
mapping are presented without smoothing to maintain the integrity
of the raw data.

4.1 Net-relative pose estimation

The distance measurements from the DVL and the forward-
facing ping echo sounder are compared with distance estimates
obtained from themodified FFT-basedmethod, the TRU-depth and
the RMV. Note that to qualitatively compare the results from depth
imaging methods, a method for extracting relative pose from depth
images is proposed. In particular, the mean distance from the image
center (choosing 100× 100 pixels center region in Figure 4) is used as
a distance estimate. For angular estimation, a least-squares planar fit
is employed (this sub-pipeline is also illustrated in Figure 4). While
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FIGURE 9
Net-relative distance comparison results using the estimation from the DVL plane approximation, modified FFT, TRU-depth utilizing all the obtained
FFT priors, RMV utilizing up to 5 FFT priors, distance from the ping sensor and the reference, which corresponds to the desired input to UUV to follow
constant distance from the net pen. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4. (e) Case 5. (f) Case 6.

this approximation is adequate for the data of the runs considered in
this study and serves the purpose of comparing the obtained results,
it is not a robust solution for determining net-relative pose of an
UUV from depth images in general.

The results for the different case studies can be seen in Figure 9
and in the Supplementary Appendix. Since the DVL measurements
are used as a reference signal by the UUV’s controller, the vision-
based methods are compared to these values due to the lack of
additional ground truth data. The results generally show a close
alignment among the methods, with particularly strong agreement
between the TRU-depth and FFT results for the majority of
the investigated cases. It is quite evident that the TRU-depth
method slightly underestimates the distance when compared to
DVL measured signal, while RMV overestimates the obtained net-
relative distance. The maximum error observed from results of
RMV is of approximately 0.5 m which is in the range of most
of the acoustic sensors utilized in underwater domain (Kelasidi
and Svendsen, 2022). However, we can see that when the FFT
method is not able to provide the required number of priors for
the TRU-depth method (e.g., net occluded from obstacle in front
of the camera), then this method is not able to estimate the net-
relative distance, while RMV which required few priors provides
smooth distance estimates (see Case 5 and Case 6 in Figure 9). As

expected due to the presence of fish, it is notable that both acoustic
sensors exhibit clear measurement outliers. This indicates the
advantage of utilizing vision-based methods for robust localization
in challenging underwater environments such the ones faced in
fish farms.

In Figure 10, the comparison between the measured relative
orientation computed from the DVL beams (Amundsen et al.,
2022) and the relative orientation estimates calculated from the
FFT points, as well as the TRU-depth-generated depth images, is
presented. As shown, the overall trends are consistent, although the
differences in relative orientation are larger than those observed in
the relative distance estimates discussed above. It is also evident that
all methods for obtaining relative orientations exhibit a significant
amount of noise, with the acoustic sensor showing the most. Note
that due to the lack of accurate ground truth data, a definitive
assessment of which method provides a more precise estimation of
the net’s relative orientation is not possible. Generally, the increased
noise or variability in the results could partially be attributed to
limited tuning of the heading controller during the trials. Future
improvements could include better tuning of the controller to
enhance performance.

Overall, the net-relative pose estimation results presented in
this paper highlight the error-proneness of acoustic sensors in
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FIGURE 10
Net-relative orientation results using the estimation from the DVL plane approximation, modified FFT and TRU-depth utilizing all the obtained FFT
priors. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

FIGURE 11
Comparison of depth images. Brighter colors correspond to smaller depth values, darker colors to larger values. The color range represents a depth
range of 0 m–4 m for all depth predictions. 1st row: RGB image; 2nd row: TRU-depth; 3rd row: Retrained TRU-depth; 4th row: RMV method 5th row:
DVL. (a) Case 1. (b) Case 3.
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FIGURE 12
Alternating RGB input images and metric depth prediction. The depth predictions are consistent: The ropes, fish, and AprilTags are clearly visible in
front of the net grid pattern.

fish farming environments, as well as the capability of vision-
based systems when operating close to or interacting with net
structures. This underscores the importance of investigating vision-
based methods for operations in fish farms, which often require
net-relative control strategies.

4.2 Depth images

This section compares the depth imaging results of TRU-depth,
the retrained TRU-depth and RMV models. From the resulting
depth images in Figure 11, it is clear that the TRU-depth network
does not detect fish in front of the net, which is to be expected since
the network is only given net-based FFT priors (see Section 4.2).
Note that the retrained TRU-depth network, trained using the flat
DVL depth images as ground truth, shows a pronounced flattening
effect after just one training epoch. This flattening is expected due
to the use of single-value depth images as supervision signal. The
retraining does not significantly affect the overall distance estimates
to the net but essentially removes the capability to estimate the
net’s relative orientation. Overall, the obtained results showcase the
TRU-depth network’s effectiveness when provided with accurate
priors, even in environments with few distinctive features and
transparent structures not seen in its training data.This underscores
the method’s significance for fish farming operations, highlighting
its potential to perform reliably in such challenging conditions.

The RMV method shows qualitatively better performance in
identifying the net, ropes, fish in front of the net and other objects
attached to net (i.e., AprilTags). This is shown in Figures 11, 12,
where fish and structures in front of the net are often visible. If close
enough, even the grid structure of the net is visible, which is essential

for inspection of the net integrity. Overall, the results highlight
the capability of this method to generalize to the underwater
domain. We attribute the strong relative scene depth generalization
capabilities to the pre-trainedDepthAnythingV2 (Yang et al., 2024b)
weights in combination with the metric predictions from the FFT
priors coming from the fine-tuning as described by Job et al. (2024).

The main limitation of integrating FFT-based priors into the
depth prediction methods is that it is only possible to obtain
priors from the net pen. In the future, fusing in additional priors
from classical stereo-matching or other methods to improve the
detection of fish and other structures/objects could enable more
comprehensive depth predictions. A proof of concept has been
demonstrated for TRU-depth by manually creating priors for both
fish and the net (see Section 4.2) and applying the TRU-depth
network with these priors, as shown in Figure 13. Note that since
the RMVmethod requires a small number of priors, we deem it also
feasible to fuse very few priors from, e.g. DVLonly and obtainmetric
depth predictions reliably.

4.3 Global pose estimation

Assuming no deformations in the net pen and no pitch and roll
of theUUV, the global position of the vehicle has been reconstructed
using the DVL velocity measurements.The resulting trajectories are
displayed in Figure 14.The top plot shows the trajectory from a top-
down view, while the second plot illustrates the third dimension,
depth. The third plot displays the difference between the radial
coordinate obtained from integration, and the one derived from
circle fitting. It is evident that, aside from brief periods, the errors
between the integration estimate and the actual optical distance
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FIGURE 13
The FFT method based priors under partially occluded conditions. The net-distances are labelled within the image in centimetres (top plot) and the
TRU-depth depth images generated by utilizing manually generated FFT-based priors (bottom row).

estimate are small. The few peaks in the error correspond to
instances where the ROV changes direction rapidly due to control
input adjustments, resulting in imprecise DVL measurements
and blurred images that lead to less accurate FFT-based
estimates.

To further evaluate the estimation accuracy, the calculated
global yaw estimates have been compared with the onboard IMU
measurements, as illustrated in Figure 15. Since the robot’s initial
headingwas arbitrary, the yaw-estimate plots are all shifted to start at
zero.The observed drift between the estimated andmeasured values
over time could be attributed to several factors, including imprecise
estimates, integration errors, or sensor drift in the DVL. Sensor drift
in the IMU itself also contributes to the discrepancy. Overall, the
vehicle’s trajectory has been estimated in a manner that appeared
consistent with the video data. Further evaluation through point
cloud stacking indicated that the estimates are relatively accurate.

4.4 3D map representation

To further assess the precision of the global pose estimations,
the RGB data was projected onto the estimated net cylinder, and
the resulting RGB point clouds were stacked, as shown in Figure 16.

By observing different lines visible across multiple images, one can
gauge the accuracy of the position estimates. A clear example is the
diagonal rope visible on the left side of the stackedpoint cloud,which
runs through multiple images and connects smoothly, even though
the images were taken from different distances and orientations.

To assess the potential of using learning-based depth images for
mapping and to evaluate the feasibility of applying the wavemap
method (Reijgwart et al., 2023) in underwater environments,
wavemap was used to fuse the depth images predicted by TRU-
depth and RMV at their estimated 3D poses. We have adapted
wavemap in this paper since (Reijgwart et al., 2023) presented
an in-depth performance comparison between wavemap, octomap,
voxblox and supereight2, where it is shown that wavemap achieves
the highest recall and memory efficiency, while matching the
state of the art in terms of overall accuracy and computational
efficiency.The experiments in wavemap’s original paper include also
comparisons integrating a depth image at various resolutions, which
matches the technical setup in our current paper. The resulting 3D
volumetric maps are shown in Figures 17, 18. Note that only the
occupied voxels are shown, colored by their z-coordinate in the
map’s coordinate frame. As can be seen, the reconstructed surfaces
are smooth–indicating that wavemap effectively filters out the
noise in the predicted depth images–and match the net’s expected
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FIGURE 14
The trajectory estimation results for the UUV. (a) Case 1. (b) Case 3.

FIGURE 15
Global Heading comparison of the IMU measurements and the cylinder pose estimations. (a) Case 1. (b) Case 3.

curvature. When comparing Figures 17, 18, the TRU-depth- and
RMV method -based 3D maps, respectively, we can observe few
differences in the output representations. As previously mentioned,
a distinct flattening effect is present in the depth predictions of the
TRU-depth method, which would lead to expecting an increased
consistency when constructing the 3D map of the net structure as
the observations match more closely with the FFT prior points.
However the resulting 3D maps using the depth predictions of
the TRU-depth (see Figure 17) and the results using the RMV
method (see Figure 18) are providing same level of information,
making both methods very suited for 3D mapping of net-pens.

This paper shows that by fusing net-relative pose measurements
with IMU and depth readings, our framework effectively eliminates

most drift sources. However, the ROV’s absolute yaw angle
remains unobservable and this error might therefore slowly grow
over time. Previous work has shown that the accumulation
of drift, and corresponding mapping errors, can effectively be
avoided by performing pose graph optimization over a graph
of volumetric submaps (Reijgwart et al., 2020). Extending our
work to create and align a collection of wavemap submaps, in
the same way voxgraph (Reijgwart et al., 2020) used a collection
of voxblox submaps (Oleynikova et al., 2017), would allow drift
along yaw to be eliminated as long as there is at least one
irregularity or object that makes the map non-symmetric along the
net pen’s cylindrical axis. This would be an interesting direction for
future work.
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FIGURE 16
Stacked point clouds from image projection onto cylinder fittings. The vertical and diagonal ropes in the image visibly coincide, which shows the
accuracy of the pose estimation. (a) Case 1. (b) Case 2.

FIGURE 17
Volumetric maps generated by the wavemap method using the depth images generated by TRU-depth and the estimated 3D poses. Only the occupied
voxels are shown, colored by their z-coordinate in the relative frame of the map.

FIGURE 18
Volumetric maps generated by the wavemap method using the depth images generated by RMV and the estimated 3D poses. Only the occupied voxels
are shown, colored by their z-coordinate in the relative frame of the map. (a) Case 1. (b) Case 2. (c) Case 3. (d) Case 4.

In general, the results demonstrate the potential of using
wavemap to fuse the predicted depth images into an accurate
volumetric map. Since the depth prediction methods and wavemap
both run in real-time (Ebner et al., 2024; Reijgwart et al., 2023),
this map provides a live 3D reconstruction that can be used
for increased situational awareness of an operator and facilitate
autonomous navigation including global path planning (Reijgwart,
2024) and reactive collision avoidance Reijgwart et al. (2024). Note

that wavemap was primarily designed for accurate, low-latency
navigation, including reactive collision avoidance (Reijgwart et al.,
2024). The reactive collision avoidance policy can also readily be
used to enhance safety during manual piloting (Reijgwart et al.,
2024). Given its geometric accuracy, wavemap maps are already
well suited for structural analysis tasks. Extending the framework to
include additional channels, such as reflectivity, color information
or semantics is straightforward. This future work would allow
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FIGURE 19
Ground truth distance from AprilTags mounted directly in front of the net, compared to DVL, modified FFT, TRU-depth and RMV method. All methods
besides DVL are only plotted when the AprilTag is in view and its pose can be computed. (a) Case 5: A single marker is visible between 54 s and 61 s.
The FFT-priors get lost between 57.5 s and 58 s. (b) Case 6: A single marker is visible between 90 s and 104 s. At 97 s a fish passes the field of view of the
camera. (c) Case 9: A marker is visible between 21 s and 25 s. (d) Case 10: A single marker is visible between 40 s and 45 s. The FFT-method fails to
provide priors for a prolonged time from 41.5 s. (e) Case 11: A single marker is visible between 65 s and 72 s. The FFT-method fails after 71 s, due to the
tag influencing the readings. (f) Case 12: A single marker is visible between 35 s and 42 s. Fish are passing the camera view, which explains large
changes in the net-distance predictions.

it to be used to monitor non-geometric properties, including
biofouling, as well.

4.5 Net-relative distance results

In general, obtaining absolute ground truth measurements in
underwater environments is challenging. To address this challenge
and obtain ground truth distances to the net, passive visual markers
(i.e., AprilTags) have been placed directly on the net surface during
the field trials in 2024. Note that since the visual markers are not
visible in every frame thus continuous ground truth results are not
feasible during the full autonomous net-relative navigation mission.
In addition, occlusions fromAprilTagswill influence the results of all

camera-based methods. However, having AprilTags attached on the
net and using the camera intrinsic parameters, the physical size of
the tags and the knowledge that the tag is printed on a rigid, flat plate,
the relative pose of the camera to the tag can be estimated (Wang and
Olson, 2016). In particular, adapting themethods proposed byWang
andOlson (2016), we identify the corners of themarkers and extract
the average depth values as ground truth in the rectangle described
by the four points.

With the knowledge of the pose of visible AprilTags and
extracting their depth values, it was possible to evaluate the
depth prediction performance of all net-relative distance estimation
methods investigated in this paper. The mean absolute error (MAE)
metric is adapted for this comparison and it is given by

eMAE =mean(|di − dAprilTag|) , (5)
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TABLE 1 MAE of the respective depth prediction method compared to the ground truth derived from the AprilTag marker.

MAE [m] Modified FFT TRU- depth RMV DVL N. AprilTag frames

Case 5 0.095 0.132 0.173 0.269 158

Case 6 0.089 0.159 0.235 0.312 420

Case 9 0.135 0.207 0.281 0.205 127

Case 10 0.074 0.135 0.318 0.231 73

Case 11 0.098 0.147 0.187 0.320 157

Case 12 0.189 0.194 0.389 0.265 136

Avg. all cases 0.113 0.162 0.264 0.267 179

The results are averages over all frames, where the marker can be detected and each measurement method is available at the same timestamp. The best values are in bold, and the second-best
values are underlined. The Radar Meets Vision method is abbreviated as RMV.

TABLE 2 Comparison of method runtimes.

Method Avg. Runtime
(ms)

Number of ran
frames

FFT (300x300px) 176.4 > 800

FFT (512x512px) 403.5 > 800

TRU-depth Network 1.13 >3500

RMV Network 23.71 >500

Relative Pose 0.083 >10000

Cylinder Pose 1.251 >10000

wavemap 31.8 50

where dAprilTag is depth of the AprilTag marker and di is the
depth of either the TRU-depth, the RMV, the DVL, the modified-
FFT method or sensor in the image location of the AprilTag.
Meaning that if the respective net-relative distancemethod performs
adequately, the depth of the AprilTag should correspond to the
predicted depth in the location of the marker and result in a low
absolute relative error.

Figure 19 and Table 1 show comparison results of the distances
estimated and performance in terms of the average absolute error
from the DVL sensor measurements, modified FFT-based, TRU-
depth and RMV methods, respectively. The errors reported in
Table 1 refer to the average depth values within the AprilTag
evaluation rectangle, while the number of frames with observable
markers is shown in the last column of Table 1. The estimated depth
distances are plotted for the time duration in which the AprilTags
were visible in the recordings for several cases (see Figure 19). As
the DVL returns a single point depth, it is assumed to have the same
depth in the center, as well as the tag location. It is important to
mention that no FFT-based priors can be generated directly on the
AprilTag. However, since the net can be represented as a plane in

each frame the net distance error introducedwith the approximation
for the FFT-based depth on the AprilTag is expected to be generally
low. Therefore, since the modified FFT method returns only points
on the net, the tag depth is estimated by the average of all FFT
points closer than one tag size away. This heuristic was found to
yield satisfactory results with markers of the 36h11-family and a tag
size of 15 cm (Wang and Olson, 2016).

In Figures 19a,d,e dropout in depth estimates from the FFT
method can also be seen, which is due to the April tag blocking
the net-grid structure. From Figures 19b,f, it is also clear that fish
can significantly influence the depth prediction output, which needs
to be taken into account for applications in environments such as
fish farms. An additional observation is that both the DVL sensor
measurements and the RMV method almost always overestimate
the net ground-truth distance. The net structure is not very dense;
therefore, a hypothesis is that the DVL sensor systematically
overestimates the distance. A similar hypothesis might be true for
the RMV method: The depth priors are provided as circular blobs,
which do not always precisely match the grid-like net-structure.
The semi-transparent nature of the net might then lead to this
systematic error.

In Table 1, we show the MAE of all methods in estimating the
depth to the April Tag mounted on the net. On a high-level, the
results show that the modified FFT-based method outperforms all
other methods. The second-best method is the TRU-depth method.
As discussed previously, the TRU-depth method follows the FFT-
method very closely and does not incorporate so many visual
features. The DVL and RMV methods both perform worse, which
can mostly be explained due to the systematic error introduced
by over-estimating the net-relative distance. Overall, the results
show that errors calculated for all the investigated methods are
smaller than 0.5 m (i.e., precision of a common acoustic sensors
in underwater domain) with the average of all the investigated
cases being approximately 0.2 m. The FFT-method consistently
outperforms the other methods. The FFT-method and TRU-depth
method also rely heavily on the presence and prior knowledge of the
grid-like net structure, whereas the RMV and DVL methods can be
used outside the fish-net context, and are therefore viable solutions
in failure and transition phases around net pens of fish farms.
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Overall, these results emphasize the importance of multi-modal
sensor modalities, especially in remote and challenging underwater
environments.

4.6 Runtime

All runtimes are evaluated on the same computer, featuring an
Intel 13700KF CPU paired with 64GB of RAM and an NVIDIA
4070Ti GPU. The most time-intensive part of the pipeline is the
computation of the depth priors using the FFTmethod (Section 2.1).
Fortunately, each patch can be processed independently, allowing
us to parallelize this operation using a CPU thread pool. The
TRU-depth and RMV depth predictions are computed on the
GPU, while wavemap runs on the CPU with multi-threading. The
relative and cylinder poses are each computed using a single thread
on the CPU.

The average runtimes of our proposed pipeline’s components
are shown in Table 2. The most important observation is that all
components can run at 5 Hz or more, thereby being suitable for
real-time operation on a UUV. The biggest bottleneck remains
the FFT depth prior computation. Aside from optimizing its
implementation, it could be worth investigating how the pipeline’s
other components perform when provided with a smaller number
of priors, since the FFT method’s runtime directly scales with the
number of patches it evaluates. TRU-depth, for example, is very
efficient but required very dense depth priors for applications in
fish farms. In contrast, the network of RMV is more expensive but
generalizes better and requires fewer priors to achieve high accuracy.
Combining it with FFT method’s 300× 300px configuration already
results in a capable real-time depth prediction pipeline, and it
might still perform well with an even lower number of priors.
As expected, computing the relative and cylinder poses is very
fast. Finally, we see that wavemap is both efficient and updates
the map with very low latency, making it well-suited to run
in the background while supporting navigation and collision
avoidance tasks.

5 Conclusion

This paper proposed a general, vision-based framework for
underwater localization and mapping, and utilized a large dataset
recorded in industrial scale fish farms. The framework leverages
the FFT-based method to generate priors for the TRU-depth
and RMV methods, which in turn provide the depth image
predictions required for 3D mapping. Additionally, methods for
obtaining net-relative and global pose estimates of UUVs have been
proposed. The results demonstrate the potential of the framework
to integrate the FFT-based method, depth image predictions and
wavemap methods for applications in fish farming environments.
It specifically showed that TRU-Depth and RMV methods can
generate depth images from monocular images within these
environments. Coupling the depth prediction methods with the
wavemap method and 3D pose estimates, the pipeline enables
the creation of detailed volumetric maps. The completeness and
accuracy of these 3D maps highlight their potential for real-world
applications in the underwater domain. While it would be valuable

to directly compare our global pose estimation approach with state-
of-the-art SLAM methods, we note that standard SLAM methods
are fundamentally challenged in the highly repetitive and dynamic
environment of fish farms. The lack of distinct visual features,
frequent occlusions by moving fish and the flexible nature of
net structures typically lead to frequent tracking loss and high
drift, as reported in recent literature on the challenges in the
underwater domain (Wang et al., 2023; Song et al., 2024). As a result,
conventional SLAM methods are unlikely to provide meaningful
baselines.Nevertheless, we acknowledge that a systematic evaluation
of such methods, even if they perform poorly, could further
illustrate the advantages and robustness of our proposed framework,
and we leave this as an important direction for future work.
In general, incorporating active loop-closure, global SLAM, or
additional sensing modalities such as sonar or stereo vision
could further increase the robustness of the proposed pipeline,
particularly in low-visibility conditions. Alternative methods to
obtain depth priors on fish or other distinct structures could also
be combined with the FFT-based priors to enable depth image
prediction methods and wavemap to comprehensively reconstruct
3D underwater scenes from monocular images. In the future,
it would also be relevant to evaluate the performance of the
fully integrated framework in datasets obtained in a controlled
environment.
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