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The study highlights the effectiveness of FMEA in robotic spot-welding
operations, providing a systematic approach to enhancing performance in an
automotive assembly line. Robotic welding industries depend on mechanized,
programmable tools to automate welding processes, ensuring efficiency,
reliability, and effective material handling. In the automotive sector, Tier
1 suppliers utilize robotic welding machines to produce high volumes of
welded assemblies, with daily output exceeding 450 units. However, frequent
equipment downtime due to maintenance challenges disrupts productivity and
impacts customer satisfaction. This study aims to develop a Reliability-Centered
Maintenance (RCM) approach for robotic welding industries, optimizing
machine uptime, enhancing product quality, and reducing financial losses
caused by unexpected failures. A 3-year dataset was analysed to identify
the primary causes of downtime and their associated costs. Failure Modes
and Effects Analysis (FMEA) was applied to assess failure modes, determine
root causes, and calculate Risk Priority Numbers (RPNs), thereby formulating
corrective actions to mitigate recurring failures and enhance operational
efficiency. Findings revealed that maintenance-related issues accounted for
79% of total downtime, resulting in financial losses of R2,281,508.82 over
3 years. The application of FMEA provided a structured framework for prioritizing
critical failure modes and implementing targeted corrective measures to reduce
downtime and enhance overall reliability. To sustain high productivity and
quality, it is recommended that robotic welding industries adopt proactive
maintenance strategies based on FMEA findings. Regular monitoring, predictive
maintenance, and workforce training will help minimize machine failures and
optimize operational efficiency.

reliability, maintenance, robotic welding, reliability centred maintenance, optimising

1 Introduction

Robotic welding processes have become increasingly important in recent years.
It is important for the machinery involved in this operation to be available all
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FIGURE 1
Equipment availability data (Tier 1 company to an OEM's data).
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the time to ensure a quality weld. The equipment directly and
indirectly involved in the production line must be uninterrupted.
RCM has long been used in the aviation industry and military to
ensure the reliability of assets (Refinery and Dharmaraj, 2019).

RCM has had its methodology applied in various sectors over
the years, besides the previously mentioned aviation and military
industries. The United States military saw a strong benefit to
using RCM as a reliable method of combating robot failures on
the frontlines (MSG-3, 2018). The implementation of the RCM’s
methodology ended up being a cost-effective method that has
been used by the military for decades. In the aviation sector,
RCM was described as an optimum maintenance process used to
meet all the maintenance requirements, which was formulated due
to the first-generation jet aircraft’s crash rate (Bugaja et al,, 2019).
In the Walt Disney Company, the RCM program was brought
about mainly to ensure the safety of the company’s machinery
and proper scheduling of its maintenance. The implementation of
the methodology turned out to be a major cost-saving approach
for the company (Anton and Yoshino, 2003). Lastly, in research
conducted to fix the automation maintenance problem in the
ArcelorMittal Hot Strip Mill production line, the RCM approach
was customised to the organisation’s benefit by systematically
developing the basics of RCM principles and tools such that success
is demonstrated in the shortest time, given the small number of
resources available (Fouché, 2015).

In a more recent application of RCM methodology, the FMECA
approach was systematically applied to a 1600T press experiencing
unplanned downtime and inconsistent production line productivity
in an organisation called Algal+ (Ghemari et al., 2024). The FMECA
approach implemented significantly contributed to optimizing the
reliability and equipment availability, thereby reducing unplanned
downtime and enhancing operational efficiency through data-
driven measures focused on addressing the most critical risks
experienced on the press.

Therefore, the automotive robotic welding sector can be
compared to the airline sector, due to its functionality. The robotic
welding industry’s productivity relies mainly on high equipment
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reliability and availability. The research problem faced on the
production line goes as thus: “The current equipment availability
stands between 70% and 72%, which is far from the required
97% needed to meet the production needs for the robotic welding
machines to supply demand as a Tier 1 company to an Original
Equipment Manufacturing” RCM covers all the different types of
maintenance, and it can be applied to any type of industry using
any kind of machine (Fouché, 2015). The skilled-employee shortage
is a major problem for industrial manufacturing. The American
Welding Society specified that 40% of manufacturing companies
declined new contracts because not enough skilled workers were
available (Halle, 2019). A lack of flexibility is cited as the major
reason 90% of all manufacturing companies do not have robotic
systems. Therefore, the proper maintenance of the equipment is
necessary, and a system needs to be developed to improve the robotic
machine’s availability.

Following the problem statement, the study aims to develop
an RCM approach in automotive robotic welding machines for
a tier 1 supplier to improve the availability of the welding
machines that which can lead to an increase in productivity
and profitability. The research objectives to achieve the research
questions includes, identifying a wide range understanding of
the RCM process, concepts, elements, developing strategies, and
successes, advantages, and disadvantages as a complete maintenance
system, determining the current availability of the equipment on
the production line to ensure the development of RCM for robotic
welding machines, evaluating different maintenance approaches and
compare them with the traditional maintenance processes such
as reactive and preventive maintenance applied in the company
machine/equipment availability improvement, investigating the
RCM development success stories to evaluate all the different
approaches the organisations used to ensure the RCM’s successful
development and, lastly, developing a tailor-made RCM through the
creation of FMEA to improve robotic welding machines thereby
increasing machine availability.

The world-class target of equipment/assets availability in
a production line is 97% (Ahmad and Benson, 2007). The
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FIGURE 2
Components of an RCM programme (Okwuobi et al.,, 2018).
TABLE 1 Comparative summary table highlighting differences between the proposed method and related works.
Study Sample Method Reliability Scope
Ramli and Arffin (2012) All Class A, B, and C RCM and FMEA N/A Reduction of the operator’s
equipment in an automotive workload through RCM
manufacturing company implementation

Kolte and Dabade (2017)

Cylinder block manufacturing
line in an automobile
engineering company

Preventive Maintenance (PM)

Developing a PM frequency
for failures

Improving the availability of
critical equipment

Yavuz et al. (2019)

Packaging machine

RCM

N/A

Effect of RCM on OEE of
packaging machines

Zeinalnezhad et al. (2020)

Critical Success Factors (oil

Expert Group discussion and

Calculation and Matrices of

Improve plant reliability at a

at PTX

and gas plant) Fuzzy Analytic Network Eigenvectors lower cost
Process
Suryono and Rosyidi (2018) Laser machine in Filling Lithos RCM, RPN Decreased downtime from Reduction of downtime

1273,76 min-17 min using
FMEA.

monthly availabilities for the period December 2021 to June 2022
are shown in Figure 1. As shown in the figure, there is no consistent
pattern in the availability patterns.

Due to the inconsistencies in the production lines' performance,
the deduced problem statement goes as follows: The perception of
RCM is a comprehensive process that is very time and resource-
consuming; therefore, what are the difficulties in developing RCM
successfully in the robotic welding industries?

The study was created using a model based on certain
characteristics and data-collection strategies. These methods
for maintenance problems aim at enhancing the effectiveness
of machines to eventually improve productivity. These include
Reliability-Centred Maintenance, Component System Selection
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and Data Collection, Logic Tree Analysis (LTA), and Criticality
Analysis. These strategies were used to create an adopted FMEA
model based on the following characteristics and data collection
strategies. These models to be emphasized would be the principal
maintenance strategies, rather than being applied autonomously,
combined to take advantage of their corresponding strengths to
take full advantage of the robotic welding machines’ reliability while
minimizing life-cycle costs.

The FMECA is an analysis tool widely used and accepted to
improve maintenance practices in most process industries (Pancholi
and Bhatt, 2018). Before focusing on the study’s design and
methodology, the advantages or importance of developing
RCM are: RCM has the potential to be the most efficient
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FIGURE 3
Machine fault time/downtime identification.

maintenance strategy when developed, applied, and maintained
correctly, therefore leading to reduced maintenance scheduling
on the production line; comprehensive equipment analysis will
reduce maintenance costs by eliminating unnecessary asset
maintenance, and; RCM improved the reliability of equipment,
thereby causing the risk of failure of equipment on the line to be
significantly reduced.

Although there are many pros to developing the RCM plan for
any process, there are also some cons, including the high cost of
initially starting the RCM process and the time it takes for the results
of the newly developed process to be seen.

Therefore, to effectively ensure the maintainability and reliability
of machinery on the production line, according to a guideline
set by SAE, the RCM method requires analysis of equipment
using the FMEA, using the maintenance costs or downtime report
data to determine the equipment’s status, then application of
processes to achieve the purpose of the action and analysis of data
post-implementation phase to ensure that the newly implemented
system is functional (SAEJAI1011, 2022). Therefore, to achieve
effective implementation using data, certain questions need to be
answered satisfactorily and in the listed sequence to determine if an
organization is following RCM standards: these include, What are
the functions and associated desired standards of performance of
the asset in its present operating context (functions)?In what ways
can it fail to fulfil its functions (functional failures)? What causes
each functional failure (failure modes)? What happens when each
failure occurs (failure effects)?In what way does each failure matter
(failure consequences)? What should be done to predict or prevent

Frontiers in Robotics and Al

each failure (proactive tasks and task intervals)? And what should be
done if a suitable proactive task cannot be found (default actions)?

Analysing the pros and cons of RCM, the advantages are
greater than the disadvantages. Therefore, this system can be a great
achievement in any organisation.

Furthermore, RCM is thus a combination of PM scheduling,
corrective/unplanned/reactive maintenance practices, and first-line
tasks/proactive maintenance (Fouché, 2015). Figure 2 shows the
components of the RCM programme (Okwuobi et al., 2018).

Equipment reliability and its importance it is rarely questioned.
Improved equipment reliability can reduce maintenance costs,
minimize opportunity costs associated with downtime, and ensure
products are not produced outside of acceptable specifications.
Understanding how programs, procedures, and equipment are
improving reliability at a facility is vital to understanding overall
program effectiveness and what steps could best be taken to further
improve equipment reliability. It is for this reason that, although
often overlooked, the trending of an equipment reliability program
is an important part of facility management.

This study, therefore, aims to develop a Reliability-Centered
Maintenance (RCM) approach for robotic welding industries to
optimize machine uptime, improve product quality, and minimize
financial losses caused by unexpected failures.

Table 1 shows a comparative summary table highlighting the
differences between FMEA in RCM and related approaches carried
out by other researchers, emphasizing the contribution and novelty
of integrating FMEA specifically into RCM, especially relevant to
automotive robotic systems or industrial settings.
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FIGURE 4
Machine uptime identification.

2 Methodology

The data was collected from the robotic cell it focuses
on, as well as the research methodology using Failure Modes
and Effects Analysis (FMEA) and Linear Regression (LR). The
study demonstrates the data collection method direction in the
determination of the problems connected with automotive robotic
welding machines for a tier 1 supplier in the development of RCM.

2.1 Data collection

2.1.1 Downtime

Data was analysed for the downtime experienced by the robots
used to perform the automated welding process on the production
line and to identify areas where the number of stoppages can be
reduced and improve the overall efficiency.

Figure 3 shows the HMI screen of the robotic welding machine,
showing the total fault time or downtime experienced during the
cause of the shift.

The data was calculated by summing up the total number of
downtimes recorded in minutes during the month, as shown in
Equation 1, and dividing by the actual number of working days,
as shown in Equation 2. The formula used is as follows:

1)
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where x; is the average downtime per month in minutes.

Averagedowntime/month =

@)

Where y is the downtimes occurring per day, and n is the total
working days in the month.

Equation 3 represents the formula for calculating the average
downtime in a year, which is (12 months):

Average =
ST number o fmonths o fno planned production

2.1.2 Uptime

By monitoring uptime, you can identify potential issues or
areas for improvement that can help reduce downtime and increase
productivity. This could ultimately lead to reduced prices and
higher-quality goods.

To calculate the uptime in robotic systems, there is a need to
know the total operating time and the downtime of the system
during the specified period. Once these two pieces of information
have been gathered, the commencement of uptime calculation can
be done using the formula in Equation 4:

(4)

Uptime = Total operatingtime — downtime

Using information from uptime analysis, one can prioritize
equipment repairs or replacements based on which machines are
causing the most downtime. The uptime data is obtained from
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FIGURE 5
Machine fault time identification.
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FIGURE 6
(a) Scatter diagram for delivery volume; (b) Straight-line relationship between delivery time and delivery volume (Nahatai et al., 2023).

the HMI screen data. The HMI data is automatically generated by = breakdown is automatically recorded after every stop experienced

calculating the actual time the machine is in operation (Figure 4). by the cell regarding maintenance.

2.1.3 Breakdown 2.1.4 Mean time between failure (MTBF) of the
Conducting a breakdown analysis on robotic welding machines ~ CM #4 robotic weld cell

can help improve machine performance, reduce downtime and The Mean Time Between Failure (MTBF), Mean Time to

costs, and support continuous improvement efforts. The data  Repair (MTTR), and failure rates of the individual components
collected for the breakdown analysis was also obtained from the  evaluated the distribution and reliability of each identified system
Human-Machine Interface (HMI) screen and input manually on ~ component (Atikpakpa et al, 2016). The calculation of the
the breakdown input spreadsheet. Figure 5 shows the HMI screen ~ downtime, uptime, and breakdowns experienced by the robotic
data in which the “Machine Fault Time” values are collected. The ~ welding machine is focused on, and the data obtained is used to
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Production 4935| 8683| 4986 0 0| 3636 4318| 5774| 8400| 9603| 10373| 1859

FIGURE 7
Relationship between availability and production for 2020.

effectively calculate the MTBF of the weld cell per year for the 3 years
of data analysed.

For the study, the formula used to calculate the MTBF for the
robotic welding machine, including each 12-h shift (morning and
night shift) for the 2020, 2021, and 2022 production data gathered,
Equation 5 for 2020 data, Equation 6 for 2021 data, and Equation 7
for 2022 data, is:

MTBE, = If| p;2e 5)

where « is the morning shift, B, is breakdown per month
(morning shift), and x, is the total uptime per month
(morning shift).

Xy
MTBE, = If| B —;

y % (6)

| =k

where y is the night shift, B, is the breakdown per month (night
shift), and x, is the total uptime per month (night shift).

To get the total monthly MTBE the previously calculated total
uptime time per month and total breakdown time summed per
month for each year of data collected are as follows.

X
xT. Br

MTBFr=If| B —; 7

=1\ Fr 5o 6o @
Where MTBF 7 is the total MTBF for the month, . is the total

breakdown per month, and x = total uptime per month.

Then, the average MTBF was calculated using Equation 8.

MTBFy, + MTBF, + MTBF 5 + ...+ MTBF

MTBF, = 8
# Number o f Productive Month ®
where MTBF, = Average MTBF for the year.
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2.2 FMEA

In this research, FMEA is developed and proposed to mitigate
the risks of failures in the weld cell. The failures that occurred
in the machine were identified through the data recorded by
maintenance after corrections were implemented in the form of a
reactive maintenance plan.

The failure modes stated are gathered from the current
maintenance data as the main contributing factors affecting the
availability of the station. Each failure mode is based only on the
maintenance factor of the robotic welding machine. The RPN of
the failure modes from the previous maintenance data collected
in the past 3 years is calculated as the product of severity (S),
occurrence (O), and detection (D) (Ramli and Arffin, 2012). In
identifying the RPN Matrix, the occurrence, severity, and detection
of failures in the development of the FMEA were determined using
various matrices.

2.3 Linear regression model for
comprehensive method

Alternative models that could be employed include Random
Forests and Decision Trees, both of which can be computationally
demanding and need extremely non-linear data to be collected. As
a result, the method is less interpretable than linear regression. An
additional model is the Lasso and Ridge Regression. By introducing
penalties to avoid overfitting and manage multicollinearity, this
model goes beyond linear regression. Although it can zero out
features and yet assume linear correlations, it may lose important
predictors. When model resilience needs to be improved but
interpretability is still sought, this method works well. A rationale
for employing the linear regression model is the limited quantity of
maintenance data available for the study.

The Regression analysis model, as an RCM comprehensive
approach, is known to be a statistical approach that is used to
examine the relationships among variables. This regression analysis

frontiersin.org
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Relationship Between Availability and Production for 2021
11000 300,00
9000 250,00
7000 200,00
5000 150,00
3000 100,00
1000 50,00
-1000 Jan-21 Feb-21 Mar-21 Apr-21 May-21 Jun-21 Jul 21 Sep-21 Oct-21 Nov-21 Dec-21 0,00
e PrOCUCTION s Availability
Month Jan-21| Feb-21| Mar-21| Apr-21| May-21| Jun-21| Jul-21| Aug-21| Sep-21| Oct-21| Nov-21| Dec-21
Availability | 221,11| 233,01| 270,67 | 225,12| 251,64| 262,46 0,00 0,00| 158,37| 228,43| 190,47| 5217
Production 8704 9298| 10694 8965 9900| 10427 0 0 6264 8927 7607 2087
FIGURE 8
Relationship between availability and production for 2021.
Relationship Between Availability and Production for 2022
13000 400,00
11000 350,00
9000 300,00
250,00
7000
200,00
5000
150,00
3000 100,00
1000 50,00
-1000 Jan-22 Feb-22 Mar-22 Apr-22 May-22 Jun-22 Jul-22 Aug-22 Sep-22 ~22 0,00
Production
Month Jan-22| Feb-22| Mar-22| Apr-22| May-22| Jun-22| Jul-22| Aug-22| Sep-22| Oct-22| Nov-22| Dec-22
Availability | 101,90| 181,50| 141,07| 139,31| 257 43| 24405| 249,82| 31747 2341 0,00 0,00 0,00
Production 4067| 7240 5622| 5433| 10254| 9551| 9848| 12646 930 0 0 0
FIGURE 9
Relationship between availability and production for 2022.
TABLE 2 Major downtime contributors.
Maintenance Awaiting material (logistics) Man Quiality Others
3,647 137 60 724 35
79% 3% 1% 16% 1%

format, frequently used for the correlation study, is the linear
regression model. The linear regression model is uncomplicated and
straightforward, but also a very effective methodology used in the
investigation of the association between a dependent variable and
an independent variable (Nahatai et al., 2023).

The linear regression analysis model is also known as a
mathematical statistical approach using data collected from a
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process for probing connections between variables used in several
fields, including the financial side, manufacturing, behaviour,
environmental science, sociology, and medicine, and many other
institutions (Montgomery et al., 2021).

A model for improving MTBF and MTTR for various copper
mine sites located in Chile, and it functions by inputting non-linear
autoregressive exogenous variables using a vector mechanism and
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FIGURE 10
Factors affecting downtime.

TABLE 3 Maintenance failures and their occurrence.
Fault/Failures Count
Clamp fault 60
Incomplete spot 15
Light curtain failure 60
Part sensor failure 35
Part stuck 20
Robot stuck 50
Spot out of position 15
Tip dressing 80
Water fault 95
Weak weld 30

historic data collected (Curilem et al., 2014). These data collected
from past occurrences helped with the calculation of an inert view
of the failures occurring in the different equipment of the system
and the assessment of different failure situations that could occur
in the mines.

The mathematical formula for a linear regression model is
defined in Equation 9 (Paolella, 2018),

y=ax+b+nq 9)

Where y is the conditional variable, a is the regression intercept
term, b = the regression slope coefficient, x is the independent
variable, and 5 is the random variable is the error term in
the model.

Another formula for the linear regression is represented
(Nahatai et al.,, 2023) in Figure 6 shows an example of a linear
regression model, where the first graph shows a scatter diagram and
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the second shows the relationship between the scatter diagram and
the straight-line using Equation 10 to be derived:

fx)=B,+Bx+e (10)

Where f(x) is the dependent variable, &€ is the random
component, f is breakdown per month (morning shift), and where
x Is the average downtime per month in minutes

3 Results and discussion

Analysis was conducted on the availability of the robot welding
machine used as a case study, the production values, the cost effect
of downtime, linear regression effects in the 3 different years of data
collected, a cause-and-effect diagram, and developing an FMEA for
the maintenance team.

3.1 Relationship between availability and
production

It is important to analyse the relationship between availability
and production to be able to determine the effects of breakdown
on the total amount of production. Therefore, the optimisation of
equipment’s productivity or availability is complicated when there is
alack of information through data collection and analysis (El-Thalji
and Liyanage, 2012).

From the above analysis, Figures 7-9 shows the relationship
between availability and production on the robotic weld cell, focused
on the 3 years of data collected for 2020, 2021, and 2022, respectively.

Consequently, if the welding station has all the required resources
for production available, the machine can generate parts extremely
well. Through the analysis of Figures 7-9, the availability of machines
and production generated by the robot trail each other. The key
objective of the research is, consequently, to tackle the reasons affecting
the availability of machines and their effects on the process.

3.2 Analysis of downtime failures

In the analysis of downtime failures occurring in the robotic
welding machine, it was determined that there is an immediate
correlation connecting availability and production in the machine,
as shown in the methodology. Therefore, the downtime justified
additional analysis. The major contributing factors affecting
downtime were found as follows:

o Man: Consisting of the period it takes when production
operators execute production-related jobs like electrode
changes, production recording, and 5S activities.

o Maintenance: This factor includes both mechanical and
electrical breakdowns and repairs implemented on the
welding cell.

Material: Logistics personnel not having the required
components on the welding cell, as they are required for
production purposes.

o Quality: This factor consists of fixing dimensional problems on
the welding fixture, which affects the final assembly.
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Pareto Analysis of Maintenance Downtimes
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30 30%
20 20%
10 10%
0 0%
FIGURE 11
Pareto analysis of maintenance downtimes.

Table 2 shows the different downtime contributors that affect the
robotic welding machine according to the data gathered from the
organisation from 2020 to 2022 in minutes.

Figure 10 represents the breakdown of factors affecting failures
using a pie chart. It identifies maintenance downtimes as the major
contributing factor, accounting for 79% of the failures.

Table 3 below shows the various types of maintenance failures
that occur on the robotic welding machine. The data was extracted
from a manually inputted breakdown action plan. All the data
extracted equates to 79% of the maintenance failures. Also,
tabling the faults or failures that occur in the machine and
the total number of times that they appear on the line from
2020 to 2022.

In Figure 11, a Pareto analysis was made using
the data in Table 3. The chart shows that a water fault has the highest
number of occurrences, happening 95 times in the 3 years. Also, the
incomplete spot and spot out-of-position failures occurred 15 times
during the 3 years of data collection.

Table 4 shows the failure mode and effects of all the listed
maintenance downtimes analysed in the Pareto analysis for all
different processes in the robotic welding operation.

3.3 Cost analysis of downtime

The cost analysis of the downtimes experienced on the robotic
weld cell being analysed was calculated for the 3 years (2020-2022)
of data collected. According to Fore and Msipha (2010), the cost of
the poor availability of equipment on a production line is directly
proportional to the result of poor maintenance (Fore and Msipha,
2010). The sales value for each assembly sold to Motor Company of
South Africa is R770.31.

In the analysis, 79% of downtime was caused by maintenance,
summing up to R2,281,508.82 in the 3 years of data collected.
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3.4 Results of the linear regression analysis

Linear regression was used in this research to show the
connection between availability and production through the
investigation of the MTBF derived from the calculations in
the methodology (Chapter 2). The linear regression assessment
establishes that there is an immediate association between
improved availability and the welded assembly produced on
the station. This emphasizes the element that any maintenance
that the
station will directly increase the productivity of the station.

prospects will increase availability in welding
Therefore, an application of refining availability by improving
the current maintenance management system through RCM
is valuable.

Figures 12-14 show the linear regression scatterplot for
MTBF/month for 2020, 2021, and 2022, respectively.

Figure 12 shows a great degree of scatter in the graph plotted. The
high degree of scatter implies that there were poor levels of control
occurring in 2022. Therefore, correcting this scatter by reducing the
degree of scatter will ensure that there is improved availability of the
welding station.

In 2020 and 2021, the gathered data and graph plotted in
Figures 13, 14, respectively, revealed that there was a flatter trendline
leaning positively, and the scatter plot was closer than in Figure 12.
The degree of scatter in 2021 is more than the scatter in
2020. The different graphical representation shows an unstable
maintenance strategy being followed by the maintenance
department due to the 3-year data plotted having no trend in
2020, a positive trendline in 2021, and a negative trendline
in 2022.

Due to the line’s observed flatness, the projected 2020 linear
regression graph indicates there was no trend. In Figure 12, the trend
line value was Y = 0,0022x - 87,963, therefore, the MTBF linear

regression analysis for a robotic welding machine may indicate that
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TABLE 4 Failure effects and causes.

10.3389/frobt.2025.1620370

Failure cause

Process Requirement Failure mode Failure effect

Correct part loaded

loaded
Part Loading

Incorrect/Incomplete part

- Unskill
- Rejects and line stoppage. Unskilled operator

Correct orientation of loading

Incorrect loading orientation

- Welding jig is not full proof

- Part failure at Customer . .
to prevent incorrect loading

Part Presence The part should be detected on

the fixture

Part presence sensor is not
functioning effectively

The possibility of a missing - Part sensor malfunctioning
component causing rejection

on the customer line - Broken sensor pins

Wrong Part clamping

- A welding jig is not foolproof

- Scrap or reject . .
to prevent incorrect loading

Automated Clamping Part clamping

Clamp loose

- Downtime resulting in

production loss The fixture clamp weight is

loose

Robotic Welding Operation Correct Number of spots on

Position/quantity of spots does

- Scrap or reject - Incorrect robot settings

part (40 spots) not match the 2D and 3D CAD - Downtime resulting in - As the robot teaching was not
drawing production loss. proper, the failure was
- Part failure at Customer identified
Robotic Welding Operation Correct Weld Integrity Weak spot - The gap between the spots - Incorrect welding parameter
can create defective products. settings
- Scrap or reject
- Downtime resulting in - Tip dressing was not
production loss. correctly done
- Part failure at Customer
Robotic Welding Operation No Spot Burr visible Spot Burr - Non-compliance with . .
o - Tip dressing not correctly
Customer Specification, part
failure done.
- High current flow at the
elding spot due to incorrect
X . X - - If unchecked, this may break W & Sp u !
Robotic Welding Operation No deep spot visible on the Deep Spot parameter settings.

the part during the next

t - High welding time is
par operation. The body may 5 € .
X observed, and there is a gap
become noisy at the
between parts
customer end
Robotic Welding Operation Optimised electrode Excessive electrode Improper weld Inadequate gas flow
consumption consumption

Robotic Welding Operation Spot should be round (by the

spec of 4 mm diameter)

Spot size not in spec

- Scrap or reject Tip dressing frequency is too
low
- Downtime resulting in

production loss

Part Unloading Parts are easy to offload

Part stuck on the fixture

- Downtime resulting in
production loss

Build of splatter on fixture
location pins

the variables under study are independent of one another and that
there is no discernible association between them if the trend line is
absent or flat.

According to the research findings for 2021, a robotic welding
machine’s availability may rise if the MTBF linear regression analysis
shows a positive trend line. A rising trend line shows that MTBF
is becoming better over time. This implies that the machine
experiences fewer failures, which leads to less downtime and more
uptime. Finding the relationship between availability and MTBF was
made possible in large part by statistical analysis. In Figure 13, the
trend line value was Y = 0,0614x - 2693.

An indicator of a system’s dependability is MTBE. The line
dropping as it moves from the left to the right of the line observed
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was observed in the plotted 2021 linear regression graph as a
negative trend. An MTBF linear regression study with a negative
trend line shows that the systems reliability is declining over
time. This indicates that more failures occur with robotic welding
equipment, which could result in more downtime and decreased
availability.

When a machine’s availability is compromised, its ability to carry
out its intended function for the required period is interfered with.
This could lead to lost production, higher expenses, and even safety
risks. To increase the machine’s reliability and keep it available, it
is crucial to find the source of the negative trend line and take
appropriate action. In Figure 14, the trend line value was Y = -
0,1813x + 8142,5.
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FIGURE 12
Linear regression for 2020.
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FIGURE 13
Linear regression for 2021.
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4 Conclusion and recommendations

In this research, the tier 1 supplier will systematically discover,
assess, and prioritize possible equipment failures before they
happen by using FMEA to improve maintenance scheduling.
Maintenance teams will change from reactive to proactive
tactics by knowing which parts are most likely to fail and
the consequences of those failures, as shown in Table 4. As a
result, maintenance tasks become more focused and timelier,
which lowers the possibility of unforeseen malfunctions that
interrupt output.

Based on the Pareto Chart and the Failure Cause and
Effect Table (Table 4), the organization can reduce production losses
due to failures by up to 80% because of this strategic approach.
The losses resulting from incorrect maintenance scheduling are
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significantly reduced, with R1,825,207.056 representing 80% of the
losses before the RCM model. Overall equipment reliability and
operational efficiency are improved by FMEA-driven maintenance
scheduling, which reduces unscheduled downtime and concentrates
resources where they are most required. In addition to maintaining
output, fewer interruptions result in cheaper repairs and more
productive workers.

The selection between FMEA and RCM should be guided
by a thorough assessment of the specific needs, objectives,
and operational conditions of the robotic welding industry.
Implementing an effective FMEA can significantly improve
maintenance management by systematically identifying potential
failure points and applying proactive measures to mitigate risks. The
study identified the following key benefits of an effective FMEA in
Maintenance Management:
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Linear regression for 2022.
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o Reduction of Unscheduled Downtime: Unexpected failures
are reduced with a structured FMEA, increasing operational
effectiveness and productivity. The firm was able to identify
and rank the risks related to its maintenance procedures
by using the Pareto Analysis, which ensured proactive risk
management.

o Optimization of Maintenance Strategies: Better resource
allocation and cost savings result from its improvement
of maintenance schedules and procedures. To establish the
frequency of PM and efficiently reduce the risks of downtime,
an FMEA analysing the most frequent failures was developed.

o Enhanced Safety Measures: Through the identification of
possible safety risks in maintenance tasks, FMEA guarantees
that the appropriate safety measures are implemented to
safeguard employees.

« Data-Driven Decision-Making: Senior management may better
justify resource allocations and make well-informed decisions
with the use of FMEA information.

o Continuous Improvement: Uptime and cost efficiency are
increased when maintenance managers can monitor equipment
performance, spot emerging failure risks, and enhance
maintenance tactics through frequent updates to the FMEA.

In the future, investigating how machine learning models
(such as anomaly detection and predictive analytics) can be
trained on historical data to predict robotic welding system
failures and assess how well Al-based predictive maintenance
performs in comparison to conventional RCM techniques can
be the focus of future research. Investigating the use of edge
computing and the Internet of Things to process data closer to
the machine for quicker decision-making. Researching the effects
of fixed versus dynamic maintenance intervals on production
costs and uptime is possible. Additionally, maintenance can be
adaptively scheduled using research optimization methods (such
as genetic algorithms and reinforcement learning) that consider
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factors like production demand, equipment condition, and failure
likelihood.

By adopting a structured and proactive maintenance approach,
organizations can effectively manage emerging issues, reduce
failure recurrence, and ensure long-term reliability in robotic
welding operations. Future research should focus on integrating
advanced technologies to further optimize maintenance strategies
and enhance industrial efficiency.
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