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Bimanual teleoperation imposes cognitive and coordination demands on a
single human operator tasked with simultaneously controlling two robotic arms.
Although assigning each arm to a separate operator can distribute workload, it
often leads to ambiguities in decision authority and degrades overall efficiency.
To overcome these challenges, we propose a novel bimanual teleoperation
large language model assistant (BTLA) framework, an intelligent co-pilot that
augments a single operator’s motor control capabilities. In particular, BTLA
enables operators to directly control one robotic arm through conventional
teleoperation while directing a second assistive arm via simple voice commands,
and therefore commanding two robotic arms simultaneously. By integrating
the GPT-3.5-turbo model, BTLA interprets contextual voice instructions and
autonomously selects among six predefined manipulation skills, including
real-time mirroring, trajectory following, and autonomous object grasping.
Experimental evaluations in bimanual object manipulation tasks demonstrate
that BTLA increased task coverage by 76.1% and success rate by 240.8%
relative to solo teleoperation, and outperformed dyadic control with a 19.4%
gain in coverage and a 69.9% gain in success. Furthermore, NASA Task Load
Index (NASA-TLX) assessments revealed a 38–52% reduction in operator mental
workload, and 85% of participants rated the voice-based interaction as “natural”
and “highly effective.”

KEYWORDS

human-robot collaboration, teleoperation, bimanual manipulation, embodied AI, large
language model (LLM)

1 Introduction

Teleoperation has emerged as a pivotal technology for controlling robotic
systems in hazardous or inaccessible environments while prioritizing human
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safety (Moniruzzaman et al., 2022; Huang et al., 2022). It has been
widely applied in space rendezvous and docking (Zhang et al., 2017;
Wang et al., 2021), underwater exploration (Sun et al., 2023), and
remote surgery (Bacha et al., 2022; Boehm et al., 2021). To meet
the demands of these scenarios, dual-arm robotic teleoperation has
gained prominence as a robust solution for executing complex tasks
that require enhanced dexterity (Boehm et al., 2021; Bai et al., 2021).
Unlike single-arm systems, dual-arm configurations offer superior
maneuverability, increased stability, and the ability to perform
asymmetric operations (Huang et al., 2022; Wu et al., 2019).

Single-person bimanual (a single operator controlling dual
robotic arms) and dyad teleoperation (two operators collaboratively
controlling one arm each) represent the predominant paradigms for
dual-arm robotic systems. In terms of single-person teleoperation,
human control performance is sensitive to hardware design
ergonomics, cognitive load, and task complexity (Guo et al., 2022).
The operator needs to simultaneously manage the motion and
coordination of two robotic arms, which can lead to increased
mental workload and reduced performance (Bai et al., 2022).
Regarding dyad teleoperation, human-human communication,
synchronization, and control mechanism design remain challenging
in ensuring intuitive collaboration and avoiding arbitration conflict
among humans (Gowrishankar et al., 2014; Huang Z. et al., 2021;
Li et al., 2022). Thus, dual-arm teleoperation performance can
benefit from sensory feedback, motor control, and decision-making
assistance as needed. For instance, with the shared mechanism,
operators can focus on performing partial tasks while the assistive
agentmanages the remaining (Hu Z. J. et al., 2023;Wang et al., 2024).
However, existing assistance systems tend to be task-dependent
or rigidly structured with fixed autonomy levels. This limits their
adaptability across different scenarios and operator preferences
(Clark et al., 2019; Huang Y. et al., 2021; Sena et al., 2021).
These systems may struggle to handle dynamic environments or
adapt to new tasks without significantly modifying the control
system. Additionally, the interface between the operator and the
assistive system often requires specialized training or relies on pre-
programmed commands that may not be natural to users.

To address these challenges, we incorporate a large language
model (LLM) into a bimanual teleoperation framework (i.e.,
BTLA), which combines natural language interaction with variable
autonomy to support single-operator dual-arm teleoperation. BTLA
enables the command of the second assistive arm through natural
voice instructions. The system utilizes LLMs to interpret operator
intent and select the most suitable assistance mode from a set of
core manipulation skills. The main contributions of our work are
summarized as follows:

1. A flexible assistance system that enables natural language
control of a secondary robotic arm during bimanual
teleoperation, reducing operator cognitive load while
maintaining task effectiveness.

2. Integration of LLMs for robust natural language understanding
in robotic control, allowing operators to command complex
manipulation skills through intuitive voice instructions.

3. Comprehensive experimental evaluation demonstrating
significant improvements in task performance and reduction
in operator workload compared to single-operator and dyadic
teleoperation.

2 Related works

Dual-arm teleoperation architecture can be generally
categorized into two main categories: single-person bimanual (SPB)
teleoperation and dual-human, dual-arm (dyadic) teleoperation.
The SPB teleoperation often leads to a high mental workload
for the operator, as they must manage the coordination and
motion of two robotic arms in real time (Shao et al., 2020). For
dyadic teleoperation, two operators collaboratively control the
robotic arms, theoretically leveraging their combined expertise
and cognitive capabilities (Noohi et al., 2016). developed a
fundamental model for computing interaction forces during
dyadic cooperative manipulation tasks. Interestingly (Che et al.,
2016), found that dyadic collaboration doesn’t necessarily
improve performance over individual control in teleoperation
environments, highlighting the complexities of human-human
coordination in robotic control (Kropivšek Leskovar et al., 2021).
further investigated these dynamics by examining leader-follower
relationships in human dyads during collaborative tasks, providing
valuable insights into role allocation strategies. To address the
challenges of coordination between operators (Li et al., 2023a),
proposed a flexible system capable of dynamically switching
between different control architectures and controllers during
operation. Two additional routes have been widely adopted to
overcome the above obstacle: (i) developing more intuitive control
interfaces, and (ii) designing control assistance algorithms. Intuitive
human-machine interfaces aim to provide operators with natural
sensations and user-friendly means of controlling multiple-arm
robots (Cheng et al., 2023). Various interface technologies have
been proposed, such as gesture-based interfaces (Boehm et al.,
2021), virtual reality-based interfaces (García et al., 2022), and
haptic devices (Rakita et al., 2019; Li et al., 2023b), reducing the
cognitive burden associated with traditional control methods.
Additionally, haptic feedback algorithms (Soyguder and Abut, 2016;
Cavusoglu et al., 2002; Zhou et al., 2021) have been proposed to
provide force feedback to the operator, enhancing their situational
awareness and control precision. Control assistance algorithms, on
the other hand, focus on developing intelligent strategies to assist
the operator in managing the dual-arm system, including mapping
strategies that translate human input into efficient and coordinated
robot motions. Shared control approaches (Zheng H. et al.,
2024; Huang et al., 2022; Laghi et al., 2018; Sun et al., 2020;
Huang Z. et al., 2021; Shi et al., 2024) have been introduced to
combine human input with autonomous robot behaviors, assisting
the operator in dual-arm manipulation tasks. Recent taxonomies
have provided valuable frameworks for understanding shared
control in teleoperation (Li et al., 2023c). classified shared control
strategies into semi-autonomous control (SAC), state-guidance
shared control, and state-fusion shared control (SFSC) based on
human-autonomy interaction patterns. While developed for single-
arm systems, these concepts parallel our approach—our system
implements SAC-like behavior during autonomous operations
and SFSC-like behavior during mirroring tasks, but extends
these principles to address the unique coordination challenges of
bimanual manipulation.

LLM-based methods have shown promising results in
enhancing interactive capabilities of robotic systems (Zha et al.,
2023; Cui et al., 2024; Singh et al., 2023). These methods
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leverage the strong understanding of the real world inherent
in LLMs/VLMs to perform high-level planning using image
cues. The planned tasks are then executed by calling upon
lower-level knowledge bases for automation (Hu Y. et al., 2023;
Zha et al., 2023; Li et al., 2024; Zheng Y. et al., 2024; Lin et al.,
2024), allowing for more flexibility and adaptation to handle
various tasks and environments. However, these LLM-based
methods may not be ideal for multi-contact teleoperation
and physical interaction. Object grasping and manipulation in
complicated or dynamic environments may be more suitable
for human operators due to their intuitive understanding of
the task and the ability to adapt quickly to minor variations
(Akinola et al., 2021; Balasubramanian et al., 2010). In such
situations, the overhead of using an LLM for planning and
automation may not justify the potential benefits. Instead of tasking
the LLM with context understanding and decision-making, our
approach leverages the human operator’s expertise in these areas.
We utilize the LLM as a human-robot interface, concentrating on
its core strength of natural language processing to effectively convey
human intentions.

3 Methodology

We first provide the formulation of the bimanual teleoperation
problem in Section 3.1. Subsequently, we present in Section 3.2
how BTLA utilizes LLM to assist humans in bimanual
teleoperation tasks.

3.1 Problem formulation

BTLA addresses SPB teleoperation by enabling natural language
control of an assistive robot arm while the operator directly
manipulates the master arm. This approach allows operators to
maintain precise control over critical manipulation tasks while
delegating complementary actions to the assistant arm through
intuitive voice commands. The assistant robot receives natural
language voice instructions L (e.g., help me push the green
blob together) that specify the desired assistive behavior. These
instructions can be long-horizon, context-aware, or ambiguously
described (e.g., move a little bit upwards), requiring sophisticated
contextual understanding. At any given time t, BTLA processes
multiple input streams to determine the resulting assistance
behaviors. These inputs include natural language commands l that
specify desired assistive behaviors, proprioceptive information from
both the master arm (sm,t) and assistant arm (ss,t), environmental
observations (oenv,t), direct human control inputs (ut), and
environmental sensing data (zt).

Therefore, the problem formulation can be summarized as
follows: given a natural language instruction l, the assistant robot’s
proprioceptive information sa,t, the master robot’s proprioceptive
information sm,t, human input ut, environment sensing information
zt at time t and environmental observations oenv,t, the embodied AI
system should generate a sequence of low-level skills from the skill
base S and map them to a control policy π that enables the assistant
robot to assist the human operator in performing the desired task
effectively.

3.2 BTLA system implementation

To this end, the assistant robot must decompose the high-level
instruction l into a sequence of low-level skills selected from a
predefined skill base S . The chosen skills and their corresponding
parameters are then mapped to a control policy π, represented by a
skill function BTLA(⋅). The skill knowledge in the skill base S can
be adapted to accommodate different task requirements. Therefore,
the focus of our work is not on the acquisition of these skills but
rather on the effective utilization of the available skills to assist the
human operator.

BTLA consists of three key components that collaborate to
enable effective assistance: (1) the natural language interface uses
OpenAI’s Whisper model for speech-to-text conversion and LLM
processing to interpret operator intentions; (2) a skill execution
modulemanages the implementation of six coremanipulation skills:
Follow(), SymmetricalFollow(), Approach(), Move(), Handover(),
and Fetch(); and (3) the control policy generator translates selected
skills into robot control commands while maintaining safety
constraints. Unlike a simple skill switcher, the LLM can interpret
complex instructions, understand context, and provide feedback
when needed. This flexibility enables the robot assistant to adapt to
a wider range of scenarios and user needs, embodying the variable
autonomy principle of BTLA. As shown in Figure 1, BTLA can
be divided into three main components: the human operator, the
human-robot interface, and the teleoperation environment. The
human operator can concentrate on the current task by observing
the environment via visual feedback, manipulating one robot arm
with teleoperation devices, and soliciting support from the AI-
assisted robot arm for collaborative task execution. The AI-assisted
robot arm receives human language commands as input and
identifies the most relevant skill from its skill database S , along
with the necessary task parameters. The selected skill, combined
with environmental data from sensors (such as visual information),
proprioceptive data, and human input, forms the control policy
that guides the actions of the AI-assisted robot arm. Within this
configuration, the human operator collaborates with the AI-assisted
robot arm within the teleoperation environment to achieve the
desired task with optimal efficiency and effectiveness. The human
operator provides high-level guidance and control, while the AI-
assisted robot arm contributes its capabilities and understanding
of the context to support the human operator in achieving their
objectives. Algorithm 1 outlines the core control loop of BTLA,
showing how voice commands are processed through the LLM to
select and execute appropriate skills. The algorithm handles both
real-time skills that require continuous execution until stopped (like
following behaviors) and autonomous skills that complete specific
tasks (like object fetching).

Each skill in the system is designed with clear activation
conditions and completion criteria. Real-time skills like Follow()
and SymmetricalFollow() maintain continuous adaptation to the
master arm’s movements, while autonomous skills like Fetch() and
Handover() execute specific object manipulation sequences. The
system monitors execution status and provides verbal feedback
to the operator, ensuring transparent operation and easy error
recovery. The processing of human intent occurs in real-time
while the system is executing actions. When a voice command
is received, the system temporarily maintains its current action
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FIGURE 1
Schematic diagram of the proposed BTLA method.

Require:Initial skills base S with predefined

skills, LLM initial language description l

1: Initialize t← 0, skill← None

2: while not finished do

3:  if voice_command received then

4:   skill← LLM (voice_command)

5:   π← BTLA (skill,skill_parameters,ut,zt)

6:   if skill is real-time then

7:    repeat

8:     Execute π

9:     t← t+1

10:    until voice_command to stop

11:   else if skill is autonomous then

12:    repeat

13:     Execute π

14:     t← t+1

15:    until skill is done

16:    end if

17:   end if

18: end while

Algorithm 1. Embodied AI-Assisted Robot Arm Control.

while processing the new instruction through the LLM pipeline
to ensure smooth transitions between different assistance modes.
The operator can issue new commands at any time, and the system
will complete its current atomic action before transitioning to the
new requested behavior. For safety reasons, certain commands (like
“stop”) are processed with the highest priority without passing
through the LLM pipeline and interrupt any ongoing action
immediately.

Building upon the existing skill base and task categorization
framework, our proposed system explicitly addresses scenarios
involving command misinterpretations or kinematic singularities
through an integrated error-handling mechanism. To ensure
operational safety and task efficacy, BLTA employs a multi-stage
confirmation protocol before task execution. Upon receiving an
instruction, the robotic agent initiates a semantic parsing phase
to interpret the command, followed by the generation of a
hierarchical execution plan.This plan is then presented to the human
operator via an interface for explicit validation during the execution
plan verification phase, enabling cross-verification of the robot’s
comprehension and providing a structured opportunity for the
operator to implement necessary adjustments before deployment.
Furthermore, BLTA incorporates real-time singularity detection
algorithms and exception handling protocols. When kinematic
singularities, operational anomalies, or unmodeled environmental
constraints are detected during execution, the system initiates a
suspension of operations and requests human intervention through
prioritized status alerts.

Remark: This bidirectional communication framework
establishes a closed-loop interaction protocol between the human
operator and robotic system, enhancing system resilience through
error recovery mechanisms and adaptive replanning capabilities. By
integrating proactive validation checkpoints with reactive exception
management, the architecture maintains optimal equilibrium
between automated functionality and human supervisory control,
thereby ensuring robust performance in dynamic, unstructured
environments.

4 Experiment

To evaluate the effectiveness of the BTLA system, we
conducted experiments to move and manipulate large, heavy
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FIGURE 2
Experimental procedure for evaluating bimanual teleoperation methods. The process begins with participant training in three tasks (reaching,
pick-and-place, and pushing), followed by three experimental sessions (SPB, Dyadic, and BTLA teleoperation) conducted in randomized order for each
participant.

FIGURE 3
Single arm training tasks: (a) target reaching, (b) pick-and-place, and (c) pushing.

objects using a bimanual robotic system. The experimental
procedure, from operator training to performance assessment,
is illustrated in Figure 2. The assessment metrics include task
efficiency, operator workload, and user satisfaction in comparison
to SPB and Dyadic teleoperation methods. Ten participants (7 male,
3 female, aged 22–35) volunteered for this study, approved by
Lancaster University’s Ethics Committee (FST-2024-4525-RECR-
4), with informed consent obtained beforehand. All underwent
comprehensive system training before testing. Participants
comprised graduate students and research staff recruited from
engineering and computer science disciplines. Screening confirmed
that all possessed fundamental robotics literacy (e.g., coursework in
control systems or human-computer interaction) but had no prior
experience with bimanual teleoperation systems.

4.1 Experimental setup

4.1.1 Equipment and software
The experimental setup incorporated two 3D Systems Touch

haptic interfaces (formerly Phantom Omni). The PyBullet physics
engine API was employed to construct the virtual environment,

orchestrate robotic arm actuation, and render object dynamics in
real time. To enhance user interface intuitiveness and operational
precision, we developed a haptic feedback-enabled control
architecture Equation 1 incorporating a closed-loop velocity control
scheme:

Vi,robot = kvdi,hand, (1)

where i ∈ {x,y,z}, Vi,robot is the velocity of the end effector of the
robot arm, di,hand is the displacement of the tip on the pen of the
haptic device, and kv is the hand controller-to-robot velocity gain.
The feedback force is given by Equation 2.

Fi,Feedback = k fdi,hand + Finitial, (2)

where Finitial is the initial force that allows the user to feel a sense of
boundaries.Fi,Feedback is the feedback force on the user, which is equal
in magnitude but opposite in direction to the force applied by the
human on the haptic device, i.e., FFeedback = − FHuman. This feedback
force creates a sense of resistancewhen the user tries tomove further,
allowing the user to experience greater resistance when expecting a
larger robot armmoving speed. To minimize uncontrolled variables
thatmight influence the experiment results, we designed customized
objects using Fusion 360 and converted them into URDF files.
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FIGURE 4
Experimental setup for bimanual teleoperation: (a) SPB and (b) Dyadic
configurations.

4.1.2 LLM initial prompt
For realistic human voice interactions, we adopted the OpenAI

Whisper model for speech-to-text and text-to-speech (TTS) tasks.
We selected GPT-3.5-turbo as our primary LLM after comparative
testing with GPT-4 and Mistral-7B-OpenOrca showed similar
performance in command interpretation but faster response times
with GPT-3.5-turbo. Our LLM prompt employs a structured
three-component design: role definition, skill specification,
and JSON response formatting. The prompt explicitly defines
available skills (e.g., Follow(), Fetch(), SymmetricalFollow()) and
requires standardized JSON responses such as “Skill”: “Follow()”,
“Description”: “I’ll follow your arm movement to help push the
object together.” This ensures consistent command interpretation
and seamless integration with our control pipeline. The complete
prompt structure is detailed in the appendix (Figure 9).

To optimize the robot assistant’s understanding of its role and
objectives, we implemented a set of predefined rules and instructions
as an initial prompt for the LLM. The initial prompt configures
the LLM as an AI assistant designed to aid a robot arm in task
execution. It instructs the LLM to generate scripts based on the
user’s spoken commands, adhering to a specific JSON format:
Script: “Skill: Write the function here.“, “Description: Include a
necessary description about this skill, as if you are talking to the
user directly. Use ‘you’ to address the user.” The robot assistant is
equipped with a comprehensive list of available skills from the skill
database to enable matching of user commands with appropriate
functions. The LLM is programmed to provide user feedback on
its actions through the “Description” field in the JSON script.
When a user’s command corresponds to a known skill, the LLM
generates the relevant script. In cases where no match is found, the
assistant generates a script with an empty function and a description
indicating that no action will be taken. This structured approach to

the initial prompt ensures the LLM-aided robot assistant’s ability to
interpret user commands and provide meaningful feedback, which
facilitates a more seamless and effective interaction between the
human operator and the embodied AI system in bimanual handling
tasks. Additionally, this safety check effectively addresses potential
conflicts or misinterpretations between the LLM’s voice command
interpretation and the predefined skill base. The LLM is configured
with a structured prompt (see Figure 9) that defines available
skills and expected response formats. This ensures consistent
interpretation of operator commands and appropriate skill selection.
The system provides immediate feedback through natural language
responses, confirming command understanding before execution.

4.1.3 Skills
There are two types of skills: autonomous and real-time skills.

Autonomous skills are executing actions in series and exiting when
the whole action is done, such as Handover()—handover an object
to the master arm; Approach()—move the arm to approach an
object (e.g., for listing objects together); Fetch()—grab an object
and bring it to the master arm. Real-time skills are continuous
motions and exiting when the user gives the stop command, like
Follow()—follow the master robot arm (e.g., for pushing together);
SymmetricalFollow()—act a mirror behavior of the master robot
arm; Move(distance, direction)—move the arm (ask user for
distance in meters and direction: “+x”, “-x”, “+y”, “-y”, “+z”, “-z”).
Each skill includes parameter validation and safety checks to ensure
reliable operation.

4.2 Training protocol

Wedeveloped a structured training protocol to ensure consistent
operator proficiency across all experimental conditions. Each
participant completed three increasingly complex tasks: target
reaching, pick-and-place, and pushing operations (Figure 3).

This progressive training approach helped participants develop
fundamental skills before attempting more complex bimanual
operations. In the target-reaching task, the goalwas to navigate to the
red waypoints. The pick-and-place task required participants to use
the gripper to grasp a square block and transport it to a target area
while avoiding a vertical barrier. The pushing task involved pushing
an object into a designated target area. Participants were required to
complete the tasks within 4 and 3 min, respectively.

4.3 Experiments procedure

The experimental task required coordinated bimanual
manipulation to transport an object to a designated platform
(Figure 4). We evaluated three teleoperation patterns: SPB,
Dyadic, and BTLA, with participants experiencing each mode in
counterbalanced order. In the baseline SPB condition, participants
controlled both robotic arms simultaneously using haptic devices,
representing traditional teleoperation approaches. The dyadic
teleoperation condition paired participants with a trained operator,
simulating collaborative control scenarios. BTLA condition enabled
participants to control the master arm directly while commanding
the assistant arm through voice instructions. After each trial,
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FIGURE 5
Illustration of the execution of BTLA on object transferring tasks: (a) initial state (b) move the left arm only without following command (c) right arm is
controlled by BTLA with symmetrical following behavior (d) go to pick up position simultaneously (e) grab the object (f) collaborate with BTLA moving
the object to the specific place.

FIGURE 6
Box plots for performance (a) coverage (p < 0.05), (b) success rate (p < 0.05), (c) time (p = 0.117) among all subjects for three experimental scenarios
SPB, Dyadic, and BTLA.

FIGURE 7
(a) Likert Scale Ratings. (b) Correlation matrix of performance metrics.
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FIGURE 8
Boxplots for NASA-TLX results among all subjects for three experimental patterns: SPB, Dyadic, and BTLA, respectively. Rated aspects from NASA-TLX:
mental demand (MD), physical demand (PD), temporal demand (TD), performance (P), effort (E), and frustration (F). (all metrics: p < 0.05).

FIGURE 9
An example of LLM initial prompt: textual description of the mission and skills.
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participants completed the NASA-TLX questionnaire and provided
feedback on their experience. Three types of teleoperation were
tested in randomized order to tackle learning effects.

The experimental task involved coordinated manipulation of a
large object, requiring precise control during grasping, transport,
and placement phases. As illustrated in Figure 5, successful
completion demanded stable bimanual coordination to move the
object to a designated target location while maintaining proper
orientation and avoiding collisions. Figures 5a–d shows the motion
from the start position to the grasp position. Figures 5e,f shows the
motion to the appointed platform.

4.4 Assessment

We defined a successful trial using three criteria: successful
simultaneous object grasping by both arms, stable object transport
without drops or collisions, and accurate placement with at least
70% coverage of the target area. For each teleoperation pattern, we
recorded multiple trials to assess the consistency and reliability of
performance.

System usability and operator experience were assessed through
two complementary questionnaires. The first evaluated the quality
of human-robot interaction across multiple dimensions, including
interface naturalness, operator satisfaction, perceived system
intelligence, and overall usability. The second utilized the NASA-
TLX to measure operator workload across six dimensions: mental
demand, physical demand, temporal demand, performance, effort,
and frustration (Figure 8). This standardized assessment tool has
been widely validated in human-machine interaction studies (Hart
and Staveland, 1988) and provides robust metrics for comparing
different teleoperation approaches.

5 Results and discussions

5.1 Performance metrics

To evaluate the effectiveness of the BTLA, we compared
its performance with the Dyadic and SPB scenarios using
three metrics: coverage, success rate, and task completion time,
as shown in Figure 6. The BTLA scenario demonstrated the highest
mean coverage (0.861) and success rate (0.627) among the three
scenarios, suggesting that the BTLA system is more effective in
completing tasks and covering a larger portion of the task space
compared to the Dyadic and SPB scenarios. The Kruskal–Wallis
test was performed to assess the statistical significance of the
differences in coverage (p = 0.003) and success rate (p = 0.004)
among the patterns, and the results indicate that the differences
in these metrics among the scenarios are statistically significant.
Although the BTLA scenario exhibited faster task completion
times compared to the other patterns, the differences were not
statistically significant based on the Kruskal–Wallis test, which
yielded a p-value of 0.117 for the time metric. To identify specific
group differences, we conducted post-hoc pairwise comparisons
using the Dunn test with Bonferroni correction. For coverage,
BTLA significantly outperformed both SPB (p < 0.001) and Dyadic
(p = 0.032) conditions, while the difference between Dyadic and

SPB was not significant (p = 0.089). Similarly, for success rate, BTLA
showed significant improvements over SPB (p < 0.001) and Dyadic
(p = 0.045), with no significant difference between Dyadic and SPB
(p = 0.156). These results confirm that BTLA provides the most
substantial performance gains compared to traditional teleoperation
approaches.

Furthermore, a correlation analysis was conducted to examine
the relationship between coverage and success rate (see Figure 7).
The analysis revealed a strong positive correlation (0.71) between
the two metrics, indicating that higher coverage is associated with
higher success rates. This finding suggests that the BTLA system’s
ability to cover a larger portion of the task space contributes to its
higher success rates in completing tasks compared to theDyadic and
SPB patterns.

5.2 Subjective assessment

For all NASA-TLX metrics (mental demand (MD), physical
demand (PD), temporal demand (TD), performance (P), effort (E),
and frustration (F)), the BTLA pattern exhibited the most favorable
ratings, with lower demands, effort, and frustration, as well as better
perceived performance compared to the Dyadic and SPB patterns
as shown in Figure 8. In contrast, the SPB pattern appeared to be
the most challenging, with higher demands, effort, and frustration,
and lower perceived performance. The Dyadic pattern fell between
the BTLA and SPB, indicating moderate levels of demands, effort,
frustration, and performance.

The Kruskal–Wallis test results revealed statistically significant
differences among the three patterns for all metrics, with the
test statistics being 17.974 for MD (p≪ 0.001), 14.701 for PD
(p = 0.001), 12.276 for TD (p = 0.0002), 15.723 for P (p≪ 0.001),
14.228 for E (p = 0.0001), and 11.018 for F (p≪ 0.001). The p-
values for all metrics were less than 0.001, providing strong evidence
against the null hypothesis of no difference among the patterns. Over
40% of participants reported that their performance was limited by
the restricted 2D camera view. This limitation was due to either
a loss of depth perception, making it difficult to discern spatial
relationships, or because the images were partially obstructed.

In summary, experiment results showedmarked improvements in
task performance and lowered operatorworkload versus conventional
methods, with natural language interpretation and adaptive assistance
proving critical for complex manipulations. However, the integrated
voice processing pipeline—comprising speech-to-text conversion via
Whisper, intent interpretation through GPT-3.5-turbo, and skill
dispatch—introduces a measurable latency, which may impede real-
time responsiveness during high-speed bimanual coordination tasks
such as dynamic obstacle avoidance. Furthermore, validation remains
confined to simulated environments using PyBullet; deployment on
physicalhardwarenecessitatesaddressingcriticalchallenges, including
sensor noise robustness and unmodeled dynamics (e.g., joint friction
and cable effects). Future work includes three key directions: (1)
broadening autonomous behaviors and refining real-time autonomy
adaptation to boost flexibility; (2) exploring mutual adaptation
between operators and the system during extended use to optimize
collaboration; and (3) extending BTLA’s application to diverse robotic
platforms and real-world scenarios to strengthen practical relevance.
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6 Initial prompts

See Figure 9.
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