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Deep networks for electroencephalogram (EEG) decoding are often only
trained to solve one specific task, such as pathology or age decoding. A
more general task-agnostic approach is to train deep networks to match a
(clinical) EEG recording to its corresponding textual medical report and vice
versa. This approach was pioneered in the computer vision domain matching
images and their text captions and subsequently allowed to do successful
zero-shot decoding using textual class prompts. In this work, we follow this
approach and develop a contrastive learning framework, EEG-CLIP, that aligns
the EEG time series and the descriptions of the corresponding clinical text
in a shared embedding space. We investigated its potential for versatile EEG
decoding, evaluating performance in a range of few-shot and zero-shot settings.
Overall, we show that EEG-CLIP manages to non-trivially align text and EEG
representations. Our work presents a promising approach to learn general
EEG representations, which could enable easier analyses of diverse decoding
questions through zero-shot decoding or training task-specific models from
fewer training examples. The code for reproducing our results is available at
https://github.com/tidiane-camaret/EEGClip.

KEYWORDS

electroencephalogram (EEG), contrastive learning, multimodal representation, zero-
shot classification, clinical text processing, neural time series, transfer learning

1 Introduction

Recent advances in machine learning have led to deep neural networks being
commonly applied to electroencephalogram (EEG) data for a variety of decoding
tasks (Roy et al, 2019). While deep learning models can achieve state-of-the-
art performance on specialized EEG tasks, their learned representations can often
only be used for one specific task. Most EEG analyses focus on training task-
specific models for one type of classification or regression problem (Heilmeyer et al,
2018). However, medical EEG recordings are often accompanied by rich
unstructured annotations in the form of free text reports written by neurologists
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and medical experts—a potentially valuable source of supervision
that remains largely untapped.

In the computer vision domain, Contrastive Language-Image
Pre-training or CLIP (Radford et al., 2021) leverages text-image
pairing to learn visual representations that effectively transfer across
tasks. CLIP has demonstrated remarkable zero-shot generalization
capabilities by learning to align images with natural language
descriptions, enabling classification of previously unseen categories
and adaptation to novel visual tasks without additional training.

Inspired by CLIP, we propose EEG-CLIP: a contrastive learning
approach to align EEG time-series data with corresponding clinical
text descriptions in a shared embedding space. This work explores
two central questions: (i) how clinical text reports can be effectively
incorporated into EEG representation learning, and (ii) whether this
multimodal approach enables more generalizable representations
that transfer across diverse EEG decoding tasks.

We demonstrate EEG-CLIP’s potential for versatile EEG
decoding through extensive evaluation on few-shot and zero-shot
learning tasks. Our results show that EEG-CLIP achieves strong
zero-shot classification performance and consistently outperforms
previous transfer learning approaches and task-specific models
when labeled data are scarce. This presents a promising direction
for EEG analysis by enabling zero-shot inference through natural
language queries and more efficient training of specialized models
with limited annotations.

Remark: Recently and after the completion of the study
presented in this manuscript, (Gijsen and Ritter, 2024), also
proposed EEG-language models that align EEG data with clinical
reports for pathology detection. Their work explores multiple
alignment strategies, including a multiple instance learning
extension for flexible matching between EEG segments and
text portions. Their approach is primarily focused on pathology
detection and classification of epileptiform activity, while our EEG-
CLIP study examines model performance on diverse decoding
objectives including age, gender, and medication prediction,
providing further insights into the versatility of language-supervised
EEG representations.

2 Related work
2.1 Deep-learning based EEG decoding

Deep learning has revolutionized EEG analysis by enabling
end-to-end decoding directly from raw signals without hand-
crafted features. Convolutional neural networks (CNNs) have shown
particular promise, with recent advances like batch normalization
and exponential linear units boosting performance to match
or exceed traditional methods like filter bank common spatial
patterns (FBCSP) (Schirrmeister et al., 2017) These architectures
automatically learn hierarchical representations that capture
relevant spectral and spatial patterns in EEG data.

Various neural network architectures have been applied to EEG
tasks, from shallow CNNs for efficient processing to recurrent
networks for capturing temporal dependencies. Recent comparative
studies have demonstrated that specialized deep learning models can
outperform traditional approaches on standard benchmarks such as
BCI Competition datasets. Beyond classification, newer approaches
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like EEG-to-text decoding leverage advanced neural architectures
combined with probabilistic modeling to translate neural activity
into human-readable text (Lévy et al., 2025), expanding the potential
applications for EEG-based interfaces.

Multimodal approaches have also shown promise, such as
Khan et al. (2018) who combined EEG with fNIRS to capture
complementary neurophysiological signals. While they used
traditional signal processing rather than deep learning, their
work highlights the value of integrating EEG with additional
information sources, a principle that motivates our EEG-text
alignment approach.

While task-specific models dominate current approaches, our
work explores a more general representation learning framework
that leverages the rich information in clinical text reports to develop
versatile EEG embeddings useful across multiple decoding tasks.

2.2 Contrastive learning for multimodal
alignment

Self-supervised contrastive learning has recently emerged as
a powerful approach to learning general visual representations.
Models like CLIP are trained to align the image embeddings x; and
the corresponding text embeddings y; by minimizing contrast loss

L:

exp (sim (x;,y,) /7)
Zjlil exp (sim (x,-,yj) /T)

where sim(.) is a measure of similarity. This objective brings the

N
L= Z—log
i=1

matching image-text pairs closer and separates the mismatched pairs
in the learned embedding space.

CLIP was trained on a large dataset of 400 million image-text
pairs from diverse Internet sources with unstructured annotations.
Through this natural language supervision, CLIP developed versatile
image representations that achieve strong zero-shot inference on
downstream tasks by querying the aligned embedding space.

The success of CLIP highlights the promise of contrastive
learning approaches and the use of readily available text data to learn
transferable representations of other modalities.

3 Methods
3.1 Dataset

The Temple University Hospital EEG corpus (Obeid and Picone,
2016) contains over 25,000 EEG recordings collected from over
14,000 patients between 2002 and 2015. The large number of EEG
recordings make this a valuable training dataset for deep learning
models to learn to decode information such as pathology or age
from the EEG and be able to generalize to unseen EEG recordings.
The TUH Abnormal dataset (TUAB) is a demographically balanced
subset with binary labels indicating pathological or nonpathological
diagnosis of each recording. It is partitioned into training (1,387
normal and 1,398 abnormal files) and evaluation (150 normal
and 130 abnormal files) sets. It contains a variety of pathological
conditions.
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TABLE 1 Report section characteristics in the TUAB dataset. Distribution
of medical report sections showing highest coverage in diagnostic
sections (Impression, Description, Clinical History) with substantial text
content, versus limited coverage in specialized sections.

Record Count of Average
section non-empty entries word count
Impression 2,971 16
Description of the record 2,964 70
Clinical history 2,947 26
Medications 2,893 4
Introduction 2,840 31
Clinical correlation 2,698 31
Heart rate 1,458 2
Findings 887 16
Reason for study 713 2
Technical difficulties 684 3
Events 569 8
Condition of the recording 116 30
Past medical history 19 8
Type of study 16 3
Activation procedures 9 3

Each recording contains additional labels: “age” (integer),
“gender” (“M” or “F”), and “report” (string), a medical report
written in natural language. The report is divided in 15
sections, listed in Table 1.

3.2 EEG data preprocessing

We preprocess the EEG data, following the preprocessing
steps from Schirrmeister et al. (2017):

e Select a subset of 21 electrodes present in all recordings.

e Exclude the first minute of the recordings, and only use the first
2 min after that

e Clip the amplitude values to the range of + 800 u V to reduce
the effects of strong artifacts.

e Resample the data to 100 Hz to further speed up the
computation.

e Divide by 30 to get closer to unit variance

3.3 Architecture and training details
The EEG-CLIP model is composed of two main components:

an EEG encoder and a text encoder. These encoders are designed
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to process EEG recordings and medical reports respectively, as
depicted in Figure 1.

For the EEG encoder, we use a convolutional neural
network (CNN), Deep4 (Schirrmeister et al, 2017), whose
architecture is optimized for the classification of EEG data.
The Deep4 Network features four convolution-max-pooling
blocks,
by a dense softmax classification layer. This enables the

using batch normalization and dropout, followed
model to learn hierarchical spatial-temporal representations
of the EEG signal. The output is flattened and passed
to a fully-connected layer to derive a 128-dimensional
embedding.

For the text encoder, we leverage pretrained text encoders based
on the BERT architecture (Devlin et al., 2019). Such transformer-
based models have shown state-of-the-art performance on a variety
of natural language processing tasks. The advantage of these
pretrained models is that they provide rich linguistic representations
that can be effectively transferred to downstream tasks through
finetuning.

The EEG and text embeddings are then fed into MLP
projection heads, consisting of 3 fully-connected layers with ReLU
activations. The final layer outputs a 64-dimensional projection
of the embedding for contrastive learning. This architecture
allows the model to learn alignments between EEG windows and
corresponding medical report sentences in a shared embedding
space. The contrastive loss enables the useful semantic features to
be captured.

We train EEG-CLIP using the Adam optimizer with a learning
rate of 5 x 107> and weight decay of 5 x 10~*. The model is trained for
20 epochs with a batch size of 64. We use the same training/testing
split as in the TUAB dataset. Each recording is split in windows of
length 1,200, corresponding to a 12 s period, and with a stride of
519, which ensures all timesteps are predicted without any gap by
our Deep4 model.

3.4 Evaluation methods

Unlike models trained for a specific downstream task,
EEG-CLIP has to learn broadly useful representations that
between EEG
text. As such, evaluation methods must aim to quantify
quality and

capture semantic relationships signals and

the general transferability of the learned
representations.
Using the labels and medical reports provided in the TUAB

dataset, we select 4 decoding tasks:

o “Pathological”: decode whether the recording was diagnosed
as normal or pathological

e “Age”: decode whether the age of the patient is smaller or equal,
or greater than 50

e “Gender”: decode the declared gender of the patient

e “Medication”: decode whether the medical report contains at
least one of the 3 most common anticonvulsant medications

»

(“keppra’, “dilantin” and “depakote”)

We then design multiple methods to evaluate the model on,
listed in the following.

frontiersin.org
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Medical reports ——— Text encoder ——> Projection

Contrastive Loss

EEG recordings —{ > EEG encoder — > Projection

Model architecture of EEG-CLIP. The figure illustrates the dual-encoder architecture with an EEG encoder processing EEG time series data and a text
encoder (pretrained BERT-based model) processing clinical reports. Both modalities are projected into a shared 64-dimensional embedding space
through MLP projection heads. The contrastive loss optimizes for alignment between matching EEG-text pairs while pushing non-matching pairs apart,
enabling the model to learn cross-modal representations that capture semantic relationships between neurophysiological patterns and their clinical

descriptions.

3.4.1 Classification

We compare EEG-CLIP against two baseline models to
contextualize its performance:

e Task-specific model (upper bound): A Deep4 CNN trained
end-to-end from random initialization directly on each target
task. This provides an upper bound since the entire model can
optimize specifically for the task.

o Alternative task transfer model (lower bound): A Deep4 CNN
first trained from random initialization on an unrelated task
(e.g., age classification), then transferred to the target task (e.g.,
pathology detection) by freezing the encoder and training only
a new classification head. This tests whether simple transfer
learning from any EEG task provides useful features.

Both baselines use the same architecture as EEG-CLIP’s EEG
encoder but differ in their training approach: EEG-CLIP uses
contrastive learning with text supervision, while baselines use
standard supervised learning with task labels. Figure 2 illustrates the
different training strategies.

3.4.2 Zero-shot classification

We also perform zero-shot evaluation, using the embeddings
of class-specific text prompts as class prototypes for the trained
EEG-CLIP model. For a given classification task, we define a typical
prompt sentence for each class (see Table 2) and calculate the
distance of an EEG recording to those sentences in the shared
embedding space. This allows us to measure the classification
performance of EEG-CLIP without any training on the classification
task labels.

3.4.3 Classification in a low-data regime

To further evaluate the generalization capability of the
learned representations, we assess few-shot performance by
training classifiers on varying fractions of a small labeled dataset.
Specifically:

Frontiers in Robotics and Al

e We hold out 20% of the TUAB training set exclusively
for few-shot training (never seen during EEG-CLIP’s
contrastive training)

e From this 20% held-out set, we create subsets of sizes: 1/2, 1/5,
1/10, 1/20, and 1/50

All models (EEG-CLIP, task-specific, and alternative task)
are trained on these identical data subsets. The key difference
is that EEG-CLIP uses representations learned from contrastive
training on the separate 60% split, while the task-specific model
trains from scratch. This ensures a fair comparison where all
models have access to the same limited labeled data, isolating the
benefit of pre-training. Figure 3 illustrates the data partitioning
strategy.

4 Results

4.1 Evaluation of the learned
representations

In this section, we present results evaluating the learned
representations from EEG-CLIP across a diverse set of experiments.
As a reminder, our evaluation methodology consisted of
classification tasks using the full TUAB dataset, zero-shot
classification using text prompts, and few-shot classification on a
held-out dataset.

4.1.1 Classification performance

Table 3 shows EEG-CLIP’s classification performance across
four tasks. With logistic regression, EEG-CLIP achieves balanced
accuracies of 0.826 for pathological status, 0.713 for age, and 0.687
for gender. A 3-layer MLP classifier further improves results to 0.847,
0.747, and 0.702 respectively, indicating non-linear relationships in
the embedding space. The performance gap between EEG-CLIP +
MLP and task-specific models remains small (0.004 for pathological,
0.039 for age, 0.050 for gender) despite the latter’s end-to-end

frontiersin.org


https://doi.org/10.3389/frobt.2025.1625731
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Camaret Ndir et al.

10.3389/frobt.2025.1625731

Step 1: Pre-training/Training

Text
Text — EEG ;
Encoder
EEG-CLIP T Contrastive EEG — Encoder — Cl_llaSSIf' Target
ead Task
3 Loss (Frozen)
EEG — _EEC
Encoder
e.g., Age
Alternative EEG ( Cg:assg ) EEG NET Target
Task EEG — oo — oo EEG — Encoder — Classif. — ‘'8
Transfer ncoder ea (Frozen) Head as
Task- EEG Classif. Target . -
Specific EEG — Encoder — Head - Task (End-to-end training on target task only)

FIGURE 2
Training approaches comparison. Three methods for EEG classification: (1)

fine-tuning with frozen encoder, (2) Alternative Task Transfer pre-trains on an unrelated task then adapts to target task with frozen encoder, (3)

Task-Specific trains directly on target task end-to-end.

Step 2: Target Task Training

EEG-CLIP uses contrastive pre-training with text before target task

TABLE 2 Text prompts for zero-shot classification. Concise natural language prompts representing each class for four classification tasks, enabling

classification through EEG-text similarity without task-specific training.

Task Prompt A Prompt B

Pathological “This is a normal recording” “This is an abnormal recording”

Age “The patient is under 50 years old” “The patient is over 50 years old”

Gender “The patient is male” “The patient is female”

Medication “No anti-epileptic drugs were prescribed to the patient” “Anti-epileptic drugs were prescribed to the patient”

optimization advantage. Most importantly, EEG-CLIP consistently
outperforms alternative task pretraining by 10.6% for pathological,
6.2% for age, and 3.5% for gender classification. These quantitative
results demonstrate that text-EEG contrastive learning produces
more transferable representations than single-task supervised
learning.

4.1.2 Zero-shot classification performance

For zero-shot classification, we evaluate EEG-CLIP’s ability
to classify EEG recordings without any task-specific training. We
compute similarities between EEG embeddings and text prompts
(see Table 2) in the shared embedding space. As shown in Table 4,
EEG-CLIP achieves remarkable zero-shot performance on the
pathological task (0.755), demonstrating strong alignment between
EEG signals and their textual descriptions. Performance on age
classification (0.642) is also substantially above chance, while
gender (0.567) and medication (0.532) show more modest
scores. These results are particularly encouraging as they
represent classification without any labeled training data, relying
solely on the semantic alignment learned during contrastive
training. The strong pathology detection performance suggests
that diagnostic language in the medical reports is effectively
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aligned with corresponding neurological patterns in the EEG
signals. This zero-shot capability could be especially valuable in
clinical settings where labeled data for new tasks is scarce or
unavailable.

4.1.3 Few-shot classification performance

On the pathological task, EEG-CLIP achieves 0.710 balanced
accuracy on the held-out set. This approaches the 0.781 performance
of a model trained from scratch with the same limited data. For
age classification, EEG-CLIP even outperforms the specialized
model. The medication task proves most challenging in the
few-shot setting. However, all models struggle to exceed 0.6
accuracy, suggesting intrinsic difficulty of the binary prediction
from small samples. The detailed results are presented in
Table 5.

Critically, EEG-CLIP
pretrained on alternative tasks across all but one experiment. This

substantially outperforms models
demonstrates the concrete value of pretraining on aligned data, even
when fine-tuning data is scarce.

As shown in Figure 4, EEG-CLIP (green lines) maintains
relatively ~ stable performance increasingly
fractions of the training set, from % down to % of the

across smaller
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TUAB Official Dataset Split

Train (80%) Eval (20%)
Standard Classification Setup
Contrastive Training + Task Training Task Eval
Few-shot Classification Setup
Contrastive Task Task
Training (60%) Train. (20%) | Eval (20%)

FIGURE 3

the 20% Task Train split.

. : .11 1 1 1
Varying fractions: 5, =, 15, 55+ 55

Experimental data partitioning strategies for EEG-CLIP. The top section shows the official TUAB dataset split. The middle section illustrates the standard
classification setup where the training portion is used for contrastive learning between EEG signals and text descriptions. The bottom section visualizes
the few-shot learning approach: 60% is used for EEG-CLIP's contrastive pre-training (without task labels), 20% serves as the few-shot training set (from
which varying fractions are sampled), and 20% is held for evaluation. In few-shot experiments, all compared models use only the same subsets from

TABLE 3 Classification performance comparison (balanced accuracy).
EEG-CLIP approaches task-specific performance while substantially
outperforming alternative task pretraining, demonstrating effective
text-supervised representation learning.

TABLE 4 Zero-shot classification performance (balanced accuracy).
EEG-CLIP achieves strong performance for pathology detection (0.755)
and age classification (0.642) using only text prompts, demonstrating
effective EEG-text alignment.

EEG-CLIP ’ Task- Alternative Task Accuracy
specific task
MLP Pathological 0.755
Pathological 0.826 0.847 0.851 0.741 (age) Age 0.642
Age 0.713 0.747 0.786 0.685 Gender 0.567
(pathological)
Medication 0.532
Gender 0.687 0.702 0.752 0.667
(pathological)
Medication 0.633 0.615 0.685 0.573
(pathological)
Taken together, these quantitative results provide strong

Bold values indicate the best performance for each task.

original dataset. For pathology detection (top left), EEG-
CLIP maintains strong performance even with minimal
data (%), outperforming both baselines as data becomes
extremely scarce. Age classification (top right) shows EEG-
CLIP consistently outperforming other approaches across all
data regimes. For gender and medication tasks (bottom panels),
all models show performance degradation with reduced data,
but EEG-CLIP demonstrates greater robustness to extreme data

. 1
reductions ( = ).
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evidence for the quality and transferability of the multi-modal
representations learned by EEG-CLIP. Performance across the
range of evaluation paradigms demonstrates that EEG-CLIP
successfully encodes general semantic relationships between EEG
and text. This enables the model to generalize to new tasks
and datasets without task-specific fine-tuning. The recent ELM-
MIL approach by Gijsen and Ritter (2024) achieves superior
performance (87.11% balanced accuracy) through Multiple
Instance Learning extensions that address fine-grained EEG-
text alignment. While our approach achieves 84.7%, both works
demonstrate that multimodal language supervision significantly
validating this research

outperforms EEG-only baselines,

direction.

frontiersin.org


https://doi.org/10.3389/frobt.2025.1625731
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Camaret Ndir et al.

10.3389/frobt.2025.1625731

TABLE 5 Few-shot learning performance (balanced accuracy). EEG-CLIP outperforms models trained from scratch on age classification, demonstrating

representation transferability when labeled data is scarce.

EEG-CLIP + MLP

Task-specific Alternative task

]

Pathological 0.710 0.781 0.531 (age)
Age 0.712 0.621 0.631 (pathological)
Gender 0.550 0.648 0.512 (pathological)
Medication 0.551 0.575 0.598 (pathological)
Bold values indicate the best performance for each task.
Evaluation Task : Pathological Evaluation Task : Age
0.80- 0.80- —(— Alternative Task
—{ |~ Task-Specific
20.75- 20.75-
E E —(— EEG-Clip
30.70- 30.70-
® ®
- 0.65- < 0.65-
g g
£ 0.60- £ 0.60-
= —(— Alternative Task ©
@0.55- —  Task-Specific @0.55-
0.50- —— EEG-C"p 0.50-
1/2 1/5 1/10 1/20 1/50 1/2 1/5 1/10 1/20 1/50
Percentage of the training set Percentage of the training set
Evaluation Task : Gender Evaluation Task : Medication
0.80- —(— Alternative Task 0.80- —(— Alternative Task
20.75- —{F+ Task-S;?eC|f|c 20.75- —{+ Task-S;.)ecmc
& —(— EEG-Clip 8 —— EEG-Clip
30.70- 30.70-
® ®
- 0.65- - 0.65-
g g
£0.60- £ 0.60-
] 8
@0.55- @0.55-
0.50- 0.50-
1/2 1/5 1/10 1/20 1/50 1/2 1/5 1/10 1/20 1/50
Percentage of the training set Percentage of the training set
FIGURE 4
Performance comparison in low-data regimes across four decoding tasks. Each panel shows balanced accuracy as a function of training set size (from
% to % of the full dataset) for three approaches: EEG-CLIP (green), task-specific models trained from scratch (orange), and models pretrained on
alternative tasks (blue). For pathology detection (top left), EEG-CLIP maintains strong performance even with minimal data (i), outperforming both
baselines as data becomes scarce. Age classification (top right) shows EEG-CLIP consistently outperforming other approaches across all data regimes.
For gender (bottom left) and medication (bottom right) tasks, all models show performance degradation with reduced data, but EEG-CLIP
demonstrates greater robustness to data scarcity, particularly at extreme reductions (%). Shaded regions indicate 80% confidence intervals.

4.2 Impact of the report sections on the
representations

To analyze how different report sections influence EEG

representation learning, we conducted systematic ablation
experiments by training separate models with single section inputs.
Each model utilized identical methodology except for the textual
input, which was restricted to specific report sections (impression,
description, history, etc.). We also experimented with randomly
sampling sub-strings from each section during training, but
this approach led to decreased performance compared to using

complete sections.
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As shown in Figure 5, while using all report sections yielded
the best overall performance across tasks, certain section-specific
models demonstrated unexpected strengths. Notably, the heart rate
section model achieved superior accuracy in gender classification
despite its brevity (average 2 words per report), suggesting
cardiac pattern descriptions capture gender-specific physiological
differences. Similarly, a model trained exclusively on technical
difficulties notes showed enhanced sensitivity to pathological
recordings, likely by learning to associate recording artifacts with
abnormal brain activity.

The three primary sections (impression, description, and
clinical history) provided the strongest individual contributions
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FIGURE 5

Impact of report section selection on representation quality. The
heatmap visualization reveals how training on different clinical report
sections affects decoding performance across tasks. While using all
sections yields the best overall performance, specialized text
categories show task-specific advantages. Notably, impressions and
descriptions contribute most significantly to pathology detection,
while sections like heart rate unexpectedly provide signal for gender
classification, suggesting physiological correlations.

Task
> 0.9 mmm Pathological
¢ - Age
E 0.8 e Gender
: . " .
o 8 Medication
<
< 0.7
Q
g
£ 0.6
©
o
0.5
R
Q.’\\c,
>
N
@
&
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Pretrained Text Encoder
FIGURE 6
Effect of text encoder selection on multimodal alignment. The bar
chart compares balanced accuracy across four decoding tasks using
different text encoders. Medical/ClinicalBERT shows strong overall
performance, while Microsoft/BioGPT-Large-PubMedQA performs
poorly across all tasks. BERT-base-uncased maintains competitive
pathology detection accuracy, and BAl/bge-large-en-v1.5 excels
particularly at pathology and age classification. These results highlight
how encoder choice significantly impacts cross-modal
representation quality.

Frontiers in Robotics and Al

08

Task
0.9 Pathological
> Age
%] Gender
E 0.8 Medication
3
v
<
- 0.7
[}
19
c
B8 0.6
©
m
0.5
10~4 1073 1072 107! 10°
Learning rate of the text encoder
FIGURE 7

Learning rate impact on text encoder fine-tuning. The plot
demonstrates how varying the learning rate ratio between the text
encoder and the overall model affects representation quality. A
moderate learning rate (10~ x the main learning rate) balances
preservation of pretrained knowledge with adaptation to the EEG
domain, optimizing cross-modal alignment without catastrophic
forgetting of linguistic structures.
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FIGURE 8

Embedding dimensionality analysis for multimodal representation.
Counterintuitively, smaller embedding dimensions (32-128)
consistently outperform larger ones (256-512) across all tasks. This
suggests that compact shared embedding spaces better distill
essential cross-modal patterns by enforcing more precise alignment
between neurophysiological signals and their textual descriptions,
while filtering out modality-specific noise.

to performance, aligning with their higher word counts and
prevalence across the dataset (Table 1). However, even sections with
limited representation, such as medication lists, contributed unique
predictive signals for specific tasks.

These findings reveal how specialized clinical descriptions, even
when isolated, can help models detect task-relevant physiological
patterns in EEG data. While combining all sections remains optimal
for general-purpose representations, our analysis demonstrates the
potential value of targeting specific report sections when developing
specialized decoders or when working with incomplete clinical
documentation.
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medication

Visualized embedding space using t-SNE dimensionality reduction. The 2D projection of EEG embeddings from the evaluation set reveals clear
clustering patterns corresponding to clinically relevant attributes. Pathological recordings (yellow) form distinct regions from normal recordings
(purple), demonstrating that the unsupervised contrastive learning effectively captures diagnostically relevant features. Secondary clusters
corresponding to age and gender are also visible, indicating the multifaceted nature of the learned representations.

4.3 Study on parameter importance

4.3.1 Pre-training of the text encoder

We experimented with several variants of pre-trained language
models as text encoders, available publicly on the Hugging Face
Hub (Wolf et al., 2020), as shown in Figure 6. These included BERT-
base-uncased (Devlin et al., 2019), a general domain model trained
on Wikipedia and BookCorpus; Clinical BERT (Huang et al., 2019),
a model finetuned on clinical notes; BioGPT-Large-PubMedQA
(Luo et al, 2022), tailored for biomedical text; and BGE-
Large (Xiao et al., 2023), a model trained on scientific papers and
designed for generation tasks.

ClinicalBERT demonstrated the strongest overall performance
across tasks, highlighting the advantage of domain-specific pre-
training for clinical text processing. Interestingly, the general-
purpose BERT-base-uncased maintained competitive performance
on pathology detection despite lacking medical specialization.
BGE-Large showed particular strength in pathology and age
classification tasks, while BioGPT-Large-PubMedQA consistently
underperformed across all evaluations. These results emphasize
how encoder architecture and pre-training domain significantly
impact the quality of cross-modal representations in our EEG-text
alignment framework.
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The learning rate ratio between the text encoder and
EEG encoder also proved critical, as shown in Figure?7.
Optimal performance was achieved when the text encoder

was fine-tuned at 107 times the learning rate of
the EEG encoder, balancing adaptation of pre-trained
linguistic = knowledge  while  preserving  domain-specific
understanding.

4.3.2 Projected embedding dimension

Additionally, we analyzed EEG-CLIP model performance
across varied hidden dimensionality sizes for the jointly learned
EEG and text embeddings, as illustrated in Figure 8. Counter
to typical representation learning trends, we found higher
decoding accuracy with smaller shared embedding spaces between
32-128 dimensions rather than larger 256 or 512 sizes. A t-
SNE visualization of the 64-dimensional embeddings in Figure 9
reveals clear clustering by pathological status, demonstrating
effective semantic organization of the learned representation
space.

This counterintuitive finding suggests that compressing both
modalities into compact unified vectors distills patterns into their
most essential characteristics necessary for generalization, while
avoiding overfitting to training distribution artifacts that may
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FIGURE 10
EEG-CLIP EEG encoder gradients that direct to the embeddings of “Excessive beta activity” Top: EEG encoder gradients. Bottom: EEG encoder
gradients per electrode. Gradients show elevated responses in the beta frequency range (14-30 Hz).

occur in higher-dimensional spaces. The constrained dimensionality 4.4 Gradient analysis for model

may also enforce more direct alignment between descriptive interpretability

clinical concepts and underlying neurological patterns. These results

indicate that EEG-CLIP benefits from lower-complexity manifolds In order to provide insights into EEG-CLIP’s decision-making
that capture key cross-modal correspondences while filtering out ~ process, we performed gradient-based analysis to visualize which
extraneous signals. EEG regions contribute most strongly to embeddings aligned with
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FIGURE 11

EEG-CLIP EEG encoder gradients that direct to the embeddings of "20 Hz beta spindles in central regions”. Top: EEG encoder gradients. Bottom: EEG
encoder gradients per electrode. Gradients concentrate in the central electrode locations (C3, Cz, C4) with a peak at approximately 20 Hz,
demonstrating the model's ability to capture both spatial and frequency-specific features mentioned in the text.

specific textual concepts. We computed gradients of the cosine  to the input in the frequency domain for easier analysis. Gradients
similarity between EEG embeddings and text embeddings for  were averaged across the validation set of TUAB.

various prompts with regard to the EEG input that is forwarded Analysis of prompts containing specific frequency descriptions
through the EEG encoder. We computed those gradients with regard ~ reveals characteristic gradient patterns. The prompt “Excessive

Frontiers in Robotics and Al 11 frontiersin.org


https://doi.org/10.3389/frobt.2025.1625731
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Camaret Ndir et al. 10.3389/frobt.2025.1625731

Average Gradient Across All Electrodes

1.0

0.8

0.6

0.4

0.2

Average Gradient

0.0

0 10 20 30 40 50
Frequency (Hz)

EEG Topography by Frequency Bands
Delta (0-4 Hz) Theta (4-8 Hz) Alpha (8-14 Hz)

Jualpe.ls abesany

Low Beta (14-20 Hz) Gamma (30-50 Hz) -1

FIGURE 12

EEG-CLIP EEG encoder gradients that direct to the embeddings of “Left temporal sharp waves with a frequency of 6 Hz". Top: EEG encoder gradients.
Bottom: EEG encoder gradients per electrode. Higher magnitudes in left temporal electrodes (T3, T5) with a prominent peak around 6 Hz, indicating
successful spatial-frequency alignment with the textual description.

beta activity” (Figure 10) produces elevated gradient responses in  central electrode locations (C3, Cz, C4) with a peak at
the beta frequency range (14-30 Hz). approximately 20 Hz, demonstrating the model’s ability to

For the more spatially specific prompt “20 Hz beta spindles  capture both spatial and frequency-specific features mentioned in
in central regions” (Figure 11), gradients concentrate in the  the text.
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FIGURE 13

EEG-CLIP EEG encoder gradients that direct to the embeddings of “This is a normal recording”. Top: EEG encoder gradients. Bottom: EEG encoder
gradients per electrode. Positive peak around 8—9 Hz in the alpha range, indicating the model identifies healthy recordings with increased alpha
band activity.

The prompt “Left temporal sharp waves with a frequency Figure 13 shows the gradient patterns when the model aligns
of 6 Hz” (Figure 12) produces gradients with lateralized patterns,  EEG signals with “This is a normal recording” embeddings. The
showing higher magnitudes in left temporal electrodes (T3, T5)  frequency gradient analysis reveals a positive peak around 8-9 Hz in
with a prominent peak around 6 Hz, indicating successful spatial-  the alpha range, indicating the model identifies healthy recordings
frequency alignment with the textual description. with increased alpha band activity. This pattern suggests the
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model has learned to identify normal EEG patterns through alpha
frequency features.

These gradient visualizations provide preliminary evidence
that EEG-CLIP
patterns rather than purely relying on spurious correlations.
The distinct gradient patterns between different prompts
suggest the model

learns clinically relevant spatial-temporal

captures meaningful neurophysiological

differences. However, more sophisticated interpretability
methods and validation with clinical experts would be needed
to fully understand the clinical relevance of these learned

representations.

5 Discussion

Our experiments demonstrate that EEG-CLIP successfully
learns to align EEG recordings and their clinical text descriptions
in a shared embedding space. This approach shows promise for
developing more versatile and generalizable EEG representations
that can transfer across multiple decoding tasks.

The model standard
classification tasks (balanced accuracies of 0.847 for pathology,
0.702 for gender, and 0.747 for age) when using an MLP
classifier head. Most notably, EEG-CLIP demonstrates zero-shot
classification capabilities, achieving 0.755 balanced accuracy on

achieves strong performance on

pathology detection using only natural language prompts without
any task-specific training. In low-data regimes, our approach
shows substantial benefits over models trained from scratch or
pretrained on alternative tasks, suggesting efficient capture of
generalizable features.

Our ablation studies reveal that while using all report sections
yields the best overall performance, specific sections provide
distinct advantages for certain tasks. Interestingly, we found that
smaller embedding dimensions (32-128) outperformed larger ones,
contrary to common intuition in representation learning. This
suggests that compressing information into a more compact
shared embedding space may better distill essential cross-modal
patterns.

Despite these promising results, several limitations warrant
discussion. A significant limitation is our primary reliance on
TUAB for evaluation, which raises valid concerns about dataset-
specific biases and overfitting. Clinical reports in the dataset
vary in quality, detail, and structure, potentially limiting the
model’s ability to learn precise alignments. Additionally, our current
approach treats entire EEG recordings and their corresponding
reports as aligned pairs, whereas more fine-grained temporal
alignment between specific EEG segments and relevant report
sections could improve performance, as demonstrated by recent
Multiple Instance Learning frameworks (Gijsen and Ritter, 2024).
While we implemented validation strategies including held-out
evaluation sets, cross-validation for few-shot experiments, and
evaluation across four diverse tasks, broader multi-site validation
across different hospital systems, recording protocols, patient
populations, and clinical practices would strengthen generalizability
claims.

Future work could explore methods for aligning specific EEG
segments with relevant sentences in clinical reports, scaling to
larger and more diverse EEG datasets, incorporating additional
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data modalities, and developing methods to interpret the learned
representations in terms of clinically meaningful EEG patterns.
The field would benefit from standardized multi-site evaluation
protocols for EEG-language models to better assess generalizability
across diverse clinical settings.

In conclusion, EEG-CLIP demonstrates the feasibility of
contrastive learning between EEG signals and natural language
descriptions for developing more general and transferable EEG
representations. While this work represents an initial exploration,
the approach opens up new possibilities for leveraging unstructured
clinical text to enhance deep learning models for EEG analysis,
potentially leading to more flexible and data-efficient tools for
neurological assessment and research.
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