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An important but unresolved question in deep learning for EEG decoding is 
which features neural networks learn to solve the task. Prior interpretability 
studies have mainly explained individual predictions, analyzed the use of 
established EEG features, or examined subnetworks of larger models. In contrast, 
we apply interpretability methods to uncover features learned by the complete 
network. Specifically, we introduce two complementary architectures with 
dedicated visualization techniques to obtain an approximate understanding 
of the full network trained on binary classification into nonpathological and 
pathological EEG. First, we use invertible networks—networks that are designed 
to be invertible—to generate prototypical input signals for each class. Second, 
we design a very compact network that is fully visualizable, while still retaining 
reasonable decoding performance. Through these visualizations, we find both 
expected features like higher-amplitude oscillations in the delta and theta 
frequency bands in the temporal region for the pathological class as well as 
surprising differences in the very low sub-delta frequencies below 0.5 Hz. Closer 
investigation reveals higher spectral amplitudes for the healthy class at the 
frontal sensors in these sub-delta frequencies, an unexpected feature that the 
proposed visualizations helped identify. Overall, the study shows the potential 
of visualizations to understand the network prediction function without relying 
on specific predefined features.

KEYWORDS

electroencephalogram (EEG), brain-signal decoding, medical AI, interpretable deep 
learning, pathology decoding 

 1 Introduction

Interpretability is an important aspect of deep learning on medical data. A 
wide range of methods have been proposed to explain deep networks in this 
context, ranging from local methods, which aim to explain individual predictions 
(e.g., saliency maps, perturbation-based techniques), to global methods, which aim 
to capture the features learned by the network as a whole (e.g., concept activation 
vectors (van der Velden et al., 2022; Tjoa and Guan, 2021). There remains debate about 
the appropriate use of such methods in the medical domain, particularly regarding
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their suitablity for generating trust in individual predictions 
(Ghassemi et al., 2021; Reddy, 2022). Nevertheless, there is broad 
agreement that improved understanding of the features learned by 
deep networks can provide value, for example, by helping to discover 
novel biomarkers or by revealing reliance on inappropriate shortcuts 
(Ghassemi et al., 2021; Reddy, 2022).

For decoding pathologies from EEG recordings, interpretability 
methods can reveal some of the learned EEG features. Studies 
used local interpretability methods like Shapley Values, Grad-
CAM (Selvaraju et al., 2017) or layerwise relevance propagation 
(Bach et al., 2015) to explain individual predictions (de Bardeci et al., 
2021; Vahid et al., 2019; Jemal et al., 2022; Uyttenhove et al., 
2020). Other studies used methods like deep dream to explain a 
part of the network like an individual neuron (Dubreuil-Vall et al., 
2020; Zhang et al., 2020). Some studies also designed networks to 
make some part of the network interpretable (Jemal et al., 2022; 
Salami et al., 2022). Finally, some studies tried global interpretability 
methods to show what the network learned about the relationship 
between well-known features like spectral power (e.g., in the 
alpha/beta band) and the class labels (Schirrmeister et al., 2017;
Gemein et al., 2020).

A gap remains in global, feature-agnostic interpretability 
methods for EEG, i.e., approaches that visualize the prediction 
function of a network without relying on predefined features or 
specific input examples. Such methods can reveal learned EEG 
features beyond established markers and may facilitate the discovery 
of novel features. However, explaining the prediction function of a 
trained network with complete faithfulness is likely impossible. 
Human-understandable explanations of large deep networks 
can at best approximate the true prediction function, inevitably 
sacrificing some faithfulness. By contrast, smaller and more compact 
networks may be explained more faithfully, though often at the 
cost of reduced decoding performance. In the following, we 
describe two types of networks with corresponding interpretability 
methods, each balancing faithfulness and expressivity in
different ways.

In this study, we introduce two EEG decoding architectures 
that enhance interpretability by either producing class prototypes 
or enabling full-network visualization, and we apply them to 
EEG-based diagnosis. First, we adapt an invertible network, 
i.e., a deep network that is invertible by design, for EEG 
decoding. We train this invertible network, termed EEG-
InvNet, as a generative classifier and visualize prototype 
signals for each class and each electrode, thereby providing 
a compressed representation of each class directly in the raw 
input space. Second, we propose a highly compact network, 
termed EEG-CosNet, in which the entire architecture can be 
visualized. We train it to mimic the prediction function of the 
invertible network. Its parameters can be fully visualized as 
scalp topographies and temporal signal patterns, providing an 
interpretable representation of the learned mapping from signals 
to classes.

Visualizations of the invertible networks revealed both 
well-established EEG features, such as temporal slowing and 
occipital alpha, as well as unexpected patterns in the sub-
delta frequency range (≤0.5 Hz). Visualizations of the EEG-
CosNet showed regular oscillatory patterns in the alpha- 
and beta-band associated with healthy recordings, alongside 

a diverse set of slower or more irregular waveforms linked 
to pathological recordings. In the sub-delta range, the 
visualizations further revealed a frontal component predictive 
of the healthy class and temporal components predictive of 
the pathological class. Manual inspection of the sub-delta 
range confirmed lower amplitudes for the pathological class, 
supporting the utility of our visualization methods as hypothesis-
generating tools. 

2 Methods

We developed two interpretability approaches for analyzing 
EEG features learned by neural networks: one based on 
invertible networks trained as generative models, and 
another based on compact, interpretable networks trained as 
discriminative models. An overview of both approaches is 
provided in Figure 1, with detailed descriptions in the following 
subsections.

2.1 Invertible networks

Invertible networks are neural networks composed of layers 
that are explicitly designed to be invertible, meaning the input 
can be exactly reconstructed from the output. Several types 
of invertible layers exist; one of the most widely used is the 
coupling layer (Kingma and Dhariwal, 2018). + A coupling layer 
splits a multidimensional input vector x into two disjoint subsets, 
x1 and x2. It then uses x2 to compute an invertible transformation of 
x1, while leaving x2 unchanged. Concretely, for an additive coupling 
layer, the forward computation is:

y1 = x1 + f (x2)

y2 = x2

and the inverse computation is:

x1 = y1 − f (y2)

x2 = y2

For splitting the dimensions of a time series, one may, for example, 
define x1 as the mean and x2 as the difference between two 
neighboring samples, analogous to one stage of a Haar wavelet 
transform. The function f is typically implemented by a neural 
network; in our case, it is realized as a small convolutional network. 
Additional invertible layers used in this work include activation 
normalization layers, which scale and shift channel activations, 
and invertible linear layers, which mix channels linearly using 
an invertible weight matrix W, as described by Kingma and 
Dhariwal (2018). 

2.1.1 Training as generative models
Invertible networks can be trained as generative models 

by maximizing the average log-likelihood of the training 
data. In this setting, the network is optimized to maximize 
the average log-probability log p(x) of the training inputs x
Theis et al. (2016). + Invertible networks assign probabilities 
to inputs x by mapping them to a latent representation z =
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FIGURE 1
Overview of the interpretability approaches. We developed two methods for investigating EEG features learned by neural networks in the task of 
pathology decoding. In the first approach, we train a class-conditional generative invertible network, EEG-InvNet, and use it to generate prototype EEG 
signals for the healthy and pathological classes. In the second approach, we train a compact, interpretable discriminative network, EEG-CosNet, and 
visualize its learned discriminative weights for the two classes.

f(x) and evaluating their density under a predefined prior 
distribution pz(z) in that latent space (see Theis et al. (2016)
for details). 

2.1.2 Training as classifiers
Invertible networks trained as class-conditional generative 

models can also serve directly as classifiers. This can be 
implemented, for example, by assigning a separate prior distribution 
in the latent space to each class. Given the class-conditional 
probability densities p(x ∣ ci), the posterior class probabilities can 
be obtained via Bayes’ theorem as (assuming uniform prior class 
probabilities):

p(ci ∣ x) =
p(x ∣ ci)

∑
j
p(x ∣ cj)

Purely class-conditional generative training can sometimes yield 
networks that perform poorly as classifiers (Theis et al., 2016). One 
proposed explanation is that the optimal average log-likelihood 
is only marginally higher for class-conditional models compared 
to class-independent models—on the order of just one bit in the 
case of binary classification. This difference is much smaller than 
the variability in log-likelihood typically observed between two 
independent runs of the same network trained on high-dimensional 
inputs without class labels (Theis et al., 2016). Although class-
conditional models may achieve larger likelihood gains in practice, it 
is not a priori clear whether these improvements translate into better 
classification performance.

Various methods have been proposed to improve the 
performance of generative classifiers. For example, prior work 
has either fixed the per-class latent Gaussian priors to retain 
equal distances throughout training (Izmailov et al., 2020), or 

augmented the objective with a classification loss term to the 
training loss (Ardizzone et al., 2020):

Lclass (x,ci) = − log p(ci ∣ x)

= − log
p(x ∣ ci)

∑
j
p(x ∣ cj)

= − log
exp(log p(x ∣ ci))

∑
j

exp(log p(x ∣ cj))

= − log(softmax(log p(x ∣ ci))) .

In our work, we experimented with adding such a classification 
loss term to the training objective, and additionally found that 
introducing a learned temperature parameter before the softmax 
stabilized training, leading to:

Lclass (x,ci, t) = − log
exp( log p(x∣ci)

t
)

∑
j

exp(log p(x ∣cj) t)

= − log(softmax(
log p(x ∣ci)

t
)).

Our overall training loss is a weighted sum of the generative 
loss and the classification loss:

L(x,ci, t) = Lclass (x,ci, t) + Lgen (x,ci)

= − log(softmax(
log p(x ∣ ci)

t
))− αlogp(x ∣ci) ,

where we set α to the inverse of the input dimensionality, i.e.,

α = 1
dim (x)
.
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FIGURE 2
EEG-InvNet architecture. Our EEG-InvNet architecture consists of three stages operating at progressively lower temporal resolutions. The input 
comprises 2 seconds of EEG from 21 electrodes sampled at 64 Hz, yielding an input of size 21× 128. The data are downsampled using Haar wavelets to 
sizes 42×32, 84× 16, and 164×8 across the three stages. Each stage consists of four blocks, with each block containing an activation normalization 
layer, an invertible linear layer, and a coupling layer. The activation normalization and invertible linear layers operate on the channel dimension, 
applying the same transformation across all channels at each time point of the feature map. The coupling layer consists of two convolutional layers 
with an exponential linear unit (ELU) activation in between.

FIGURE 3
EEG-InvNet class prototypes. Class prototypes are generated by inverting the means, zhealthy and zpathological, of the per-class Gaussian distributions 
using EEG-InvNet.

2.2 Invertible network for EEG decoding

We designed an invertible network, termed EEG-InvNet, 
for EEG decoding, primarily based on invertible components 
from the Glow architecture (Kingma and Dhariwal, 2018). Our 
architecture consists of three stages operating at progressively lower 
temporal resolutions. Similar to Glow, each stage is composed 
of multiple blocks, each containing an activation normalization 
layer, an invertible linear channel transformation, and a coupling 
layer (see Figure 2). Between stages, the temporal signal is 
downsampled by computing the mean and difference of two 
neighboring time points and transferring these into the channel 
dimension. Unlike Glow, all dimensions are processed throughout 

every stage, and we found this design to achieve competitive 
accuracy on pathology decoding. We use one Gaussian distribution 
per class in the latent space. We experimented with both affine 
and additive coupling layers, but report results using additive 
layers, as their reduced expressiveness makes them easier to
interpret. 

2.3 Class prototypes

In our first visualization, we show the inputs resulting 
from inverting the means of the gaussian distributions for each 
class (see Figure 3). For example, the healthy-class prototype xhealthy 

Frontiers in Robotics and AI 04 frontiersin.org

https://doi.org/10.3389/frobt.2025.1625732
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schirrmeister and Ball 10.3389/frobt.2025.1625732

FIGURE 4
EEG-InvNet per-electrode class prototypes. Per-electrode prototypes are obtained by optimizing synthetic class-specific signals for a single electrode 
to yield high predicted class probabilities, irrespective of the signals at other electrodes. Signals at the remaining electrodes are sampled from the 
training data. In the example, prototypes for electrode T3 are learned for both the healthy and pathological classes, with four sampled signals shown 
for the remaining electrodes. In practice, a much larger number of samples is used. Class probabilities are marginalized over the non-optimized 
channels, as described in the text.

is obtained by inverting the Gaussian mean zhealthy using the 
invertible network EEG-InvNet:

xhealthy = EEG− InvNet−1 (zhealthy) .

These visualizations can be interpreted as prototype examples of 
each class. However, individual features within a prototype should 
be interpreted with caution. For example, if a prototype contains 
a prominent alpha-band oscillation at one electrode, this does 
not imply that the oscillation is independently predictive of the 
class, since other features may also contribute. Nevertheless, such 
prototypes can already suggest potential discriminative features for 
further investigation. 

2.4 Per-electrode prototypes

One way to obtain more interpretable prototypes is to synthesize 
them on a per-electrode basis. Specifically, we synthesize a signal 
x∗ek

 for a given electrode ek such that the predicted probability 
of a target class ci is high, irrespective of the signals at the 

other electrodes (see Figure 4). For electrode ek and class ci, we 
optimize x∗ek

 by maximizing the marginal likelihood (generative
loss):

p(x∗ek
∣ ci) = ∫p(x ∣ ci;xek

= x∗ek
) dx

and simultaneously maximizing the classification objective:

p(ci ∣ x∗ek
) =

p(x∗ek
∣ ci)

∑
j
p(x∗ek
∣ cj)
.

In practice, this marginalization is approximated by Monte Carlo 
sampling: we draw n samples xl from the training distribution 
and replace the value at electrode ek with the optimized signal 
x∗ek

, yielding

p(x∗ek
∣ ci) ≈

1
n

n

∑
l=1

p(xl ∣ ci; xl,ek
= x∗ek
) .

Although only a coarse approximation, this procedure already 
yields insightful visualizations. For the classification loss, when 
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FIGURE 5
+Example processing of the EEG-CosNet. An example EEG input is shown on the left, followed by the processing steps on the right: spatial filtering, 
absolute cosine similarity with temporal filters, temporal averaging, and final weighting with linear classifier weights for class prediction. In this 
visualization, the EEG-CosNet is configured with only 8 filters; in later experiments we use 64 filters.

TABLE 1  Accuracy of EEG-InvNet on pathology decoding. Accuracies of 
regular ConvNets taken from Gemein et al. (2020).

Deep Shallow TCN EEGNet EEG-InvNet

84.6 84.1 86.2 83.4 85.5

computing p(ci ∣ x
∗
ek
), we found it beneficial to divide the log-

probabilities log p(xl ∣ ci; xl,ek
= x∗ek
) by the learned temperature 

parameter t of the classifier:

logpclf (x
∗
ek
∣ ci) = logsumexp(

log p(xl ∣ ci; xl,ek
= x∗ek
)

t
).

Without this scaling, the sum ∑lp(xl ∣ ci; xl,ek
= x∗ek
) may be 

dominated by only a few samples when computing p(ci ∣ x∗ek
). This 

adjustment is applied only to the classification loss p(ci ∣ x∗ek
), not to 

the generative loss p(x∗ek
∣ ci). 

2.5 EEG-CosNet

Finally, we implemented a compact convolutional 
network, termed EEG-CosNet, which was explicitly designed 
to be directly interpretable. We distilled the trained 
EEG-InvNet into EEG-CosNet by training the latter with 
the class probabilities predicted by EEG-InvNet as soft 
targets for the classification loss Lclass. The EEG-CosNet 

consists of only three steps (see Figure 5 for an example 
computation):

Spatial filtering
h1 =W⊤s x Apply spatial filter weights Ws to the input x
Feature construction
h2 (t) = |cos_sim (h1 [t:t+ L] , f)| Absolute moving cosine similarity with temporal filters f
h3 =

1
ntime
∑

t
h2 (t) Average over time points in the trial

Classification
h4 =W⊤c h3 Apply classifier weights Wc to features
p(cpath ∣ h4) = σ (h4) Compute sigmoid σ (⋅) to get pathological probability

Steps 1 and 2 produce spatiotemporal patterns that can be 
visualized both as temporal waveforms and as scalp topographies, 
which are subsequently weighted by the linear classifier for 
the respective classes. We employed cosine similarity to ensure 
that high output values correspond to spatially filtered signals 
closely resembling the respective temporal filter. To enhance 
interpretability, the spatial filter weights and linear classifier 
weights can be transformed into generative patterns by multiplying 
them with the electrode covariance (or the averaged absolute 
cosine similarities) after training; see Haufe et al. (2014) for a 
detailed discussion of this approach. Importantly, we only apply 
this covariance transformation to the spatial filters themselves, 
and do not multiply by the inverse covariance of the filtered 
signals. This is because each spatial filter is paired with its own 
temporal filter and should therefore be analyzed independently 
of the other spatial filters. In our experiments, we employ 64 
spatiotemporal filters, each with a temporal length of 64 samples 
(corresponding to one second at 64 Hz).
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FIGURE 6
Learned class prototypes from EEG-InvNet. Class prototypes are generated by inverting the learned means of the class-conditional Gaussian 
distributions from latent space back into input space using the EEG-InvNet trained for pathology decoding (see text for details). The prototypes reveal 
distinct oscillatory patterns, including alpha oscillations that differ between the two classes. For the healthy class, alpha activity shows larger amplitudes 
over occipital electrodes, particularly O1, compared to other sites. Interestingly, clear mean differences are apparent at frontal electrodes, highlighting 
unexpected spatial patterns that distinguish the two classes.

2.6 Dataset

We evaluate our EEG-InvNet on pathology decoding using 
a reduced version of the Temple University Hospital Abnormal 
Corpus (TUAB) (López de Diego, 2017; Harati et al., 2014; Obeid 
and Picone, 2016). TUAB is a large corpus of clinical EEG 
recordings, each labeled as either non-pathological or pathological 
based on accompanying medical reports. The dataset includes 
recordings acquired at the Temple University Hospital Department 
of Neurology between 2002 and 2017, covering a wide range 
of pathologies such as epilepsy, stroke, Alzheimer’s disease, and 
others. Each recording contains approximately 20 min of EEG data, 
acquired from at least 21 standard electrode positions with a 
minimum sampling rate of 250 Hz using a 16-bit A/D converter. 
TUAB consists of 2,993 recordings (1,521 non-pathological and 
1,472 pathological). The dataset creators defined an official into 
2,717 training recordings and 276 evaluation recordings, which we 
adopt to ensure comparability with prior work. To obtain a reduced 
dataset with cleaner signals, we applied the following preprocessing 
steps: (i) remove the first minute of each recording, which often 
contains artifacts; (ii) extract the 2 min immediately following; (iii) 
downsample the signals to 64 Hz; and (iv) segment the data into 2-s 
windows, which serve as input examples for the invertible network. 

This reduced dataset enables faster experimentation while retaining 
sufficient information for accurate decoding. 

2.7 Training details

We trained the models using the AdamW optimizer (Loshchilov 
and Hutter, 2019) cosine annealing with restarts (Loshchilov and 
Hutter, 2017) every 25 epochs as our learning rate schedule. These 
hyperparameter settings were not extensively tuned for maximum 
decoding accuracy. Instead, they were selected to ensure stable 
training to obtain a model with robust decoding accuracy that can 
provide insights into discriminative learned features. 

3 Results

3.1 EEG-InvNet decoding results

As shown in Table 1, our proposed EEG-InvNet achieves 
decoding accuracy comparable to, and in some cases exceeding, 
that of conventional convolutional neural networks (ConvNets). 
This competitive performance motivates a deeper investigation into 

Frontiers in Robotics and AI 07 frontiersin.org

https://doi.org/10.3389/frobt.2025.1625732
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Schirrmeister and Ball 10.3389/frobt.2025.1625732

FIGURE 7
Learned per-electrode prototypes from EEG-InvNet. For each electrode, the input signal was optimized independently to increase the network’s 
prediction for a given class, while signals at the other electrodes were randomly sampled from the training set. The color scale indicates the average 
softmax class probability, computed across over 10,000 sampled signals for the non-optimized electrodes. Prominent low-frequency patterns 
(sub-delta, ≤0.5 Hz) are visible for the pathological class at multiple electrode locations.

TABLE 2  Accuracy of EEG-CosNet on labels from EEG-Invnet 
predictions and original labels.

Split EEG-InvNet labels Original labels

Train 92.5 89.1

Test 88.8 82.6

the features learned by the model. Specifically, EEG-InvNet attains 
an accuracy of 85.5%, outperforming EEGNet as well as both the 
Deep and Shallow ConvNet baselines, while being slightly below the 
Temporal Convolutional Network (TCN). These results, which are 
close to the current state of the art on TUAB, further motivate an 
analysis of the features learned by EEG-InvNet. 

3.2 Class prototypes

The class prototypes reveal well-known oscillatory features 
and surprisingly suggest that the invertible network makes use of 
very-low-frequency information. We visualized these prototypes 
by inverting the learned latent means of the class-conditional 
Gaussian distributions (healthy and pathological) back into input 

space, thereby obtaining the most likely examples under the learned 
distribution (see also Section 2.3). The visualizations in Figure 6 
highlight differences in the alpha rhythm, such as a stronger alpha 
oscillation at electrode O1 in the healthy prototype. Additional 
oscillatory differences are visible across both classes, indicating that 
the prototypes capture a variety of temporal dynamics beyond the 
alpha band. Surprisingly, the prototypes also differ in the very-
low-frequency (sub-delta, ≤ 0.5 Hz) range, with clear differences 
in mean values at electrodes FP1 and FP2 between the two 
classes. These findings are examined in more detail in later 
analyses. Given the caveats of interpreting individual electrode 
patterns (see Section 2.3), we next turn to per-electrode prototypes 
for a more localized analysis. 

3.3 Per-electrode prototypes

The per-electrode prototypes reveal distinct features learned 
for the two classes (see Figure 7). Pathological prototypes show 
large-amplitude low-frequency oscillations, for example, at T3 and 
T4, consistent with the well-known biomarker of temporal slowing 
in pathology. In contrast, healthy prototypes frequently display 
alpha-band activity, such as at C4 and T6. We also again observe 
differences in the sub-delta range (≤0.5 Hz), for instance in the 
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FIGURE 8
Visualization of the interpretable EEG-CosNet trained to mimic the EEG-InvNet. Scalp plots display the spatial filter weights after transformation into 
interpretable patterns, and the corresponding convolutional temporal filters are shown below each scalp plot. We display the 16 filters most strongly 
associated with the healthy class and the 16 most strongly associated with the pathological class (see Supplementary Material for the full network). The 
color coding of the temporal signals represents the linear classifier weights, transformed to patterns (see Section 2.5 for details). Filters are ordered 
according to these classifier weights. Note that the polarity of scalp plots and temporal filters is arbitrary, since absolute cosine similarity is applied to 
the spatially filtered and temporally convolved signals.

mean values at FP1 and FP2 between healthy and pathological 
prototypes. Importantly, for several electrodes it was not possible 
to synthesize a signal that is clearly class-indicative independent of 
activity at other electrodes. This suggests that the EEG-InvNet did 
not learn strong class-predictive electrode-specific features at those
electrodes. 

3.4 EEG-CosNet

Results for the EEG-CosNet demonstrate that a large fraction 
of the predictions made by the invertible network can be recovered 
from a relatively small set of neurophysiologically plausible 
spatio-temporal patterns. EEG-CosNet reproduces 88.8% of the 
EEG-InvNet’s predictions and achieves a test-set label accuracy 
of 82.6% (see Table 2). This shows that from just 64 spatiotemporal 
features, the EEG-CosNet is able to predict the vast majority of 
the EEG-InvNet predictions. However, the remaining performance 
gap suggests that EEG-InvNet relies on additional features or 
interactions that EEG-CosNet’s compact architecture cannot fully 
represent.

Visualizations in Figure 8 reveal that the healthy class is 
characterized by more regular oscillatory waveforms, particularly 
in the alpha and beta frequency ranges, whereas the pathological 
class is associated with waveforms in other frequency ranges 
and less regular temporal patterns. For instance, in the healthy 
class, plots 1–4 exhibit oscillations with a pronounced alpha 
component, while plots 14 and 16 display strong beta components. 
In contrast, the pathological class shows slower oscillations 
(e.g., plots 23 and 24) as well as more irregular waveforms
(e.g., plots 19 and 30).

3.5 Relative power spectra for comparison

To further validate the visualization results, we performed a 
manual analysis of relative power spectral densities. Specifically, 
we computed power spectra from 10-s windows with 5-s 
overlap for both pathological and healthy signals, applying 
a Hamming window prior to the Fourier transformation. 
For each electrode, we then calculated the median power 
across windows in each frequency bin, and finally averaged 
the results within standard frequency bands: delta (0–4 Hz), 
theta (4–8 Hz), alpha (8–14 Hz), low beta (14–20 Hz), high 
beta (20–30 Hz), and low gamma (30–50 Hz). The resulting 
maps (Figure 9) show patterns consistent with the EEG-InvNet 
and EEG-CosNet visualizations. Importantly, we included 
very-low-frequency activity in the delta band to enable 
comparison with our finding of discriminative information 
in sub-delta ranges, a phenomenon not highlighted by 
prior visualizations in the literature (Gemein et al., 2020;
Schirrmeister et al., 2017). 

4 Investigation of sub-delta 
frequencies

One surprising observation from the visualizations is the 
difference in sub-delta frequency components (≤0.5 Hz) between 
the two class prototypes. For example, the substantially different 
mean amplitudes in the prototypes at electrodes FP1 and 
FP2 suggest that very low-frequency activity differs between 
the two classes at these sites. However, given the inherent 
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FIGURE 9
Visualization of relative log-bandpowers. Scalp plots of the logarithm of the relative bandpower between pathological and healthy signals across 
different frequency bands. Note that the spatial patterns are consistent with the findings from EEG-InvNet and EEG-CosNet visualizations.

TABLE 3  Test accuracy on data lowpassed below 0.5 Hz.

EEG-InvNet EEG-CosNet Fourier-GMM

75.4 75.0 75.4

limitations of interpreting class prototypes, one cannot be certain 
about the precise relationships between EEG activity and class 
membership solely from these plots. Nevertheless, these observed 
differences motivated a more detailed investigation of the sub-delta 
frequency range.

To assess the role of very low frequencies, we trained an 
EEG-InvNet on data low-pass filtered to retain only frequencies 
below 0.5 Hz. Specifically, we removed all Fourier components 
above 0.5 Hz from each full recording as well as from each 
2-s input window provided to the network. The EEG-InvNet 
achieved 75.4% accuracy under this condition, indicating that 
even very low-frequency components remain fairly informative 
about the pathological status of the recordings. We additionally 
trained an EEG-CosNet with a temporal filter spanning the entire 
2-s input window and found it to reach 75.0% test accuracy. 
Finally, we trained an 8-component Gaussian mixture model 
(Fourier-GMM) in the Fourier domain. For each electrode, 
only three features were retained: the real part of the 0-Hz 
component (corresponding to the summed amplitude of the 
input window) and the real and imaginary parts of the 0.5-
Hz Fourier component. Each of the eight mixture components 
was associated with learnable class weights that determined 
its contribution to the class-conditional distribution. The 
Fourier-GMM also achieved 75.4% test accuracy. All results 
are shown in Table 3. 

4.1 EEG-InvNet visualizations

The visualizations of the EEG-InvNet reveal several differences 
between the two classes. The class prototypes in Figure 10 
exhibit distinct signal patterns across most electrodes, with 
particularly pronounced differences at A1 and A2. The per-electrode 
prototypes in Figure 11 highlight strong differences at electrodes 
T3, T4, and T6. Overall, these visualizations suggest that a range of 
low-frequency differences may contribute to class discrimination, 
motivating further analyses to identify the most relevant
features. 

4.2 EEG-CosNet visualizations

The visualization of the EEG-CosNet in Figure 12 reveals 
strong frontal components associated with the healthy class 
and temporal components associated with the pathological class. 
The temporal components are consistent with the per-electrode 
visualization, and the frontal components were already apparent 
as differences in mean signal values in the class prototypes 
of the original data. These visualizations more clearly highlight 
specific features as strongly discriminative between the two
classes. 

4.3 Fourier-GMM visualizations

Visualizations of the Fourier-GMM in Figure 13 again reveal 
frontal components associated with the healthy class, as well 
as components with spatial topographies involving temporal 
regions that are associated with the pathological class. Overall, 
the visualizations consistently indicate a frontal component 
predictive of the healthy class and additional components with 
spatial topographies often encompassing temporal and adjacent 
regions that are predictive of the pathological class. In the 
following, we further manually validate the unexpected frontal
component. 

4.4 Spectral analysis

We validated the patterns identified in our visualizations 
using spectral analysis. Specifically, we computed the class-
wise averages of the amplitudes of the Fourier-transformed 
training inputs. We found that the healthy class exhibited 
larger amplitudes at the frontal electrodes, whereas the 
pathological class showed larger amplitudes at the temporal 
electrodes (see Figure 14). We emphasize that this manual spectral 
analysis of the sub-delta frequencies was motivated by the 
visualization findings and would otherwise have been unlikely to 
be conducted. 

5 Discussion

We introduced two approaches that combine neural 
networks with visualization methods for learned EEG features, 
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FIGURE 10
Class prototypes for the EEG-InvNet trained on data lowpassed to be below 0.5 Hz. Note large differences at A1 and A2.

and applied them to the task of pathology diagnosis. The 
first approach employs invertible networks to generate 
prototypical signals for each class, while the second approach 
leverages a compact, interpretable network in which all 
parameters can be directly visualized. Both approaches provide 
visualizations of what the networks have learned in the 
input space.

Class prototypes can serve as hypothesis generators for 
potentially discriminative features, including unexpected ones. 
These prototypes are visualized in the input space, which allows 
arbitrary features to be revealed. However, they are challenging to 
interpret, as they present only a single prototypical example per 
class and require additional reasoning to identify relevant features 
within these examples. Thus, their primary role is to generate 
hypotheses about potentially discriminative features, which must 
then be analyzed further. Their value in this work is demonstrated by 
highlighting unexpected discriminative information in the sub-delta 
frequency range, which we subsequently validated through manual 
spectral analysis.

We also introduced a per-electrode variant of the prototypes, 
designed to be more easily interpretable. In this approach, we 
optimize a prototypical signal at a single electrode, associated 
with one class, independently of the signals at other electrodes. 
This variant can reveal only single-electrode features, such as 
large oscillations at specific frequencies, but not multi-electrode 

features, such as phase-locking across electrodes. This restriction 
facilitates interpretability and revealed neurophysiologically 
plausible patterns, such as slow oscillatory activity at temporal 
electrodes associated with pathology.

Both types of prototypes reveal complementary aspects 
of the features learned by the trained network. The overall 
prototypes can capture arbitrary combinations of features, but 
they are more challenging to interpret. In contrast, the per-
electrode prototypes are restricted to single-electrode features, 
which makes them easier to interpret. Together, these methods 
highlight different but complementary aspects of the learned
features.

As our final visualization method, we introduced a 
compact and interpretable network, EEG-CosNet, in which 
all parameters can be directly visualized. This addresses the 
limitation of prototypes, which may only reveal parts of 
the learned features. A priori, it is not clear whether such 
a restricted and compact network can achieve competitive 
performance on pathology decoding. The visualizations reveal 
a variety of predominantly oscillatory waveforms: more 
regular oscillations in the alpha and beta frequency ranges 
associated with the healthy class, and less regular, lower-
frequency oscillations associated with the pathological class. 
This suggests that such features are sufficient to yield reasonable 
decoding accuracies for pathology.
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FIGURE 11
Per-electrode prototypes for EEG-InvNet trained on data lowpassed below 0.5 Hz. Note strongly predictive signals at T3, T4, T6.

FIGURE 12
Spatiotemporal patterns for EEG-CosNet trained on lowpassed data below 0.5 Hz. Note large frontal components associated with healthy class.
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FIGURE 13
Means of the Fourier-GMM mixture components in the Fourier domain. Scalp plots are shown for the 0-Hz bin as well as the real and imaginary parts 
of the 0.5-Hz bin. Mixture components are ordered according to their pathological class weights, which are also indicated as colored text in the 
top-right corner of each plot. Colormaps are scaled separately for each frequency bin. Strong frontal patterns are evident in the mixture components 
associated with the healthy class.

FIGURE 14
Average amplitudes of sub-delta frequencies at frontal and temporal electrodes. The figure shows class-wise averages of the amplitudes of 
Fourier-transformed training inputs. The healthy class exhibits higher amplitudes at frontal electrodes and lower amplitudes at temporal electrodes 
compared to the pathological class.

One intriguing finding suggested by our visualizations 
was the decreased power at frontal electrodes in the sub-
delta frequency range (≤0.5 Hz) for the pathological class. 
This feature was revealed by the prototypical signals, which 
exhibited unexpected differences in the sub-delta range. It was 
subsequently confirmed through manual spectral analysis, thereby 
validating the value of the visualizations as hypothesis generators 
for learned features. To our knowledge, this feature has not 
been previously described in relation to pathological EEG. One 
potential explanation may be a reduction of eye movements due 
to impaired neuromuscular eye control in pathological patients; 
however, further research is required to better understand this
phenomenon.

The features learned in this study both confirmed previously 
reported findings and uncovered novel ones. The presence of 
alpha oscillations associated with the healthy class and lower-
frequency oscillations associated with the pathological class are 
consistent with prior findings in the literature (Gemein et al., 
2020; Schirrmeister et al., 2017). In contrast, the differences 
observed in the sub-delta frequency range have not been 

reported in similar visualizations before (Gemein et al., 2020;
Schirrmeister et al., 2017).

In future work, the interpretability work here could be 
extended to better capture intra-class variations. For example, 
the class prototypes could be extended by generating multiple 
complementary subprototypes that reveal complementary 
discriminative information. Similarly, the single compact 
interpretable network can be replaced by several small networks 
in a mixture-of-experts framework.

Overall, the visualization methods developed in this work 
provide an insightful avenue for advancing the understanding of 
pathological features learned by deep neural networks from EEG 
recordings.
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