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An important but unresolved question in deep learning for EEG decoding is
which features neural networks learn to solve the task. Prior interpretability
studies have mainly explained individual predictions, analyzed the use of
established EEG features, or examined subnetworks of larger models. In contrast,
we apply interpretability methods to uncover features learned by the complete
network. Specifically, we introduce two complementary architectures with
dedicated visualization techniques to obtain an approximate understanding
of the full network trained on binary classification into nonpathological and
pathological EEG. First, we use invertible networks—networks that are designed
to be invertible—to generate prototypical input signals for each class. Second,
we design a very compact network that is fully visualizable, while still retaining
reasonable decoding performance. Through these visualizations, we find both
expected features like higher-amplitude oscillations in the delta and theta
frequency bands in the temporal region for the pathological class as well as
surprising differences in the very low sub-delta frequencies below 0.5 Hz. Closer
investigation reveals higher spectral amplitudes for the healthy class at the
frontal sensors in these sub-delta frequencies, an unexpected feature that the
proposed visualizations helped identify. Overall, the study shows the potential
of visualizations to understand the network prediction function without relying
on specific predefined features.

KEYWORDS

electroencephalogram (EEG), brain-signal decoding, medical Al, interpretable deep
learning, pathology decoding

1 Introduction

Interpretability is an important aspect of deep learning on medical data. A
wide range of methods have been proposed to explain deep networks in this
context, ranging from local methods, which aim to explain individual predictions
(e.g., saliency maps, perturbation-based techniques), to global methods, which aim
to capture the features learned by the network as a whole (e.g., concept activation
vectors (van der Velden et al., 2022; Tjoa and Guan, 2021). There remains debate about
the appropriate use of such methods in the medical domain, particularly regarding
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their suitablity for generating trust in individual predictions
(Ghassemi et al., 2021; Reddy, 2022). Nevertheless, there is broad
agreement that improved understanding of the features learned by
deep networks can provide value, for example, by helping to discover
novel biomarkers or by revealing reliance on inappropriate shortcuts
(Ghassemi et al., 2021; Reddy, 2022).

For decoding pathologies from EEG recordings, interpretability
methods can reveal some of the learned EEG features. Studies
used local interpretability methods like Shapley Values, Grad-
CAM (Selvaraju et al, 2017) or layerwise relevance propagation
(Bach etal., 2015) to explain individual predictions (de Bardecietal.,
2021; Vahid et al., 2019; Jemal et al., 2022; Uyttenhove et al.,
2020). Other studies used methods like deep dream to explain a
part of the network like an individual neuron (Dubreuil-Vall et al.,
2020; Zhang et al., 2020). Some studies also designed networks to
make some part of the network interpretable (Jemal et al., 2022;
Salami et al., 2022). Finally, some studies tried global interpretability
methods to show what the network learned about the relationship
between well-known features like spectral power (e.g., in the
alpha/beta band) and the class labels (Schirrmeister et al., 2017;
Gemein et al., 2020).

A gap remains in global, feature-agnostic interpretability
methods for EEG, i.e., approaches that visualize the prediction
function of a network without relying on predefined features or
specific input examples. Such methods can reveal learned EEG
features beyond established markers and may facilitate the discovery
of novel features. However, explaining the prediction function of a
trained network with complete faithfulness is likely impossible.
Human-understandable explanations of large deep networks
can at best approximate the true prediction function, inevitably
sacrificing some faithfulness. By contrast, smaller and more compact
networks may be explained more faithfully, though often at the
cost of reduced decoding performance. In the following, we
describe two types of networks with corresponding interpretability
methods,
different ways.

each balancing faithfulness and expressivity in

In this study, we introduce two EEG decoding architectures
that enhance interpretability by either producing class prototypes
or enabling full-network visualization, and we apply them to
EEG-based diagnosis. First, we adapt an invertible network,
ie, a deep network that is invertible by design, for EEG
decoding. We train this invertible network, termed EEG-
InvNet, as a generative classifier and visualize prototype
signals for each class and each electrode, thereby providing
a compressed representation of each class directly in the raw
input space. Second, we propose a highly compact network,
termed EEG-CosNet, in which the entire architecture can be
visualized. We train it to mimic the prediction function of the
invertible network. Its parameters can be fully visualized as
scalp topographies and temporal signal patterns, providing an
interpretable representation of the learned mapping from signals
to classes.

Visualizations of the invertible networks revealed both
well-established EEG features, such as temporal slowing and
occipital alpha, as well as unexpected patterns in the sub-
delta frequency range (<0.5 Hz). Visualizations of the EEG-
CosNet showed regular oscillatory patterns in the alpha-
and beta-band associated with healthy recordings, alongside
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a diverse set of slower or more irregular waveforms linked
the sub-delta the
visualizations further revealed a frontal component predictive

to pathological recordings. In range,
of the healthy class and temporal components predictive of
the pathological class. Manual inspection of the sub-delta
range confirmed lower amplitudes for the pathological class,
supporting the utility of our visualization methods as hypothesis-

generating tools.

2 Methods

We developed two interpretability approaches for analyzing
EEG features learned by neural networks: one based on
invertible networks trained as generative models, and
another based on compact, interpretable networks trained as
discriminative models. An overview of both approaches is
provided in Figure 1, with detailed descriptions in the following

subsections.

2.1 Invertible networks

Invertible networks are neural networks composed of layers
that are explicitly designed to be invertible, meaning the input
can be exactly reconstructed from the output. Several types
of invertible layers exist; one of the most widely used is the
coupling layer (Kingma and Dhariwal, 2018). + A coupling layer
splits a multidimensional input vector x into two disjoint subsets,
x, and x,. It then uses x, to compute an invertible transformation of
Xx,, while leaving x, unchanged. Concretely, for an additive coupling
layer, the forward computation is:

Yy =X+ f(x;)
.=%

and the inverse computation is:

x; =y, - f(y,)
K=Y

For splitting the dimensions of a time series, one may, for example,
define x; as the mean and x, as the difference between two
neighboring samples, analogous to one stage of a Haar wavelet
transform. The function f is typically implemented by a neural
network; in our case, it is realized as a small convolutional network.
Additional invertible layers used in this work include activation
normalization layers, which scale and shift channel activations,
and invertible linear layers, which mix channels linearly using
an invertible weight matrix W, as described by Kingma and
Dhariwal (2018).

2.1.1 Training as generative models

Invertible networks can be trained as generative models
by maximizing the average log-likelihood of the training
data. In this setting, the network is optimized to maximize
the average log-probability logp(x) of the training inputs x
Theis et al. (2016). + Invertible networks assign probabilities
to inputs x by mapping them to a latent representation z=
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Overview of the interpretability approaches. We developed two methods for investigating EEG features learned by neural networks in the task of
pathology decoding. In the first approach, we train a class-conditional generative invertible network, EEG-InvNet, and use it to generate prototype EEG

signals for the healthy and pathological classes. In the second approach,

visualize its learned discriminative weights for the two classes.

f(x) and evaluating their density under a predefined prior
distribution p,(z) in that latent space (see Theis et al. (2016)
for details).

2.1.2 Training as classifiers

Invertible networks trained as class-conditional generative
models can also serve directly as classifiers. This can be
implemented, for example, by assigning a separate prior distribution
in the latent space to each class. Given the class-conditional
probability densities p(x | ¢;), the posterior class probabilities can
be obtained via Bayes’ theorem as (assuming uniform prior class
probabilities):
p(xlc)

2p(xlg)

Purely class-conditional generative training can sometimes yield

plelx)=

networks that perform poorly as classifiers (Theis et al., 2016). One
proposed explanation is that the optimal average log-likelihood
is only marginally higher for class-conditional models compared
to class-independent models—on the order of just one bit in the
case of binary classification. This difference is much smaller than
the variability in log-likelihood typically observed between two
independent runs of the same network trained on high-dimensional
inputs without class labels (Theis et al., 2016). Although class-
conditional models may achieve larger likelihood gains in practice, it
is not a priori clear whether these improvements translate into better
classification performance.

Various methods have been proposed to improve the
performance of generative classifiers. For example, prior work
has either fixed the per-class latent Gaussian priors to retain
equal distances throughout training (Izmailov et al., 2020), or
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we train a compact, interpretable discriminative network, EEG-CosNet, and

augmented the objective with a classification loss term to the
training loss (Ardizzone et al., 2020):

Lclass (X, Ci) = _logp (Ci | X)
p(xlc)
Z,»P (xI¢)
exp (log p (x| ;)

5, explogp(x )

= —log (softmax (log p (x| ¢;))).

=-log

=-log

In our work, we experimented with adding such a classification
loss term to the training objective, and additionally found that
introducing a learned temperature parameter before the softmax
stabilized training, leading to:

exp( logpfx\c,) )
0g
Z exp(logp (x | cj) t)
j

gt 22150,

Our overall training loss is a weighted sum of the generative

L

(x,cpt) =-1

class

loss and the classification loss:
L (X’ Ci> t) = Lclass (X’ Ci t) + Lgen (X’ Ci)
lo C;
—log <softmax< w ) ) —alogp (x|¢;),

where we set « to the inverse of the input dimensionality, i.e.,

we —1
" dim(x)’
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FIGURE 2
EEG-InvNet architecture. Our EEG-InvNet architecture consists of three stages operating at progressively lower temporal resolutions. The input

comprises 2 seconds of EEG from 21 electrodes sampled at 64 Hz, yielding an input of size 21x 128. The data are downsampled using Haar wavelets to
sizes 42 x 32, 84 x 16, and 164 x 8 across the three stages. Each stage consists of four blocks, with each block containing an activation normalization
layer, an invertible linear layer, and a coupling layer. The activation normalization and invertible linear layers operate on the channel dimension,
applying the same transformation across all channels at each time point of the feature map. The coupling layer consists of two convolutional layers

with an exponential linear unit (ELU) activation in between.
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2.2 Invertible network for EEG decoding

We designed an invertible network, termed EEG-InvNet,
for EEG decoding, primarily based on invertible components
from the Glow architecture (Kingma and Dhariwal, 2018). Our
architecture consists of three stages operating at progressively lower
temporal resolutions. Similar to Glow, each stage is composed
of multiple blocks, each containing an activation normalization
layer, an invertible linear channel transformation, and a coupling
layer (see Figure2). Between stages, the temporal signal is
downsampled by computing the mean and difference of two
neighboring time points and transferring these into the channel
dimension. Unlike Glow, all dimensions are processed throughout

Frontiers in Robotics and Al 04

every stage, and we found this design to achieve competitive
accuracy on pathology decoding. We use one Gaussian distribution
per class in the latent space. We experimented with both affine
and additive coupling layers, but report results using additive
layers, as their reduced expressiveness makes them easier to
interpret.

2.3 Class prototypes
In our first visualization, we show the inputs resulting

from inverting the means of the gaussian distributions for each
class (see Figure 3). For example, the healthy-class prototype Xy,c,jny
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https://doi.org/10.3389/frobt.2025.1625732
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Schirrmeister and Ball

10.3389/frobt.2025.1625732

FP1

FIGURE 4

channels, as described in the text.

EEG-InvNet per-electrode class prototypes. Per-electrode prototypes are obtained by optimizing synthetic class-specific signals for a single electrode
to yield high predicted class probabilities, irrespective of the signals at other electrodes. Signals at the remaining electrodes are sampled from the
training data. In the example, prototypes for electrode T3 are learned for both the healthy and pathological classes, with four sampled signals shown
for the remaining electrodes. In practice, a much larger number of samples is used. Class probabilities are marginalized over the non-optimized

S
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(] ;
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=
= sample 1
£7100 sample 2
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is obtained by inverting the Gaussian mean zjy, using the
invertible network EEG-InvNet:

xhea.lthy =EEG- IﬂVNet_l (Zhealthy) .

These visualizations can be interpreted as prototype examples of
each class. However, individual features within a prototype should
be interpreted with caution. For example, if a prototype contains
a prominent alpha-band oscillation at one electrode, this does
not imply that the oscillation is independently predictive of the
class, since other features may also contribute. Nevertheless, such
prototypes can already suggest potential discriminative features for
further investigation.

2.4 Per-electrode prototypes

One way to obtain more interpretable prototypes is to synthesize
them on a per-electrode basis. Specifically, we synthesize a signal
x, for a given electrode ¢ such that the predicted probability
of a target class ¢; is high, irrespective of the signals at the

Frontiers in Robotics and Al

other electrodes (see Figure 4). For electrode e, and class ¢;, we
optimize x; by maximizing the marginal likelihood (generative
loss):

plxi16)= [p(xles, =x;) dx
and simultaneously maximizing the classification objective:

p (ka | Ci)
p(ci | X:k) RSV
ij (Xek | Cj)

In practice, this marginalization is approximated by Monte Carlo
sampling: we draw n samples x; from the training distribution
and replace the value at electrode e, with the optimized signal
x:k, yielding

n

Pl 16) =1 Y p (15 3, =x)).

=1

Although only a coarse approximation, this procedure already
yields insightful visualizations. For the classification loss, when
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TABLE 1 Accuracy of EEG-InvNet on pathology decoding. Accuracies of
regular ConvNets taken from Gemein et al. (2020).

Shallow TCN ‘ EEGNet EEG-InvNet

Deep

84.6 84.1 86.2 83.4

85.5 ‘

computing p(c; | x; ), we found it beneficial to divide the log-
probabilities log p(x; | ¢;; x;,, =X ) by the learned temperature
parameter t of the classifier:

logp(xz [ c; Xle, = sz)
t

logp,¢ (X:k | Ci) = logsumexp

Without this scaling, the sum Y p(x;|c; x,, =x;) may be
dominated by only a few samples when computing p(c; | x;, ). This
adjustment is applied only to the classification loss p(c; | x;,), not to
the generative loss p(x; |c;).

2.5 EEG-CosNet

Finally, we implemented a compact convolutional
network, termed EEG-CosNet, which was explicitly designed
to be directly interpretable. We distilled the trained

EEG-InvNet into EEG-CosNet by training the latter with
the class probabilities predicted by EEG-InvNet as soft
the classification loss L The EEG-CosNet

targets for

class*
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consists of only three steps (see Figure5 for an example
computation):

Spatial filtering
h, =W/x
Feature construction

h, (t) = |cos_sim (h, [t:t+ L], f)|
1

Apply spatial filter weights W to the input x

Absolute moving cosine similarity with temporal filters f

h; = h, () Average over time points in the trial
Mime 7

Classification

h,=Wh, Apply classifier weights W, to features

P(Cpalh | h4) =o(h,) Compute sigmoid o(-) to get pathological probability

Steps 1 and 2 produce spatiotemporal patterns that can be
visualized both as temporal waveforms and as scalp topographies,
which are subsequently weighted by the linear classifier for
the respective classes. We employed cosine similarity to ensure
that high output values correspond to spatially filtered signals
closely resembling the respective temporal filter. To enhance
interpretability, the spatial filter weights and linear classifier
weights can be transformed into generative patterns by multiplying
them with the electrode covariance (or the averaged absolute
cosine similarities) after training; see Haufe et al. (2014) for a
detailed discussion of this approach. Importantly, we only apply
this covariance transformation to the spatial filters themselves,
and do not multiply by the inverse covariance of the filtered
signals. This is because each spatial filter is paired with its own
temporal filter and should therefore be analyzed independently
of the other spatial filters. In our experiments, we employ 64
spatiotemporal filters, each with a temporal length of 64 samples
(corresponding to one second at 64 Hz).
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FIGURE 6

Learned class prototypes from EEG-InvNet. Class prototypes are generated by inverting the learned means of the class-conditional Gaussian
distributions from latent space back into input space using the EEG-InvNet trained for pathology decoding (see text for details). The prototypes reveal
distinct oscillatory patterns, including alpha oscillations that differ between the two classes. For the healthy class, alpha activity shows larger amplitudes
over occipital electrodes, particularly O1, compared to other sites. Interestingly, clear mean differences are apparent at frontal electrodes, highlighting

unexpected spatial patterns that distinguish the two classes.

2.6 Dataset

We evaluate our EEG-InvNet on pathology decoding using
a reduced version of the Temple University Hospital Abnormal
Corpus (TUAB) (Lopez de Diego, 2017; Harati et al., 2014; Obeid
and Picone, 2016). TUAB is a large corpus of clinical EEG
recordings, each labeled as either non-pathological or pathological
based on accompanying medical reports. The dataset includes
recordings acquired at the Temple University Hospital Department
of Neurology between 2002 and 2017, covering a wide range
of pathologies such as epilepsy, stroke, Alzheimer’s disease, and
others. Each recording contains approximately 20 min of EEG data,
acquired from at least 21 standard electrode positions with a
minimum sampling rate of 250 Hz using a 16-bit A/D converter.
TUAB consists of 2,993 recordings (1,521 non-pathological and
1,472 pathological). The dataset creators defined an official into
2,717 training recordings and 276 evaluation recordings, which we
adopt to ensure comparability with prior work. To obtain a reduced
dataset with cleaner signals, we applied the following preprocessing
steps: (i) remove the first minute of each recording, which often
contains artifacts; (ii) extract the 2 min immediately following; (iii)
downsample the signals to 64 Hz; and (iv) segment the data into 2-s
windows, which serve as input examples for the invertible network.
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This reduced dataset enables faster experimentation while retaining
sufficient information for accurate decoding.

2.7 Training details

We trained the models using the AdamW optimizer (Loshchilov
and Hutter, 2019) cosine annealing with restarts (Loshchilov and
Hutter, 2017) every 25 epochs as our learning rate schedule. These
hyperparameter settings were not extensively tuned for maximum
decoding accuracy. Instead, they were selected to ensure stable
training to obtain a model with robust decoding accuracy that can
provide insights into discriminative learned features.

3 Results
3.1 EEG-InvNet decoding results

As shown in Table 1, our proposed EEG-InvNet achieves
decoding accuracy comparable to, and in some cases exceeding,

that of conventional convolutional neural networks (ConvNets).
This competitive performance motivates a deeper investigation into
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Learned per-electrode prototypes from EEG-InvNet. For each electrode, the input signal was optimized independently to increase the network’s
prediction for a given class, while signals at the other electrodes were randomly sampled from the training set. The color scale indicates the average
softmax class probability, computed across over 10,000 sampled signals for the non-optimized electrodes. Prominent low-frequency patterns
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(sub-delta, <0.5 Hz) are visible for the pathological class at multiple electrode locations.
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TABLE 2 Accuracy of EEG-CosNet on labels from EEG-Invnet
predictions and original labels.

Split EEG-InvNet labels Original labels
Train 92,5 89.1
Test 88.8 82.6

the features learned by the model. Specifically, EEG-InvNet attains
an accuracy of 85.5%, outperforming EEGNet as well as both the
Deep and Shallow ConvNet baselines, while being slightly below the
Temporal Convolutional Network (TCN). These results, which are
close to the current state of the art on TUAB, further motivate an
analysis of the features learned by EEG-InvNet.

3.2 Class prototypes

The class prototypes reveal well-known oscillatory features
and surprisingly suggest that the invertible network makes use of
very-low-frequency information. We visualized these prototypes
by inverting the learned latent means of the class-conditional
Gaussian distributions (healthy and pathological) back into input
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space, thereby obtaining the most likely examples under the learned
distribution (see also Section 2.3). The visualizations in Figure 6
highlight differences in the alpha rhythm, such as a stronger alpha
oscillation at electrode O1 in the healthy prototype. Additional
oscillatory differences are visible across both classes, indicating that
the prototypes capture a variety of temporal dynamics beyond the
alpha band. Surprisingly, the prototypes also differ in the very-
low-frequency (sub-delta, < 0.5 Hz) range, with clear differences
in mean values at electrodes FP1 and FP2 between the two
classes. These findings are examined in more detail in later
analyses. Given the caveats of interpreting individual electrode
patterns (see Section 2.3), we next turn to per-electrode prototypes
for a more localized analysis.

3.3 Per-electrode prototypes

The per-electrode prototypes reveal distinct features learned
for the two classes (see Figure 7). Pathological prototypes show
large-amplitude low-frequency oscillations, for example, at T3 and
T4, consistent with the well-known biomarker of temporal slowing
in pathology. In contrast, healthy prototypes frequently display
alpha-band activity, such as at C4 and T6. We also again observe
differences in the sub-delta range (<0.5 Hz), for instance in the
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mean values at FP1 and FP2 between healthy and pathological
prototypes. Importantly, for several electrodes it was not possible
to synthesize a signal that is clearly class-indicative independent of
activity at other electrodes. This suggests that the EEG-InvNet did
not learn strong class-predictive electrode-specific features at those
electrodes.

3.4 EEG-CosNet

Results for the EEG-CosNet demonstrate that a large fraction
of the predictions made by the invertible network can be recovered
from a relatively small set of neurophysiologically plausible
spatio-temporal patterns. EEG-CosNet reproduces 88.8% of the
EEG-InvNet’s predictions and achieves a test-set label accuracy
of 82.6% (see Table 2). This shows that from just 64 spatiotemporal
features, the EEG-CosNet is able to predict the vast majority of
the EEG-InvNet predictions. However, the remaining performance
gap suggests that EEG-InvNet relies on additional features or
interactions that EEG-CosNet’s compact architecture cannot fully
represent.

Visualizations in Figure 8 reveal that the healthy class is
characterized by more regular oscillatory waveforms, particularly
in the alpha and beta frequency ranges, whereas the pathological
class is associated with waveforms in other frequency ranges
and less regular temporal patterns. For instance, in the healthy
class, plots 1-4 exhibit oscillations with a pronounced alpha
component, while plots 14 and 16 display strong beta components.
In contrast, the pathological class shows slower oscillations
(e.g., plots 23 and 24) as well as more irregular waveforms
(e.g., plots 19 and 30).
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3.5 Relative power spectra for comparison

To further validate the visualization results, we performed a
manual analysis of relative power spectral densities. Specifically,
we computed power spectra from 10-s windows with 5-s
overlap for both pathological and healthy signals, applying
a Hamming window prior to the Fourier transformation.
For each electrode, we then calculated the median power
across windows in each frequency bin, and finally averaged
the results within standard frequency bands: delta (0-4 Hz),
theta (4-8 Hz), alpha (8-14 Hz), low beta (14-20 Hz), high
beta (20-30 Hz), and low gamma (30-50 Hz). The resulting
maps (Figure 9) show patterns consistent with the EEG-InvNet
and EEG-CosNet visualizations. we included
delta band to enable
comparison with our finding of discriminative information
sub-delta highlighted by
prior visualizations in the literature (Gemein et al, 2020;
Schirrmeister et al., 2017).

Importantly,
very-low-frequency activity in the
in

ranges, a phenomenon not

4 Investigation of sub-delta
frequencies

One surprising observation from the visualizations is the
difference in sub-delta frequency components (<0.5 Hz) between
the two class prototypes. For example, the substantially different
mean amplitudes in the prototypes at electrodes FP1 and
FP2 suggest that very low-frequency activity differs between
the two classes at these sites. However, given the inherent
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Visualization of relative log-bandpowers. Scalp plots of the logarithm of the relative bandpower between pathological and healthy signals across
different frequency bands. Note that the spatial patterns are consistent with the findings from EEG-InvNet and EEG-CosNet visualizations.

TABLE 3 Test accuracy on data lowpassed below 0.5 Hz.

EEG-InvNet EEG-CosNet Fourier-GMM

75.4

75.0 75.4

limitations of interpreting class prototypes, one cannot be certain
about the precise relationships between EEG activity and class
membership solely from these plots. Nevertheless, these observed
differences motivated a more detailed investigation of the sub-delta
frequency range.

To assess the role of very low frequencies, we trained an
EEG-InvNet on data low-pass filtered to retain only frequencies
below 0.5 Hz. Specifically, we removed all Fourier components
above 0.5Hz from each full recording as well as from each
2-s input window provided to the network. The EEG-InvNet
achieved 75.4% accuracy under this condition, indicating that
even very low-frequency components remain fairly informative
about the pathological status of the recordings. We additionally
trained an EEG-CosNet with a temporal filter spanning the entire
2-s input window and found it to reach 75.0% test accuracy.
Finally, we trained an 8-component Gaussian mixture model
(Fourier-GMM) in the Fourier domain. For each electrode,
only three features were retained: the real part of the 0-Hz
component (corresponding to the summed amplitude of the
input window) and the real and imaginary parts of the 0.5-
Hz Fourier component. Each of the eight mixture components
was associated with learnable class weights that determined
its contribution to the class-conditional distribution. The
Fourier-GMM also achieved 75.4% test accuracy. All results
are shown in Table 3.

4.1 EEG-InvNet visualizations

The visualizations of the EEG-InvNet reveal several differences
between the two classes. The class prototypes in Figure 10
exhibit distinct signal patterns across most electrodes, with
particularly pronounced differences at A1 and A2. The per-electrode
prototypes in Figure 11 highlight strong differences at electrodes
T3, T4, and Té6. Overall, these visualizations suggest that a range of
low-frequency differences may contribute to class discrimination,
motivating further analyses to identify the most relevant
features.
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4.2 EEG-CosNet visualizations

The visualization of the EEG-CosNet in Figure 12 reveals
strong frontal components associated with the healthy class
and temporal components associated with the pathological class.
The temporal components are consistent with the per-electrode
visualization, and the frontal components were already apparent
as differences in mean signal values in the class prototypes
of the original data. These visualizations more clearly highlight
specific features as strongly discriminative between the two
classes.

4.3 Fourier-GMM visualizations

Visualizations of the Fourier-GMM in Figure 13 again reveal
frontal components associated with the healthy class, as well
as components with spatial topographies involving temporal
regions that are associated with the pathological class. Overall,
the visualizations consistently indicate a frontal component
predictive of the healthy class and additional components with
spatial topographies often encompassing temporal and adjacent
regions that are predictive of the pathological class. In the
following, we further manually validate the unexpected frontal
component.

4.4 Spectral analysis

We validated the patterns identified in our visualizations
using spectral analysis. Specifically, we computed the class-
wise averages of the amplitudes of the Fourier-transformed
training inputs. We found that the healthy class exhibited
the
pathological class showed larger amplitudes at the temporal

larger amplitudes at the frontal electrodes, whereas
electrodes (see Figure 14). We emphasize that this manual spectral
analysis of the sub-delta frequencies was motivated by the
visualization findings and would otherwise have been unlikely to

be conducted.

5 Discussion

We introduced two approaches that combine neural

networks with visualization methods for learned EEG features,
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FIGURE 10
Class prototypes for the EEG-InvNet trained on data lowpassed to be below 0.5 Hz. Note large differences at A1 and A2.

and applied them to the task of pathology diagnosis. The
first approach employs networks
prototypical signals for each class, while the second approach
a compact, interpretable network in which all
parameters can be directly visualized. Both approaches provide
in the

invertible to generate

leverages
visualizations of what the networks have learned
input space.

Class prototypes can serve as hypothesis generators for
potentially discriminative features, including unexpected ones.
These prototypes are visualized in the input space, which allows
arbitrary features to be revealed. However, they are challenging to
interpret, as they present only a single prototypical example per
class and require additional reasoning to identify relevant features
within these examples. Thus, their primary role is to generate
hypotheses about potentially discriminative features, which must
then be analyzed further. Their value in this work is demonstrated by
highlighting unexpected discriminative information in the sub-delta
frequency range, which we subsequently validated through manual
spectral analysis.

We also introduced a per-electrode variant of the prototypes,
designed to be more easily interpretable. In this approach, we
optimize a prototypical signal at a single electrode, associated
with one class, independently of the signals at other electrodes.
This variant can reveal only single-electrode features, such as
large oscillations at specific frequencies, but not multi-electrode
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features, such as phase-locking across electrodes. This restriction

facilitates interpretability and revealed neurophysiologically
plausible patterns, such as slow oscillatory activity at temporal
electrodes associated with pathology.

Both types of prototypes reveal complementary aspects
of the features learned by the trained network. The overall
prototypes can capture arbitrary combinations of features, but
they are more challenging to interpret. In contrast, the per-
electrode prototypes are restricted to single-electrode features,
which makes them easier to interpret. Together, these methods
highlight different but complementary aspects of the learned
features.

As

compact and interpretable network, EEG-CosNet, in which

our final visualization method, we introduced a
all parameters can be directly visualized. This addresses the
limitation of prototypes, which may only reveal parts of
the learned features. A priori, it is not clear whether such
a restricted and compact network can achieve competitive
performance on pathology decoding. The visualizations reveal
a variety of predominantly oscillatory waveforms:

regular oscillations in the alpha and beta frequency ranges

more

associated with the healthy class, and less regular, lower-
frequency oscillations associated with the pathological class.
This suggests that such features are sufficient to yield reasonable
decoding accuracies for pathology.
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One intriguing finding suggested by our visualizations
was the decreased power at frontal electrodes in the sub-
delta frequency range (<0.5Hz) for the pathological class.
This feature was revealed by the prototypical signals, which
exhibited unexpected differences in the sub-delta range. It was
subsequently confirmed through manual spectral analysis, thereby
validating the value of the visualizations as hypothesis generators
for learned features. To our knowledge, this feature has not
been previously described in relation to pathological EEG. One
potential explanation may be a reduction of eye movements due
to impaired neuromuscular eye control in pathological patients;
however, further research is required to better understand this
phenomenon.

The features learned in this study both confirmed previously
reported findings and uncovered novel ones. The presence of
alpha oscillations associated with the healthy class and lower-
frequency oscillations associated with the pathological class are
consistent with prior findings in the literature (Gemein et al,
2020; Schirrmeister et al., 2017). In contrast, the differences
observed in the sub-delta frequency range have not been
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reported in similar visualizations before (Gemein et al, 2020;
Schirrmeister et al., 2017).

In future work, the interpretability work here could be
extended to better capture intra-class variations. For example,
the class prototypes could be extended by generating multiple
complementary  subprototypes that
Similarly,

reveal
the compact
interpretable network can be replaced by several small networks

complementary

discriminative information. single
in a mixture-of-experts framework.

Overall, the visualization methods developed in this work
provide an insightful avenue for advancing the understanding of
pathological features learned by deep neural networks from EEG

recordings.
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