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This research proposes a multi-layer navigation system for indoor mobile robots
when they share space with vulnerable individuals. The primary objectives
are increasing or maintaining safety measures and curtailing operational
costs, emphasizing reducing reliance on intricate sensor technologies and
computational resources. The developed system employs a three-tiered control
approach, with each layer playing a pivotal role in the navigation process.
The “online” control layer integrates a human-in-the-loop strategy, where the
human operator detects missing obstacles or approaching danger through a
user interface and sends a trigger to the robot’s controller. This trigger enables
the system to estimate the coordinates of the danger and update the robot’s
navigation path in real time, minimizing reliance on complex sensor systems.
The “semi-online” control layer generates dynamic virtual barriers to restrict the
robot’s navigation in specific areas during specific times. This ensures the robot
avoids hazardous zones that could pose temporary risks to the human or robot.
For example, areas with temporary obstructions or potential danger, such as
kids’ play zones or during cleaning, are temporarily restricted from the robot’s
path, ensuring safe navigation without relying solely on real-time sensor data.
The “offline” control layer centers around the use of semantic information to
control the robot’s behavior according to user-defined space management and
safety requirements. By leveraging Building Information Models (BIM) as digital
twins, this layer combines semantic and geometric data to comprehensively
understand the environment. It enables the robot to navigate according to
precise user requirements, utilizing the semantic context for path planning and
behavior control. This layer obviates the need for a real-time sensor mapping
process, making the system more efficient and adaptable to user needs. This
research represents a significant step forward in enhancing the navigational
capabilities of robots within human-centric indoor environments, with a core
focus on safety, adaptability, and cost-effectiveness.

KEYWORDS

multi-tier robot controller, autonomous navigation, human-in-the-loop, semantic
mapping, virtual barriers, robot safety, building informationmodels (BIM), robotic digital
twins

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1629931
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1629931&domain=pdf&date_stamp=2025-07-30
mailto:k.i.m.omer@univpm.it
mailto:k.i.m.omer@univpm.it
https://doi.org/10.3389/frobt.2025.1629931
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1629931/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1629931/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1629931/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1629931/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1629931/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Omer and Monteriù 10.3389/frobt.2025.1629931

1 Introduction

1.1 Background and safety in indoor mobile
robot navigation

The past few decades have witnessed a remarkable boom in
the integration of robots into various sectors De Backer et al.
(2018). This trend is particularly evident in the deployment of
autonomous mobile robots (AMRs) in indoor environments and
environmentally assisted living (AAL) applications, driven by
significant technological advances and the increasing demand for
automation. Robots are now utilized across various industries,
including smart homes, healthcare, hospitality, retail, logistics, and
education, transforming how tasks are performed in these diverse
environments Ray (2016).

Originally, mobile robots were mainly employed in industrial
settings where tasks were repetitive and performed under structured
and predictable conditions Pedersen et al. (2016). However, as
technology has progressed, the scope of these robots’ applications
has expanded to include dynamic, unstructured environments such
as homes, hospitals, and public spaces. In these environments, robots
are expected to operate autonomously, navigate complex spaces, and
interact safely with humans and objects.

Historically, navigation in such environments relied heavily on
advanced sensor systems, such as LiDAR, ultrasonic sensors, 3D
laser scanners, and cameras Liu et al. (2024). These sensors gather
extensive environmental data, which is then processed to map
surroundings Alatise and Hancke (2020), detect obstacles, and plan
the robot’s path. While effective, this approach requires significant
computational resources, which adds to costs and limits scalability.

In environments where vulnerable individuals, such as the
elderly or those with disabilities, reside, the reliance on such
sensor systems presents additional challenges. These environments
demand robots that can navigate without posing risks to individuals
with limited mobility or other impairments Marques et al. (2019).
Furthermore, the cost-effectiveness of deploying and maintaining
robotic systems is crucial, given the often limited budgets of public
health and social care institutions Tan and Taeihagh (2021).

Thus, the development of automated navigation systems for
indoor environments faces a dual challenge Loganathan andAhmad
(2023). On one hand, there is a need to maintain high levels of
operational efficiency and autonomy to ensure robots can perform
tasks effectively Ciabattoni et al. (2021); Alatise and Hancke (2020).
On the other hand, the limitations of heavy reliance on sensor
technologies and computational resources must be addressed.
Striking a balance between efficiency, safety, and cost-effectiveness
is critical to the widespread deployment of these technologies.

In response to these challenges, recent research has shifted
towards alternative navigation strategies Ton et al. (2018). These
strategies reduce reliance on real-time sensor data, leverage pre-
existing environmental information, and incorporate human input
to improve navigation decisions Nunes et al. (2015). The aim is
to develop robots that are not only efficient and autonomous but
also safe and cost-effective for deployment in human-centered
environments.

Furthermore, ensuring safety in indoor mobile robot navigation
is paramount, particularly as robots increasingly operate in shared,
dynamic environments. Multi-Robot Systems (MRSs) are expected

to work autonomously and collaborate with humans to complete
complex tasks, making them both safety-critical and mission-
critical systems Rizk et al. (2019). Despite advancements in robotics,
many essential capabilities for reliable operation in unstructured
indoor settings remain insufficient, hindering the widespread
deployment of robots in real-world scenarios.

A significant aspect of safety in these systems is human-
robot interaction (HRI). Studies show that factors like a robot’s
appearance, speed, and approach direction impact how safe people
perceive the robot to be. Visual cues, such as floor projections
and turn indicators, along with haptic feedback systems, can
enhance the robot’s predictability and foster trust in shared spaces
Rubagotti et al. (2022); Cardoso et al. (2021).

Additionally, the refinement of safety standards, such as ISO/DIS
13482, plays a vital role in guiding the development of safe robotic
systems. These updates provide performance requirements, speed
limits, and emergency stopping protocols, although they often do
not address the nuanced safety challenges in public and semi-public
indoor spaces Rose (2020).

Advances in perception and sensor systems, particularly when
combining LiDAR, cameras, radar, and ultrasonic sensors, have
significantly improved robot safety by enhancing environmental
understanding and obstacle detection Yang et al. (2025);
Zhang Y. et al. (2024). Additionally, AI-driven approaches
enable robots to refine their navigation strategies over time,
learning from human presence and adapting to dynamic indoor
conditions Zhang Q. et al. (2024).

A holistic approach to safety extends beyond real-time
navigation and includes considerations such as payload stability,
tipping prevention, surface interaction, and effective emergency
planning. These factors contribute to a more robust and versatile
system for diverse indoor applications Tan et al. (2016).

Despite these advancements, there remain several gaps in
ensuring safety for indoor mobile robots. A review of 58 recent
works highlights key deficiencies, particularly the underutilization
of knowledge sharing among robots. Few studies explore centralized
or cooperative mechanisms, limiting the resilience of robot systems
in dynamic environments. The lack of dedicated safety layers,
often embedded within functional code, reduces clarity and
complicates system verification and maintenance. Moreover, real-
time adaptability remains limited, and most research focuses on
homogeneous robot teams, with managing heterogeneous systems
largely unexplored Bozhinoski et al. (2019).

In conclusion, the integration of mobile robots into indoor
spaces presents a dynamic and evolving challenge. As these robots
expand into more sensitive and unregulated environments, the
need for innovative navigation solutions that balance operational
efficiency with safety, cost-effectiveness, and human-robot
interaction becomes increasingly clear. Efforts to address these
challenges will be crucial in ensuring that the deployment of
autonomous robots in human-centric spaces is both safe and
effective.

1.2 Motivation

The rapid advancement in robotics, particularly in the
development of autonomous mobile robots (AMRs) for indoor
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FIGURE 1
Use the Schematic of a shared indoor environment with humans, robots, and pets. The scene illustrates common navigation challenges that are
difficult for typical robot sensors to detect and interpret reliably.

navigation, has brought forth significant changes across various
sectors. However, this progress also presents challenges that need
addressing, with a primary focus on enhancing safety, reducing
costs, and catering to the needs of environments with vulnerable
populations.

Safety is a critical concern, especially in indoor settings
where robots interact closely with humans. Advanced sensing
technologies used in these robots improve environmental awareness
and decision-making, but also add complexity and raise safety risks.
Malfunctions or errors can lead to incidents, particularly in densely
populated or confined spaces. Thus, developing a navigation system
that enhances safety standards is crucial, especially where minor
faults can have serious consequences.

Cost reduction is another vital aspect, as current robotic systems,
with their sophisticated sensing technologies and computational
algorithms, incur high initial and maintenance costs. This limits
their accessibility and scalability, particularly for smaller operations
or those with limited budgets. Achieving cost-effectiveness without
compromising efficiency is essential for wider adoption and further
progress in the field.

1.3 Problem statement

The primary challenge is to enhance safety in indoor navigation,
both for the robot and users, while minimizing reliance on
advanced sensors without compromising performance. Moreover,
the need for solving the critical challenges posed by negative
and undetected obstacles,as illustrated in Figure 1, including stairs,
ramps, transparent materials, and other problematic elements that

traditional sensors often fail to detect effectively as tiny legs or
short objects Trautmann et al. (2023).

2 Materials and methods

2.1 Proposed approach

Building on the identified gaps in the current state of the
art regarding safety in indoor mobile robot navigation, this thesis
proposes a multi-layered artificial control architecture designed
to enhance robot behavior in human-shared environments. The
goal is to enable robots to behave in ways that are predictable,
interpretable, and manageable by humans, without compromising
the robot’s autonomy.

The proposed control system can be integrated with most
existing mobile robots, regardless of their hardware limitations.
It is designed to emulate typical human indoor behaviors,
allowing for intuitive co-existence between humans and robots.
By minimizing sensor dependencies and reducing computational
overhead, the system enables even low-cost robots with basic
navigation capabilities and low-tech sensors to perform comparably
to systems using more sophisticated technologies or complex
AI models.

Each layer addresses specific behavioral aspects of indoor
navigation and collectively ensures that the robot’s actions are
aligned with human expectations and safety standards. This
approach not only enhances robot predictability and social
acceptability but also democratizes access to safe autonomous
navigation for a broader range of robotic platforms.
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2.1.1 Selecting and designing the layered control
architecture

Designing a layered control architecture for safe indoor
navigation requires drawing from both engineering principles
and natural behavioral models. According to Arkin Arkin (1998),
robotic behaviors can be designed through three main strategies:
ethologically guided (inspired by animal behaviors), situated
activity-based (emerging from specific environmental contexts),
and experimentally driven (developed through iterative trials). Our
approach blends situated activity-based design and ethologically
inspired principles, particularly from natural safety mechanisms
observed in animals, alongside practical models from human risk
management at home.

From an ethological perspective, animal behavior offers robust,
evolutionarily tested strategies for avoiding danger. A particularly
relevant example is the safety system in rats, which involves
layered responses to perceived threats Prescott and Redgrave
(1996). Rats react to danger using a tiered mechanism: immediate
stimuli (like a sudden noise or movement) trigger reflexive escape
or freezing behaviors; mid-term threats are handled through
avoidance strategies or hiding based on prior learning and
environmental cues; and long-term safety relies on memory and
territorial mapping to avoid dangerous zones. This tiered response
system inspired our multi-layered control approach, which mimics
such stratified decision-making in robotic systems for indoor
navigation Matni et al. (2024).

Translating this into a human domestic context, we
observe that people intuitively manage household risks across
three levels:

• Immediate Reactions (Online Layer): When someone notices
a person approaching immediate danger, like a child nearing
a staircase, they often react by shouting or gesturing. This
fast, localized response is transient and situation-specific. Our
online layer emulates this by enabling the robot to respond
instantly to high-risk, real-time events using lightweight
sensing and minimal computation.
• Short-Term Contextual Awareness (Semi-Online Layer): In
domestic settings, humans frequently impose temporary
boundaries, such as avoiding an area being cleaned or where
a pet is feeding. These restrictions are valid for short periods
and particular locations. Our semi-online layer captures this
behavior by enforcing short-term navigational rules that adapt
as the environment changes.
• Long-Term Rules and Restrictions (Offline Layer): Certain
behaviors, like not entering a room with fragile decorations
or keeping away from high-value electronics, are enforced
as standing house rules. The offline layer incorporates
such persistent constraints into long-term planning and
navigation behavior.

By integrating these biologically and situationally inspired
layers, our novel control architecture in Figure 2 ensures that robots
behave predictably and safely in shared human environments.
It also allows low-complexity robots to perform context-aware
navigation without requiring high-end sensors or heavy AI
models. This strategy ultimately improves safety, enhances
trust, and facilitates smoother human-robot coexistence in
indoor settings.

2.2 Online (real-time human-in-the-loop)

Human-in-the-loop (HITL) approaches for correcting robots
are pivotal in enhancing the accuracy, adaptability, and reliability of
robotic systems by integrating human expertise and feedback into
the robots’ operational processes. These approaches are especially
beneficial in human-robot interaction, making the user an active
participant in the control loop. Users can provide immediate
feedback or corrections to the robot’s actions, significantly
augmenting its capabilities.This becomes crucial in scenarios where
safety is paramount, such as in assistive robotics.

In the context of this study, the focus is on realizing
a human-in-the-loop approach to empower specific robots,
such as mobile robots and smart wheelchairs, by augmenting
their artificial sensory sets. The aim is to extend and enhance
robotic capabilities for obstacle detection and avoidance by
incorporating human feedback mechanisms. For mobile robots,
feedback is provided via vocal commands, while in the case of
assistive wheelchairs, both a keyboard and a brain-computer
interface (BCI) are employed. Furthermore, we adopted a novel
method based on a passive BCI that leverages error-related
potentials (ErrPs) as a feedback mechanism, as developed by
Ferracuti et al. (2022); Omer et al. (2022). This innovative
approach not only enhances the robots’ navigational abilities but
also ensures a safer and more intuitive interaction for the user.
By validating the entire architecture within a simulated robotic
environment and analyzing electroencephalography signals from
different test subjects, the study demonstrates the effectiveness
of HITL in enhancing robot performance through direct
human input.

2.2.1 Semi-online control layer: Virtual barriers
and doors

The “semi-online” control layer focuses on the establishment
of dynamic virtual boundaries. These boundaries are not fixed
physical barriers but are instead virtually defined limits within
which the robot operates. This layer uses a combination of
pre-set rules and real-time environmental data to adjust these
boundaries dynamically, ensuring safe navigation. For instance, in
a huge living room, the robot would automatically set its path
to maintain a safe distance from people and avoid navigating
where kids’ play areas or pets’ feeding zones are. This approach
strikes a balance between pre-planned navigation and the need
for real-time adaptability, ensuring efficient movement while
prioritizing safety.

2.2.2 Offline control layer: Utilizing semantic
data from Building Information Models

The third and final layer, the “offline” control layer, capitalizes
on Building Information Models for path planning and semantic
mapping. BIMs are detailed digital representations of the physical
and functional characteristics of facilities. By utilizing BIM, the
robot can access a comprehensivemap of its operating environment,
which is represented through labels or categories that carrymeaning
for humans, such as “kitchen”, “office”, “hallway”, and all the types
of furniture and equipment, rather than purely geometric or
topological data. This pre-existing data allows for efficient path
planning without the need for extensive real-time sensor data
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FIGURE 2
Comprehensive overview of the three-layer control architecture for autonomous robot navigation. The layered controller stack interfaces with the
existing robot control system, intercepting and modifying high-level commands to enforce behavior constraints, such as human-centered safety,
before relaying them to the unmodified low-level motor controller.

processing. The robot can navigate effectively using this detailed
environmental blueprint, significantly reducing the computational
load and associated costs. This method enables interaction between
humans and robots to be more seamless and intuitive.

2.2.3 Robot model and the three-layer controller
modeling

This section details the mathematical modeling of the robot,
including error computation, PID control, obstacle avoidance, and
a layered controller architecture.

2.3 Robot model

2.3.1 Kinematic model of a differential-drive
robot

The motion of a differential-drive mobile robot is governed
by its non-holonomic kinematic equations, assuming no slip and
pure rolling:

ẋ (t) = v (t)cos (θ (t)) (1)

ẏ (t) = v (t) sin (θ (t)) (2)

θ̇ (t) = ω (t) (3)

Where:

• x(t),y(t): Position of the robot in Cartesian coordinates
• θ(t): Orientation of the robot
• v(t): Linear velocity
• ω(t): Angular velocity

These Equations 1–3 form the foundation for modeling the
motion and designing control strategies.

2.3.2 Error computation
The robot’s tracking errors are computed from desired
(xd(t),yd(t),θd(t)) and actual (x(t),y(t),θ(t)) states as appears in
Equations 4, 5, 7:

ex (t) = xd (t) − x (t) (4)

ey (t) = yd (t) − y (t) (5)

ed (t) = √ex(t)2 + ey(t)2 (DistanceError) (6)

eθ (t) = θd (t) − θ (t) (OrientationError) (7)

2.3.3 PID controller

• Linear Velocity:

v (t) = Kpv ⋅ ed (t) +Kiv∫ed (t)dt+Kdv
ded (t)
dt

(8)

• Angular Velocity:

ω (t) = Kpω ⋅ eθ (t) +Kiω∫eθ (t)dt+Kdω
deθ (t)
dt

(9)
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2.3.4 Differential drive kinematics
For a differential drive robot, the required wheel angular

velocities are calculated for Equations 8–11:

ωl =
2vfinal −ωfinalL

2R
(10)

ωr =
2vfinal +ωfinalL

2R
(11)

2.3.5 Obstacle avoidance
Obstacle Detection from Sensors:

Or = {(xj,yj,zj)} (12)

Potential Field Method:
The combined potential field from real and virtual obstacles:

ϕ (x,y,z) = ∑
i∈Ov

1
‖x− xi‖

+ ∑
j∈Or

1
‖x− xj‖

+ ∑
k∈Bv

1
‖x− xk‖

(13)

Repulsive Force:
Derived from the gradient of the potential field:

Frep (x,y,z) = −∇ϕ (x,y,z) (14)

Adjusted Control Signals:

• Final Linear Velocity:

vfinal (t) = v (t) + Frep,v (x,y,z) (15)

• Final Angular Velocity:

ωfinal (t) = ω (t) + Frep,ω (x,y,z) (16)

2.3.6 Layered controller
Online and Semi-Online Layers:

• Virtual obstacles from BCI feedback:

Ov = {(xi,yi,zi)} (17)

• Virtual barriers if BCI condition f(t) = 1:

Bv = {(xk,yk,zk)} (18)

• Semi-online layer sensor data:

Bs = {(xi,yi,zi)} (19)

Offline Layer: Semantic Path Planning.

• Individual cost component:

Ck (x) = αk ⋅ fk (dk (x)) (20)

• Total cost function:

C (x,y) = ∑
k
αk ⋅ fk (dk (x)) (21)

• Semantic path planning using cost map and obstacles:

P (t) = Path(Mim, Start, Goal,Or,C (x,y)) (22)

• Optimization objective:

min(∫
p
∑
k
αk ⋅ fk (dk (x,y))ds) (23)

All the layers described in Equations 12–23 are integrated
intothe final control architecture of the robot and the Laird
controller, as illustrated in Figure 3.

2.4 Experimental setup and simulation
framework

This section presents the experimental setup designed to validate
our human-in-the-loop navigation strategy for assistive robotics,
implemented through a smart wheelchair platform Ciabattoni et al.
(2021). The experiments were conducted entirely in simulation,
leveraging the Robot Operating System (ROS) Quigley et al. (2009)
and the Gazebo 3D simulator to create a realistic and interactive
environment for testing path planning, obstacle avoidance, and user
interaction mechanisms.

ROS includes all packages for robot control and autonomous
navigation.The simulated tests have been realized in Gazebo, where
the virtual environment for the simulation of the smart wheelchair
movement and the acquisition of all the sensors have been recreated.
Gazebo is a 3D simulator developed by the Open-Source Robotics
Foundation, with which it is possible to create a 3D scenario with
robot obstacles and many other objects. In Gazebo, it is possible to
configure the robot as links and joints, and all the equipped sensors
are virtualized to be used by ROS packages and nodes. It also uses
a physical engine for illumination, gravity, inertia, etc. Gazebo was
designed to evaluate algorithms for many applications. It is essential
to test the developed robot applications, like error handling, battery
life, localization, navigation, and grasping (see Freddi et al., 2021).

2.4.1 Simulation environment
The simulation was carried out in a virtual reconstruction

of the corridor at the Department of Information Engineering,
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FIGURE 3
Use the System architecture in the control scheme, illustrating the integrated layered controller that operates above the original robot controller. This
controller intercepts and modifies high-level control inputs to embed behaviors such as obstacle avoidance before passing commands to the original,
unmodified low-level motor controller.

FIGURE 4
Visualization of the wheelchair robot and its environment in RViz,
showing real-time sensor data, map overlays, and navigation status.

Università Politecnica delle Marche. The environment includes
structural elements such as walls, virtual holes in the floor, and
glass partitions, facilitating the evaluation of the robot’s capabilities
under complex and varied conditions. A total of 10 floor holes,
each with a diameter of 20 cm and spaced 3 m apart, were
introduced to simulate hazardous terrain that is undetectable by
onboard sensors.

Gazebo, integrated with ROS, was used to simulate the
physical environment, robot dynamics, and sensors. The mobile
robot, modeled as a smart wheelchair in Figure 4, was equipped
with a Hokuyo URG-04LX laser rangefinder, an IMU, and
two cameras, one for localization via overhead QR codes and

another front-facing camera angled downward for environment
perception. Ferracuti et al. (2022).

2.4.2 Virtual wall and obstacle integration
In the proposed system, virtual obstacle integration is

achieved through a ROS-based architecture that allows real-time
modification of the robot’s local path planning. This mechanism
is essential for adapting the robot’s trajectory when new obstacles,
virtual or physical, are detected or triggered by user input.

A dedicated ROS node has been developed to enable this
functionality. Its role is to estimate the position of obstacles (such as
virtual holes) based on the robot’s current pose and a received trigger
signal. The estimated obstacle is represented as a virtual object and
published as a point cloud, allowing it to be processed similarly to
real sensory data by ROS navigation tools.

2.4.2.1 Trigger mechanism and obstacle estimation
Use the node responsible for publishing the virtual obstacle

coordinates listens continuously to the robot’s odometry data and
waits for a trigger message published on the ‘/trigger’ topic. When
the trigger is activated (i.e., receives a value of 1), the node
retrieves the current robot pose, comprising position (X,Y) and
orientation θ, to estimate the coordinates of the obstacle within
a 2-m range in front of the robot, as illustrated in Figure 5 and
Equations 24–27. Considering the maximum robot speed of 1 m/s,
gives the navigation system sufficient time to adjust the robot path
and avoid any estimated obstacles triggered by the human-in-the-
loop system.

The obstacle’s estimated position is computed using the
following equations:

Xholes = Xrobot + S ⋅ cos (θ) (24)
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FIGURE 5
Virtual hole coordinate estimation based on robot pose and orientation.

Yholes = Yrobot + S ⋅ sin (θ) (25)

where Xrobot, Yrobot, and θ are derived from the robot’s pose, and S =
2meters is the fixed distance ahead, matching the field of view of the
front-facing camera.

2.4.2.2 Orientation extraction from quaternions
The robot’s orientation θ is calculated from the pose’s quaternion

representation:

θ = 2 ⋅ atan2(√q2i + q
2
j + q

2
k,qr) (26)

q = qr + qii+ qjj+ qkk (27)

where qr, qi, qj, and qk represent the quaternion components
describing the robot’s orientation, and i, j,k are the unit vectors of
the map frame.

2.4.2.3 Virtual obstacle generation and publishing
Once the coordinates of the obstacle are estimated, a virtual

object—modeled as a 3D cylinder—is generated using theROSPoint
Cloud Library (PCL) Rusu and Cousins (2011). This virtual point
cloud is then published to a ROS topic, mimicking data from a
real sensor.

This published point cloud serves two main purposes:

• Visualization:The obstacle is visualized in RViz, allowing users
to confirm its position and geometry.
• Navigation Integration: The ROS navigation stack subscribes
to the point cloud topic and incorporates the obstacle into the

local and global costmaps, effectively altering the robot’s path
to avoid it.

2.4.2.4 User-defined virtual walls
A ROS-based software package was developed to enable

the creation and management of virtual walls for obstacle
avoidance. Through a simple user interface, operators can
activate existing barriers or define new ones by entering
coordinates. These are used to construct lines or splines in the
X-Y plane, extruded along the Z-axis, and converted into 3D
point clouds.

The generated point cloud is published as ROS sensor data,
updating both local and global costmaps in the navigation
stack. RViz is used for visualization and validation. Virtual wall
configurations can be saved and reloaded, supporting repeatable
experiments.

This system effectively simulates dynamic boundaries in
scenarios where physical obstacles are impractical, offering a flexible
tool for safe and adaptive navigation.

2.4.3 Semantic mapping and context-aware path
planning
2.4.3.1 Semantic mapping from BIM files

The used method introduces a Python-based pipeline
for transforming complex 3D BIM data into structured
2D maps optimized for robotic navigation Omer et al.
(2025). The process begins by selecting relevant architectural
elements from the BIM model and extracting their geometric
features, such as faces, edges, and vertices, at elevations
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FIGURE 6
BIM-to-Robot Map Update Flow. A streamlined process illustrating the extraction of architectural data from the BIM model, semantic encoding of
building elements, and generation of robot-readable maps tailored to each robot’s capabilities for accurate navigation and localization.

aligned with the robot’s sensor height. Two primary types of
maps are generated: planar localization maps and volumetric
navigation maps. Each architectural component is encoded
with a unique grayscale value, allowing the representation of
semantic categories (e.g., walls, glass, or furniture) directly
within the visual map format. This approach processes each
element individually, generating its corresponding polygons and
assigning class-specific grayscale values. The modular design
supports both flexibility and scalability, enabling the seamless
integration of new element classes by simply updating the
generation scripts. As illustrated in Figure 6, the resulting map
offers a semantically rich representation of the environment,
enhancing robotic perception, localization, and context-aware
interaction.

2.4.3.2 2D semantic path planner
Semantic path planning based on A∗algorithms was integrated

into the ROS navigation stack, supported by Building Information
Modeling (BIM) data for environmental realism Omer et al.
(2024). A penalty-based cost function influenced the planner’s
behavior near critical structures like walls and glass. Each
map cell’s distance to the nearest wall and glass surface
was precomputed and stored, allowing dynamic calculation
of penalties based on proximity. This approach enables the
planner to optimize paths that balance efficiency with safety and
human comfort based on the user-defined functions and spacer
management scenario, maintaining appropriate clearance from
hazardous features.

3 Results and discussion

The simulation results are categorized into three key aspects
according to the controller layers, as illustrated in Figure 7.

3.1 Online layer simulation

The online layer simulation focuses on the generation of virtual
obstacles based on user input. When the user detects an obstacle
that is not captured by the robot’s onboard sensors, a trigger is sent.
These results were obtained from data collected during the robot’s
navigation, where users were seated in front of a screen watching
the robot’s simulation in real time, as shown in Figure 8. Users
were instructed to press a keyboard key whenever they identified an
obstacle centered in the robot’s camera view that was not detected
by the onboard sensors. Upon receiving this trigger, the system
generated a virtual obstacle and placed it onto the robot’s virtualmap
at coordinates estimated using Equations 24–27.

The analysis of all 82 trials provides valuable insights into
the dataset’s performance and reliability, which are summarized in
Table 1. The average measurement was calculated as 0.246 m,
representing the central tendency of the trials. The minimum and
maximum values observed were 0.02 m and 0.75 m, respectively,
showcasing the range of variability within the data. The variability
around the mean was characterized by a standard deviation of
0.148 m and a variance of 0.0219 m2;, indicating a moderate spread
in measurements.
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FIGURE 7
Schematic of all robot ROS packages and their integration with the three control layers: online, semi-online, and offline controllers. These layers work
together to override the robot’s behavior, ensuring safety and compliance with user requirements.

FIGURE 8
Left: The user perceives obstacles that the robot cannot detect. Right: Upon user trigger, the online layer sends virtual obstacles to the robot, allowing
it to adjust its navigation path accordingly.

Furthermore, based on the acceptable error threshold of 0.5 m,
which accounts for the inflation area around the robot’s footprint,
the data shows that any value below this threshold allows the robot
to avoid obstacles successfully. With only three trials exceeding
this threshold, the accuracy of the trials was calculated to be
approximately 96%.

3.2 Semi-online layer simulation

The second set of results explores the use of virtual borders
and barriers to restrict access to specific areas. These barriers,

defined by the user through a graphical interface, are used
to block certain zones, such as doorways or entire sections
of a map, as can be seen in Figure 9. Once defined, the
virtual boundaries are translated into 3D point cloud data
and integrated into the ROS navigation stack. This ensures
that the robot’s path planning process respects these artificial
constraints, enabling flexible environmental control during
navigation tasks.

The computational cost of implementing virtual barriers as
3D point clouds was analyzed for scenarios in a smart home
environment. Standard indoor door dimensions were utilized for
calculations, with each point spaced 1 cm apart, aligning with the
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FIGURE 9
Testing different types of visual borders and walls using the SIM-Online Layer Controller to observe how the robot interacts with virtual barriers.

resolution commonly applied in robotics for obstacle detection and
navigation.

In the worst-case scenario, a smart home containing five rooms
and two additional restricted areas was considered. The estimated
number of points required to represent virtual barriers varied
depending on the publishing rate, with two cases analyzed: 1 Hz
and 5 Hz. The computational costs for different scenarios are
summarized in Table 2.

Modern commercial computers, equipped with multi-core
CPUs, substantial RAM (8–32 GB), and high-speed networking, are
well-suited to handle these computational demands. Additionally,
single-board computers such as the Raspberry Pi 4 Model
B—with its quad-core processor, RAM configurations (2 GB,
4 GB, or 8 GB), and gigabit networking capabilities—demonstrate
sufficient processing power tomanage the generation, handling, and
transmission of point cloud data even in the worst-case scenario.

3.3 Offline layer simulation

Finally, we demonstrate the implementation of user-specific
navigation rules within a controlled workspace environment. In
this case study in Figure 10, the robot is tasked with maintaining
a safe distance from glass partitions, addressing critical safety
considerations. These navigation rules are encoded in metadata
as configuration parameters, defining relevant objects and spaces
within the environment, as well as the desired interaction behaviors.

Each robot is assigned a unique configuration file that specifies
its authorized behaviors and governs its navigation strategies.
Simulation results indicate that the path planner reliably complies
with these constraints, generating trajectories that consistently
maintain safe distances fromhazardous structures.This underscores
the system’s flexibility and its capacity to incorporate individualized
user preferences into autonomous decision-making processes.
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FIGURE 10
Left: 3D model of the simulated environment alongside its corresponding projected map, where walls and glass surfaces are depicted, with glass
surfaces highlighted in blue. Midel: Comparison between conventional A∗path planning and semantic A∗path planning under user-specified
constraints, where the robot is instructed to maintain a safe distance from glass surfaces while staying close to walls. Right: Path generated using
conventional A∗; Left: Path generated using semantic A∗.

TABLE 1 Statistical parameters from 82 trials evaluating virtual obstacle
coordinate estimation, detection, and avoidance accuracy.

Parameter Value Unit

Average 0.246 m

Minimum (Min) 0.02 m

Maximum (Max) 0.75 m

Standard Deviation 0.148 m

Variance 0.0219 m2

Avoidance accuracy 96 %

4 Conclusion

This study presents a significant advancement in the
development of autonomous navigation systems for mobile robots,
with a focus on supporting vulnerable groups. By implementing a
robust three-layer control framework comprising “online”, “semi-
online”, and “offline” approaches, as illustrated in Figure 2, new
navigation strategies were investigated.These strategies are designed
to enhance safety and efficiency while minimizing reliance on
complex sensor systems and computationally intensive resources.

The core concepts of this work emphasize improving mobile
robot navigation within a human-centered design framework.
This enhancement is achieved through direct interventions, such

as correcting the robot’s behavior when its sensors fail to
detect obstacles, a technique applied in the first (“online”)
layer. Nevertheless, the “online” layer has limitations, as obstacle
coordinates are estimated only within a 2-m range, assuming that
the human observer has a line of sight aligned with the robot’s
current pose. In our current implementation, we used a fixed camera
mounted at the front of the robot with a focal range of 2 m, ensuring
alignment under controlled conditions. However, if the user is not
actively observing the screen or the line of sight is obstructed, it
becomes difficult to ensure accurate human intervention.

Furthermore, risks are mitigated through partial or complete
access restrictions in hazardous zones, as addressed by the
subsequent (“semi-online” and “offline”) layers. The “semi-online”
layer sets time- and area-specific restrictions, while the “offline”
layer establishes permanent navigation rules based on the semantic
understanding of different zones and their associated equipment.
These rules remain valid as long as the user’s requirements remain
unchanged. A key limitation of the “semi-online” layer is that it
is still manually operated and dependent on human intervention.
This layer could be significantly enhanced by integrating data from
other autonomous systems. For example, if it could detect scheduled
activities such as floor cleaning, it could automatically trigger virtual
barriers or close doors. Moreover, integration with IoT sensors
would allow the system to detect special events and small objects,
such as pets, kids, or toys, and then set the virtual barriers to block
that area without requiring human input.

The “offline” control layer introduces a key innovation by
implementing permanent rule-based strategies derived from
a semantic understanding of the environment. Leveraging
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TABLE 2 Computational cost for virtual barriers with standard door dimensions.

Scenario Points at 1 Hz Total points sent at 1 Hz Total points sent at 5 Hz

One Standard Door 8,000 8,000 40,000

Seven Standard Doors 56,000 56,000 280,000

Square Barrier (2× 2 meters) with Standard Door Height 240,000 240,000 1,200,000

Building Information Models (BIMs) integrated with digital
twins, this layer efficiently utilizes architectural data to optimize
robot navigation. A critical advancement in this layer is the
direct generation of robot-specific navigation maps from BIM
data. This process significantly reduces computational resource
usage compared to traditional methods like SLAM or LiDAR,
generating maps in under a second Peavy et al. (2023); Naik et al.
(2019). This efficiency is particularly advantageous for large
structures, simplifying the mapping process while ensuring
high accuracy.

Additionally, the generated maps are aligned with each
robot’s sensory capabilities, improving localization and navigation
accuracy. This ensures that obstacles often overlooked by
conventional sensors, such as transparent surfaces or furniture
with thin legs, are effectively represented in the maps
Liu et al. (2024); Trautmann et al. (2023). Such adaptations enhance
the robot’s ability to navigate diverse environments safely and
efficiently.

The “offline” layer also incorporates semantic path planning,
transforming operational rules and user requirements into global
paths that account for both geometrical and contextual constraints.
Robots can prioritize or avoid certain areas based on the presence of
vulnerable individuals, the specific function of zones, or operational
restrictions Loganathan and Ahmad (2023). By tailoring navigation
paths to align with the environment’s intended use, the “offline”
layer improves both safety and operational efficiency. However, the
current approach assumes that all buildings have accurate and up-
to-date BIM files and that existing furniture coordinates are already
encoded. While this enables efficient map generation, it limits
applicability in unmodeled or dynamically changing environments.
The system would be more robust if it included the ability to
update furniture layouts or even generate BIM files from scratch.
This could be achieved by deploying more capable robots equipped
with advanced scanning capabilities to autonomously construct BIM
models, which can then be used by simpler robots with limited
navigation skills.

Ultimately, this study highlights the importance of integrating
human-centered control with full autonomy in mobile robot
navigation systems. The findings demonstrate substantial
improvements in computational efficiency, adaptability, and
obstacle avoidance. The proposed framework bridges the gap
between manual control and autonomy, enabling robots to adapt
to dynamic, user-defined environments. This flexibility is crucial
for assistive technologies, where robots can be personalized to
navigate complex spaces safely and provide greater independence
for vulnerable individuals. This hybrid approach, combining
autonomy with human-centered interventions, ensures that robots

can operate effectively while maintaining sensitivity to user needs,
making them an ideal solution for a wide range of assistive
applications.
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