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A hybrid elastic-hyperelastic
approach for simulating soft
tactile sensors
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Jean-Philippe Roberge*

Command and Robotics Laboratory, École de Technologie Supérieure, Montreal, QC, Canada

Efficient robotic grasping increasingly relies on artificial intelligence (AI) and
tactile sensing technologies, which necessitate the acquisition of substantial
data—a task that can often prove challenging. Consequently, the alternative of
generating tactile data through precise and efficient simulations is becoming
increasingly appealing. A significant challenge for simulating tactile sensors is
balancing the trade-off between accuracy and processing time in simulation
algorithms and models. To address this, we propose a hybrid approach that
combines elastic and hyperelastic finite element simulations, complemented
by convolutional neural networks (CNNs), to generate synthetic tactile maps
of a soft capacitive tactile sensor. By leveraging a dataset of 53,400 real-
world tactile maps, this methodology enables effective training, validation, and
testing of each pipeline. This approach combines a fast elastic model for simple
contact patches with a more detailed but slower hyperelastic model when
greater precision is required. Our method automatically assesses contact patch
complexity based on parameters associatedwith the object’s mesh to determine
themost appropriatemodeling technique by still ensuring accurate deformation
simulation. Tested on a dataset of 12 unseen objects, our approach achieves
up to 97% Structural Similarity Index Measure (SSIM) for the hyperelastic model
and 90% for the elastic model. This hybrid strategy enables an adaptive balance
between simulation speed and accuracy, making it suitable for generating
synthetic tactile data across tasks with varying precision demands and object
geometrical complexities.

KEYWORDS

force and tactile sensing, synthetic data, computational modeling, finite element
analysis (FEA), convolutional neural networks (CNNs)

1 Introduction

Over the past decades, various tactile sensors have been developed using diverse
sensing principles, such as capacitive, piezoresistive, magnetic, piezoelectric, optical, and
vision-based methods, as described in Meribout et al. (2024). A significant challenge
in robotic tactile sensing lies not only in the fabrication of physical sensors but also
in the design and development of algorithms that generate, process, and interpret
tactile data. A common feature among the transduction techniques employed in most
tactile sensors is the integration of elastomers, owing to their elastic properties that
offer a soft interface for interaction. Nonetheless, the inherent complexity associated
with modeling these soft materials presents substantial challenges to simulation efforts.
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Consequently, simulating tactile sensors for robotic grasping has
emerged as a critical area of research aimed at generating accurate
synthetic data that mimics the behavior of real sensors.

Due to time and resource limitations, conducting numerous
physical experiments is often impractical; hence, simulations present
a valuable alternative. It could significantly facilitate the creation
of synthetic tactile datasets that closely replicate the properties
of real data. These simulations enable testing across a wide
range of scenarios, including those that may not be feasible with
physical systems. While synthetic data generation has advanced
significantly in the field of computer vision, greatly enhancing
robots’ ability to interpret visual information, the development of
other sensory modalities—particularly touch—has lagged behind.
Integrating multiple sensing technologies, such as vision and tactile
sensing, could enable robots to achievemore human-like perception
and dexterity. Despite numerous advancements, developing tactile
sensormodels remains an open challenge due to the complex physics
of contact interactions and the diverse principles underlying these
sensors. Furthermore, accurately modeling soft interfaces requires
simulation environments with advanced physics engines, which
often come with high computational costs.

To tackle these challenges, our paper proposes a new method
for simulating soft tactile sensors within an integrated robotic
simulation pipeline. The pipeline is designed to enable the
generation of synthetic tactile data to support future sim-to-real
implementations by allowing the training and evaluation of various
policies and strategies in virtual environments. In our approach,
Isaac Sim serves as the foundational simulation environment. For
contact interactions, we combine Isaac Gym (which uses an elastic
model) with Abaqus (which employs a hyperelastic model). While
the Abaqus-based approach yieldsmore accurate results, it generally
requires significantly more processing time. Conversely, simulations
using Isaac Gym provide faster approximations at the cost of
reduced precision, a specific case of the latter is shown in Figure 1.
Additionally, a key objective of our methodology and pipeline
is scalability. The constants that characterize the materials are
derived from stress tests performed on material specimens. Once
the simulation model is created, it can be scalable. This approach
can also be applied to similar sensors that operate on capacitive
principles, as they typically share a similar layered structure.

The paper is organized as follows: Section 2 provides a literature
review on the simulation of tactile sensors with a focus on elastic and
hyperelasticmodels. Section 3 describes the approach used tomodel
a capacitive tactile sensor to generate synthetic tactilemaps, utilizing
an elastic model in Isaac Gym (Makoviychuk et al., 2021) and a
hyperelastic model with Abaqus (Habbit Karlsson, 2013). Section 4
details the conducted experiments, the created datasets, and the
validation of the simulation through comparisons between synthetic
and real tactile maps across various scenarios. Finally, Section 5
summarizes the most important outcomes of the paper.

2 Literature review

Tactile sensor simulation is a developing field that has gained
significant popularity in recent years, emerging as a crucial
area for advancing robotic grasping (Li et al., 2024). While
considerable progress remains to be made in this domain, one

FIGURE 1
General view of the robot during a grip test. It is accompanied by
comparing deformation maps between a hyperelastic model (Abaqus)
and an elastic model (Isaac Gym). The cylinder has protrusions of
slightly varying heights, which can occasionally cause the elastic
model to miss certain details (here it is shown missing a cylindrical
protrusion).

key objective is the ability to accurately capture the deformation
of the sensor during contact, enabling the creation of more
versatile and realistic simulations. Most reported simulations focus
on rigid body dynamics, as seen in the algorithms proposed by
Cremer et al. (2021), Kappassov et al. (2020), and Ding et al. (2020).
However, due to the elastomeric materials used in fabrication,
these approaches fail to accurately replicate tactile sensor behaviour.
Alternatively, Leins et al. (2025) show that the incorporation of
hydroelastic contact model into Mujoco’s physics engine can yield
remarkably accurate tactile data for piezoresistive sensors, with
potential extension to optical sensors. Nonetheless, scalability to
larger sensor designs continues to pose a challenge.

Recognizing the need for more sophisticated modeling,
researchers are increasingly adopting hybrid simulation approaches
that bridge multiple software tools, thereby leveraging more
powerful physics engines capable of accurately computing soft-body
deformations. For example, in the SimTacLS pipeline proposed by
Luu et al. (2023), a vision-based tactile sensor is simulated using
Gazebo for robotic simulation and SOFA (Allard et al., 2007)
for finite element analysis (FEA). In the same way, Si and Yuan
(2022) rely on Ansys to calibrate their simulation model for the
GelSight sensor. Another example is the integration of Isaac Gym
with PyBullet, as developed by Lim et al. (2022), for implementing
sim-to-real algorithms. Similarly, Wang et al. (2022) introduced
Tacto, a simulator that utilizes Pyrender to simulate optical tactile
sensors, combined with PyBullet for physics simulation, to generate
synthetic data and train algorithms for sim-to-real algorithms.
These integrated approaches, primarily used for vision-based tactile
sensors, utilise two simulation tools: one for robotic simulation and
another for deformation simulation. These methods rely heavily
on tuning and calibration to accurately model interactions. Our
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methodology distinctively employs two different software tools for
deformation simulation, depending on the complexity of the contact
area, alongside a third tool explicitly dedicated to robotic simulation.

While hybrid simulation approaches offer comprehensive
solutions for complex sensor behaviors, FEA offers precise control
over mechanical properties in simulations, which is particularly
useful in soft robotics. Notable examples of FEA tools include
Abaqus, ANSYS, SOFA, and Mujoco (Todorov et al., 2012). The
advantage of such simulations in soft robotics lies in their ability
to closely mimic real-world scenarios. These simulations consider
material parameters like elasticity and hyperelasticity, which are
pivotal in generating more realistic data. However, the application
of specialized tools like Abaqus and ANSYS in robotics remains
limited due to their high computational cost, lack of real-time
capabilities, and the absence of native integration with robotics
frameworks, such as ROS. In the realm of simulation, IsaacSim
(NVIDIA Isaac Sim, 2024) has recently gained popularity due to
its photorealistic capabilities and seamless integration for training
AI algorithms. Although primarily a robotic simulation software,
it can accommodate basic deformations, which are merely visual
renderings and may not accurately reflect real-world behavior. In
this vein, some authors concentrate on simulation-based research
but do not always compare their outcomes with real-world
measurements. For example, TacEx (Nguyen et al., 2024), a tactile
simulation framework created for the GelSight Mini sensor to
support reinforcement learning, employs FEA to model sensor
responses. However, its validation to date has been limited to
simulation, with no reported physical testing.

NVIDIA’s Isaac Gym, functioning independently from the
Omniverse simulation platform, enables soft object simulation using
linear models, as shown in the work by Narang et al. (2021). In their
research, the BioTac sensor is simulated using material parameters
derived from an ANSYS simulation that replicates the deformations
observed in the real sensor. However, these parameters may not
precisely represent the real behavior of the sensor or material
due to the simplification of a hyperelastic model into an elastic
one. Similarly, Cui et al. (2023) use a dynamic FEM calibration
approach to achieve realistic results, with the calibration parameters
continuously adapting to the depth of deformation in the sensor
membrane. While Isaac Gym offers several advantages, it lacks
hyperelastic algorithms and only supports the implementation of
linear elastic models, which fail to capture the behavior of materials
such as elastomers accurately. As a result, the material parameters
used in these elastic models often lack physical significance or fail to
align with real-world behavior.

It is also noteworthy that most existing simulations
concentrate on vision-based tactile sensors, while alternative
tactile principles—such as capacitive sensors—remain relatively
underexplored. Capacitive sensors offer notable versatility, as they
are generally smaller than vision-based sensors, can be adapted
to different sizes, and may be easier to distribute across various
surfaces. For instance, Thomasson et al. (2022) adapted the sensor
originally proposed by Ruth et al. (2021) to cover an Allegro Hand,
illustrating the broader applicability of these tactile principles.

To address these challenges, we propose a comprehensive
pipeline for generating synthetic tactile data efficiently while
maintaining accuracy. Isaac Sim is used to create photorealistic
environments for virtual robots, while we rely on either Isaac

Gym or Abaqus to simulate the tactile sensor deformations. The
selection between Isaac Gym and Abaqus is based on an estimation
of contact complexity: for simpler contacts, elastic models within
Isaac Gym suffice, whereas more intricate interactions requiring
hyperelastic modeling are handled by Abaqus. Of the various
FEA software options available for high-fidelity simulations—both
commercially and in the literature—Abaqus was selected due to
its robust capabilities in modeling hyperelastic materials, including
its built-in Material Parameter Identification tool, which was used
in this work to identify the nonlinear material properties of the
sensor. On the other hand, belonging to a different category of
simulation tools, Isaac Sim and Isaac Gym were chosen from the
class of physics-based robotics simulators, as they support large-
scale parallel simulation and seamless integrationwith deep learning
frameworks, which are planned to be leveraged in future stages of
this project. Using our pipeline, we can generate a tactile output
represented by a 28-value vector, which matches the data from a real
capacitive sensor with a high level of accuracy.

3 Proposed approach

3.1 Problem definition

The sensors involved in this work were previously reported
in (Le et al., 2017; Cockbum et al., 2017). The sensor operates
within a range of 0–50 N and includes an Inertial Measurement
Unit (IMU), and a taxel for dynamic sensing. It has dimensions
of 22 mm × 37 mm. Like other capacitive tactile sensors, a
compressible dielectric is placed between the electrodes, which
deforms and compresses in response to applied pressure, resulting
in a change in capacitance. The internal structure of the sensor
is shown in Figure 2a), where four main layers are distinguished
in the following order: a printed circuit board (PCB) containing
28 taxels for static sensing, a polyurethane layer serving as the
dielectric, a conductive fabric layer acting as the second plate of the
capacitor, and finally, a neoprene layer that encapsulates the sensor.

One important characteristic for properly simulating the sensor
is the fact that the dielectric layer contains evenly distributed conical
frustum-shaped protrusions across its surface, which deform in
response to applied pressure. Therefore, it is crucial to account
for the shape of the dielectric in simulations, as a significant
portion of the sensor’s behavior depends on the deformation
of these protrusions. Such features are commonly found in the
dielectrics of capacitive sensors, particularly in pillar-based designs,
as they allow tuning of the compression-versus-pressure profile
to achieve the desired sensing characteristics, as discussed in
the review by Yuan et al. (2024).

The materials used for the dielectric and the sensor cover
layer are classified as elastomers or rubber-like materials. These
materials exhibit non-linear behavior, making hyperelastic models
more suitable for accurately describing them. A key characteristic
of these materials is their ability to undergo extremely large elastic
deformations, often several times beyond their original shape.
When the force causing the deformation is removed, they return
to their initial state without experiencing plastic deformation.
Several theoretical models have been developed to characterize
this behavior, such as the Mooney-Rivlin model (Kumar and Rao,
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FIGURE 2
Simulations in Abaqus. (a) (middle of the picture) Illustration depicting the internal structure of the sensor, providing a detailed insight into its core
components. (b) The composition of the sensor shows the different layers that constitute the simulation in Abaqus when the sensor is at rest. (c)
Deformation of the sensor’s layers during the simulation in Abaqus when an indenter exerts pressure. (d) Elements of the simulation in Isaac Gym,
where the deformable layer includes the neoprene cover and the dielectric of the sensor as a simplification of the model. This simplification is
necessary due to a limitation of Isaac Gym, where the transmission of deformation between bodies lacks accuracy, as explained in Section 3.2.2. (e)
Response of the deformable layer in Isaac Gym when the Indenter exerts pressure on the surface of the soft body.

2016), the Ogdenmodel (Ogden and Roxburgh, 1999), and the Yeoh
model (Yeoh and Fleming, 1997), all of which are based on the
study of simple geometries and tests. The selection and validation
of polyurethane and neoprene parameters for various hyperelastic
models are discussed in detail in Section 4.1.

3.2 Capacitive sensor modelling

The sensor is modeled using two different simulation tools:
Abaqus’s hyperelastic model and Isaac Gym’s reduction to an
elastic model.

3.2.1 Implementation in Abaqus
Similar to the real sensor, the Abaqus model consists of

three layers. The first layer corresponds to the PCB and is
simulated as a rigid shell; its mesh is composed of six three-
dimensional quadrilateral rigid elements (R3D4). The second layer
is a deformable solid representing the dielectric material. This
layer was imported from Solidworks to accurately replicate the
protuberances, and its mesh consists of 40,909 elements of the four-
node linear tetrahedron type, hybrid with linear pressure (C3D4H).
Finally, the last layer,modeled as a rectangular prism, is a deformable
solid that simulates the sensor cover layer in conjunction with the
conductive fabric layer, using C3D8RH elements for the mesh. The
integration of these two layers into one is due to the markedly
diminished thickness of the conductive fabric in relation to the

neoprene layer. The structure of this model is depicted in Figure 2b
when the sensor is at rest without deformation and Figure 2c when
an object or indenter applies pressure. The nodes that are located
at the edges of the layers are subjected to boundary conditions of
displacement/rotation to mimic the boundary conditions by the
sensor shell.

The scene inAbaqus can be practically divided into twoprincipal
components: the indenter or object that applies pressure and the
sensor. Each component is associated with a reference point RP
that facilitates the positioning and rotation of the body in space.
The reference point RPS of the sensor is located on one of the
corners while RPO for objects is located at the center of the face
that serves as the base of the object. This modular setup allows the
indenter to be the only element that needs updating according to
the test, for instance, changing from a circular to a quadrangular
indenter. The RPO serves as control points that enable adjustments
to the position or direction of the indenter, ensuring it maintains the
correct relationship with the sensor.

3.2.2 Implementation in Isaac Gym
Isaac Gym operates independently from IsaacSim and uses

the Flex physics engine, which only supports a particle-based
approach with constraints, which allows one to simulate elastic and
plastic deformations to some extent. Unlike the implementation
with Abaqus, the sensor simulation in Isaac Gym involves a single
layer representing all the sensor’s deformable layers, including
the dielectric, conductive fabric, and cover. This simplification
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is necessary because the software does not accurately simulate
the transmission of deformation from one layer to another when
superimposing soft bodies, which causes the simulation to fail with
certain geometries. In this case, the simulated sensor includes a
casing that encloses the main sensor, its PCB, and a deformable soft
layer (see Figure 2d). The effect of the indenter deforming the soft
layer is then illustrated in Figure 2e. The sensor’s reference point
(RPS) is positioned in the upper right corner, and the contacting
object’s reference point (RPO) is located at the center of mass to
make the test object interchangeable within the scene.The algorithm
presented by Hu et al. (2020) is implemented to create a mesh
with 30,993 tetrahedral elements for the soft object representing the
deformable layers of the sensor. Given that this simulation involves
elastic material models, the Poisson’s ratio and Young’s modulus
were determined by approximating values from deformation data
obtained through the stress tests described in Section 4.1.

Isaac Gym’s versatility allows integration with the UR10 robot,
Robotiq 2-Finger gripper, and tactile sensors. This simulation
environment is particularly valuable for scenarios involving the
coordination between robot trajectory planning and tactile sensing.

3.3 Overview of the entire data generation
pipeline

The system is implemented using Isaac Sim in conjunction with
Isaac Gym and Abaqus, controlled via Python scripts, as depicted
in Figure 3. The primary scene, referred to as the “main scenario,”
is developed in Isaac Sim. This scenario encompasses the robot
pedestal, the UR10 robot, and the Robotiq 2F-85 gripper, which is
equipped with a tactile sensor on the fingers, serving as the end
effector. The object of interaction is also included in this scenario.
The design allows the pipeline to alternate between hyperelastic
and elastic models for generating synthetic tactile maps, based on
the characteristics of the contact. In particular, the choice of using
elastic (generally less accurate but faster) or hyperelastic (generally
more accurate but slower) is determined by analyzing the contact
area between the sensor and the object using a decision process
further described in Section 3.3.1. An accompanying video further
illustrates and explains this approach, providing a dynamic visual
representation of the system’s functionality.

The simulation progresses as the robot moves from its initial
position to a vertical grip position relative to the object, as
illustrated in Figure 1.When the gripper attains the specific grasping
coordinates, the fingers begin to close until a collision is detected
between the sensor and the object.This event activates a deformation
simulation process analysis using one of the selected elasticity
models, which incorporates data regarding the object’s position,
sensor coordinates, and the applied force. For the purposes of this
study, it is assumed that all objects are completely rigid and that their
geometrical properties are known.

In both Abaqus and Isaac Gym, the simulations produce a 33
× 57 data matrix that represents the deformation of the sensor
surface nodes. We process this matrix as an image, referred to as a
deformationmap,which is used as an input to a convolutional neural
network (CNN) which determines the simulated tactile sensor’s
output. The CNNs are crucial in this context as they map the
deformation input to a taxel output, effectively learning the complex

electromechanical relationships between the deformation map and
the tactile map.

3.3.1 Selection criteria (Isaac or Abaqus)
One of the key differences between elastic and hyperelastic

models is how they describe the deformation of soft bodies
under applied forces. The hyperelastic model more accurately
reproduces the real behavior of dielectrics, capturing finer details
and reducing simulation errors compared to the more rigid elastic
model, particularly as contact complexity increases. Based on the
reconstruction of the object’s mesh from its STL file, we identified
four parameters that are often related to the complexity of the
sensor’s contact area with the object. These parameters are: the total
number of points in the object’s mesh (NPt); the number of unique
edges extracted from the convex hull’s triangle mesh over the entire
object (CHt); the number of points in the sensor’s overlapping area
on the object (NPo); and the number of unique edges extracted from
the convex hull’s triangle mesh in the overlapping region (CHo).

There is a significant relationship between these parameters.
An object with more intricate details requires a higher NPt, as
more points are needed to define the triangles that form its three-
dimensional geometry.The convex hull, which is the smallest convex
shape that completely encloses the object, serves as the basis for
another parameter: the number of unique edges derived from
its triangulated surface. This edge-based descriptor does not vary
drastically with the level of detail in the object, as it is primarily
influenced by the object’s global shape. As shown in Figure 4, for
both objects, the number of unique edges remains similar—both
for the whole object (CHt) and for the sensor interaction area
(CHo)—whereas NPt and NPo change significantly as surface
complexity increases.

Empirical results from our experiments indicate that for objects
with detailed geometry, the NPt value is at least 10 times the
CHt value and the NPo value is at least 8 times the CHo
value—necessitating a hyperelastic simulation with Abaqus, since
the elastic model is generally not able to accurately simulate
these fine details. Figure 4 illustrates the relationship between
two distinct examples. In the first example (a), a flat cylinder
produces ratios of approximatelyNPt ≈ 1.43CHt andNPo ≈ 0.6CHo.
In contrast, the more detailed cylinder in case (b) reveals
significantly higher ratios, with NPt ≈ 21CHt and NPo ≈ 9.6CHo.
The differences in implementation and the outcomes of bothmodels
are elaborated upon in Section 4.2.

3.3.2 Generation of tactile maps
To bridge the sim-to-real gap and identify the underlying

function that maps simulated deformations to real tactile maps,
separate CNNs has been trained for each pipeline: one for the
elastic pipeline and another for the hyperelastic one. For training
each of the networks, the same dataset was used, consisting of
13,000 deformation maps from a real-world dataset created for
this project, as reported by De la Cruz-Sánchez et al. (2025). For
each test, the sensor is fixed to a base and pressure is applied with
different interchangeable indenters adapted to the tip of a Mark-
10 dynamometer. A Mitutoyo Metric Dial Indicator, adapted to
the Mark-10’s base, is employed to measure the indentation depth
throughout the testing process. Forty-nine different indenters were
used, including basic geometric shapes such as triangles, squares,
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FIGURE 3
An overview of the proposed pipeline. The sensors are simulated and coupled to the gripper and the robot, and subsequently, the selection criteria
dictates whether to use an elastic or hyperelastic model. These models generate deformation maps, critical for producing the final synthetic
tactile maps.

FIGURE 4
Comparison of two objects illustrating the selection criteria. (a) Flat object without reliefs. (b) Object with reliefs or more details. For each object, the
columns from left to right show: the object itself, the point cloud describing the object (NPt), the number of unique edges derived from the
triangulated convex hull of the full point cloud (CHt), and the sensor interaction area. The sensor interaction area includes the overlapped point cloud
(NPo) and the number of unique edges derived from the triangulated convex hull of that region (CHo).

spheres, and circles in various sizes. The primary rationale behind
using a variety of irregular indenters was to engage all the sensor
taxels in multiple ways, thereby producing a wider variety of tactile
maps. For each test, the sensor response is obtained in tactile counts
(TC) for the variation in force in newtons (N) applied by the
indenter. These tests were performed in a force range of 0–50 N.

Abaqus and Isaac Gym simulations generate deformation
matrices where each pressure map has dimensions of 33× 57 × 1.
Given the nature of the problem, each deformation and tactile map
is processed as an image, enabling the use of convolutional neural
networks (CNNs) as a suitable approach. A dataset of 13,000 tactile
maps was shuffled and split into an 80/20 ratio for training and

validation. This split was consistently applied to both CNNs across
each pipeline.

The elastic and hyperelastic modeling pipelines employ an
identical CNN architecture, identified through Keras Tuner’s
Hyperband tuning algorithm. An exhaustive search demonstrated
that the structure and values of the layers, filters, and neurons
consistently converged within a similar range for both Abaqus and
Isaac Gym simulations. To ensure consistency and enable a fair
comparison between the two simulation approaches, we selected
the hyperparameters from one of the best outcomes of the tuning
process and applied them to both networks. The final structure
consists of three convolutional layers with filter sizes of (2× 2, 80),
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(2× 2, 95), and (2× 2, 120), respectively. Each convolutional layer is
followed by a max-pooling (MaxPool) layer, with all pooling layers
employing 2× 2 max-pooling with a stride of one. The resulting
feature map is then flattened and connected to a fully connected
layer containing 570 neurons, activated by ReLU. This layer is
subsequently linked to 28 linearly activated neurons, representing
the output and predictions for each real sensor taxel. To evaluate
the network, a custom loss function is employed that computes the
sum of absolute differences between the predicted and true sensor
outputs, effectively quantifying the overall error across the output
dimensions, as expressed mathematically by Equation 1. Where
N denotes the number of elements in the output vector.

L(ytrue,ypred) =
N

∑
i=1
|ytrue,i − ypred,i| (1)

4 Experiments

4.1 Material characterization and validation

The material constants in the equations of hyperelastic models
are obtained from experimental tests. This is done to obtain the
most accurate constants possible for the neoprene and polyurethane
used in the sensor. Although it is possible to find these parameters
in the literature, these values are general, and the material of
each manufacturer may have small variations. To determine the
mechanical properties of polyurethane and neoprene, stress tests are
performed on standardized specimens based on ISO 3167 type A
specifications (ISO, 2014).

Subsequently, the stress-strain data obtained for each material
are imported into the Abaqus/Explicit software for evaluation and
to obtain the coefficients for different constitutive models. Of the
variety of models available in Abaqus, the Ogden and Mooney-
Rivlin models were the only ones that presented stability and
no inconsistencies during the parameter acquisition process. The
Ogden model is a general model expressed in terms of the principal
applied stretches and where λ1, λ2 and λ3 are the stretch ratios,
αk and μk are material parameters based on the experimental
data (Bergström, 2015). The model is extendable up to N order,
incorporating a term D as an incompressible parameter to account
for volume consistency under deformation. The representation used
by Abaqus is shown in Equation 2:

Ψ(λ∗1 ,λ
∗
2 ,λ
∗
3 ) =

N

∑
k=1

2μk
α2
k

(λ∗αk1 + λ
∗αk
2 + λ

∗αk
3 − 3) +

N

∑
k=1

1
Dk
(J− 1)2k.

(2)

While the Mooney-Rivlin model uses the strain energy
density function U, where C10 and C01 are constants for
each material (Youssef, 2022). Their representation in Abaqus
is given by Equation 3:

U = C10 (I1 − 3) +C01 (I2 − 3) +
1
D1
(J− 1)2. (3)

The material parameters obtained for both models by
Abaqus/Explicit are shown in Table 1.

Another important factor to consider in the performance of the
simulation is its ability to reproduce the behavior of the dielectric

TABLE 1 Material coefficients for hyperelastic models.

Material Model Parameters RMSE (mm2)

Neoprene

Ogden

α1 = 8.74091

0.0082
μ1 = 0.0027

α2 = 0.3889

μ2 = 0.0551

Mooney-Rivlin
C10 = 0.1786

0.0077
C01 = 0.0022

Polyuréthane

Ogden

α1 = 1.4538

0.0080
μ1 = 0.1351

α2 = −4.9910

μ2 = 0.2223

Mooney-Rivlin
C10 = 0.1706

0.0091
C01 = 0.0040

material. The sensor in this work has evenly distributed conical
frustum protrusions throughout the layer. Each cone has a height of
0.5 mm, a base diameter of 0.6 mm, and a tip diameter of 1.2 mm,
with a distance of 1.2 mm between each protrusion. Therefore,
to evaluate the parameters of the models presented in Table 1,
we asses the deformation of the cones under a normal
applied load.

For this evaluation, a 22 × 37 mm dielectric sample underwent
compression tests to assess cone deformation using the frustrated
total internal reflection (FTIR) theory. The test setup included a
camera positioned beneath an acrylic base, which was illuminated
by LEDs, with the dielectric sample placed on top.The phenomenon
of total internal reflection enabled the camera to detect the contact
areas of the cones, which varied according to the normal force
applied. The images were then analyzed with Matlab by detecting
the circles encompassing the dielectric contact area in each image.
This monitoring was done over time in relation to the applied
normal force and as shown in Figure 5. As greater force was applied,
the contact area increased, but not necessarily linearly. The same
tests were simulated in Abaqus using the corresponding material
parameters.The RootMean Squared Error (RMSE) between the real
and simulated data for the contact area was calculated to be 0.008
mm2, confirming that the hyperelastic model accurately describes
the behavior of the dielectric layer. Although the validation was
performed in a range of 0–140 N, the force range in which the
gripper operates, where the physical sensor is mounted, does not
exceed 50 N.

The stress-strain data from the stress tests previously conducted
for the hyperelastic models were utilized to determine the
parameters for the elastic model, specifically Young’s modulus
and Poisson’s ratio. Young’s modulus, which represents the slope
of the stress-strain relationship, was calculated to be 1.289 MPa.
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FIGURE 5
Validation of the material characterization using FTIR theory through
measuring the protuberances’ contact area with the dielectric
deformation under an applied normal force. The increase in the
contact area of the dielectric cones is highlighted in a red circle in the
images below the deformation curve.

Additionally, Poisson’s ratio, which indicates the ratio of transverse
strain to longitudinal strain, was determined to be 0.1729.

4.2 Results: comparison of synthetic tactile
maps vs. real

For all evaluations between synthetic and real tactile maps,
the Structural Similarity Index Measure (SSIM) was used as a
performance metric and will be handled throughout the results
presented in this document.The SSIM indexmeasures the similarity
between two images, yielding a value between 0 and 1, where one
indicates that the images are identical and 0 indicates that the
images are completely different. Unlike pixel-by-pixel comparison
methods such as Mean Square Error (MSE) (Wang and Bovik,
2009), SSIM assesses perceived visual quality by accounting for
changes in structural information. This makes it particularly well-
suited for evaluating spatial patterns and textures, as it considers
luminance distortion (l(x,y)), contrast distortion (c(x,y)), and
loss of correlation (s(x,y)) (Wang et al., 2004). These factors are
expressed in Equation 4, which corresponds to the factorized form
of the SSIM equation:

SSIM (x,y) = [l (x,y)]φ ⋅ [c (x,y)]ω ⋅ [s (x,y)]γ. (4)

Where φ,ω, and γ control the weight of each component in the
SSIM score and are typically set to 1.

Since tactile maps are ultimately treated as images, it is more
relevant to evaluate the structural similarity rather than isolated taxel
values. Contact deformations typically excite multiple neighbouring
taxels, resulting in spatial patterns across the sensor. For this
reason, SSIM was chosen to evaluate the performance of the CNNs
trained for each simulator, ensuring that they could generalize their
performance effectively to unseen data. We divided the testing stage
of the trained networks into two phases. The first phase consists of

400 unseen real-world test cases using different indenters. For the
Abaqus CNN, an SSIM of 0.81 was obtained for the first test dataset
and 0.82 for the Isaac CNN (compared to 0.87 and 0.86 previously
obtained on the validation dataset, respectively).

The second phase of testing involved evaluating the performance
of the CNNs within the entire pipeline, with the goal of observing
their generalization capabilities in a real-world work environment.
Therefore, the tactile sensor was integrated into a Robotiq 2F-85
parallel gripper to interact with more realistic shapes observed in
robotic grasping tasks. The tests, comprising 2,000 real-world trials,
focused on the gripping of 12 different everyday rigid objects. Each
trial captures the sensor’s response from the onset of the gripper’s
closure until the object is securely held.

To investigate the CNNs’ behavior in the presence of sensor
hysteresis, 50 trials per gripper-object position were conducted with
the physical sensor, with a force of 50 N applied in each test. Indeed,
despite consistent test conditions and constant excitation patterns,
variability in taxel tactile counts can still be observed, attributable
to the inherent properties of the real sensor. This phenomenon has
been previously examined by Kwiatkowski et al. (2022). To address
this issue, the tactile data are compared with deterministic synthetic
tactile maps, which remain constant under identical simulation
conditions. This comparative analysis—between a single synthetic
map and a set of real tactile maps obtained under the same
conditions—is essential for evaluating the generalizability of the
synthetic tactile maps produced by both pipelines.

The results obtained using the SSIM for the second testing
dataset across each of the pipelines are shown in Figure 6,
where the average SSIM for each object is shown, as well as
box plots to compare the distribution and trend of the results
obtained. Overall, for the 2,000 tests, an average SSIM of 0.72
was achieved for Abaqus and 0.63 for Isaac Gym. Furthermore,
all synthetic tactile maps generated in this study are available
in a comprehensive dataset (De la Cruz-Sánchez et al., 2025).
This dataset includes both the physical sensor test data and the
corresponding synthetic tactile maps produced by the Abaqus and
Isaac pipelines, offering a valuable resource for further analysis and
validation.

Of the 12 rigid objects used to create the dataset, 6 were
selected for further investigations and to illustrate some relevant and
distinctive cases for each of the studied approaches. These include
two rectangular prisms, three circular prisms, and one sphere.
These objects represent a diverse range of bodies, with some having
completely smooth surfaces while others feature more intricate
structures. This selection highlights six key scenarios that may arise
in practical applications, offering a valuable opportunity to evaluate
the limitations of each developedpipeline.The corresponding results
are presented in Figure 7, where each column represents a different
object, and the rows show the outputs from the Abaqus and Isaac
Gym simulations, along with the synthetic and real tactile maps.The
deformationmap is inmmand uses the Jet colour scheme, where red
and darker tones indicate greater deformation and blue signifies no
deformation. Similarly, synthetic and real tactile maps use blue for a
tactile count of 0 and dark red for a tactile count of 2,400.

For smooth objects, such as rectangular and circular prisms as
well as the sphere, the synthetic tactile maps exhibit lower errors
compared to those obtained frommore detailed objects. Specifically,
for objects 1, 2, and 3, both Isaac and Abaqus synthetic tactile maps

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1639524
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


De la Cruz Sánchez and Roberge 10.3389/frobt.2025.1639524

FIGURE 6
SSIM of the validation dataset for both simulation pipelines. Blue bars represent the average SSIM for each object obtained using Abaqus, while green
bars represent those obtained using Isaac Sim. Each bar graph also displays the distribution of SSIM values, illustrating the variability of the results
across trials.

FIGURE 7
Comparison of synthetic tactile maps from simulations with elastic and hyperelastic models for six basic objects. (a) Real 3D printed and simulated
objects. (b) Deformed dielectric surface in the simulation of the object and robot in Isaac Gym. (c) Deformed dielectric surface in the simulation of the
object and robot in Abaqus using a hyperelastic model. (d) Synthetic tactile map obtained from Isaac Gym using an elastic model. (e) Synthetic tactile
map obtained from Abaqus using a hyperelastic model. (f) Real tactile map obtained from the actual sensor. For better visualization, the tactile maps
were rotated 90° counterclockwise from the sensor’s original vertical position, as shown in Figure 1. The synthetic tactile maps of rows (d,e) have been
highlighted with a red border, which would be the tactile maps generated at the end of the pipeline considering the selection criteria step.
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TABLE 2 Selection criteria parameters for 6 objects.

Object Selection criteria Pipeline

NPt CHt NPo CHo

1 1,356 231 51 36 Isaac Gym

2 13,830 15,537 1,205 3,444 Isaac Gym

3 1,932 1,348 64 105 Isaac Gym

4 5,472 1,449 164 141 Isaac Gym

5 5,628 426 242 90 Abaqus

6 28,524 1,353 984 102 Abaqus

show an excitation pattern relatively similar to the real one. The
deformation maps produced by Abaqus show that, even across the
best and worst test cases, SSIM values remain close to the dataset
average, indicating a stable and relatively uniform performance with
minimal deviation from the mean. Isaac Gym, in parallel, exhibits
greater variation in those extreme cases yet still maintains robust
overall performance.

In contrast, objects 4, 5, and 6, which contain more detailed
structures, present two distinct cases. For object 4, both pipelines
successfully reproduce the deformation caused by the object’s reliefs,
resulting in a similar SSIM value. However, for objects 5 and 6, the
height differences between local features vary by 0.5 mm, and in such
cases, the elastic simulation is not accurate enough to replicate the
real deformation pattern. It incorrectly assumes that the sensor has
lost contact with one of the reliefs, whereas this is not observed in the
real tactilemaps.This is a clear example of how an elastic simulation,
combined with a simplified sensor model, can result in a tactile map
where an entire feature is missing.

In general, as the level of detail increases, the elastic simulation
begins to show a higher level of inconsistency, capturing fewer
details compared to the hyperelastic model. This comparison is
illustrated in Figures 7b,c, where the level of detail captured by the
deformation maps is crucial for creating accurate synthetic tactile
maps. These results align with initial expectations based on the
selection criteria outlined in Section 3.3.1, to reinforce this, Table 2
shows the 4 parameters that are evaluated to decide between an
elastic or hyperelastic pipeline for the 6 objects reported in Figure 6.
In this figure, the synthetic tactile maps generated by the selected
pipeline are highlighted in red, emphasizing the models that best
meet these criteria. Objects with a ratio of ten times the number of
points in the mesh (NPt) compared to the unique edges (CHt) of the
object exhibit more detailed deformation patterns. Both simulations
yield similar tactile excitation patterns for objects with reliefs, such
as objects 2 and 4. However, in the figure, differences in the tactile
count values are noticeable through the colour intensity of each
taxel. While these variations are noticeable at the local level, the
SSIMmetric provides a globalmeasure of similarity across the entire
tactilemap. In future practical implementations, generating accurate
excitation patterns ismore relevant than determining the exact value
of individual taxels.

TABLE 3 Processing time for Abaqus and Isaac Gym.

Simulation Abaqus Issac

Average (s) 162.1 37.4

Minimum (s) 48 2.46

Maximum (s) 1863 157.6

Standard deviation (s) 110.9 32.44

Another important parameter to monitor is the time it
takes for the Abaqus and Isaac Gym pipelines to generate a
tactile map. Table 3 presents processing time metrics for creating
a dataset of 2000 synthetic tactile maps, replicating the real-world
testing of the 12-object gripping test dataset. In some cases, the
generation time for a tactile map in Isaac Gym can reach 157.6 s,
which is four times the average, whereas in Abaqus, this time can be
up to 11 times the average. Despite the larger range in Isaac Gym,
with a ratio of maximum to minimum times of 64, compared to 38
in Abaqus. Notably, the maximum time in Isaac Gym approximates
the average time in Abaqus, highlighting significant variability in
processing times between the two systems.

5 Conclusion

In this study, we developed two simulation pipelines for a soft
capacitive tactile sensor. One pipeline relies on an elastic model,
while the other is based on a hyperelastic model. Both pipelines
use FEA theory and a CNN to create synthetic tactile maps. In
cases where the elastic simulation fails to capture object details,
the resulting tactile map may exhibit a completely different pattern
than the real map. In such situations, the hyperelastic model is
more suitable, albeit at the cost of increased computation time.
For example, according to Table 3, generally, simulations with
Abaqus take 3.5 times longer than those with Isaac Gym, but in
complex cases, the difference can be up to 11 times. However,
when the contact area is simple, both pipelines generally produce
similar patterns in the tactile map. In these cases, using the
elastic model is a viable option, as it allows for faster computation
with Isaac Gym.

The results from the presented cases indicate that both pipelines
can generate viable synthetic tactile maps. The choice between
them depends on the required accuracy and the time available
for the simulation. Therefore, we propose a selection criteria
grounded in empirically defined thresholds, enabling users to
adjust the simulation parameters according to each task’s specific
requirements. Although the hyperelastic pipeline exhibited superior
accuracy, it is essential to evaluate the trade-offs between speed and
accuracy when constructing datasets for real-world applications. To
illustrate a potential use case, in insertion tasks involving pegs with
simple geometries, the elastic model may suffice; however, more
complex surface features may demand the higher fidelity of the
hyperelastic pipeline.
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While the current object set focuses on representative cases, it
provides a valuable foundation for demonstrating the pipeline’s
capabilities. It serves as a basis for future expansion toward more
diverse geometries. Furthermore, the pipeline is currently designed
for rigid objects and considers access to 3D mesh data, which
presents an opportunity for future work involving deformable
objects and more uncertain or partial object representations. Future
work will focus on validating the practical utility of the synthetic
tactile data in real-world tasks, moving beyond similarity-based
comparisons. In the long term, we aim to develop a workflow
that utilizes extensive simulated data to train AI algorithms for
direct deployment on physical robots. To foster further research
and collaboration, we have made our complete dataset publicly
available in the TactileDataset repository (https://github.com/Lab-
CORO/TactileDataset). This repository includes all physical sensor
tests along with the corresponding synthetic tactile maps generated
using both the Abaqus and Isaac pipelines. As the project evolves,
new tests and object data will be regularly added.
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