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Givenness hierarchy theoretic 
sequencing of robot task 
instructions

Zhao Han, Daniel Hammer, Kevin Spevak, Mark Higger, 
Aaron Fanganello, Neil T. Dantam and Tom Williams*

Department of Computer Science, Colorado School of Mines, Golden, CO, United States

Introduction: When collaborative robots teach human teammates new tasks, 
they must carefully determine the order to explain different parts of the task. In 
robotics, this problem is especially challenging, due to the situated and dynamic 
nature of robot task instruction.
Method: In this work, we consider how robots can leverage the Givenness 
Hierarchy to “think ahead” about the objects they must refer to so that they 
can sequence object references to form a coherent, easy-to-follow series of 
instructions.
Results and discussion: Our experimental results (n = 82) show that robots using 
this GH-informed planner generate instructions that are more natural, fluent, 
understandable, and intelligent, less workload demanding, and that can be more 
efficiently completed.
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 1 Introduction

Robots in domains ranging from collaborative manufacturing to intelligent tutoring will 
need to use sequences of utterances to teach or otherwise provide information to human 
interlocutors. In collaborative manufacturing, for example, a robot may need to instruct a 
worker as to how to perform a complex task over several steps. In intelligent tutoring, a 
robot may need to instruct a child as to how to procedurally solve a mathematics problem. 
In these types of domains, substantial flexibility exists in the set of instructions that the robot 
can convey, and the order in which instructions are given.

In the natural language generation (NLG) community, this task of determining the 
overarching structure of multiple sentences of generated language is referred to as document 
planning. As the name suggests, however, most previous approaches to document planning 
are designed for non-situated, purely textual domains. Situated dialogues like robot task 
instructions, in contrast, require speakers to take into account the evolving context in 
which described objects change both physically and in the minds of their interlocutors and 
those dialogues play out in real-time. One underexplored facet of interaction contexts that 
is critical for robot task instruction is interlocutors’ cognitive context. When interactants 
engage in situated interactants, they jointly manipulate the cognitive status that objects 
have within their dialogue–whether those objects are in focus, activated, familiar, and so 
forth–a concept formalized by Gundel et al. (1993) in their classic Givenness Hierarchy. This 
manipulation of cognitive status critically shapes subsequent dialogue moves, as cognitive 
status determines the referring forms that can be felicitously used. An object may only
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be referred to as “it”, for example, if the speaker believes the object 
is in focus for their interlocutor, whereas the ⟨N′⟩ may be used if the 
speaker believes the listener can uniquely identify the object based 
on description ⟨N′⟩. The Givenness Hierarchy has been validated 
across many disparate natural languages (Gundel et al., 2010).

Enabling robots to similarly leverage this theory to effectively 
leverage more concise and coherent referring forms (e.g., anaphoric 
and deictic references) could facilitate a number of benefits (Arnold 
and Zerkle, 2019), as these types of referring forms make dialogue 
more efficient (and thus less costly to listen to) (Tily and Piantadosi, 
2009), more predictable (and thus cognitively easier to follow 
and more humanlike) (Williams and Arnold, 2019), and more 
conforming to Gricean conversational maxims of cooperative 
speech (Grice, 1975). Additionally, the impact of these effects are 
magnified in situated contexts (Levinson, 2004).

We believe that leveraging these benefits in robotics will thus 
further improve task performance and user satisfaction, similar 
to the advantages gained through shorter object descriptions by 
Wallbridge et al. (2021), who showed that shorter object descriptions 
improved human task performance and were also preferred by 
their test subjects. Furthermore, enabling robots to leverage 
more concise referring forms could reduce interactants’ cognitive 
workload (cf. Han et al., 2021), which, when too high, degrades 
human performance (Xie and Salvendy, 2000). Human-like, context-
dependent referring forms have been shown to reduce workload 
(Campana et al., 2011), and high-cognitive-status referents are 
conducive to the use of such forms. Moreover, a high working 
memory load slows spoken-word recognition time (Hadar et al., 
2016). This strain on language processing could be ameliorated 
through more concise referring forms. With this theoretical 
position, we thus argue that language-enabled robots should pay 
close attention to how those instructions shape and are shaped by 
cognitive status dynamics.

In this work, we present the results of a human-robot interaction 
study (N = 82) that evaluates the performance of a cognitive-
status informed approach to robot task instruction sequencing 
originally presented by Spevak et al. (2022), compared to a baseline 
with an uninformed classical planner. A Pepper robot instructed 
participants to finish two tasks, electrical fan assembly and school 
supply sorting, We measured objective performance (speed and 
accuracy of following the instructions) and subjective perceptions 
(naturalness, fluency, intelligence, and workload). 

2 Background and related work

Our approach is fundamentally grounded in the 
psycholinguistic theory of the Givenness Hierarchy (GH) 
(Gundel et al., 1993). The GH is comprised of a hierarchical set 
of six tiers of cognitive statuses {in focus ⊆ activated ⊆ familiar
⊆ uniquely identifiable ⊆ referential ⊆ type identifiable}, each 
of which is associated with a set of referring (or pronominal) 
forms, and wherein each higher status encompasses all 
lower statuses (Gundel et al., 1993): 

1. ‘In Focus’: An entity is considered ‘In Focus’ if it is singularly 
at the center of attention. ‘In Focus’ entities can be referred to 
with the referring form ‘It’.

2. ‘Activated’: An entity is considered ‘Activated’ if it has a 
representation in working memory. ‘Activated’ entities can be 
referred to singularly as ‘that’, ‘this’, or ‘this [N]’ where ‘[N]’ is a 
noun-phrase description of the entity.

3. ‘Familiar’:An entity is considered ‘Familiar’ if it has a 
representation in long-term memory. ‘Familiar’ entities can be 
referred to singularly as ‘that [N]’ where ‘[N]’ is a noun-phrase 
description of the entity.

4. ‘Uniquely Identifiable’: An entity is considered ‘Uniquely 
Identifiable’ if a unique instance of the entity can be described. 
‘Uniquely Identifiable’ entities can be referred to singularly as 
‘the [N]’, where ‘[N]’ is a noun-phrase description of the entity.

5. ‘Referential’: An entity is considered ‘Referential’ if a new 
representation of the entity can be created from a description 
of the entity. ‘Referential’ entities can be referred to singularly 
with the indefinite ‘this [N]’ where ‘[N]’ is a noun-phrase 
description of the entity.

6. ‘Type Identifiable’: An entity is considered ‘Type Identifiable’ if 
the type of entity can be referred to. ‘Type Identifiable’ entities 
can be referred to as ‘a [N]’, where ‘[N]’ is a noun-phrase 
description of the type of entity.

For a reference to an entity to be appropriate, the entity’s 
cognitive status must be equal or greater status to the referring form. 
For example, an object that is in focus can be referred to with the 
pronoun “it”. Furthermore, a speaker using “it” implicitly signals a 
belief that the object is in focus in the mind of the listener. Similarly, 
when “that ⟨N′⟩” is used, the listener can infer that the entity is at 
least familiar, but may also be activated or even in focus.

The GH has been used for both natural language understanding 
(Williams et al., 2016; Williams and Scheutz, 2019; Kehler, 2000; 
Chai et al., 2004) and natural language generation (Pal et al., 
2020) in robotics. For natural language understanding, the GH 
is applied to solve the problem of mapping a linguistic reference 
to a referent, allowing a robot to receive a command of “hand it 
to me” and decipher what entity “it” refers to. A variety of work 
leveraging the GH for this purpose (Kehler, 2000; Chai et al., 2004; 
Williams et al., 2016; Williams and Scheutz, 2019) and typically 
uses GH to justify data structures and algorithms that facilitate the 
resolution of anaphora and other natural language references.

For natural language generation, the GH has been mainly 
applied to referring form selection (Pal et al., 2020; 2021; Han et al., 
2022). Pal et al. (2020) first used Bayesian filters to model cognitive 
status. Then they used a set of situated features, such as physical 
distance, to train a computational model of referring form selection 
using the explainable decision tree algorithm (Pal et al., 2021). 
Notably, Pal et al. (2020), Pal et al. (2021) used a situated referring 
dataset collected by Bennett et al. (2017) from a dyadic human-
human task where pairs of participants collaboratively re-arranged 
an environment. Later, Han et al. (2022) introduced a partially 
observable environment (Han and Williams, 2022) to collect more 
repeated, invisible objects to achieve a richer set of cognitive statuses.

While the aforementioned approaches advance natural language 
understanding (NLU) to facilitate natural language generation 
(NLG), a key task in NLG is referring expression generation 
(REG) (Krahmer and Van Deemter, 2012; Reiter and Dale, 1997): 
determining how to refer to an entity to disambiguate from a 
set of distractors. REG is a classic NLG problem, with traditional 
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algorithms like the Incremental Algorithm (Reiter and Dale, 
1997) still enjoying widespread success. In the past decade, there 
has also been significant recent work on facilitating REG in 
situated domains. Fang (Roy, 2002; Fang et al., 2013; Meo et al., 
2014; Zarrieß and Schlangen, 2016; Williams and Scheutz, 2017; 
Pal et al., 2021; Han et al., 2022) presented an approach that 
considers interactant’s knowledge of and preference for entities 
in a shared environment. There have also been algorithms for 
referring to objects in visual scenes (Roy, 2002; Meo et al., 2014; 
Zarrieß and Schlangen, 2016), although these do not account for 
references to non-visible objects. Recently, HRI researchers have 
presented approaches grounded in robot architectures, like DIST-
PIA (Williams and Scheutz, 2017), which extends the Incremental 
Algorithm (Reiter and Dale, 1997) for use in uncertain domains, 
and which uses a consultant framework to manage distributed, 
heterogeneous knowledge sources. Most recently, GAIA (Higger 
and Williams, 2024) similarly extends the Incremental Algorithm 
under a Givenness Hierarchy theoretic framework, using GH-
theoretic cognitive status to restrict the set of distractors that must 
be eliminated.

In this work, we focus on using GH for a key NLG 
task not considered in prior work. Modular NLG pipelines 
(Reiter, 2000) typically include modules for sentence planning 
(deciding how to communicate a sentiment), referring expression 
generation (selecting properties to use to refer to referents), 
and linguistic realization (ensuring grammatical correctness (Gatt 
and Krahmer, 2018)). Above all these components sits the 
document planner, which decides on an overarching sequence 
of sentiments to communicate in order to achieve a larger 
communicative goal (McDonald, 1993).

In our previous work (Spevak et al., 2022), we presented the first 
approach to GH-theoretic approach to situated document planning, 
which incorporates the GH-theoretic cognitive status of a robot’s 
human interlocutor to generate optimal document plans. We encode 
cognitive status as constraints in mixed integer programming (MIP) 
and integrate the constraints into an MIP formulation of classical 
planning. In contrast, our GH-informed planning (Spevak et al., 
2022) incorporates an example objective function that rewards high-
cognitive-status referents. This approach enables the generation 
of document plans (in this use case, robot task instruction 
sequences) with high inter-sentential coherence, and facilitates 
effective use of anaphora over definite descriptions (e.g., “it” over 
“the N”). The system offers a proof-of-concept for the use of 
cognitive status as state variables in planning and optimization
approaches for NLG.

Overall, this approach seeks to enable more effective document 
planning by leveraging cognitive status. Our key insight is 
that failing to account for cognitive status may harm inter-
sentential coherence. For instance, these approaches may introduce 
more referents than strictly needed (or repeatedly re-introduce 
referents), requiring full definite descriptions rather than shorter 
anaphoric phrases. In contrast, an approach that aims to use 
and continue referring to task-relevant entities that are already 
in focus or activated could lead to greater inter-sentential 
coherence, shorter and easier-to-follow dialogues, and perhaps 
even fundamentally simpler plans overall. In this work, we seek to 
scientifically demonstrate these benefits through a human-subject
experiment. 

3 Materials and methods

3.1 Hypotheses

Based on our initial validation, we believe that a GH-informed 
planner considering the cognitive statuses of objects in interlocutors’ 
minds will lead to object reuse and sub-task separation. Thus, its 
produced instructions will be easier to follow, leading us to formulate 
seven key hypotheses. When robots’ task instructions are generated 
by a GH-informed document planner, as compared to a classical 
planner, we hypothesize that (H1) more people will successfully 
finish the task (H1.1) and at each step (H1.2); (H2) people will 
finish tasks faster (H2.1), measured by task completion time, and 
finish each step faster (H2.2), measured by instruction completion 
time; (H3) instructions will be perceived as more natural, (H4) 
more fluent, and (H5) more understandable; (H6) the robot will be 
perceived as more intelligent, and (H7) will impose less cognitive 
load. To test these hypotheses, we conducted a human-subjects 
experiment. 

3.2 Task design

To compare the Cognitive Status (CS)-informed document 
planner with a classical planner baseline, we designed two 
collaborative assembly tasks that Pepper could instruct a human to 
finish. We formalized the robot’s task of generating instructions as 
a Situated Document Planning domain called assembly. It has three 
general manipulation actions that a robot can instruct a human, i.e., 
put in, take out, and attach: putting an object into or taking an object 
out of a container, and attaching two objects together.

Within the assembly domain, the two tasks (Figure 1) we 
designed were electrical fan assembly (hereby called the “Hard Task”) 
and school supply sorting (hereby called the “Easy Task”). The first, 
“hard” task involves the assembly of an electric fan using an Elenco 
Snap Circuits Junior kit. The required parts are a propeller, a motor, 
a lamp, a switch, a battery, a battery case, a battery box, and a 
propeller case. Figure 1 shows the final fan product on the left. The 
second column of Table 1 shows the planner output for this task. The 
kit allows for many configurations, so subjects need to understand 
and follow the robot’s instructions in order to correctly assemble it. 
However, the assembly itself is quite easy as this kit is designed as 
a children’s toy. The task is expected to be moderately intuitive to 
the subjects, as it uses widely familiar objects such as batteries, but 
also requires actions that subjects likely have no experience with (i.e., 
connecting proprietary Snap Circuits Junior parts).

This second, “easy” task involves sorting an assortment of school 
supplies, such as placing a pencil inside a pencil case. This task is 
both easy and intuitive, as it involves everyday objects and actions 
which participants have likely taken many times. The required parts 
are a pencil, a pencil grip, an eraser, a pen, a pencil case, a calculator, 
a battery, a battery box, and a sticker. Figure 1 shows the final sorted 
set of school supplies on the right. As shown in Figure 2, the objects 
in this task are placed on the table so they are equally accessible 
within arm’s reach. The second column of Table 2 shows the planner 
output for this task. The planner outputs and surface realizations, 
with cognitive statuses, of both models under both tasks are included 
in supplementary materials.
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FIGURE 1
The fully-assembled electrical fan and sorted school supplies that participants were asked to finish.

3.3 Cognitive status-referring form 
mapping

To convert the planner output to spoken instructions, we use 
a simplified version of the criteria specified in a well-known GH 
coding protocol (Gundel et al., 2006), as shown in Table 3. However, 
this led to production of ambiguous referring forms that could have 
been interpreted as referring to multiple objects that hold the same 
cognitive statuses.

As the goal of this work is to evaluate the document planner, 
not the referring form selection algorithms that may produce 
ambiguous referring forms, we applied the following common 
sense reasoning principles to ensure disambiguating referring forms 
would be used across all conditions. First, when two or more 
objects are activated or higher (i.e., In-Focus) and cannot be 
disambiguated based on affordable actions, that/those and it/them
should not be used to refer to one of those objects and the 
referring form for Familiar cognitive status should be used. Second, 
if only one object affords a given action, the referring form should
not change. 

3.4 Experimental design

To compare the cognitive status-informed approach with the 
classical planner, we followed a 2 (document planner type) ×  2 
(task type) mixed design, with Task as a between-subjects factor and 
Document Planner Type as a within-subjects factor. We chose to have 
Task as a between-subjects factor because finishing a particular task 
will confound the performance and perception of the other planner 
finishing the same task. The ordering of each participant’s sequence 
of two tasks was counterbalanced.

Objective Measures: Effectiveness was calculated as success 
rates for whole tasks and individual instructions. Instruction 
Success Rate was calculated as the percentage that the participants 
correctly finishes a particular step in the task after following 
an instruction by a robot. Task Success Rate was calculated as 
the percentage that the participants correctly finish the whole 
task. Efficiency was measured by completion times for whole 
tasks and individual instructions. Task Completion Time was 
calculated as the difference between the time when the robot 
starts saying that it has finished all instructions and the time 
when the robot finishes saying the first instruction of the next 
task, or that there are no tasks remaining. Instruction Completion 

Time was calculated as the difference between the time when 
the robot started saying the first instruction and the time when 
the robot started saying the second instruction, averaged across 
all seven instructions for each participant. Software recorded 
both metrics.

Subjective Measures: Naturalness, fluency, and understandability
were measured after each within-subjects experimental block 
using five-point Likert Items, in which participants were asked 
to indicate how natural, fluent, and understandable Pepper’s 
instructions had been during the preceding block. Intelligence
was measured using the Godspeed Perceived Intelligence scale 
(Bartneck et al., 2009). Workload was measured by the NASA Task 
Load Index (Hart, 2006; NASA, 2019), including its weighting 
survey components. 

3.5 Procedure

Participants first filled out an informed consent and, once 
signed, completed a demographic survey. They then entered an 
experiment room and sat in front one of a table where their 
first task was laid out for them. Before starting working on the 
task, the experimenter got the participants familiar with the task 
objects and actions like attachment. The experimenter then began 
the experiment. During the tasks, the participants were asked 
to say OK to the robot when they were ready for the next 
instruction. The experimenter sat in another room and manually 
controlled the robot via Wizard-of-Oz (Riek, 2012) to speak the 
next instruction after hearing “OK”. This was intentional to not 
introduce extra time to task completion time for speech recognition 
errors. When a task is finished, the robot said “I have finished 
all instructions for this task” and participants were asked to 
finish a questionnaire containing the subjective measures and the
workload survey. 

3.6 Participants

82 participants’ ages ranged from 18 to 59 (M = 24, SD = 7.5). 
39 self-reported as women and 38 as men, with four reporting 
as gender non-conforming. 38 (46.9%) reported experience with 
robots, 31 (37.8%) reported no experience, and 12 (14.8%) were 
neutral. Participants spent 24 min on average to finish the whole 
experiment and were paid $15 USD. This study was approved by a 
Human Subjects Research committee. 
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TABLE 1  Electrical fan assembly task plan and instructions.

Planner type Planner output Surface 
realization with 
cognitive statuses

Classical

(take-out batteries 
battery-box)

“Take the batteries (U) out 
of the battery box (U)”

(attach motor lamp) “Attach the motor (U) to 
the lamp (U)”

(put-in batteries 
battery-case)

“Put those (A) in the 
battery case (U)”

(attach lamp switch) “Attach that (A) to the 
switch (U)”

(take-out propeller 
propeller-case)

“Take the propeller (U) out 
of the propeller case (U)”

(attach switch 
battery-case)

“Attach that (A) to that 
battery case (F)”

(attach propeller motor) “Attach that (A) to that 
motor (F)”

GH-Informed

(take-out batteries 
battery-box)

“Take the batteries (U) out 
of the battery box (U)”

(put-in batteries 
battery-case)

“Put them (I) in the battery 
case (U)”

(attach switch 
battery-case)

“Attach the switch to that 
(A)”

(attach lamp switch) “Attach the lamp (U) to it 
(I)”

(attach motor lamp) “Attach the motor to it (I)”

(take-out propeller 
propeller-case)

“Take the propeller (U) out 
of the propeller case (U)”

(attach propeller motor) “Attach it (I) to that motor 
(F)”

3.7 Data analysis

We conducted a Bayesian statistical analysis (Wagenmakers et al., 
2018) using R 4.3.2 and JASP 0.17.2.1 (JASP Team, 2023). Bayesian 
hypothesis testing allows quantifying evidence for competing 
hypotheses (H0 vs H1) as well as H0, using Bayes factor (BF), 
which is a ratio of likelihood of given data being observed under 
each of two competing hypotheses. For example, BF10 = 5 indicates 
that the data are in favor of H1, five times more likely under H1
than under H0. The Bayesian framework also allows a flexible 
sampling plan. Under a Frequentist approach, one needs to conduct 
a power analysis to identify the sample size needed (Button et al., 
2013; Bartlett et al., 2022). The experimenter then needs to run 
this many participants, and is not permitted to stop early or 
continue beyond that estimate without violating the underlying 
assumptions of Frequentist statistical tests. In contrast, the Bayesian 
approach is not grounded in the central limit theorem and does not 

FIGURE 2
In a human-subjects study, a Pepper robot is about to instruct a 
human (an experimenter) to assort school supplies using utterances 
ordered by cognitive statuses of physical objects: “Take the batteries 
out of the battery box.”

TABLE 2  School supply sorting task plan and instructions.

Planner type Planner output Surface 
realization with 
cognitive statuses

Classical

(attach pencil-grip pencil) “Attach the pencil grip (U) 
to the pencil (U)”

(take-out battery 
battery-box)

“Take the battery (U) out 
of the battery box (U)”

(put-in battery calculator) “Put it (I) in the calculator 
(U)”

(attach eraser pencil) “Attach the eraser (U) to 
that pencil (F)”

(put-in pencil pencil-case) “Put that pencil (F) in the 
pencil case (U)”

(put-in pen pencil-case) “Put the pen (U) in that 
(A)”

(attach sticker calculator) “Attach the sticker (U) to 
that calculator (A)”

GH-Informed

(attach sticker calculator) “Attach the sticker (U) to 
the calculator (U)”

(take-out battery 
battery-box)

“Take the battery (U) out 
of the battery box (U)”

(put-in battery calculator) “Put it (I) in that (A)”

(attach eraser pencil) “Attach the eraser (U) to 
the pencil (U)”

(attach pencil-grip pencil) “Attach the pencil grip (U) 
to that (A)”

(put-in pen pencil-case) “Put the pen (U) in the 
pencil case (U)”

(put-in pencil pencil-case) “Put that (A) in that (A)”
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TABLE 3  Coding protocol for cognitive status.

Cognitive status Criteria Referring forms

In Focus (I) Topic-mentioned, last 
utterance

it, them

Activated (A) Mentioned, last two 
utterances

that, those

Familiar (F) Mentioned that N, those N

Uniquely ID’able (U) Not mentioned the N

strictly require power analyses (Correll et al., 2020). Instead, the 
experimenter is permitted and encouraged to continue collecting 
data until enough evidence has been collected to make a claim 
in favor of one of the competing hypotheses under consideration 
or until resources have been exhausted. For a comprehensive 
introduction to the Bayesian approach and its benefits, we refer 
readers to Wagenmakers et al. (2018).

To interpret Bayes factors, we used the discrete classification 
scheme that is widely accepted and proposed by Lee and 
Wagenmakers (2014). For evidence favoring H1, BF10 is anecdotal 
for BF ∈ (1,3], moderate for BF ∈ (3,10], strong for BF ∈ (10,30], 
very strong for BF ∈ (30,100], and extreme for BF ∈ (100,∞]. For 
data in favor of H0, these thresholds are inverted (1, 1/3, 1/10, 1/30, 
1/100). Anecdotal evidence is deemed as inconclusive for an effect 
and more data would need to be collected to fully rule in or rule out 
such effect. 

4 Results

Effectiveness: For success rate of tasks, 26.8% (22/82) and 29.3% 
(24/82) participants successfully finished their tasks under the GH-
informed document planner and the classical planner, respectively. 
We ran a Bayesian binomial test to see whether there was a 
difference in task success rate. The tests revealed moderate evidence 
against such difference (BF10 = 0.18). Thus, H1.1 was not supported. 
Participants were equally likely to finish their tasks with instructions 
from each planner. For success rate of instructions, 94.1% (540/574) 
and 92.5% (531/574) of individual instructions were successfully 
completed under the GH-informed document planer and the 
classical planner, respectively. A Bayesian binomial test revealed 
moderate evidence against a difference between planner types 
(BF10 = 0.28). Thus, H1.2 was also not supported. Participants were 
overall equally likely to complete instructions at the individual level 
with instructions from each planner, although the mean instruction-
level success rate was slightly higher for the GH-informed planner.

Efficiency: A two-way repeated measures Analysis of Variance 
(RM-ANOVA) revealed extreme evidence favoring an effect of 
task (BF10 = 2.32× 1011) with participants completing the easy task 
significantly faster (M = 58.15 s) than the hard task (M = 90.71 s). 
Anecdotal evidence was found against an effect of planner 
(BF10 = 0.43), suggesting there is probably no such effect, and if there 
is, it would be that tasks took longer to complete when sequenced 
by the classical planner (M = 77.15 s) than by the GH-informed 

planner (M = 71.71 s). Anecdotal evidence was found in favor of 
an interaction between task type and planner type (BF10 = 1.10). 
As shown in Figure 3, it may be that the GH-informed planner 
outperformed the classical planner within the hard task. This 
suggests that H2 is partially supported: People may have finished 
tasks faster under the GH-informed planner than under the classical 
planner, but only for the hard task.

Naturalness: A two-way RM-ANOVA revealed extreme 
evidence for an effect of task type (BF10 = 146.86) with the robot’s 
instructions in the hard task being less natural (Mhard = 3.70)
than in the easy task (Measy = 4.08). Very strong evidence was 
found for an effect of planner type (BF10 = 95.58), suggesting 
that the robot’s instructions were less natural when generated by 
the classical planner (Mclassical = 3.71) than by the GH-informed 
planner (MGH = 4.06). Finally, the RM-ANOVA revealed anecdotal 
evidence against an interaction between task type and planner 
type (BF10 = 0.46). This suggests there is probably no interaction, 
but as seen in Figure 4, if there is an effect, it would be that the 
GH-informed planner outperformed the classical planner more 
so within the hard task than in the easy task. Overall, our results 
suggest that H3 was supported: The instructions under the GH-
informed planner were perceived as more natural than under the 
classical planner.

Fluency: A two-way RM-ANOVA revealed anecdotal evidence 
in favor of an effect of task type (BF10 = 2.34), with the robot’s 
instructions in the hard task being less fluent (Mhard = 4.00) than 
in the easy task (Measy = 4.29). Moderate evidence was found 
in favor of an effect of planner (BF10 = 5.69), suggesting that 
the robot’s instructions were less natural when generated by the 
classical planner (Mclassical = 3.98) than by the GH-informed planner 
(MGH = 4.3). Finally, the RM-ANOVA revealed anecdotal evidence 
against an interaction (BF10 = 0.69). This suggests there is probably 
no interaction, but as seen in Figure 5, if there is an effect, it would be 
that the GH-informed planner outperformed the classical planner 
more so within the hard task than in the easy task. Overall, our 
results suggest that H4 was supported: The instructions under the 
GH-informed planner were perceived as more fluent than under the 
classical planner.

Understandability: A two-way RM-ANOVA revealed extreme 
evidence for an effect of task type (BF10 = 3.61× 104) with the 
robot’s instructions in the hard task being less understandable 
(M = 3.79) than in the easy task (M = 4.45) strong evidence 
was found in favor of an effect of planner type (BF10 = 11.34), 
with the robot’s instructions in the classical planner condition 
being less understandable (M = 3.93) than in the GH-informed 
condition (M = 4.30). Finally, the RM-ANOVA revealed anecdotal 
evidence against an interaction between task type and planner 
type (BF10 = 0.74), suggesting there is probably no such effect, but 
as seen in Figure 6, if there is an effect, it would be that the GH-
informed planner outperformed the classical planner more so within 
the hard task than in the easy task. Thus, H5 was supported: The 
instructions under the GH-informed planner were perceived as 
more understandable than under the classical planner.

Perceived Intelligence: A two-way RM-ANOVA revealed 
extreme evidence in favor of an effect of task type (BF10 = 3.53× 103)
with the robot’s instructions in the hard task perceived less intelligent 
(M = 3.81) than in the easy task (M = 4.12). Moderate evidence was 
found in favor of an effect of planner (BF10 = 5.78), with the robot’s 

Frontiers in Robotics and AI 06 frontiersin.org

https://doi.org/10.3389/frobt.2025.1640535
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Han et al. 10.3389/frobt.2025.1640535

FIGURE 3
Average task completion time (seconds).

FIGURE 4
Mean naturalness ratings.

FIGURE 5
Mean fluency ratings.

instructions in the classical planner condition (M = 3.89) being less 
intelligent than in the GH-informed condition (M = 4.03). Finally, 
the RM-ANOVA revealed anecdotal evidence against an interaction 
between task type and planner type (BF10 = 0.52), suggesting there is 
probably no such effect, but as seen in Figure 7, if there is an effect, it 
would be that the GH-informed planner outperformed the classical 
planner more so within the hard task than in the easy task. Thus, 
H6 was supported: The robot was perceived as intelligent given the 
human cognitive modeling of object statuses.

Workload: According to the NASA Task Load Index manual 
(NASA, 2019), a weighted score was calculated for each participant, 
the results of which are summarized in Figure 8. A two-way 
RM-ANOVA revealed extreme evidence favoring an effect of 
task (BF10 = 1.29× 109) with the robot’s instructions in the hard 
task requiring more workload (M = 30.45) than in the easy task 
(M = 16.20). Anecdotal evidence was found in favor of an effect 
of planner (BF10 = 1.05), suggesting that the instructions given by 
the classical planner (M = 25.10) may have required more workload 
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FIGURE 6
Mean understandability ratings.

FIGURE 7
Mean intelligence ratings.

FIGURE 8
Mean workload ratings.

than those given by the GH-informed planner (M = 21.54). Finally, 
the RM-ANOVA revealed anecdotal evidence against an interaction 
between task type and planner type (BF10 = 0.66), suggesting there is 
probably no such effect, but as seen in Figure 8, if there is an effect, it 
would be that the GH-informed planner outperformed the classical 
planner more so within the hard task than in the easy task. Thus, H7 
was partially supported: Following the instructions provided by the 
GH-informed planner may have required less workload, but only for 
the hard task.

5 Discussion

Hypothesis 1 (H1) - Increased Effectiveness proposes that more 
people will successfully finish the task (H1.1) and at each step 
(H1.2) under the GH-informed planner. Our results do not support 
this, suggesting that the planner type had little-to-no effect on the 
completion rate of tasks and instructions. The variance in instruction 
and task completion rates among individuals is likely due to a variety 
of factors, with the planner type playing a small role, if any. The 
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length of instructions, and therefore the time it took for the robot 
to utter the instructions, were close between planner types, so there 
was no significant time lost due to longwindedness. Sample size 
may have limited this conclusion, as instructions may have been 
interpreted differently among age groups or education levels, in 
ways not assessable with our sample size. The complexity of the 
tasks may have also been not well suited to measure variance in 
completion times. Both tasks, across both planner types, could be 
completed with seven instructions, all of which could be phrased 
directly, concisely, and with little ambiguity. By experimental design, 
participants did not often have to decipher ambiguity, and were 
almost always quick to successfully determine what entity is being 
referred to. Future work could investigate introducing ambiguity, 
and could examine whether participants spent time deliberating the 
meaning of ambiguous referents.

Hypothesis 2 (H2) - Increased Efficiency proposes that people 
will finish tasks faster (H2.1) and finish each step faster (H2.2) 
under the GH-informed planner. Our results partially support this 
hypothesis, suggesting that the difference in efficiency as a result of 
the GH-informed planner may only arise in complex tasks. It may 
be the case that the GH-informed planner excels with more complex 
problems, or that the easy task was so simple that participants were 
able to guess the correct completion of an instruction, regardless of 
what the robot uttered. Future experiments should compare these 
planner types with more complex tasks, either by adding more steps 
or by using a more difficult problem.

Hypothesis 3 (H3) - Higher Perceived Naturalness proposes that 
the instructions will be perceived as more natural under the GH-
informed planner. Our results support this claim. From this, we 
gather that the GH-informed planner can produce sequences of 
utterances that sound more natural. Future work may consider more 
complex or longer instructions, or possibly a set of utterances that 
may be difficult to string together in a natural-sounding way.

Hypothesis 4 (H4) - Increased Fluency proposes that the 
instructions will be perceived as more fluent under the GH-
informed planner. Our results support it. From this, we gather that 
the GH-informed planner can produce sequences of utterances that 
sound more fluent. Future work may consider more complex or 
longer instructions, or possibly a set of utterances that may be 
difficult to string together fluently.

Hypothesis 5 (H5) - Increased Understandability proposes that 
the instructions will be rated more understandable under the GH-
informed planner. Our results support this claim, suggesting that 
the robot’s instructions were rated as more understandable in the 
GH-informed cases. From this, we gather that the GH-informed 
planner is able to produce sequences of utterances that are more 
understandable, and is thus better suited for natural language 
generation in contexts where understandability is important. Future 
work may consider more complex or longer instructions, or possibly 
a set of utterances that may be difficult to string together in an 
understandable way.

Hypothesis 6 (H6) - Higher Perceived Intelligence proposes that 
the robot will be perceived as more intelligent given the human 
cognitive modeling of object statuses under the GH-informed 
planner. Our results support this claim. From this, we gather that 
the GH-informed planner can produce sequences of utterances that 
make the robot sound more intelligent. Future work may consider 

more complex or longer instructions, or possibly a set of utterances 
that may be difficult to string together intelligently.

Hypothesis 7 (H7) - Lower Workload proposes that following 
these instructions will require less workload under the GH-
informed planner. Our results partially supported this claim, 
suggesting that the GH-informed planner was able to produce 
instructions that were easier to follow in more complex tasks. 
Similar to H2, the GH-informed planner may be better suited for 
more complex tasks. Likewise, it may be that the easy task in our 
experiment was too simple and did not require participants to exert a 
significant enough mental demand. As with H2, future work should 
include more complex tasks that demand higher workload from 
participants. 

5.1 Limitations and future work

First, we have hand-coded common-sense reasoning rules 
as described above. Ideally these principles would be encoded 
algorithmically. However, we believe our hand-application of these 
rules is reasonable in this work given that REG is not the focus of 
this work. Second, the referring expressions used may not be the 
optimal referring expressions for disambiguation. Again, however, 
we believe this is a reasonable limitation given that we did not 
focus on REG in this work. Third, within our study, we only 
assessed two unique tasks, and had only one instruction set for each 
combination of task and planner type. The initial findings from this 
work should be replicated in future work across a wider array of 
tasks of varying difficulties, and with a varied set of instructions 
within each task. It should also be noted that our sample size 
(N = 82) consisted of primarily college-aged students. Future work 
should replicate this work with a wider array of participants. Fourth, 
we believe adding gestures using arms may improve the success 
rate, which future work should investigate such multimodality 
with comparisons with unimodal smart speakers. Finally, in this 
experiment, each participant saw both planner types and both task 
types, but never all four combinations of planner and task types. 
This limited our analyses, as it was not possible to analyze a specific 
participant’s experience of both planner types for the same task, or 
both tasks under the same planner type. 

6 Conclusion

In this work, we have leveraged GH to enable robots to plan 
their utterances in a way that keeps objects at a high cognitive 
status. We conducted a human-subjects study to compare our GH-
informed planner with a classical baseline. Our results showed that, 
on average, the GH-informed planner outperforms the baseline 
classical planner, with participants rating the GH-informed planner 
as more natural, fluent, understandable, and intelligent, as well as 
completing tasks in the GH-informed experiment at a faster rate and 
with less cognitive workload. This suggests a clear opportunity for 
the use of GH-informed planning to enable more effective robot-
driven instruction, both in training contexts like those explored 
in this work, and in socially assistive robotics contexts such as 
robot-assisted tutoring.
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