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Dense mapping from sparse
visual odometry: a lightweight
uncertainty-guaranteed depth
completion method

Daolong Yang, Xudong Zhang, Haoyuan Liu, Haoyang Wu,
Chengcai Wang*, Kun Xu* and Xilun Ding

School of Mechanical Engineering and Automation, Beihang University, Beijing, China

Introduction: Visual odometry (VO) has been widely deployed on mobile robots
for spatial perception. State-of-the-art VO offers robust localization, the maps
it generates are often too sparse for downstream tasks due to insufffcient depth
data. While depth completion methods can estimate dense depth from sparse
data, the extreme sparsity and highly uneven distribution of depth signals in VO
(~ 0.15% of the pixels in the depth image available) poses signiffcant challenges.
Methods: To address this issue, we propose a lightweight Image-Guided
Uncertainty-Aware Depth Completion Network (IlU-DC) for completing sparse
depth from VO. This network integrates color and spatial information into
a normalized convolutional neural network to tackle the sparsity issue and
simultaneously outputs dense depth and associated uncertainty. The estimated
depth is uncertainty-aware, allowing for the filtering of outliers and ensuring
precise spatial perception.

Results: The superior performance of IU-DC compared to SOTA is validated
across multiple open-source datasets in terms of depth and uncertainty
estimation accuracy. In real-world mapping tasks, by integrating IU-DC with
the mapping module, we achieve 50 X more reconstructed volumes and 78%
coverage of the ground truth with twice the accuracy compared to SOTA,
despite having only 0.6 M parameters (just 3% of the size of the SOTA).
Discussion: Our code will be released at https://github.com/YangDL-BEIHANG/
Dense-mapping-from-sparse-visual-odometry/tree/d5al1b4403b5ac2e9e0c3
644b14b9711c2748bf9.

KEYWORDS

mapping, deep learning for visual perception, visual odometry, depth completion,
uncertainty estimation

1 Introduction

Constructing a detailed and accurate map of the environment is a core task in the spatial
perception of mobile robots (Malakouti-Khah et al., 2024). Visual odometry (VO) is widely
used on mobile robots for perception due to its computational efficiency and adaptability to
various environments (Labbé and Michaud, 2022; Aguiar et al., 2022). While state-of-the-art
VO provides accurate localization, the resulting sparse depth data often leads to incomplete
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maps with insufficient spatial information, posing challenges
for downstream tasks (Araya-Martinez et al, 2025). With
breakthroughs in the computer vision community, sparse depth
data can be completed using depth completion approaches
(Mathew et al, 2023; Wan et al., 2025), offering a pathway to
achieving dense maps in VO. However, the extreme sparsity of
depth in VO can only offer limited prior knowledge and still poses
significant challenges for depth completion approaches to estimate
accurate dense depth for mapping.

Recent developments in depth completion approaches have
achieved high accuracy on datasets even with limited input data
through carefully designed feature extraction mechanisms and
sophisticated network architectures (Chen et al., 2023; Liu et al,,
2023; Liu et al, 2022). However, the computational load and
memory requirements hinder their practical implementation
on mobile robots with limited memory capacity. Additionally,
even approaches with high accuracy on datasets still produce
a non-negligible number of outliers during inference, leading
to false mapping of the environment for robots (Tao et al,
2022). Several previous works have attempted to estimate both
dense depth and associated uncertainty within a lightweight
network architecture, using the uncertainty to reevaluate depth
estimation (Tao et al., 2022; Ma and Karaman, 2018). These works
have demonstrated real-world applications in reconstruction,
motion planning, and localization. However, most of these
works primarily consider inputs from LIDAR or incomplete
depth images from depth cameras, which tend to exhibit lower
sparsity and a more uniform distribution compared to data
obtained from VO.

Following this method, we propose a novel depth completion
network inspired by the normalized convolutional neural network
(NCNN) (Eldesokey et al, 2019) to complete the extremely
sparse depth data from VO. The pipeline of our method is
presented in Figure 1. We name our approach Image-Guided
Uncertainty-Aware Depth Completion Network (IU-DC). Our
contributions can be summarized as.

e We introduce a Confidence Refine Block that integrates
image features into the multi-resolution propagation of NCNN
layers, effectively addressing the lack of priors in the sparse
input from VO.

We propose using a map probability density function with
the Inverse Sensor Model in the final uncertainty estimation
after the last layer of NCNN, enhancing the spatial awareness
of the outputs. The accurate uncertainty estimated by IU-DC
can then be used to filter out outliers in the depth estimation,
providing a more reliable input for mapping.

The superior performance of IU-DC has been validated
against SOTA across multiple datasets in terms of depth
and uncertainty estimation. We also conducted mapping
experiments on both open-source datasets and our own
sequences to support our claims. Our approach reconstructs
50 x more volumes than VO, achieving 78% coverage of the
ground truth with twice the accuracy compared to SOTA.
Despite these improvements, IU-DC occupies only 2.76 MB
of memory and can achieve near real-time performance on
NVIDIA Xavier NX. We are planning to release the code to
support future research.
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2 Related work

2.1 Depth completion with uncertainty
awareness

We first briefly review recent developments in depth completion
approaches that address both depth and uncertainty estimation. A
widely adopted approach involves introducing a second decoder to
the original network to output uncertainty. Popovi¢ et al. (2021)
and Tao et al. (2022) both employed dual decoders to output depth
estimation and uncertainty, demonstrating applications in robot
mapping and path planning. However, their input sparsity is much
lower than that of VO. Qu et al. (2021) introduced a Bayesian
Deep Basis Fitting approach that can be concatenated with a base
model to generate high-quality uncertainty, even with sparse or
no depth input. However, its performance is highly dependent on
the base model, making it difficult to achieve in a lightweight
network architecture. Additionally, approaches such as ensembling
and MC-dropout can estimate uncertainty without modifying the
original network (Gustafsson et al., 2020). However, these methods
involve a time-consuming inference process, which hinders real-
time performance on robots.

Another promising approach is based on the theory
of confidence-equipped signals in normalized convolution.
Eldesokey et al. (2019) proposed a normalized convolutional
neural network (NCNN) that generates continuous confidence
maps for depth completion using limited network parameters.
They further refined their work to obtain a probabilistic version of
NCNN in (Eldesokey et al., 2020). Though the NCNN demonstrates
outstanding performance in both depth completion and uncertainty
estimation, it can only be used in an unguided manner due
to algebraic constraints. This limitation results in performance
degradation when the input has high sparsity due to a lack of prior
information (Hu et al., 2022). Teixeira et al. (2020) attempted to
extend NCNN into an image-guided method by concatenating
the image with the outputs from NCNN into another network to
generate the final prediction. While this approach improved depth
completion accuracy, the resulting uncertainty lacked the continuity
inherently modeled by NCNN. In this work, our proposed IU-
DC extends NCNN into an image-guided approach to address the
sparsity issue while maintaining inherent continuity to generate
precise uncertainty estimation.

2.2 Depth completion from sparse VO

Several recent works have addressed the challenge of completing
sparse depth from VO (Liu et al., 2022) (Wong et al, 2020;
Merrill et al., 2021; Wofk et al., 2023). Wong et al. (2020) adopted an
unsupervised approach, utilizing a predictive cross-modal criterion
to train a network for inferring dense depth. Liu et al. (2022) adopted
an adaptive knowledge distillation approach that allows the student
model to leverage a blind ensemble of teacher models for depth
prediction. Wofk et al. (2023) performed global scale and shift
alignment with respect to sparse metric depth, followed by learning-
based dense alignment, achieving state-of-the-art performance in
depth completion accuracy. Although the sparsity issue of VO
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Pipeline of robot mapping with our approach. A dense map of the environment is constructed using only camera images and extremely sparse depth
from VO with the proposed IU-DC. (a) RGB frame from the camera; (b) sparse depth from visual odometry; (c,d) dense depth and the associated
uncertainty estimated by our network; (e) filtered depth obtained using the predicted uncertainty.

has been addressed in depth completion processes, few works are
uncertainty-aware and demonstrate evaluations in mapping tasks.

3 Methodology
3.1 Overall network architecture

Our network mainly comprises three main modules: the Input
Confidence Estimation Network, which takes camera images and
sparse depth as input and estimates the confidence mask input to
first NCNN layer; the Image-Guided Normalized Convolutional
Neural Network, which uses NCNN as backbone and refines the
confidence output from NCNN layers at different resolutions with
image features using the proposed Confidence Refine Block; and
the Model-based Uncertainty Estimation Network, which takes the
estimated depth and confidence output from last NCNN layer to
estimates the final output uncertainty for each data. The overall
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architecture of our network is presented in Figure 2, and the details
of each module are explained in the following sections.

3.2 Input confidence estimation network

In Eldesokey et al. (2020), the initial confidence mask input
into NCNN is learned from the sparse depth using a compact
network. However, when the input data becomes sparser and
more randomly distributed, confidence estimation may degrade
because structure information, such as neighboring objects and
sharp edges, is significantly missing (Hu et al., 2022). Sparse depth
from VO is always calculated through the KLT sparse optical flow
algorithm using corner features (Qin et al., 2018), which have a close
correlation with the camera image. To compensate for the missing
cues, we utilize both the image and sparse depth together to estimate
the input confidence. In the Input Confidence Estimation Network,
the image and sparse depth are first concatenated and then input into
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FIGURE 2

An overview of the proposed IU-DC. (1) Input Confidence Estimation Network, (2) Model-Based Uncertainty Estimation Network. The middle section
with the Confidence Refine Block (Conf. Refine Block) represents the Image-Guided Normalized Convolutional Neural Network.

a compact UNet (Ronnebe et al., 2015) with a Softplus activation at
the final layer to generate positive confidence estimations.

3.3 Image-guided normalized
convolutional neural network

The motivation for adopting NCNN as our backbone lies in
its inherent ability to explicitly model confidence propagation.
Unlike conventional convolutional networks, NCNN operates on
confidence-equipped signals and interpolates missing values in a
mathematically principled manner. This capability is particularly
valuable under extreme sparsity, such as in VO-derived depth
inputs, where the lack of priors makes robust estimation difficult.
Moreover, NCNN naturally facilitates uncertainty estimation
through confidence propagation, which aligns well with our
objective of producing uncertainty-aware depth maps.

Prior studies have shown that image features—especially in
regions such as reflective surfaces and occlusion boundaries—often
carry rich structural cues that can complement sparse or unreliable
depth information (Kendall and Gal, 2017). These features serve as
valuable priors for improving confidence estimation, particularly in
scenarios where the input depth is extremely sparse and unevenly
distributed, as in VO-based depth completion.

However, directly incorporating image features into
NCNN is not straightforward. This is because normalized
convolution enforces algebraic constraints that require a strict
correspondence between the input signal and its associated
confidence. Consequently, common practices in image-guided
depth completion—such as concatenating image features with the
depth signal (Tao et al., 2022; Popovi¢ et al., 2021; Eldesokey et al.,
2019)—would violate these constraints and compromise the
formulation of NCNN.

To leverage this potential without violating NCNN’s constraints,
we propose the Confidence Refine Block (CRB). The primary
motivation behind CRB is to introduce image guidance indirectly,
by refining the intermediate confidence maps produced by NCNN
layers. Rather than altering the depth signal directly, CRB enhances
the confidence propagation process using gated fusion mechanisms

and attention-based refinement. This design preserves the integrity
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of normalized convolution while effectively injecting contextual
priors from the image, leading to improved performance under
extreme sparsity.

In this section, we first review the basic concepts of the
NCNN, and then introduce the details of how the proposed CRB
fits into NCNN.

3.3.1 Normalized convolutional neural network

The fundamental idea of the normalized convolution is to
project the confidence-equipped signal y € C" to a new subspace
spanned by a set of basis functions {bj};zo using the signal with high
confidence ¢ € R;. Afterwards, the full signal is reconstructed from
this subspace, where the less-confident areas are interpolated from
their vicinity using a weighting kernel denoted as the applicability
function a € R’}. Thus the image of the signal under the subspace
spanned by the basis is obtained as y = Br, where B is a matrix
contains all the basis functions and r is a vector of coordinates.
These coordinates can be estimated from a weighted least-squares
problem (WLS) between the signal y and the basis B (Knutsson and
Westin, 1993):

t =argmin |Br -yl
reCm
= (B;WB,) 'B;Wy, 1

W=W, -W_=diag(a)-diag(c).
Finally, the WLS solution ¥ can be used to estimate the signal:
=B

Instead of manually choosing the applicability function, the
optimal a in certain scenarios can be learned from NCNN
(Eldesokey et al., 2019). This was achieved by using the naive basis
which setB=1,:

<al| (ylfl OClfl)>

('l

?ﬁ = (IZWaWcln)fllzwach= ()

where 1, is a vector of ones, © is the Hadamard product, (.|.) is the
scalar product, 7; is a scalar which is equivalent to the estimated
value at the signal y,. The superscripts [ and (/- 1) indicate the
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I—th and (I- 1) — th layer of NCNN, respectively. The confidence is
propagated as:

Iy -1
g L@l
Cc. =

-2 ®)
(1,la)

where the output from one layer is the input to the next
layer. If the image feature is directly concatenated with the
depth signal y in (Equation2) to construct a new signal y’,
its dimensionality increases. Moreover, since ¢ in (Equation 2)
is the output of the previous NCNN layer and maintains a
strict correspondence with each depth signal vy, its dimensions
remain consistent. Consequently, the new signal y' ‘s dimensions
do not match those of ¢, thereby preventing the application
of the Hadamard operation. Another straightforward way to
integrate the image feature with the depth signal y is through
convolution to form a new signal y'. Although this operation
resolves the dimensional mismatch, it no longer guarantees the
correspondence between y' and c. These issues motivate us
to design the Confidence Refinement Block to integrate the
image feature into NCNN without violating the signal-confidence
correspondence.

3.3.2 Confidence refine block

We attempt to utilize the image features to refine, but not
entirely alter, the confidence from the NCNN layers, as this
would severely violate the correspondence between confidence and
signals. Since sparse depth from VO is primarily concentrated
in high-texture areas (e.g., object contours) while being sparsely
distributed in low-texture regions (e.g., flat walls), this disparity
leads to varying contributions of image features to confidence
estimation across different areas. Given these challenges, a vanilla
convolution (a standard convolution operation with normalization
and an activation function) that treats all inputs as valid values is
not suitable.

Gated Convolution (Yu et al., 2019), which uses additional
convolution kernels to generate gating masks for adaptive
feature reweighting, is well-suited to our case. We modified
the original form of gated convolution, which originally takes
only one feature as input, to simultaneously consider both
confidence and image features when calculating the gating signal,
as shown in Figure 3. Although sophisticated modality fusion
techniques have been proposed in recent years and can be
adopted to fuse confidence features with image features (Liu et al.,
2023), these methods often rely on complex convolution
operations, which increase model complexity and go against
our lightweight design. To address this issue, we adopt a
straightforward yet effective strategy: first concatenating the two
feature maps and encoding them with a lightweight convolution
layer, then refining the fused representation using an efficient
Self-Attention Module.

Denoting the confidence from NCNN layer as F,,r and image
feature as F;,,,, they have the same size of Hx W but with different
channel number C,, and C,,. We first concatenates them into
tensor F;, = [me; Fimg] whose size is (Cmf + Cimg) x Hx W. Then
we use a Conv layer, which contains a 2D-convolution layer and
a batch normalization layer with a leakyReLU activation layer (to
avoid a substantial increase in the number of parameters during
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feature extraction while maintaining responsiveness to negative
values), to encode the concatenated feature tensor:

FCra<HXW _ ReLU<Conv <F<CEDWCW)XHXW>>

in

however, C,, and C;,,,

challenge for the encoding process to distinguish between weights

often exhibit large differences, posing a

from different features. For instance, at the lowest image resolution,
Ceonf 1s two while ;.
the feature map using a self-attention mechanism from (Woo et al.,
2018). The feature map F«™W js first inferred through a 1D
channel attention map M, € R%*"! and then through a 2D spatial

attention map M, € R>?W:

is 16. To address this limitation, we remap

F =M, (F)®F,
F'=M,(F)®F,

where ® denotes the element-wise multiplication between two
tensors. To calculate the final gating signal G., we decode the
remapped feature F'' using a Conv layer followed by a sigmoid

can be obtained

activation layer. Finally, the refined confidence F! "

by implementing element-wise multiplication.

G, = Sigmoid (Conv(F")),

F!

con,

= Ff””f® Gc'

In IU-DC, we integrate one CRB after each confidence-
aware down-sampling layer in the NCNN to learn the correlation
between confidence and image at different resolutions, as shown
in the upper section of Figure 2. We also provide a visualization
of the gating signals G, in Figure 4. It can be observed that
G
enhance the confidence map—such as sharp edges and reflective

. effectively captures semantic features from the image to
surfaces. Consequently, regions with sparse input signals can
be effectively interpolated. This visualization also unveils a
hidden relationship between the input depth from VO and the
internal propagation within NCNN—depth signals located at
more salient object contours tend to have a greater impact on the
reconstruction process.

3.4 Model-based uncertainty estimation
network

In NCNN, the confidence is propagated separately from the
depth signal as shown in (Equation 3), which results in a lack
of spatial information. For instance, neighbors estimated from
larger depth values typically have higher uncertainty compared to
those from smaller depth values, which cannot be distinguished by
normalized convolution due to the fixed size of the applicability
function a.

To address this limitation, we assume that the dense depth
output from NCNN forms an occupancy map in the camera
frame and follows the probabilistic formulation of the Inverse
Sensor Model (ISM) (Agha-Mohammadi et al., 2019). We integrate
the confidence output from NCNN as a prior into this ISM-
based probability model, thereby enabling the estimation of
spatially-aware uncertainty. Furthermore, the entire module can be

frontiersin.org


https://doi.org/10.3389/frobt.2025.1644230
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Yang et al. 10.3389/frobt.2025.1644230

Confidence Refine Block

Si id i
e conf refine

Self-Attention
Module

Spatial

img feat

FIGURE 3
Detailed structure of proposed Confidence Refine Block.
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FIGURE 4
Visualization of the gating signal in the Confidence Refine Block. The first row presents the input image, the second row presents the input sparse

depth from VO, and the third shows the corresponding gating signal.

smoothly trained in an end-to-end manner using the loss function =~ where z is the measurement depth, x is the robot location, k is the
proposed in Section 3.5. steps of iteration. By integrating the ISM formulation,
The probability distribution of individual voxel m’ can be

, . . z | Mz %) = p (2 | m'x
computed through Bayes’ rule in recursive manner as: P (@ | 2o Fox) = p (2 | ')

_p(m' 1 zox) p (2 | )

S = p(m]zg X, = ;
k P( 0’:k O,k) ,- " p(m’ |xk)
_P (2l 2010 X02) P (11 |Zo’k’1’x03k)) which indicates the occupancy probability given a single
P (zilzg-15%0x) measurement, into (Equation 4), and assuming that the robot’s

Frontiers in Robotics and Al 06 frontiersin.org


https://doi.org/10.3389/frobt.2025.1644230
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Yang et al.

previous trajectory x,,, does not affect the map, we obtain:

o p(m'lzpx) p (Zk|xk)P(mi|20:k—1’x0:k—1)
§ p(m") p (22015 Xo0x)

Assuming a binary occupancy model for voxels (i.e., each voxel
is either occupied m; =1 or free m;=0) and considering only

(5)

the occupancy map in the camera frame - where the occupancy
probability is independent of the robot’s motion, (Equation 5) can
be simplified as:

PO =12)p(n'=0) _ Pl ()
“op(mi=olz)p(m'=1)  pn

prior

(6)

where PlrglM(zk) indicates the probability of Fhe voxel is occupied
Pm

given the ISM model with measurement, orior

indicates the prior
knowledge.

Pi’;!M(zk) can be approximated by (Loop et al., 2016):

PI’EXM (z)=H (kaz,’:‘i>,

where H(:) is a cubic curve function maps the measurement into
occupancy probability and k, is a scalar. We initialize the k, using a

7)

clipping operator to constrain the estimated depth z; within an ideal
range [in our case, between 0.1 and 8 in VOID (Wong et al., 2020)].
Next, we refine the scalar by leveraging the spatial dependencies of
neighboring depth values, and finally, we map each input z]':’l into
an occupancy probability by uniformly applying the function H(-)
across all inputs.

Typically, a fixed P

prior
deployment. However, due to various environmental factors, this

for all voxels is assumed during

assumption may not hold. We address this issue by adopting the
confidence estimated from NCNN, which encodes both geometric
P;';ior
for each voxel to represent the heteroscedastic uncertainty in the

and semantic features, as a strong prior. We construct the

estimation by formulating WLS problem in (Equation 1) as a special
case of the Generalized least-squares (GLS), which offers more
flexibility in handling individual variances for each observation
(Eldesokey et al., 2020):

fos = (B*VIB) 'B*Vly,

where V= (W,W_)™ to ensure consistency with the solution in
(Equation 2). Then, we utilize the GLS solution f; g to estimate the
signal y, and the uncertainty of y can be obtained as:

cov (y) = cov(1,Egs) = 1,c0v(Egrs) 1
=21,(1:v,) '
g

=1 —2 1%,
"ale) "

(8)

where ¢ is global variance for each signal. (Equation 8) indicates
equal uncertainty for the entire neighborhood under a naive basis.

i

Since each voxel grid corresponds to the signal center J;, P, can
be represented as:
; o
m ~last\ _ i
Ppriar = cov (yi ) ©)

- <ala5t | Clust) ’

last last

where 0; is stochastic noise variance a®' and ¢ represent the

applicability function and confidence from the last NCNN layer
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respectively, as discussed in Section 3.3. The noise variance o; can
be estimated from the confidence output of the last NCNN layer.
By integrating (Equation 7) and (Equation 9) into (Equation 6) and
extending it to all the pixels in the depth image, we can estimate the
uncertainty using a mapping function @ (-) as follows:

Sk = q)(kazk,ﬁlm). (10)

Our objective is to learn the mapping function ®(-) and the
scalar k in (Equation 10) by concatenating the depth estimation and
confidence output from the last NCNN layer into a compact UNet
(Ronnebe et al., 2015), as shown in the right section of Figure 2.
A direct comparison of the output uncertainty from the Model-
based Uncertainty Estimation Network (ISM-net), the NCNN layer
(NCNN), and the conventional ISM in (Agha-Mohammadi et al,,
2019) (ISM) is presented in Figure 5.

3.5 Loss function and training strategy

To achieve the different functions of each module, we require
a loss function that enables training the proposed network with
uncertainty awareness. Following (Eldesokey et al, 2020) we
assume a univariate distribution of each estimated signal under
naive basis j, ~ N(7;,s,), where 7; is the depth estimation and
s; is the uncertainty estimation from IU-DC. The least squares
solution in (Equation 2) can be formulated as a maximum likelihood
problem of a Gaussian error model. Then the objective is defined as
minimizing the negative log likelihood:

1 N
Lw) =%

i=1 i

lly, =7
P tog(s),
where w denotes the network parameters.

During the training of our network, we find that initializing the
network parameters randomly and training with the loss function
L(w) does not guarantee stable convergence. We assume that in
the initial training stages, excessively large uncertainty estimations
dominate the loss, causing the depth estimation to overcompensate.
To address this issue, we adopt a multi-stage training strategy.
Initially, we train the network with L2 loss until the network
parameters stabilize. Subsequently, we fine-tune the uncertainty

output using L(w).

4 Evaluation on NYU and KITTI
datasets

We use the standard error metrics of the KITTI depth
completion challenge (Uhrig et al., 2017): the Root Mean Square
Error (RMSE m), the Mean Absolute Error (MAE m), the Root
Mean Squared Error of the Inverse depth (iRMSE 1/km), Mean
Absolute Error of the Inverse depth (iMAE I/km), and the area
under sparsification error plots (AUSE) (Ilg et al., 2018) as measure
for the accuracy of the uncertainty.

4.1 Datasets and setup

Outdoor: KITTI dataset (Uhrig et al., 2017) is a large outdoor
autonomous driving dataset. We use KITTI depth completion
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FIGURE 5
Qualitative and quantitative evaluation of the effectiveness of the Model-based Uncertainty Estimation Network. The upper part of the figure presents

the input image, sparse depth from VO, uncertainty estimation from the last NCNN layer, and the final uncertainty estimation from our network
(ISM-net). The lower part of the figure illustrates the area under the sparsification error plots (llg et al., 2018), where curves closer to the oracle
represent estimated uncertainty that more closely approximates the real error distribution. ISM-net significantly enhances the uncertainty estimation
from NCNN and outperforms the ISM by a large margin.

TABLE 1 Depth completion results on NYU and KITTI datasets. dataset for evaluation, where the training set contains 86k frames,
e i ‘ RMSE | MAE  iRMSE ’ IMAE | AUSE| validat'io.n set. contains 7k 'frames, and the test set C(?ntains I.k frames.
The original input depth images have 5% of the pixels available. To
KITTI test set simulate the input sparsity of VO, we randomly sample 1k pixels
from the raw input depth image, representing approximately 0.2%

NCONV-AERIAL 1.01 0.26 — — 0.39 of the pixels available.
b ™ 00 . Lo o3 Indoor: NYU dataset (Silberman et al,, 2012) is an RGB-D
dataset for indoor scenes, captured with a Micrasoft Kinect. We use
PNCNN 123 0.28 446 1.07 0.05 the official split with roughly 48k RGB-D pairs for training and 654

pairs for testing. We randomly sample 500 pixels and 200 pixels from
1y-DC 0.94 0.23 2.72 0.97 0.06 the ground truth depth image, representing available pixels of 0.7%
and 0.2%, respectively.

KITTI-1000 samples
P Setup: We implement all the networks in PyTorch and train

PNCNN 241 0.70 70.08 256 0.05 them using the Adam optimizer with an initial learning rate
of 0.001 that is decayed with a factor of 107! every 6 epochs
-be 1.59 050 4.87 2.02 0.05 follow the training strategy outlined in Section 3.5. All datasets

NYU-500 samples are preprocessed using the same cropping and data augmentation
procedures as (Eldesokey et al., 2020).

NCONV-AERIAL 0.22 0.1 — — 024
520 07 | O | B |0 | 4.2 Comparison to the SOTA
PNCNN 0.18 0.07 24.38 8.77 0.06
Baselines: We propose to obtain dense depth and uncertainty
IU-DC 0.11 0.04 14.28 5.13 0.06 simultaneously, while also considering a lightweight network

architecture with low memory consumption suitable for deployment
NYU-200 samples . .
on mobile robots. As baselines, we selected three state-of-the-

PNCNN 024 0.10 56.78 13.82 0.09 art networks that meet the requirements: (i) NCONV-AERIAL

(Teixeira et al., 2020) is an image guided approach that incorporates
IU-DC 0.16 0.06 20.71 8.36 0.09 NCNN and fuses its output with images to estimate the final depth
and uncertainty. (ii) S2D (Tao et al, 2022) is an image-guided

The number of parameters (#P) for each model is as follows: NCONV-AERIAL: 980 K;
$2D: 12 M; PNCNN: 668 K; IU-DC: 689 K. Bold numbers indicate the best performance. approach that concatenates the image and sparse depth image in
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~5%

FIGURE 6
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~0.2%

Visualization of depth completion results on the KITTI dataset, where 5% and 0.2% denote the percentage of available pixels in the depth image.
PNCNN performs well under low sparsity but exhibits blurriness on the contours of objects and fails to capture most information under high sparsity. In

contrast, IU-DC shows more robust performance in both cases.

one encoder and outputs dense depth image and uncertainty from
two separate decoders. (iii) PNCNN (Eldesokey et al., 2020) is an
unguided approach that also utilizes NCNN as its backbone and has
anetwork structure similar to our approach. We train PNCNN using
their open-source code. For S2D, we follow their implementation as
described in their paper since they did not release their code. As for
NCONV-AERIAL, we use the best results reported in their paper
and calculate AUSE using their open-source model.

We initially test all the methods on the KITTI test set with raw
input sparsity and the NYU test set with 500 samples as input. We
report the accuracy of depth and uncertainty estimation, as well as
the number of network parameters in Table 1. S2D and NCONV-
AERIAL demonstrate superior accuracy in depth completion
compared to PNCNN on the KITTI, attributed to their integration
of image features. However, on the NYU dataset where the input
sparsity increases to 0.7%, the integration of image features fails to
enhance the depth completion performance, even underperforming
compared to the unguided approach. Furthermore, both S2D and
NCONV-AERIAL exhibit significantly higher AUSE, indicating
that the uncertainty output from the networks is not tightly
correlated with the actual error distribution. Our proposed IU-DC
outperforms PNCNN in depth estimation accuracy and maintains
accurate uncertainty estimation across both datasets. This indicates
that our modifications enhances overall performance without
compromising the uncertainty consistency.

To simulate the input data from VO with a sparsity of
approximately 0.2%, we further test [U-DC and PNCNN on the
KITTI dataset with 1,000 samples and the NYU dataset with 200
samples. The iRMSE of PNCNN significantly degraded, being up
to 15 times greater than IU-DC in KITTI, indicating the presence
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of a large number of outliers. This result suggests that when the
sparsity becomes extremely high, the neighborhood of the signal
cannot be correctly estimated due to the limited receptive field when
depth data is the only input source. In contrast, IU-DC achieves
robust performance even with this extreme sparsity of input by
enriching information around the signal through the integration of
image features. This makes TU-DC more suitable for deployment
in VO scenarios. To qualitatively observe the results, we present
the depth maps estimated from PNCNN and IU-DC on the KITTI
dataset in Figure 6. IU-DC captures clearer edges and more detailed
contours even when the input sparsity increases significantly.

5 Dense mapping from sparse visual
odometry

While Section 4 presents evaluations on standard benchmark
datasets using synthetically downsampled sparse inputs, in this
section we further evaluate IU-DC in real-world visual odometry
(VO) scenarios, where the input sparsity and distribution better
reflect robot deployment conditions. We additionally assess
the impact of uncertainty-aware depth completion on mapping
performance.

5.1 Evaluation with VO input

5.1.1 Dataset
VOID (Wong 2020) provides
collected using an Intel RealSense D435i camera and the

et al, real-world data
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TABLE 2 Depth completion results on VOID dataset.

Method MAE RMSE iMAE iRMSE
VOICED 124.11 217.43 66.95 121.23
VI-Depth (265 x 265) 94.81 164.36 43.19 69.25
VI-Depth (480 x 640) 129.95 210.39 92.23 61.68
IU-DC (raw) 102.04 198.29 54.66 103.01
IU-DC (filtered) 62.61 111.32 37.65 69.86

4265 x 265 and 480 x 640 denote the input resolutions. Bold numbers indicate the best
performance.

TABLE 3 Ablation study on VOID dataset.

Model MAE RMSE iMAE iRMSE
Full 102.04 198.29 54.66 103.01
Confidence Refine
- w/o gated convolution 117.17 200.18 64.62 112.18
- w/o self-attention 104.89 203.85 55.41 107.67
- w/depth refine 119.12 210.15 66.72 115.43
ISM Network
- w/o ISM model 144.03 244.00 73.14 123.60
w/VO confidence init 196.44 448.85 921.34 2696.48

Bold numbers indicate the best performance.

VIO frontend (Fei et al., 2019), where metric pose and structure
estimation are performed in a gravity-aligned and scaled reference
frame using an inertial measurement unit (IMU). The dataset
is more realistic in that no sensor measures depth at random
locations. VOID contains 47K training and 800 test samples,
with varying levels of input depth density. We adopt 500 points,
corresponding to 0.15% of the pixels in the depth image, and
follow the published train-test split for evaluation. It is worth
noting that our method can generalize to different forms of
VO or VIO, as long as the front-end provides metric-scale
sparse depth.

5.1.2 Comparison to the SOTA

As baselines, we select two methods that are designed to
complete sparse depth from VO, similar to ours but without
uncertainty estimation: (i) VOICED (Wong et al, 2020) is an
unsupervised method that is among the first to tackle input
from VO. (ii) VI-Depth (Wofk et al., 2023) integrates monocular
depth estimation with VO to produce dense depth estimates
with metric scale. Note that the open-source VI-Depth model
was trained with a resolution of 265x265. We also report the
depth completion results at the raw resolution 480 x 640 in the
VOID. The depth completion results are summarized in Table 2.
The depth estimated by IU-DC demonstrates higher accuracy
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compared to VOICED and VI-Depth(480 x 640). However, I1U-
DC underperforms relative to VI-Depth(265 % 265), which is
the resolution used for training the external monocular depth
estimation network in VI-Depth. To demonstrate the effectiveness
of accurate uncertainty estimation from the network, we further
filter the top 20% of the most uncertain depth values in the
depth image and evaluate its accuracy. This is denoted as IU-
DCf(filtered) in Table 2. After applying the uncertainty-aware
filtering, the depth accuracy improves significantly and surpasses
other SOTAs by a large margin, e.g., VOICED by 48% and VI-Depth
(265 x 265) by 32%.

5.1.3 Runtime analysis and memory consumption

Runtime and memory consumption are both crucial for
deployment on mobile robots to achieve real-time performance. IU-
DC exhibits significantly lower parameter counts (0.6M) compared
to VOICED (6.4M) and VI-Depth (21M) and only occupies 2.76 MB
of memory. We further tested the runtime on NVIDIA GeForce
RTX 3050 and NVIDIA Xavier NX with an input resolution of 480 x
640. IU-DC runs at 17.5 FPS on the NVIDIA GeForce RTX 3050
and 5.5 FPS on the NVIDIA Xavier NX, while VI-Depth runs at 9
FPS and 3.5 FPS, respectively. IU-DC is nearly twice as fast as VI-
Depth. We also tested IU-DC with a lower resolution of 384 x 384,
achieving 10 FPS on the NVIDIA Xavier NX, which guarantees the
update rate for most keyframes in VO. The runtime of IU-DC can be
further reduced with engineering enhancements and more advanced
computational hardware, e.g., Jetson AGX Orin.

5.2 Ablation study

5.2.1 Effect of confidence refine

We first analyze the effect of our proposed Confidence
Refinement Block (CRB) by introducing three baselines: (i)
integrating image features using vanilla convolution instead of
gated convolution (-w/o gated convolution); (i) employing gated
convolution without the self-attention module (-w/o self-attention);
and (iii) using image features to refine the depth signal instead of
confidence (-w/depth refine). The results are presented in Table 3.
Our full model outperforms all baselines across all evaluation
metrics, validating that gated convolution extracts more reliable
features than vanilla convolution, thereby leading to improved
accuracy in depth completion. Furthermore, integrating the self-
attention module further enhances performance. We also find that
removing the self-attention module in CRB significantly deteriorates
the accuracy of uncertainty estimation, increasing the AUSE from
0.14 to 0.49. Moreover, refining confidence yields better results
than the depth signal, highlighting the strong correlation between
confidence in NCNN layers and images, which supports our
motivation for designing CRB.

We further assess whether the multi-resolution integration
of CRBs benefits the depth completion process and uncertainty
estimation. The results are shown in Figure 7. The major difference
between VOID and NYU lies in the input signal distribution. In
NYU, the inputs are randomly sampled from the ground truth,
whereas in VOID, the inputs are generated from the VO frontend.
When integrating more CRBs during inference, we observe an
improvement in both depth and uncertainty estimation accuracy.
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FIGURE 7

Results on the VOID dataset.
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Accuracy of multi-resolution integration of Confidence Refinement Blocks (one per resolution). (a) Results on the NYU dataset with 200 samples. (b)
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Accuracy of uncertainty estimation with and without the ISM model across different depth value ranges. (a) Results on the NYU dataset with 200
samples. (b) Results on the VOID dataset. The horizontal axis represents the percentage of top depth values in the depth image, e.g., 40 represents the
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TABLE 4 Mapping accuracy in VOID sequences.

10.3389/frobt.2025.1644230

Metric desktop visionlab
VI-Depth VI-Depth

~0.15%

Mean Dist. 0.08 0.11 0.09 0.19 0.11 0.22
Var. 0.03 0.05 0.06 0.14 0.06 0.17
~0.05%

Mean Dist. 0.09 0.20 0.10 0.23 0.18 0.23
Var. 0.04 0.17 0.09 0.21 0.15 0.17

#~0.15% and ~0.05% indicate input sparsity. Bold numbers indicate the best performance.
Ours Error Scalar GT

Dense Map (Droid-SLAM)

FIGURE 9

whereas the Sparse Map covers only 1.5%.

Dense Map (Ours)

Evaluation of the Mapping Performance. The left part presents the maps generated by sparse VO, Droid-SLAM, and our method, while the right part
shows three zoomed-in sections of our map with the associated error distribution. The Dense Map (ours) covers 78% volumes of the Ground Truth,

TABLE 5 Mapping accuracy in study office.

Input Correctvol Falsevol Meandist | Var
raw_depth 9.55 3.67 0.11 0.09
filtered_depth 7.05 0.87 0.07 0.04

2Vol. Is in m?.

This indicates that CRBs enhance the depth completion process,
with their effectiveness becoming more pronounced through multi-
resolution integration. It's worth noting that when no CRBs are
integrated into the network, the RMSE and MAE increase by 132%
and 208% in NYU, but by 924% and 1716% in VOID. We attribute
the substantial deterioration in VOID to the uneven distribution of
sparse depth from VO, which validates the crucial role of CRBs in
VO depth completion tasks.
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5.2.2 Effect of ISM model in uncertainty
estimation

IU-DC follows the same uncertainty propagation method as
NCNN during the depth completion process but is distinct in its output
uncertainty by integrating a map probability density function with the
ISM. We validate the role of the ISM model by training a network that
only utilize the confidence from the last NCNN layer for uncertainty
estimation, the same method as in PNCNN. We evaluate the accuracy
of uncertainty for different ranges of depth values and report the error
bars in Figure 8. By incorporating the ISM model, the uncertainty
estimation improves across different ranges of depth signals, aligning
with our motivation discussed in Section 3.4 and confirming that
our approach yields more spatially accurate uncertainty outputs. This
improvement is consistent whether the input comes from random
sampling or VO, validating that the ISM model is robust to the type of
input signal and generalizes well across different environments.

Additionally, the  depth
accuracy in Table 3 (denoted as -w/o ISM model). The results validate

we report completion
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(@) (b)
FIGURE 10
Alignment of maps from two robot coordinates. (a) Initial relative pose. (b) Alignment with maps generated by VO. (c) Alignment with maps generated
by our method. We use the ground truth map with a voxel resolution downsampled to 0.05 m for visualization.

that integrating the ISM model into the uncertainty estimation
network not only improves uncertainty estimation but also benefits
the network training, enabling it to converge to a more accurate
depth estimation model.

5.2.3 Does VO uncertainty aid in depth
completion?

We are also interested in whether the uncertainty estimated
from VO can benefit the depth completion process. Since the VOID
dataset does not provide uncertainty estimation for each input point,
we adopt the uniform uncertainty estimation method from (Zhang
and Ye, 2020) to compute the initial uncertainty for the input sparse
depth. This estimated uncertainty is then fed into the first NCNN
layer to train a baseline model. We report the results in Table 3
(denoted as w/VO conf. init.). After model convergence, the accuracy
of the estimated depth significantly drops, with a large iRMSE
indicating a high number of outliers. These observations suggest that
directly incorporating the uncertainty from a model-based VO does
not align well with the NCNN. We believe that employing a deep
VO framework and training in an end-to-end manner may yield
better results.

5.3 Evaluation of mapping performance

We adopt RTAB-Map (Labbé and Michaud, 2019) as the
mapping module and utilize a voxel grid resolution of 0.01 m to
store map for each sequence. We use either the ground truth pose
(in VOID) or the pose from the V-SLAM algorithm (in our own
sequence) in the mapping module to fairly assess the impact of depth
estimation from different methods on mapping performance. The
ground truth is generated using the ground truth depth with offline
post-processing. Following (Stathoulopoulos et al., 2023), we use
CloudCompare, an open-source point cloud processing software, to
first align each map and then calculate the distance between the two
point clouds (Mean Dist. (m)) and the standard deviation (Var.) as
error metrics for mapping.

5.3.1 VOID

We evaluated the mapping performance of IU-DC and VI-
Depth on three distinct sequences from the VOID dataset under
two levels of input sparsity: ~0.15% and ~0.05%. The results are
summarized in Table 4. Under normal sparsity (~0.15%), IU-DC
outperforms VI-Depth by almost twice the error metrics across all
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sequences, with accuracy improvements ranging from 27% to 52%,
and nearly half the variance. Moreover, when the input sparsity is
further reduced to ~0.05%—representing extreme scenarios where
the robot may operate in low-texture regions—IU-DC continues
to significantly outperform VI-Depth. These findings indicate that,
despite TU-DC being only 2.8% the size of VI-Depth, it is better
suited for robotic mapping tasks, as it facilitates the generation of
more precise spatial maps through its uncertainty-aware approach.

5.3.2 Long trajectory sequence in the study office

Most sequences in the VOID dataset are recorded in constrained
areas with short trajectories. To evaluate our method in a
more open environment with longer trajectories, which are more
common scenarios encountered by mobile robots, we conducted an
experiment in a large student office using a handheld Intel RealSense
D435i depth camera. We obtain the pose using the open-source
V-SLAM algorithm provided by RealSense and use depth images
from the D435i as ground truth (same as in the VOID dataset)
for both network training and inference. To generate the input for
the network, we follow the method described in (Wofk et al., 2023)
running the VINS-Mono feature tracker front-end (Qin et al., 2018)
to obtain sparse feature locations and then sampling ground truth
depth at those locations. Both the camera image and depth image
have a resolution of 480 x 640, with approximately 500 points used
in the input depth image.

The visualization of the map generated by sparse VO, Droid-
SLAM (dense VO) (Teed and Deng, 2021), our method, and
the ground truth is presented in Figure 9. Our method achieves
significant completeness with 50x reconstruction volumes
compared to the Sparse Map and captures detailed structural
information of the environment with high accuracy. Although
Droid-SLAM shows improvement in completeness over sparse VO,
there is still considerable missing spatial information. To further
validate the impact of uncertainty filtering approach, we conduct
a comparative study using the raw depth output from IU-DC in
the mapping module. We consider the distance between maps and
the ground truth within 0.05 m as correct volumes, while the rest
are classified as false volumes. From the results in Table 5, the
map constructed using filtered depth shows higher accuracy and
greater consistency with the ground truth. Although using raw
depth increases reconstruction volumes, it has a 28% error rate,
whereas filtered depth only has 10%. A video demonstrating the
real-time mapping performance using our proposed approach can
be found in the Supplementary Materials.
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5.3.3 Application in map alignment

We conducted two trajectories, each mapping half of the office
with a small overlapping area, to simulate the case of a two-
robot system. First, we align the two maps using the ground truth
pose and then introduce random translations and rotations to
simulate potential false relative poses in real-world scenarios, which
is presented in Figure 10A. We align the two local maps using
the transformation matrix calculated by GICP (Segal et al., 2009),
utilizing the same overlapping region of the sparse map generated
by VO, as shown in Figure 10B, and the dense map generated
by our method, as shown in Figure 10C. The results show that
directly using the sparse map results in false alignment due to the
map being too sparse, with missing reliable features. In contrast,
the completed map recovers most of the environmental structures,
providing sufficient features for accurately aligning the two maps.
Though the experiment is conducted with two robots, it can be easily
extended to a multi- or even swarm-robot system.

6 Conclusion

In this work, we propose a novel IU-DC to complete the
extremely sparse depth data from VO, enhancing spatial perception
through dense mapping of the environment. We extend NCNN into
an image-guided approach with a specifically designed image feature
integration mechanism and an ISM-based uncertainty estimation
method to encode both color and spatial features, demonstrating
superior performance in both depth and uncertainty estimation. The
uncertainty-aware depth output from IU-DC exhibits outstanding
performance compared to other VO depth completion methods in
the context of robot mapping, achieving 50 x more reconstructed
space than the original sparse map and 78% coverage of the ground
truth with high accuracy. IU-DC is also computationally efficient
and requires limited memory consumption, showcasing its potential
deployment on mobile robots.

The major limitation of our work, similar to other VO depth
completion methods, is the reliance on VO to generate an accurate
initial depth estimation. A promising future direction would be to
generate uncertainty estimations for both input and output depth,
and further apply optimization techniques to tightly couple these
uncertainties with the depth estimation from the network.
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