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Dense mapping from sparse 
visual odometry: a lightweight 
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Introduction: Visual odometry (VO) has been widely deployed on mobile robots 
for spatial perception. State-of-the-art VO offers robust localization, the maps 
it generates are often too sparse for downstream tasks due to insufffcient depth 
data. While depth completion methods can estimate dense depth from sparse 
data, the extreme sparsity and highly uneven distribution of depth signals in VO 
(∼ 0.15% of the pixels in the depth image available) poses signiffcant challenges.
Methods: To address this issue, we propose a lightweight Image-Guided 
Uncertainty-Aware Depth Completion Network (IU-DC) for completing sparse 
depth from VO. This network integrates color and spatial information into 
a normalized convolutional neural network to tackle the sparsity issue and 
simultaneously outputs dense depth and associated uncertainty. The estimated 
depth is uncertainty-aware, allowing for the filtering of outliers and ensuring 
precise spatial perception.
Results: The superior performance of IU-DC compared to SOTA is validated 
across multiple open-source datasets in terms of depth and uncertainty 
estimation accuracy. In real-world mapping tasks, by integrating IU-DC with 
the mapping module, we achieve 50 × more reconstructed volumes and 78% 
coverage of the ground truth with twice the accuracy compared to SOTA, 
despite having only 0.6 M parameters (just 3% of the size of the SOTA).
Discussion: Our code will be released at https://github.com/YangDL-BEIHANG/
Dense-mapping-from-sparse-visual-odometry/tree/d5a11b4403b5ac2e9e0c3
644b14b9711c2748bf9.

KEYWORDS

mapping, deep learning for visual perception, visual odometry, depth completion, 
uncertainty estimation 

 1 Introduction

Constructing a detailed and accurate map of the environment is a core task in the spatial 
perception of mobile robots (Malakouti-Khah et al., 2024). Visual odometry (VO) is widely 
used on mobile robots for perception due to its computational efficiency and adaptability to 
various environments (Labbé and Michaud, 2022; Aguiar et al., 2022). While state-of-the-art 
VO provides accurate localization, the resulting sparse depth data often leads to incomplete
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maps with insufficient spatial information, posing challenges 
for downstream tasks (Araya-Martinez et al., 2025). With 
breakthroughs in the computer vision community, sparse depth 
data can be completed using depth completion approaches 
(Mathew et al., 2023; Wan et al., 2025), offering a pathway to 
achieving dense maps in VO. However, the extreme sparsity of 
depth in VO can only offer limited prior knowledge and still poses 
significant challenges for depth completion approaches to estimate 
accurate dense depth for mapping.

Recent developments in depth completion approaches have 
achieved high accuracy on datasets even with limited input data 
through carefully designed feature extraction mechanisms and 
sophisticated network architectures (Chen et al., 2023; Liu et al., 
2023; Liu et al., 2022). However, the computational load and 
memory requirements hinder their practical implementation 
on mobile robots with limited memory capacity. Additionally, 
even approaches with high accuracy on datasets still produce 
a non-negligible number of outliers during inference, leading 
to false mapping of the environment for robots (Tao et al., 
2022). Several previous works have attempted to estimate both 
dense depth and associated uncertainty within a lightweight 
network architecture, using the uncertainty to reevaluate depth 
estimation (Tao et al., 2022; Ma and Karaman, 2018). These works 
have demonstrated real-world applications in reconstruction, 
motion planning, and localization. However, most of these 
works primarily consider inputs from LIDAR or incomplete 
depth images from depth cameras, which tend to exhibit lower 
sparsity and a more uniform distribution compared to data
obtained from VO.

Following this method, we propose a novel depth completion 
network inspired by the normalized convolutional neural network 
(NCNN) (Eldesokey et al., 2019) to complete the extremely 
sparse depth data from VO. The pipeline of our method is 
presented in Figure 1. We name our approach Image-Guided 
Uncertainty-Aware Depth Completion Network (IU-DC). Our 
contributions can be summarized as. 

• We introduce a Confidence Refine Block that integrates 
image features into the multi-resolution propagation of NCNN 
layers, effectively addressing the lack of priors in the sparse 
input from VO.
• We propose using a map probability density function with 

the Inverse Sensor Model in the final uncertainty estimation 
after the last layer of NCNN, enhancing the spatial awareness 
of the outputs. The accurate uncertainty estimated by IU-DC 
can then be used to filter out outliers in the depth estimation, 
providing a more reliable input for mapping.
• The superior performance of IU-DC has been validated 

against SOTA across multiple datasets in terms of depth 
and uncertainty estimation. We also conducted mapping 
experiments on both open-source datasets and our own 
sequences to support our claims. Our approach reconstructs 
50×  more volumes than VO, achieving 78% coverage of the 
ground truth with twice the accuracy compared to SOTA. 
Despite these improvements, IU-DC occupies only 2.76 MB 
of memory and can achieve near real-time performance on 
NVIDIA Xavier NX. We are planning to release the code to 
support future research.

2 Related work

2.1 Depth completion with uncertainty 
awareness

We first briefly review recent developments in depth completion 
approaches that address both depth and uncertainty estimation. A 
widely adopted approach involves introducing a second decoder to 
the original network to output uncertainty. Popović et al. (2021) 
and Tao et al. (2022) both employed dual decoders to output depth 
estimation and uncertainty, demonstrating applications in robot 
mapping and path planning. However, their input sparsity is much 
lower than that of VO. Qu et al. (2021) introduced a Bayesian 
Deep Basis Fitting approach that can be concatenated with a base 
model to generate high-quality uncertainty, even with sparse or 
no depth input. However, its performance is highly dependent on 
the base model, making it difficult to achieve in a lightweight 
network architecture. Additionally, approaches such as ensembling 
and MC-dropout can estimate uncertainty without modifying the 
original network (Gustafsson et al., 2020). However, these methods 
involve a time-consuming inference process, which hinders real-
time performance on robots.

Another promising approach is based on the theory 
of confidence-equipped signals in normalized convolution. 
Eldesokey et al. (2019) proposed a normalized convolutional 
neural network (NCNN) that generates continuous confidence 
maps for depth completion using limited network parameters. 
They further refined their work to obtain a probabilistic version of 
NCNN in (Eldesokey et al., 2020). Though the NCNN demonstrates 
outstanding performance in both depth completion and uncertainty 
estimation, it can only be used in an unguided manner due 
to algebraic constraints. This limitation results in performance 
degradation when the input has high sparsity due to a lack of prior 
information (Hu et al., 2022). Teixeira et al. (2020) attempted to 
extend NCNN into an image-guided method by concatenating 
the image with the outputs from NCNN into another network to 
generate the final prediction. While this approach improved depth 
completion accuracy, the resulting uncertainty lacked the continuity 
inherently modeled by NCNN. In this work, our proposed IU-
DC extends NCNN into an image-guided approach to address the 
sparsity issue while maintaining inherent continuity to generate 
precise uncertainty estimation. 

2.2 Depth completion from sparse VO

Several recent works have addressed the challenge of completing 
sparse depth from VO (Liu et al., 2022) (Wong et al., 2020; 
Merrill et al., 2021; Wofk et al., 2023). Wong et al. (2020) adopted an 
unsupervised approach, utilizing a predictive cross-modal criterion 
to train a network for inferring dense depth. Liu et al. (2022) adopted 
an adaptive knowledge distillation approach that allows the student 
model to leverage a blind ensemble of teacher models for depth 
prediction. Wofk et al. (2023) performed global scale and shift 
alignment with respect to sparse metric depth, followed by learning-
based dense alignment, achieving state-of-the-art performance in 
depth completion accuracy. Although the sparsity issue of VO 
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FIGURE 1
Pipeline of robot mapping with our approach. A dense map of the environment is constructed using only camera images and extremely sparse depth 
from VO with the proposed IU-DC. (a) RGB frame from the camera; (b) sparse depth from visual odometry; (c,d) dense depth and the associated 
uncertainty estimated by our network; (e) filtered depth obtained using the predicted uncertainty.

has been addressed in depth completion processes, few works are 
uncertainty-aware and demonstrate evaluations in mapping tasks. 

3 Methodology

3.1 Overall network architecture

Our network mainly comprises three main modules: the Input 
Confidence Estimation Network, which takes camera images and 
sparse depth as input and estimates the confidence mask input to 
first NCNN layer; the Image-Guided Normalized Convolutional 
Neural Network, which uses NCNN as backbone and refines the 
confidence output from NCNN layers at different resolutions with 
image features using the proposed Confidence Refine Block; and 
the Model-based Uncertainty Estimation Network, which takes the 
estimated depth and confidence output from last NCNN layer to 
estimates the final output uncertainty for each data. The overall 

architecture of our network is presented in Figure 2, and the details 
of each module are explained in the following sections.

3.2 Input confidence estimation network

In Eldesokey et al. (2020), the initial confidence mask input 
into NCNN is learned from the sparse depth using a compact 
network. However, when the input data becomes sparser and 
more randomly distributed, confidence estimation may degrade 
because structure information, such as neighboring objects and 
sharp edges, is significantly missing (Hu et al., 2022). Sparse depth 
from VO is always calculated through the KLT sparse optical flow 
algorithm using corner features (Qin et al., 2018), which have a close 
correlation with the camera image. To compensate for the missing 
cues, we utilize both the image and sparse depth together to estimate 
the input confidence. In the Input Confidence Estimation Network, 
the image and sparse depth are first concatenated and then input into 
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FIGURE 2
An overview of the proposed IU-DC. (1) Input Confidence Estimation Network, (2) Model-Based Uncertainty Estimation Network. The middle section 
with the Confidence Refine Block (Conf. Refine Block) represents the Image-Guided Normalized Convolutional Neural Network.

a compact UNet (Ronnebe et al., 2015) with a Softplus activation at 
the final layer to generate positive confidence estimations. 

3.3 Image-guided normalized 
convolutional neural network

The motivation for adopting NCNN as our backbone lies in 
its inherent ability to explicitly model confidence propagation. 
Unlike conventional convolutional networks, NCNN operates on 
confidence-equipped signals and interpolates missing values in a 
mathematically principled manner. This capability is particularly 
valuable under extreme sparsity, such as in VO-derived depth 
inputs, where the lack of priors makes robust estimation difficult. 
Moreover, NCNN naturally facilitates uncertainty estimation 
through confidence propagation, which aligns well with our 
objective of producing uncertainty-aware depth maps.

Prior studies have shown that image features—especially in 
regions such as reflective surfaces and occlusion boundaries—often 
carry rich structural cues that can complement sparse or unreliable 
depth information (Kendall and Gal, 2017). These features serve as 
valuable priors for improving confidence estimation, particularly in 
scenarios where the input depth is extremely sparse and unevenly 
distributed, as in VO-based depth completion.

However, directly incorporating image features into 
NCNN is not straightforward. This is because normalized 
convolution enforces algebraic constraints that require a strict 
correspondence between the input signal and its associated 
confidence. Consequently, common practices in image-guided 
depth completion—such as concatenating image features with the 
depth signal (Tao et al., 2022; Popović et al., 2021; Eldesokey et al., 
2019)—would violate these constraints and compromise the 
formulation of NCNN.

To leverage this potential without violating NCNN’s constraints, 
we propose the Confidence Refine Block (CRB). The primary 
motivation behind CRB is to introduce image guidance indirectly, 
by refining the intermediate confidence maps produced by NCNN 
layers. Rather than altering the depth signal directly, CRB enhances 
the confidence propagation process using gated fusion mechanisms 
and attention-based refinement. This design preserves the integrity 

of normalized convolution while effectively injecting contextual 
priors from the image, leading to improved performance under 
extreme sparsity.

In this section, we first review the basic concepts of the 
NCNN, and then introduce the details of how the proposed CRB 
fits into NCNN. 

3.3.1 Normalized convolutional neural network
The fundamental idea of the normalized convolution is to 

project the confidence-equipped signal y ∈ ℂn to a new subspace 
spanned by a set of basis functions {bj}

m
j=0

 using the signal with high 
confidence c ∈ ℝn

+. Afterwards, the full signal is reconstructed from 
this subspace, where the less-confident areas are interpolated from 
their vicinity using a weighting kernel denoted as the applicability 
function a ∈ ℝn

+. Thus the image of the signal under the subspace 
spanned by the basis is obtained as y = Br, where B is a matrix 
contains all the basis functions and r is a vector of coordinates. 
These coordinates can be estimated from a weighted least-squares 
problem (WLS) between the signal y and the basis B (Knutsson and 
Westin, 1993):

̂r = arg min
r∈ℂm

‖Br− y‖W

= (B∗nWBn)
−1B∗nWy,

W =Wa ⋅Wc = diag (a) ⋅ diag (c) .

(1)

Finally, the WLS solution ̂r can be used to estimate the signal:

ŷ = B ̂r.

Instead of manually choosing the applicability function, the 
optimal a in certain scenarios can be learned from NCNN 
(Eldesokey et al., 2019). This was achieved by using the naïve basis 
which set B = 1n:

̂rl
i = (1
∗
nWaWc1n)

−11∗nWaWcy =
〈al| (yl−1 ⊙ cl−1)〉

〈al|cl−1〉
, (2)

where 1n is a vector of ones, ⊙ is the Hadamard product, ⟨.|.⟩ is the 
scalar product, ̂ri is a scalar which is equivalent to the estimated 
value at the signal ŷi. The superscripts l and (l− 1) indicate the 
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l− th and (l− 1) − th layer of NCNN, respectively. The confidence is 
propagated as:

̂cl
i =
〈al|cl−1〉
〈1n|al〉

, (3)

where the output from one layer is the input to the next 
layer. If the image feature is directly concatenated with the 
depth signal y in (Equation 2) to construct a new signal y′, 
its dimensionality increases. Moreover, since c in (Equation 2) 
is the output of the previous NCNN layer and maintains a 
strict correspondence with each depth signal y, its dimensions 
remain consistent. Consequently, the new signal y′ ‘s dimensions 
do not match those of c, thereby preventing the application 
of the Hadamard operation. Another straightforward way to 
integrate the image feature with the depth signal y is through 
convolution to form a new signal y′. Although this operation 
resolves the dimensional mismatch, it no longer guarantees the 
correspondence between y′ and c. These issues motivate us 
to design the Confidence Refinement Block to integrate the 
image feature into NCNN without violating the signal-confidence
correspondence. 

3.3.2 Confidence refine block
We attempt to utilize the image features to refine, but not 

entirely alter, the confidence from the NCNN layers, as this 
would severely violate the correspondence between confidence and 
signals. Since sparse depth from VO is primarily concentrated 
in high-texture areas (e.g., object contours) while being sparsely 
distributed in low-texture regions (e.g., flat walls), this disparity 
leads to varying contributions of image features to confidence 
estimation across different areas. Given these challenges, a vanilla 
convolution (a standard convolution operation with normalization 
and an activation function) that treats all inputs as valid values is 
not suitable.

Gated Convolution (Yu et al., 2019), which uses additional 
convolution kernels to generate gating masks for adaptive 
feature reweighting, is well-suited to our case. We modified 
the original form of gated convolution, which originally takes 
only one feature as input, to simultaneously consider both 
confidence and image features when calculating the gating signal, 
as shown in Figure 3. Although sophisticated modality fusion 
techniques have been proposed in recent years and can be 
adopted to fuse confidence features with image features (Liu et al., 
2023), these methods often rely on complex convolution 
operations, which increase model complexity and go against 
our lightweight design. To address this issue, we adopt a 
straightforward yet effective strategy: first concatenating the two 
feature maps and encoding them with a lightweight convolution 
layer, then refining the fused representation using an efficient
Self-Attention Module.

Denoting the confidence from NCNN layer as Fconf and image 
feature as Fimg, they have the same size of H×W but with different 
channel number Cconf and Cimg. We first concatenates them into 
tensor Fin = [Fconf;Fimg] whose size is (Cconf +Cimg) ×H×W. Then 
we use a Conv layer, which contains a 2D-convolution layer and 
a batch normalization layer with a leakyReLU activation layer (to 
avoid a substantial increase in the number of parameters during 

feature extraction while maintaining responsiveness to negative 
values), to encode the concatenated feature tensor:

FCfeat×H×W = ReLU(Conv(F
(Cconf+Cimg)×H×W
in )).

however, Cconf and Cimg often exhibit large differences, posing a 
challenge for the encoding process to distinguish between weights 
from different features. For instance, at the lowest image resolution, 
Cconf is two while Cimg is 16. To address this limitation, we remap 
the feature map using a self-attention mechanism from (Woo et al., 
2018). The feature map FCfeat×H×W is first inferred through a 1D 
channel attention map Mc ∈ ℝ

Cfeat×1×1 and then through a 2D spatial 
attention map Ms ∈ ℝ1×H×W:

F′ =Mc (F) ⊗ F,

F′′ =Ms (F′) ⊗ F′,

where ⊗ denotes the element-wise multiplication between two 
tensors. To calculate the final gating signal Gc, we decode the 
remapped feature F′′ using a Conv layer followed by a sigmoid 
activation layer. Finally, the refined confidence F′conf can be obtained 
by implementing element-wise multiplication.

Gc = Sigmoid(Conv(F″)) ,

F′conf = Fconf ⊗Gc.

In IU-DC, we integrate one CRB after each confidence-
aware down-sampling layer in the NCNN to learn the correlation 
between confidence and image at different resolutions, as shown 
in the upper section of Figure 2. We also provide a visualization 
of the gating signals Gc in Figure 4. It can be observed that 
Gc effectively captures semantic features from the image to 
enhance the confidence map—such as sharp edges and reflective 
surfaces. Consequently, regions with sparse input signals can 
be effectively interpolated. This visualization also unveils a 
hidden relationship between the input depth from VO and the 
internal propagation within NCNN—depth signals located at 
more salient object contours tend to have a greater impact on the
reconstruction process.

3.4 Model-based uncertainty estimation 
network

In NCNN, the confidence is propagated separately from the 
depth signal as shown in (Equation 3), which results in a lack 
of spatial information. For instance, neighbors estimated from 
larger depth values typically have higher uncertainty compared to 
those from smaller depth values, which cannot be distinguished by 
normalized convolution due to the fixed size of the applicability 
function a.

To address this limitation, we assume that the dense depth 
output from NCNN forms an occupancy map in the camera 
frame and follows the probabilistic formulation of the Inverse 
Sensor Model (ISM) (Agha-Mohammadi et al., 2019). We integrate 
the confidence output from NCNN as a prior into this ISM-
based probability model, thereby enabling the estimation of 
spatially-aware uncertainty. Furthermore, the entire module can be 
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FIGURE 3
Detailed structure of proposed Confidence Refine Block.

FIGURE 4
Visualization of the gating signal in the Confidence Refine Block. The first row presents the input image, the second row presents the input sparse 
depth from VO, and the third shows the corresponding gating signal.

smoothly trained in an end-to-end manner using the loss function 
proposed in Section 3.5.

The probability distribution of individual voxel mi can be 
computed through Bayes’ rule in recursive manner as:

smi

k = p(mi|z0:k,x0:k)

=
p(zk|mi,z0:k−1,x0:k)p(mi|z0:k−1,x0:k)

p(zk|z0:k−1,x0:k)
,

(4)

where z is the measurement depth, x is the robot location, k is the 
steps of iteration. By integrating the ISM formulation,

p(zk ∣mi,z0:k−1,x0:k) ≈ p(zk ∣mi,xk)

=
p(mi ∣ zk,xk) p(zk ∣ xk)

p(mi ∣ xk)
,

 which indicates the occupancy probability given a single 
measurement, into (Equation 4), and assuming that the robot’s 
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previous trajectory x0:k does not affect the map, we obtain:

smi

k =
p(mi|zk,xk)p(zk|xk)p(mi|z0:k−1,x0:k−1)

p(mi)p(zk|z0:k−1,x0:k)
. (5)

Assuming a binary occupancy model for voxels (i.e., each voxel 
is either occupied mi = 1 or free mi = 0) and considering only 
the occupancy map in the camera frame - where the occupancy 
probability is independent of the robot’s motion, (Equation 5) can 
be simplified as:

smi

k =
p(mi = 1|zk)p(mi = 0)
p(mi = 0|zk)p(mi = 1)

=
Pmi

ISM (zk)

Pmi

prior

, (6)

where Pmi

ISM(zk) indicates the probability of the voxel is occupied 
given the ISM model with measurement, Pmi

prior indicates the prior 
knowledge.

Pmi

ISM(zk) can be approximated by (Loop et al., 2016):

Pmi

ISM (zk) =H(kσzmi

k ) , (7)

where H (⋅) is a cubic curve function maps the measurement into 
occupancy probability and kσ is a scalar. We initialize the kσ using a 
clipping operator to constrain the estimated depth zk within an ideal 
range [in our case, between 0.1 and 8 in VOID (Wong et al., 2020)]. 
Next, we refine the scalar by leveraging the spatial dependencies of 
neighboring depth values, and finally, we map each input zmi

k  into 
an occupancy probability by uniformly applying the function H (⋅)
across all inputs.

Typically, a fixed Pmi

prior for all voxels is assumed during 
deployment. However, due to various environmental factors, this 
assumption may not hold. We address this issue by adopting the 
confidence estimated from NCNN, which encodes both geometric 
and semantic features, as a strong prior. We construct the Pmi

prior
for each voxel to represent the heteroscedastic uncertainty in the 
estimation by formulating WLS problem in (Equation 1) as a special 
case of the Generalized least-squares (GLS), which offers more 
flexibility in handling individual variances for each observation 
(Eldesokey et al., 2020):

̂rGLS = (B∗V−1B)
−1B∗V−1y,

where V = (WaWc)
−1 to ensure consistency with the solution in 

(Equation 2). Then, we utilize the GLS solution ̂rGLS to estimate the 
signal ŷ, and the uncertainty of ŷ can be obtained as:

cov (ŷ) = cov(1n ̂rGLS) = 1ncov( ̂rGLS)1∗n
= σ21n(1∗nV−11n)

−11∗n

= 1n
σ2

⟨a ∣ c⟩
1∗n,

(8)

where σ is global variance for each signal. (Equation 8) indicates 
equal uncertainty for the entire neighborhood under a naïve basis. 
Since each voxel grid corresponds to the signal center ŷi, P

mi

prior can 
be represented as:

Pmi

prior = cov(ŷlast
i ) =

σ2
i

⟨alast ∣ clast⟩
, (9)

where σi is stochastic noise variance alast and clast represent the 
applicability function and confidence from the last NCNN layer 

respectively, as discussed in Section 3.3. The noise variance σi can 
be estimated from the confidence output of the last NCNN layer. 
By integrating (Equation 7) and (Equation 9) into (Equation 6) and 
extending it to all the pixels in the depth image, we can estimate the 
uncertainty using a mapping function Φ (⋅) as follows:

sk =Φ(kσzk, ̂clast) . (10)

Our objective is to learn the mapping function Φ (⋅) and the 
scalar kσ in (Equation 10) by concatenating the depth estimation and 
confidence output from the last NCNN layer into a compact UNet 
(Ronnebe et al., 2015), as shown in the right section of Figure 2. 
A direct comparison of the output uncertainty from the Model-
based Uncertainty Estimation Network (ISM-net), the NCNN layer 
(NCNN), and the conventional ISM in (Agha-Mohammadi et al., 
2019) (ISM) is presented in Figure 5.

3.5 Loss function and training strategy

To achieve the different functions of each module, we require 
a loss function that enables training the proposed network with 
uncertainty awareness. Following (Eldesokey et al., 2020) we 
assume a univariate distribution of each estimated signal under 
naïve basis ŷi ∼N ( ̂ri, si), where ̂ri is the depth estimation and 
si is the uncertainty estimation from IU-DC. The least squares 
solution in (Equation 2) can be formulated as a maximum likelihood 
problem of a Gaussian error model. Then the objective is defined as 
minimizing the negative log likelihood:

L (w) = 1
N

N

∑
i=1

‖yi − ̂ri‖2

si
+ log(si) ,

where w denotes the network parameters.
During the training of our network, we find that initializing the 

network parameters randomly and training with the loss function 
L(w) does not guarantee stable convergence. We assume that in 
the initial training stages, excessively large uncertainty estimations 
dominate the loss, causing the depth estimation to overcompensate. 
To address this issue, we adopt a multi-stage training strategy. 
Initially, we train the network with L2 loss until the network 
parameters stabilize. Subsequently, we fine-tune the uncertainty 
output using L(w). 

4 Evaluation on NYU and KITTI 
datasets

We use the standard error metrics of the KITTI depth 
completion challenge (Uhrig et al., 2017): the Root Mean Square 
Error (RMSE m), the Mean Absolute Error (MAE m), the Root 
Mean Squared Error of the Inverse depth (iRMSE 1/km), Mean 
Absolute Error of the Inverse depth (iMAE 1/km), and the area 
under sparsification error plots (AUSE) (Ilg et al., 2018) as measure 
for the accuracy of the uncertainty. 

4.1 Datasets and setup

Outdoor: KITTI dataset (Uhrig et al., 2017) is a large outdoor 
autonomous driving dataset. We use KITTI depth completion 
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FIGURE 5
Qualitative and quantitative evaluation of the effectiveness of the Model-based Uncertainty Estimation Network. The upper part of the figure presents 
the input image, sparse depth from VO, uncertainty estimation from the last NCNN layer, and the final uncertainty estimation from our network 
(ISM-net). The lower part of the figure illustrates the area under the sparsification error plots (Ilg et al., 2018), where curves closer to the oracle
represent estimated uncertainty that more closely approximates the real error distribution. ISM-net significantly enhances the uncertainty estimation 
from NCNN and outperforms the ISM by a large margin.

TABLE 1  Depth completion results on NYU and KITTI datasets.

Algorithm RMSE MAE iRMSE iMAE AUSE↓

KITTI test set

NCONV-AERIAL 1.01 0.26 — — 0.39

S2D 1.14 0.40 3.97 1.92 0.13

PNCNN 1.23 0.28 4.46 1.07 0.05

IU-DC 0.94 0.23 2.72 0.97 0.06

KITTI-1000 samples

PNCNN 2.41 0.70 70.08 2.56 0.05

IU-DC 1.59 0.50 4.87 2.02 0.05

NYU-500 samples

NCONV-AERIAL 0.22 0.11 — — 0.24

S2D 0.22 0.16 24.29 16.90 0.30

PNCNN 0.18 0.07 24.38 8.77 0.06

IU-DC 0.11 0.04 14.28 5.13 0.06

NYU-200 samples

PNCNN 0.24 0.10 56.78 13.82 0.09

IU-DC 0.16 0.06 20.71 8.36 0.09

The number of parameters (#P) for each model is as follows: NCONV-AERIAL: 980 K; 
S2D: 12 M; PNCNN: 668 K; IU-DC: 689 K. Bold numbers indicate the best performance.

dataset for evaluation, where the training set contains 86k frames, 
validation set contains 7k frames, and the test set contains 1k frames. 
The original input depth images have 5% of the pixels available. To 
simulate the input sparsity of VO, we randomly sample 1k pixels 
from the raw input depth image, representing approximately 0.2% 
of the pixels available.

Indoor: NYU dataset (Silberman et al., 2012) is an RGB-D 
dataset for indoor scenes, captured with a Micrasoft Kinect. We use 
the official split with roughly 48k RGB-D pairs for training and 654 
pairs for testing. We randomly sample 500 pixels and 200 pixels from 
the ground truth depth image, representing available pixels of 0.7% 
and 0.2%, respectively.

Setup: We implement all the networks in PyTorch and train 
them using the Adam optimizer with an initial learning rate 
of 0.001 that is decayed with a factor of 10−1 every 6 epochs 
follow the training strategy outlined in Section 3.5. All datasets 
are preprocessed using the same cropping and data augmentation 
procedures as (Eldesokey et al., 2020). 

4.2 Comparison to the SOTA

Baselines: We propose to obtain dense depth and uncertainty 
simultaneously, while also considering a lightweight network 
architecture with low memory consumption suitable for deployment 
on mobile robots. As baselines, we selected three state-of-the-
art networks that meet the requirements: (i) NCONV-AERIAL 
(Teixeira et al., 2020) is an image guided approach that incorporates 
NCNN and fuses its output with images to estimate the final depth 
and uncertainty. (ii) S2D (Tao et al., 2022) is an image-guided 
approach that concatenates the image and sparse depth image in 
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FIGURE 6
Visualization of depth completion results on the KITTI dataset, where 5% and 0.2% denote the percentage of available pixels in the depth image. 
PNCNN performs well under low sparsity but exhibits blurriness on the contours of objects and fails to capture most information under high sparsity. In 
contrast, IU-DC shows more robust performance in both cases.

one encoder and outputs dense depth image and uncertainty from 
two separate decoders. (iii) PNCNN (Eldesokey et al., 2020) is an 
unguided approach that also utilizes NCNN as its backbone and has 
a network structure similar to our approach. We train PNCNN using 
their open-source code. For S2D, we follow their implementation as 
described in their paper since they did not release their code. As for 
NCONV-AERIAL, we use the best results reported in their paper 
and calculate AUSE using their open-source model.

We initially test all the methods on the KITTI test set with raw 
input sparsity and the NYU test set with 500 samples as input. We 
report the accuracy of depth and uncertainty estimation, as well as 
the number of network parameters in Table 1. S2D and NCONV-
AERIAL demonstrate superior accuracy in depth completion 
compared to PNCNN on the KITTI, attributed to their integration 
of image features. However, on the NYU dataset where the input 
sparsity increases to 0.7%, the integration of image features fails to 
enhance the depth completion performance, even underperforming 
compared to the unguided approach. Furthermore, both S2D and 
NCONV-AERIAL exhibit significantly higher AUSE, indicating 
that the uncertainty output from the networks is not tightly 
correlated with the actual error distribution. Our proposed IU-DC 
outperforms PNCNN in depth estimation accuracy and maintains 
accurate uncertainty estimation across both datasets. This indicates 
that our modifications enhances overall performance without 
compromising the uncertainty consistency.

To simulate the input data from VO with a sparsity of 
approximately 0.2%, we further test IU-DC and PNCNN on the 
KITTI dataset with 1,000 samples and the NYU dataset with 200 
samples. The iRMSE of PNCNN significantly degraded, being up 
to 15 times greater than IU-DC in KITTI, indicating the presence 

of a large number of outliers. This result suggests that when the 
sparsity becomes extremely high, the neighborhood of the signal 
cannot be correctly estimated due to the limited receptive field when 
depth data is the only input source. In contrast, IU-DC achieves 
robust performance even with this extreme sparsity of input by 
enriching information around the signal through the integration of 
image features. This makes IU-DC more suitable for deployment 
in VO scenarios. To qualitatively observe the results, we present 
the depth maps estimated from PNCNN and IU-DC on the KITTI 
dataset in Figure 6. IU-DC captures clearer edges and more detailed 
contours even when the input sparsity increases significantly. 

5 Dense mapping from sparse visual 
odometry

While Section 4 presents evaluations on standard benchmark 
datasets using synthetically downsampled sparse inputs, in this 
section we further evaluate IU-DC in real-world visual odometry 
(VO) scenarios, where the input sparsity and distribution better 
reflect robot deployment conditions. We additionally assess 
the impact of uncertainty-aware depth completion on mapping 
performance.

5.1 Evaluation with VO input

5.1.1 Dataset
VOID (Wong et al., 2020) provides real-world data 

collected using an Intel RealSense D435i camera and the 
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TABLE 2  Depth completion results on VOID dataset.

Method MAE RMSE iMAE iRMSE

VOICED 124.11 217.43 66.95 121.23

VI-Depth (265× 265) 94.81 164.36 43.19 69.25

VI-Depth (480× 640) 129.95 210.39 92.23 61.68

IU-DC (raw) 102.04 198.29 54.66 103.01

IU-DC (filtered) 62.61 111.32 37.65 69.86

a265× 265 and 480× 640 denote the input resolutions. Bold numbers indicate the best 
performance.

TABLE 3  Ablation study on VOID dataset.

Model MAE RMSE iMAE iRMSE

Full 102.04 198.29 54.66 103.01

Confidence Refine

- w/o gated convolution 117.17 200.18 64.62 112.18

- w/o self-attention 104.89 203.85 55.41 107.67

- w/depth refine 119.12 210.15 66.72 115.43

ISM Network

- w/o ISM model 144.03 244.00 73.14 123.60

w/VO confidence init 196.44 448.85 921.34 2696.48

Bold numbers indicate the best performance.

VIO frontend (Fei et al., 2019), where metric pose and structure 
estimation are performed in a gravity-aligned and scaled reference 
frame using an inertial measurement unit (IMU). The dataset 
is more realistic in that no sensor measures depth at random 
locations. VOID contains 47K training and 800 test samples, 
with varying levels of input depth density. We adopt 500 points, 
corresponding to 0.15% of the pixels in the depth image, and 
follow the published train-test split for evaluation. It is worth 
noting that our method can generalize to different forms of 
VO or VIO, as long as the front-end provides metric-scale
sparse depth. 

5.1.2 Comparison to the SOTA
As baselines, we select two methods that are designed to 

complete sparse depth from VO, similar to ours but without 
uncertainty estimation: (i) VOICED (Wong et al., 2020) is an 
unsupervised method that is among the first to tackle input 
from VO. (ii) VI-Depth (Wofk et al., 2023) integrates monocular 
depth estimation with VO to produce dense depth estimates 
with metric scale. Note that the open-source VI-Depth model 
was trained with a resolution of 265× 265. We also report the 
depth completion results at the raw resolution 480× 640 in the 
VOID. The depth completion results are summarized in Table 2. 
The depth estimated by IU-DC demonstrates higher accuracy 

compared to VOICED and VI-Depth(480× 640). However, IU-
DC underperforms relative to VI-Depth(265× 265), which is 
the resolution used for training the external monocular depth 
estimation network in VI-Depth. To demonstrate the effectiveness 
of accurate uncertainty estimation from the network, we further 
filter the top 20% of the most uncertain depth values in the 
depth image and evaluate its accuracy. This is denoted as IU-
DC(filtered) in Table 2. After applying the uncertainty-aware 
filtering, the depth accuracy improves significantly and surpasses 
other SOTAs by a large margin, e.g., VOICED by 48% and VI-Depth
(265× 265) by 32%. 

5.1.3 Runtime analysis and memory consumption
Runtime and memory consumption are both crucial for 

deployment on mobile robots to achieve real-time performance. IU-
DC exhibits significantly lower parameter counts (0.6M) compared 
to VOICED (6.4M) and VI-Depth (21M) and only occupies 2.76 MB 
of memory. We further tested the runtime on NVIDIA GeForce 
RTX 3050 and NVIDIA Xavier NX with an input resolution of 480×
640. IU-DC runs at 17.5 FPS on the NVIDIA GeForce RTX 3050 
and 5.5 FPS on the NVIDIA Xavier NX, while VI-Depth runs at 9 
FPS and 3.5 FPS, respectively. IU-DC is nearly twice as fast as VI-
Depth. We also tested IU-DC with a lower resolution of 384× 384, 
achieving 10 FPS on the NVIDIA Xavier NX, which guarantees the 
update rate for most keyframes in VO. The runtime of IU-DC can be 
further reduced with engineering enhancements and more advanced 
computational hardware, e.g., Jetson AGX Orin. 

5.2 Ablation study

5.2.1 Effect of confidence refine
We first analyze the effect of our proposed Confidence 

Refinement Block (CRB) by introducing three baselines: (i) 
integrating image features using vanilla convolution instead of 
gated convolution (-w/o gated convolution); (ii) employing gated 
convolution without the self-attention module (-w/o self-attention); 
and (iii) using image features to refine the depth signal instead of 
confidence (-w/depth refine). The results are presented in Table 3. 
Our full model outperforms all baselines across all evaluation 
metrics, validating that gated convolution extracts more reliable 
features than vanilla convolution, thereby leading to improved 
accuracy in depth completion. Furthermore, integrating the self-
attention module further enhances performance. We also find that 
removing the self-attention module in CRB significantly deteriorates 
the accuracy of uncertainty estimation, increasing the AUSE from 
0.14 to 0.49. Moreover, refining confidence yields better results 
than the depth signal, highlighting the strong correlation between 
confidence in NCNN layers and images, which supports our 
motivation for designing CRB.

We further assess whether the multi-resolution integration 
of CRBs benefits the depth completion process and uncertainty 
estimation. The results are shown in Figure 7. The major difference 
between VOID and NYU lies in the input signal distribution. In 
NYU, the inputs are randomly sampled from the ground truth, 
whereas in VOID, the inputs are generated from the VO frontend. 
When integrating more CRBs during inference, we observe an 
improvement in both depth and uncertainty estimation accuracy. 
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FIGURE 7
Accuracy of multi-resolution integration of Confidence Refinement Blocks (one per resolution). (a) Results on the NYU dataset with 200 samples. (b)
Results on the VOID dataset.

FIGURE 8
Accuracy of uncertainty estimation with and without the ISM model across different depth value ranges. (a) Results on the NYU dataset with 200 
samples. (b) Results on the VOID dataset. The horizontal axis represents the percentage of top depth values in the depth image, e.g., 40 represents the 
top 40% of values in the depth image.
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TABLE 4  Mapping accuracy in VOID sequences.

Metric desktop office visionlab

IU-DC VI-Depth IU-DC VI-Depth IU-DC VI-Depth

∼0.15%

Mean Dist. 0.08 0.11 0.09 0.19 0.11 0.22

Var. 0.03 0.05 0.06 0.14 0.06 0.17

∼0.05%

Mean Dist. 0.09 0.20 0.10 0.23 0.18 0.23

Var. 0.04 0.17 0.09 0.21 0.15 0.17

a∼0.15% and ∼0.05% indicate input sparsity. Bold numbers indicate the best performance.

FIGURE 9
Evaluation of the Mapping Performance. The left part presents the maps generated by sparse VO, Droid-SLAM, and our method, while the right part 
shows three zoomed-in sections of our map with the associated error distribution. The Dense Map (ours) covers 78% volumes of the Ground Truth, 
whereas the Sparse Map covers only 1.5%.

TABLE 5  Mapping accuracy in study office.

Input Correct vol False vol Mean dist Var

raw_depth 9.55 3.67 0.11 0.09

filtered_depth 7.05 0.87 0.07 0.04

aVol. Is in m2.

This indicates that CRBs enhance the depth completion process, 
with their effectiveness becoming more pronounced through multi-
resolution integration. It’s worth noting that when no CRBs are 
integrated into the network, the RMSE and MAE increase by 132%
and 208% in NYU, but by 924% and 1716% in VOID. We attribute 
the substantial deterioration in VOID to the uneven distribution of 
sparse depth from VO, which validates the crucial role of CRBs in 
VO depth completion tasks. 

5.2.2 Effect of ISM model in uncertainty 
estimation

IU-DC follows the same uncertainty propagation method as 
NCNN during the depth completion process but is distinct in its output 
uncertainty by integrating a map probability density function with the 
ISM. We validate the role of the ISM model by training a network that 
only utilize the confidence from the last NCNN layer for uncertainty 
estimation, the same method as in PNCNN. We evaluate the accuracy 
of uncertainty for different ranges of depth values and report the error 
bars in Figure 8. By incorporating the ISM model, the uncertainty 
estimation improves across different ranges of depth signals, aligning 
with our motivation discussed in Section 3.4 and confirming that 
our approach yields more spatially accurate uncertainty outputs. This 
improvement is consistent whether the input comes from random 
sampling or VO, validating that the ISM model is robust to the type of 
input signal and generalizes well across different environments. 

Additionally, we report the depth completion 
accuracy in Table 3 (denoted as -w/o ISM model). The results validate 
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FIGURE 10
Alignment of maps from two robot coordinates. (a) Initial relative pose. (b) Alignment with maps generated by VO. (c) Alignment with maps generated 
by our method. We use the ground truth map with a voxel resolution downsampled to 0.05 m for visualization.

that integrating the ISM model into the uncertainty estimation 
network not only improves uncertainty estimation but also benefits 
the network training, enabling it to converge to a more accurate 
depth estimation model. 

5.2.3 Does VO uncertainty aid in depth 
completion?

We are also interested in whether the uncertainty estimated 
from VO can benefit the depth completion process. Since the VOID 
dataset does not provide uncertainty estimation for each input point, 
we adopt the uniform uncertainty estimation method from (Zhang 
and Ye, 2020) to compute the initial uncertainty for the input sparse 
depth. This estimated uncertainty is then fed into the first NCNN 
layer to train a baseline model. We report the results in Table 3 
(denoted as w/VO conf. init.). After model convergence, the accuracy 
of the estimated depth significantly drops, with a large iRMSE 
indicating a high number of outliers. These observations suggest that 
directly incorporating the uncertainty from a model-based VO does 
not align well with the NCNN. We believe that employing a deep 
VO framework and training in an end-to-end manner may yield 
better results. 

5.3 Evaluation of mapping performance

We adopt RTAB-Map (Labbé and Michaud, 2019) as the 
mapping module and utilize a voxel grid resolution of 0.01 m to 
store map for each sequence. We use either the ground truth pose 
(in VOID) or the pose from the V-SLAM algorithm (in our own 
sequence) in the mapping module to fairly assess the impact of depth 
estimation from different methods on mapping performance. The 
ground truth is generated using the ground truth depth with offline 
post-processing. Following (Stathoulopoulos et al., 2023), we use 
CloudCompare, an open-source point cloud processing software, to 
first align each map and then calculate the distance between the two 
point clouds (Mean Dist. (m)) and the standard deviation (Var.) as 
error metrics for mapping. 

5.3.1 VOID
We evaluated the mapping performance of IU-DC and VI-

Depth on three distinct sequences from the VOID dataset under 
two levels of input sparsity: ∼0.15% and ∼0.05%. The results are 
summarized in Table 4. Under normal sparsity (∼0.15%), IU-DC 
outperforms VI-Depth by almost twice the error metrics across all 

sequences, with accuracy improvements ranging from 27% to 52%, 
and nearly half the variance. Moreover, when the input sparsity is 
further reduced to ∼0.05%—representing extreme scenarios where 
the robot may operate in low-texture regions—IU-DC continues 
to significantly outperform VI-Depth. These findings indicate that, 
despite IU-DC being only 2.8% the size of VI-Depth, it is better 
suited for robotic mapping tasks, as it facilitates the generation of 
more precise spatial maps through its uncertainty-aware approach. 

5.3.2 Long trajectory sequence in the study office
Most sequences in the VOID dataset are recorded in constrained 

areas with short trajectories. To evaluate our method in a 
more open environment with longer trajectories, which are more 
common scenarios encountered by mobile robots, we conducted an 
experiment in a large student office using a handheld Intel RealSense 
D435i depth camera. We obtain the pose using the open-source 
V-SLAM algorithm provided by RealSense and use depth images 
from the D435i as ground truth (same as in the VOID dataset) 
for both network training and inference. To generate the input for 
the network, we follow the method described in (Wofk et al., 2023) 
running the VINS-Mono feature tracker front-end (Qin et al., 2018) 
to obtain sparse feature locations and then sampling ground truth 
depth at those locations. Both the camera image and depth image 
have a resolution of 480× 640, with approximately 500 points used 
in the input depth image.

The visualization of the map generated by sparse VO, Droid-
SLAM (dense VO) (Teed and Deng, 2021), our method, and 
the ground truth is presented in Figure 9. Our method achieves 
significant completeness with 50×  reconstruction volumes 
compared to the Sparse Map and captures detailed structural 
information of the environment with high accuracy. Although 
Droid-SLAM shows improvement in completeness over sparse VO, 
there is still considerable missing spatial information. To further 
validate the impact of uncertainty filtering approach, we conduct 
a comparative study using the raw depth output from IU-DC in 
the mapping module. We consider the distance between maps and 
the ground truth within 0.05 m as correct volumes, while the rest 
are classified as false volumes. From the results in Table 5, the 
map constructed using filtered depth shows higher accuracy and 
greater consistency with the ground truth. Although using raw 
depth increases reconstruction volumes, it has a 28% error rate, 
whereas filtered depth only has 10%. A video demonstrating the 
real-time mapping performance using our proposed approach can 
be found in the Supplementary Materials.
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5.3.3 Application in map alignment
We conducted two trajectories, each mapping half of the office 

with a small overlapping area, to simulate the case of a two-
robot system. First, we align the two maps using the ground truth 
pose and then introduce random translations and rotations to 
simulate potential false relative poses in real-world scenarios, which 
is presented in Figure 10A. We align the two local maps using 
the transformation matrix calculated by GICP (Segal et al., 2009), 
utilizing the same overlapping region of the sparse map generated 
by VO, as shown in Figure 10B, and the dense map generated 
by our method, as shown in Figure 10C. The results show that 
directly using the sparse map results in false alignment due to the 
map being too sparse, with missing reliable features. In contrast, 
the completed map recovers most of the environmental structures, 
providing sufficient features for accurately aligning the two maps. 
Though the experiment is conducted with two robots, it can be easily 
extended to a multi- or even swarm-robot system. 

6 Conclusion

In this work, we propose a novel IU-DC to complete the 
extremely sparse depth data from VO, enhancing spatial perception 
through dense mapping of the environment. We extend NCNN into 
an image-guided approach with a specifically designed image feature 
integration mechanism and an ISM-based uncertainty estimation 
method to encode both color and spatial features, demonstrating 
superior performance in both depth and uncertainty estimation. The 
uncertainty-aware depth output from IU-DC exhibits outstanding 
performance compared to other VO depth completion methods in 
the context of robot mapping, achieving 50×  more reconstructed 
space than the original sparse map and 78% coverage of the ground 
truth with high accuracy. IU-DC is also computationally efficient 
and requires limited memory consumption, showcasing its potential 
deployment on mobile robots.

The major limitation of our work, similar to other VO depth 
completion methods, is the reliance on VO to generate an accurate 
initial depth estimation. A promising future direction would be to 
generate uncertainty estimations for both input and output depth, 
and further apply optimization techniques to tightly couple these 
uncertainties with the depth estimation from the network.
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