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Intelligent maneuver
decision-making for UAVs using
the TD3–LSTM reinforcement
learning algorithm under
uncertain information

Tongle Zhou*, Ziyi Liu, Wenxiao Jin and Zengliang Han

College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing,
China

Aiming to address the complexity and uncertainty of unmanned aerial
vehicle (UAV) aerial confrontation, a twin delayed deep deterministic policy
gradient (TD3)–long short-term memory (LSTM) reinforcement learning-based
intelligent maneuver decision-making method is developed in this paper. A
victory/defeat adjudication model is established, considering the operational
capability of UAVs based on an aerial confrontation scenario and the 3-
degree-of-freedom (3-DOF) UAV model. For the purpose of assisting UAVs
in making maneuvering decisions in continuous action space, a model-
driven state transition update mechanism is designed. The uncertainty is
represented using the Wasserstein distance and memory nominal distribution
methods to estimate the detection noise of the target. On the basis of
TD3, an LSTM network is utilized to extract features from high-dimensional
aerial confrontation situations with uncertainty. The effectiveness of the
proposed method is verified by conducting four different aerial confrontation
simulation experiments.

KEYWORDS

unmanned aerial vehicles, maneuver decision-making, reinforcement learning, twin
delayed deep deterministic policy gradient, long short-time memory

1 Introduction

Unmanned aerial vehicles (UAVs) have undergone significant development over recent
years, offering advantages such as cost-effectiveness, strong maneuverability, good stealth
performance, and the ability to be recycled and reused. It will gradually replace manned
aircraft in future complex environments for performing regional reconnaissance, attacking
targets, and other tasks (Shin et al., 2018; Zhou et al., 2020b). The process by which UAVs
automatically make control decisions by simulating pilots and commanders who respond
to various air combat situations is a crucial component of the autonomous decision-making
system for aerial confrontations (Zhou et al., 2020a;Wang et al., 2020). As a result, it is critical
to develop an intelligent maneuver decision-making approach to enhance UAV autonomy,
intelligence, and air combat capability and adapt to the real-time demands of unmanned
aerial confrontation.

The OODA (observation, orientation, decision, and action) loop theory governs
maneuver decision-making in UAV confrontations (Virtanen et al., 2006). The UAV

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1645927
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1645927&domain=pdf&date_stamp=2025-07-31
mailto:zhoutongle@nuaa.edu.cn
mailto:zhoutongle@nuaa.edu.cn
https://doi.org/10.3389/frobt.2025.1645927
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1645927/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1645927/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1645927/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1645927/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1645927/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Zhou et al. 10.3389/frobt.2025.1645927

maneuver decision-making theory has gained significant attention
and has been widely studied over the past decade due to
advancements in the autonomy and intelligence of UAVs. At the
moment, research on the intelligent maneuver decision-making
method of UAVs is centered on three areas: expert systems, game
theory, and learning algorithms.

Expert system-based maneuver decision-making formulates
predicate logic production rules following “if–else–then” principles,
upon which UAVs base tactical maneuver selections (Virtanen et al.,
2006). The expert system is widely used in actual maneuver
decision-making systems due to its simplicity in design and the
interpretability of the decision outcomes. However, the expert
system is overly reliant on rule dependability and lacks scalability. To
improve the adaptability of expert systems in aerial combat, Liu et al.
(2016) developed a receding horizon control-based maneuver
decision-making method. Tan et al. (2022) developed a fuzzy expert
system for UAV short-range escape maneuvers by learning tactical
information.

Based on optimization theory, aerial confrontation is considered
a strategic game involving decision-makers. The state transition
during this process is described by a differential equation
(payment function), and the maneuver decision-making problem is
subsequently resolved through numerical optimization techniques
(Park et al., 2016; Duan et al., 2015). Li Q. et al. (2022) established
a decision-making model for maneuver games. It was based on
positional situation information, fighter performance, intentional
threat, and the collaborative effects of multiple fighters. The optimal
decision scheme for the game was determined using the double
game tree distributed Monte Carlo search strategy. Duan et al.
(2023) designed a game with a mixed objective function for
UAV autonomous maneuver decision-making problems, and the
optimal solution was obtained using improved pigeon-inspired
optimization.

With the accelerated advancement of artificial intelligence
technology and computer processing power, deep learning and
reinforcement learning algorithms have grown in popularity and are
widely employed in unmanned systems. For the deep learning-based
maneuver decision-making method, the situation information and
UAV performance parameters are input into the deep networks,
and the maneuvering action or control command is obtained after
training and learning (Zhang and Huang, 2020). Relatively, the
idea of reinforcement learning is more aligned with maneuver
decision-making of UAVs. Based on the reinforcement learning
Markov decision process, a UAV can select the corresponding
maneuvering action through the real-time assessment of the
environmental situation (Zhang et al., 2018; Tu et al., 2021). A
heuristic deep deterministic policy gradient (DDPG) algorithm was
introduced to improve the exploration capability in continuous
action space for the UAV maneuver decision-making problem
(Wang et al., 2022). A deep reinforcement learning andMonte Carlo
tree search-based maneuver decision-making method, independent
of human knowledge, was proposed by Zhang et al. (2022).
Utilizing self-play, the system initiates with random actions to
generate air combat training samples (including states, actions,
and rewards).

Due to the complexity of the environment in actual aerial
confrontations, the traditional discrete maneuver action library
struggles to meet the demand for maneuvering diversity. The

learning and training of continuous maneuvers require higher
algorithm real-time efficiency. The twin delayed deep deterministic
policy gradient algorithm (TD3) is a deterministic strategy
reinforcement learning algorithm designed for high-dimensional
continuous action spaces. It offers significant advantages in
offline training plasticity and the real-time usage of neural
networks (Hong et al., 2021). Furthermore, the long short-term
memory (LSTM) network can transform the aerial confrontation
state with uncertainty into a high-dimensional perceptual
situation and improve the neural network learning ability of
the target state time series data (Kant et al., 2023). Hence, the
TD3–LSTM reinforcement learning-based intelligent algorithm
is developed to address the UAV maneuver decision-making
problem under uncertain information. The following are the
major contributions:

• Avictory/defeat adjudicationmodel is established based on the
actual UAV aerial confrontation scenario, which could ensure
the validity of maneuver decision-making.
• A model-driven state transition update mechanism is
developed based on the 3-degree-of-freedom (3-DOF)
UAV model to ensure the efficiency of the continuous
action space.
• A Wasserstein distance-based model aims to describe
uncertainty in confrontation, which can enhance the
robustness of maneuver decision-making.
• A reinforcement learning intelligent algorithm is proposed
based on TD3–LSTM to improve the efficiency of maneuver
decision-making.

The remainder of this paper is organized as follows. Section 2
details the problem formulation, including the one-to-one
confrontation model, the victory/defeat adjudication model,
and the maneuver decision-making system structure. The deep
reinforcement learning-based UAV maneuver decision-making
method, which consists of a model-driven state transition update
mechanism, reward function design, uncertainty description, and
the TD3–LSTM algorithm, is introduced in Section 3. In Section 4,
we provide the simulation results. Finally, the conclusion is
presented in Section 5.

FIGURE 1
UAV one-on-one confrontation scenario.
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2 Problem description

Maneuver decision-making is the process by which a
UAV selects maneuvering actions based on the current aerial
confrontation situation and environmental information, aiming
to gain operational superiority by altering the aerial confrontation
dynamics. The maneuver decision problem belongs to the top-level
decision problem of UAVs.

2.1 Confrontation model of UAV

The UAV one-on-one confrontation scenario is shown in
Figure 1 (Yang et al., 2019).

In Figure 1, v⃗B and P⃗B(xB,yB,zB) denote the velocity vector and
position vector of the UAV, respectively, while v⃗R and P⃗R(xR,yR,zR)
represent the velocity vector and position vector of the target,
respectively. α represents the relative azimuth angle.

Defining D⃗ as the relative distance of theUAVwith respect to the
target—where the direction represents the UAV pointing toward the
target and the magnitude is given by d— D⃗ and d can be calculated
by Equations 1, 2 (Li B. et al., 2022)

D⃗ = D⃗R − D⃗B, (1)

d = ‖D⃗‖
2
. (2)

Thus, the relative azimuth angle α can be calculated as
Equation 3 (Li B. et al., 2022):

α = arccos((D⃗× v⃗B)/(‖D⃗‖2 ⋅ ‖v⃗B‖2)) . (3)

2.2 Victory/defeat adjudication model

Generally, the operational capability of a UAV is constrained
by the capabilities of its weapon system (Luo et al., 2022). A
schematic showing the UAV attacking and locking onto the target
is presented in Figure 2.

In Figure 2, υmax denotes the maximum off-axis emission
angle of the UAV weapon system, Da

max stands for the maximum
firing distance, and tlockmin indicates the minimum locking time.
Moreover, the UAV wins the confrontation when it locks onto the
target for more than tlockmin seconds within the UAV firing range.
Specifically, the victory adjudication condition can be described as
Equation 4:

{{{{
{{{{
{

d ≤ Da
max

α ≤ υmax

tin ≥ t
lock
min

, (4)

where tin represents the time the UAV locks onto the
target.

Based on the points discussed above, the objective of this
paper is to design an intelligent algorithm that enables UAVs
to make autonomous decisions to achieve victory adjudication
conditions in advance, based on environmental and situational
information.

2.3 Maneuver decision-making system
structure of UAVs

The UAV maneuver decision-making system is comprised
of three components: the situation assessment module, the
maneuver decision-making module, and the flight drive module.
The situation assessment module obtains relative situational
information from the environment and determines whether
the conditions for adjudicating victory are met. If not, the
maneuver decision module provides the maneuver command
based on the situation assessment result. Afterward, the flight
drive module updates the UAV state and provides feedback to the
environment. This cycle would continue until one side achieves
victory through adjudication.The interactive procedure is shown in
Figure 3.

FIGURE 2
Schematic of the UAV attacking and locking the target.
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FIGURE 3
Interactive procedure of the UAV maneuver decision-making system.

3 Deep reinforcement learning-based
UAV maneuver decision-making
algorithm

To ensure that UAVs meet the victory adjudication condition
ahead of schedule, a deep reinforcement learning-based algorithm
is proposed in this paper for UAV maneuver decision-making. The
basic framework is shown in Figure 4.

3.1 UAV model-driven state transition
update mechanism

The maneuver action of the UAV is designed as a discrete
set by NASA, which only considers several basic maneuvers,
including uniform flight, accelerated flight, decelerated flight, left
turn, right turn, forward climb, and forward dive (Huang et al.,
2018). To further describe the maneuvering behavior of the UAV
with continuous state in actual aerial confrontations, this paper
establishes a state transition update mechanism based on the UAV
motion model. The schematic diagram of the UAVmotion model is
shown in Figure 5 (Guo et al., 2023).

In Figure 5, v, ψ, γ, and ϕ represent the velocity, yaw angle, flight
path angle, and roll angle, respectively.

The following particle motion model (Guo et al., 2023) of UAVs
is considered in this paper.

{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{
{

ẋ = v cos γ sin ψ

ẏ = v cos γ cos ψ

̇z = v sin γ

v̇ = g(nx − sin γ)

ψ̇ = −
gnz sin ϕ
v cos γ

γ̇ =
g
v
(nz cos ϕ− cos γ)

, (5)

where x, y, and z denote the position of the UAV in the inertial
coordinate system. ẋ, ẏ, and ̇z denote the projections of velocity v
in the x-axis, y-axis, and z-axis, respectively. nx and nz denote the
normal overload and tangential overload of the UAV, respectively. g
is the acceleration of gravity.

According to Equation 5, the state of the UAV is affected
by normal overload nx, tangential overload nz, and roll angle
ϕ. Thus, the 3-DOF model mentioned above is established as a
flight drive module in this paper. The new state of the UAV is
calculated in real-time based on the current state and control input.
The UAV motion model-driven state transition update mechanism
is shown in Figure 6.

3.2 Design of the reward function

As common knowledge dictates, there are four possible
scenarios in an aerial confrontation, depending on the relative
positions of the UAV and the target: the trailing side holds the
advantage, the pursued side is at a disadvantage, and an equilibrium
state is reached when both sides are flying either toward or
away from each other. To enable UAVs to reach positions with
more favorable environmental conditions, this paper considers the
instantaneous aerial situation between theUAV and the target, along
with the victory/defeat adjudication model, as the basis for reward
and punishment signals.

The angle reward rα is defined as Equation 6 (He et al., 2020):

rα =
{{{
{{{
{

1−
αB + αR
2π
,d ≤ Da

max

(1−
αB + αR
2π
)e
− (d−D

a
max)

2

2Damax
2 ,d > Da

max

, (6)

where αB and αR represent the relative azimuth angle of theUAV and
the target, respectively.

When the target is within the attack range of the UAV, the
distance reward of the UAV to the target rB→R is defined as
Equation 7 (He et al., 2020):

rB→R =
{
{
{

5,d ≤ Da
max and αB < υmax and αR < π/2

0,else
. (7)

Similarly, when the UAV is within the attack range of the
target, the distance reward of the target to the UAV rR→B is defined
as follows (He et al., 2020):

rR→B =
{
{
{

5,d ≤ Da
max and αR < υmax and αB < π/2

0,else
. (8)

Invoking Equations 8, 9, the distance reward rd is defined
as follows (He et al., 2020):

rd = rB→R − rR→B. (9)

In addition, to ensure the UAV flight safety and avoid collisions,
the height reward rh is defined as Equation 10 (Li et al., 2021):

rh =
{
{
{

−10, 1km < h < 12km and d > 200m

0, else
, (10)

where h represents the flight height of the UAV.
In summary, the total reward R is obtained by Equation 11:

R = rα + rd + rh. (11)
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FIGURE 4
Basic framework of the deep reinforcement learning-based UAV maneuver decision-making algorithm.

FIGURE 5
Schematic diagram of the UAV motion model.

3.3 Uncertain information of maneuver
decision-making

Due to the uncertainties in the UAV model and the complexity
and flexibility of the actual aerial confrontation environment, the
UAV and the target may not be able to reach the desired position
after maneuvering during the aerial confrontation.

To describe the uncertainty of aerial confrontation, we assume
that the state deviation Δs after a maneuver action follows a
discrete empirical distribution Ω̂ constructed from observations.
The nominal distribution Ω̂ can be indirectly observed through the
historical data samples OHi, where i ∈ {1,2,…,N}, and the current
data samples OCj, where j ∈ {1,2,…,M}.

Under the uniform distribution over the N historical data
samples andM current data samples, we have

Ω̂ = 1
N+ λM

N

∑
i=1

ξOHi
+ λ
N+ λM

N

∑
i=1

ξOCj
, (12)

In Equation 12, ξOHi
denotes theDirac pointmass at the ith historical

data sample OHi, ξOCj
denotes the Dirac point mass at the jth

current data sample OCj, and λ > 1 is the proportional parameter,
representing that the current data samples are more valuable.

Moreover, to describe the true distribution of target state
deviation Δs, the Wasserstein distance is considered to measure
the distance between any two distributions. Lemma 1 defines
the distance.

Lemma 1 (Wasserstein distance (Esfahani and Kuhn, 2018)):
The Wasserstein distance between any probability distributions Θ
and the nominal distribution Ω̂ is defined as Equation 13:

Wp (Θ,Ω̂) = inf
π∈Π(Θ,Ω̂)

∫
Ξ×Ξ
‖Δs−Δs′‖π(dΔs,dΔs′) , (13)

where ‖⋅‖ is a norm and Π(Θ,Ω̂) is the set of all joint probability
distributions of Δs and Δs′ with themarginals Θ and Ω̂, respectively.

According to Lemma 1, the true distribution of the state
deviation Δs is defined in a set as Equation 14:

Λ(Ω̂) = {Δs ∈ P (Ξ) :Wp (Θ,Ω̂) ≤ ηk} , (14)

where Ξ is a closed set containing all possible values of Δs, P(Ξ) is
the family of all probability distributions supported on Ξ, and ηk is
the maximumWasserstein distance.

On the basis of this, the state deviationΔs is considered to ensure
accuracy in this paper. The schematic diagram is shown in Figure 7.

3.4 TD3–LSTM algorithm

The TD3 algorithm is a novel form of deep reinforcement
learning algorithm, founded on the policy gradient algorithm and
the actor–critic (AC) framework (Cheng et al., 2021; Duan et al.,
2022). The proposed UAV model-driven state transition update
mechanism in this paper is suitable and can be applied in continuous
state and action spaces.

The TD3 algorithm consists of six networks, namely, the actor
network πμ, the critic 1 network Qθ1 , the critic 2 network Qθ2 ,
the target actor network πμ′ , the target critic 1 network Qθ′1

, and
the target critic 2 network Qθ′2

. The network parameters for each
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FIGURE 6
Schematic diagram of UAV dynamic model.

FIGURE 7
Schematic diagram of maneuver decision-making uncertainty.

FIGURE 8
Architecture diagram of the TD3–LSTM algorithm.

network are μ, θ1, θ2, μ′, θ
′
1, and θ

′
2. Based on the two critic networks’

structure, the TD3 algorithm selects the smaller Q value to alleviate
overestimation.

In each episode, TD3 selects an action a ∼ πϕ(s) + ϵ, ϵ ∼N (0,σ),
using exploration noise, and observes reward r and new state

s′, where ϵ denotes the noise added to the output of the policy
network to enhance the stability of the algorithm, as specified in
Equation 15 (Fujimoto et al., 2018).

ã← πφ′ (s
′) + ε,ε ∼ clip(N (0, δ̃) ,−c,c) . (15)
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FIGURE 9
General structure of the LSTM policy network.

TABLE 1 Structural parameters of the LSTM policy network.

Structural parameter Description

Input layer Twelve states with uncertainty of the UAV
and target

Hidden layer 1 Three LSTM network units

Hidden layer 2 One fully connected network layer

Output layer Three nodes that correspond to nx, nz, and
ϕ of the UAV

Activation function Hidden layer: ReLU; output layer: tanh

Training method Adam

Based on the structure of the two critic networks, the TD3
algorithm selects the minimum between the two estimates of Qθ1
and Qθ2 to avoid overestimation. The objective function of the TD3
algorithm is defined as Equation 16 (Fujimoto et al., 2018):

y← r+ γmin
i=1,2

Qθ′i
(s′, ̃a) . (16)

The TD-error eTD of Qθ1 and Qθ2 is defined as
Equation 17 (Fujimoto et al., 2018):

eTD = y−Qθi (s,a ∣ θi) . (17)

The critics can be updated as Equation 18 (Fujimoto et al., 2018):

θi← argminθiN
−1∑(y−Qθi (s,a))

2. (18)

The actor network is updated via the deterministic policy
gradient as Equation 19 (Fujimoto et al., 2018):

∇μJ(μ) = N−1∑∇aQθ1 (s,a)|a=πμ(s)
∇μπ|μ (s) . (19)

The target networks are updated through a slow-moving update
rate τ, following Equations 20, 21. Specifically,

θ′i ← τθi + (1− τ)θ
′
i , (20)

μ′← τμ+ (1− τ)μ′. (21)

Due to the high dynamic andhigh-dimensional complexity in an
actual aerial confrontation environment, the TD3 algorithm cannot
effectively manage uncertainty and model the policy function and
value function using a fully connected neural network. By adding
a special gate structure to RNN, the LSTM network has a positive
impact on processing time series data, thus enhancing the efficiency
and effectiveness of the training algorithm (T. Ergen, 2018). It
is considered that the state information of UAVs and targets in
actual aerial confrontations exhibits time series characteristics. In
this paper, an LSTM network is utilized to extract features from
high-dimensional aerial confrontation situations with uncertainty.
This structure aims to output valuable perceptual information and
advance representation learning for sequential sample data. The
policy and value functions are jointly approximated using a fully
connected neural network. The TD3–LSTM algorithm architecture
diagram is shown in Figure 8.

The general structure of the LSTM policy network
is shown in Figure 9.

The structural parameters of the LSTM policy network are
provided in Table 1.

The general structure of the LSTM value network is
presented in Figure 10.

The structural parameters of the LSTM value network
are shown in Table 2.

4 Simulation

To demonstrate the advantages of the proposed maneuver
decision-making method, the simulation is verified in four different
scenarios.

4.1 Scenario 1: target in straight flight

The initial position and attitude information of the UAV
and the target are randomly initialized, and the target follows
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FIGURE 10
General structure of the LSTM value network.

TABLE 2 Structural parameters of the LSTM value network.

Structural parameter Description

Input layer Fifteen dimensions (current states and
action)

Hidden layer 1 Three LSTM network units

Hidden layer 2 Three fully connected network layers

Output layer One node that corresponds to the Q value

Activation function Hidden layer: Sigmoid; output layer: tanh

Training method Adam

FIGURE 11
Confrontation trajectory in scenario 1.

FIGURE 12
Real-time reward curve in scenario 1.

FIGURE 13
Cumulative reward curve in scenario 1.
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FIGURE 14
Confrontation trajectory in scenario 2.

FIGURE 15
Real-time reward curve in scenario 2.

a strategy of uniform-speed straight flight. The confrontation
trajectory of the UAV and the target in scenario 1 is depicted
in Figure 11.

The real-time reward curve of theUAV and the target in scenario
1 is depicted in Figure 12.

On the basis of Figures 11, 12, the UAV gains a height
advantage by climbing and then dives toward the target after
reaching a specific altitude to gain velocity and angle advantages.
This maneuver forces the target into the attack zone, leading to
eventual triumph.

Figure 13 shows the cumulative reward curve of the UAV and
the target.

In the early stages, the cumulative reward curve fluctuates
because the UAV is unable to learn any effective strategies, leading

FIGURE 16
Cumulative reward curve in scenario 2.

FIGURE 17
Confrontation trajectory in scenario 3.

to crashes or defeats in confrontations. With further training, the
UAV learned effective maneuvers, developed an attack posture,
locked onto the target, and gradually increased its cumulative reward
value until convergence. It should be noted that the cumulative
reward value may fluctuate slightly during the later stages of
training due to uncertainty considerations. However, this variation
will not impact the eventual acquisition of effective maneuvering
strategies.

4.2 Scenario 2: target in circle flight

In scenario 2, the target employs the circle maneuver strategy.
The trajectory of the UAV and the target during the confrontation is
illustrated in Figure 14.
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FIGURE 18
Real-time reward curve in scenario 3.

FIGURE 19
Cumulative reward curve in scenario 3.

Thereal-time reward curve of theUAV and the target in scenario
2 is presented in Figure 15.

According to Figures 14, 15, the UAV climbs to gain a height
advantage before diving toward the target to lock onto it for the first
time. However, the target continues to circle due to the insufficient
lock time. The UAV then ascends to gain a height advantage, locks
onto the target again, and maintains the lock until it wins the
confrontation.

Figure 16 illustrates the cumulative reward curve of theUAVand
the target in scenario 2.

Similarly, the UAV failed to learn any useful strategies at
the beginning of the training. Once the UAV learns efficient
maneuvers, the cumulative reward value gradually increases
until convergence. The cumulative reward value also fluctuates
slightly in the late training period due to the effect of
uncertainty.

FIGURE 20
Confrontation trajectory in scenario 4.

FIGURE 21
Real-time reward curve in scenario 4.

4.3 Scenario 3: expert rule-based target
maneuvering strategy

In scenario 3, the target selects maneuvers according to expert
rules. The confrontation trajectory of the UAV and the target in
scenario 3 is illustrated in Figure 17.

The real-time reward curve of theUAV and the target in scenario
3 is shown in Figure 18.

From Figures 17, 18, the UAV and the target climb
simultaneously to gain a height advantage during the initial phase.
Next, both the UAV and the target choose a turning strategy to
prevent being locked onto each other. Finally, the UAV performs a
somersault maneuver to circle behind the target, completes the lock,
and triumphs over the confrontation.
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FIGURE 22
Cumulative reward curve in scenario 4.

Figure 19 shows the cumulative reward curve of the UAV and
the target.

Based on the results in Figure 19, the confrontation process
is more intensive since the target has a specific maneuvering
strategy. Because the UAV lacks environmental cognition, it
is unable to develop effective strategies, leading to the UAV
acting with high penalty values in the initial stages of training.
The trend in the cumulative reward curve change indicates
that the convergence speed is relatively slow, and the curve
fluctuates sharply, reflecting the difficulty and complexity of
aerial confrontation.

4.4 Scenario 4: genetic algorithm-based
target maneuvering strategy

In scenario 4, the target selects the optimal maneuvers
based on the current situation using a genetic algorithm. The
confrontation trajectory of the UAV and the target in scenario 4
is shown in Figure 20.

The real-time reward curve of theUAV and the target in scenario
4 is shown in Figure 21.

As observed from Figures 20, 21, both the UAV and
the target climb simultaneously, aiming to gain a height
advantage at the start. Next, the target continues to climb
in an attempt to gain a vantage point. The UAV takes the
opportunity and maneuvers around the rear of the target during
this process. Finally, the UAV completes the lock and wins
the confrontation.

Figure 22 shows the cumulative reward curve of the UAV and
the target.

As shown in Figure 22, the target selects the optimal
maneuver based on the genetic algorithm optimization results
under the current situation. The UAV has not yet learned
the corresponding strategy and is unable to defeat the target
in the early stages of training. The cumulative reward curve

fluctuates sharply in the negative area within a certain number
of iterations. As the UAV continues to learn the maneuvering
strategy, it gradually becomes able to defeat the target. Compared
with the three other scenarios, the convergence speed of the
cumulative reward curve is slower, and the curve fluctuates sharply
in scenario 4.

5 Conclusion

In this paper, a TD3–LSTM reinforcement learning-based
intelligent algorithm is developed to address the maneuver
decision-making problem of a UAV under uncertain information.
To ensure the validity, robustness, and efficiency of maneuver
decision-making in UAV aerial confrontation scenarios, four
simulation experiments are considered in this manuscript:
target in straight flight, target in circle flight, target in expert
rule-based maneuvering strategy, and genetic algorithm-based
strategy. The simulation results demonstrate that regardless of the
maneuvering strategy the target adopts, the UAV can comprehend
the environmental situation, execute appropriate maneuvering
actions, and ultimately emerge victorious in an aerial confrontation.
For future work, the implementation of multi-drone collaborative
adversarial maneuvering decisions based on higher-fidelity models
warrants consideration. Furthermore, achieving efficient sim-to-
real policy transfer through transfer learning presents a significant
research priority.
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