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This study investigates a novel nonlinear update rule for value and policy
functions based on temporal difference (TD) errors in reinforcement learning
(RL). The update rule in standard RL states that the TD error is linearly
proportional to the degree of updates, treating all rewards equally without any
bias. On the other hand, recent biological studies have revealed that there
are nonlinearities in the TD error and the degree of updates, biasing policies
towards being either optimistic or pessimistic. Such biases in learning due to
nonlinearities are expected to be useful and intentionally leftover features in
biological learning. Therefore, this research explores a theoretical framework
that can leverage the nonlinearity between the degree of the update and TD
errors. To this end, we focus on a control as inference framework utilized in
the previous work, in which the uncomputable nonlinear term needed to be
approximately excluded from the derivation of the standard RL. By analyzing it,
the Weber—Fechner law (WFL) is found, in which perception (i.e., the degree
of updates) in response to a change in stimulus (i.e., TD error) is attenuated
as the stimulus intensity (i.e., the value function) increases. To numerically
demonstrate the utilities of WFL on RL, we propose a practical implementation
using a reward—punishment framework and modify the definition of optimality.
Further analysis of this implementation reveals that two utilities can be expected:
i) to accelerate escaping from the situations with small rewards and ii) to
pursue the minimum punishment as much as possible. We finally investigate
and discuss the expected utilities through simulations and robot experiments.
As a result, the proposed RL algorithm with WFL shows the expected utilities
that accelerate the reward-maximizing startup and continue to suppress
punishments during learning.

KEYWORDS

reinforcement learning, temporal difference learning, control as inference,
reward—punishment framework, Weber—Fechner law, robot control

1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) provides robots with policies
that allow them to interact in unknown and complex environments, replacing conventional
model-based control with it. Temporal difference (TD) learning (Sutton, 1988) is a
fundamental methodology in RL. For example, it has been introduced as the basis for
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proximal policy optimization (PPO) (Schulman et al., 2017) and
soft actor-critic (SAC) (Haarnoja et al., 2018), the most famous
algorithms in recent years, both of which are implemented on
popular RL libraries (Raffin et al, 2021; Huang et al., 2022)
and applied to many real robots (Andrychowicz et al, 2020;
Wahid et al., 2021; Nematollahi et al., 2022; Kaufmann et al., 2023;
Radosavovic et al., 2024). In TD learning, the future value predicted
from the current state is compared to that from the state after
transition, which is the so-called TD error. The value function for
that prediction can be learned by making this TD error 0, and
its learning convergence is theoretically supported by the Bellman
equation (although some residuals tend to remain in practice). In
addition, actor-critic methods often utilize the TD error as the
weight of the policy gradient (Sutton et al., 1999) since it indicates
the direction of maximizing the future value.

Although TD learning plays an important role in RL theories
and algorithms as above, TD learning can explain many biological
behaviors. In particular, a strong correlation between TD errors
and the amount of dopamine or the firing rate of dopamine
neurons, which affects memory and learning in organisms, has been
reported (Schultz et al., 1993; O’Doherty et al., 2003; Starkweather
and Uchida, 2021), and behavioral learning in organisms is also
hypothesized to be based on RL (Dayan and Balleine, 2002; Doya,
2021). Recently, a more detailed investigation of the relationship
between TD errors and dopamine has revealed that it is not a
simple linear relationship, as suggested by standard TD learning,
but is biased and nonlinear (Dabney et al, 2020; Muller et al,
2024). It has also been reported that some of the nonlinearities
may stabilize learning performance (Hoxha et al, 2025). In the
context of RL theory, nonlinearly transformed TD learning has
been proposed to obtain risk-sensitive behavior (Shen et al., 2014;
Noorani et al.,, 2023) and robustness to outliers (Sugiyama et al.,
2009; Cayci and Eryilmaz, 2024). The above studies suggest that
the implicit biases introduced by nonlinearities would be effective
both theoretically and biologically. In other words, discovering new
nonlinearities theoretically or experimentally and understanding
their utilities have both an engineering value, such as robot
control, and a biological value, such as modeling the principles
of behavioral learning in organisms. The aim of this study
is to discover new nonlinearities theoretically and reveal their
functions experimentally, standing on a constructivist approach
using robots (Kuniyoshi et al., 2007).

Moreover, our previous study has found that conventional
TD learning can be approximately derived using control as
inference (Levine, 2018), given appropriate definitions of optimality
and divergence (Kobayashi, 2022b). At the same time, it also
revealed that updating the value and policy functions according
to TD errors becomes optimistic by modifying the definition
of the divergence. In a subsequent study, it was additionally
found that modifying the definition of optimality leads to
pessimistic updates (Kobayashi, 2024b). Thus, RL based on control
as inference has the capacity to capture various nonlinearities
due to the generality of the optimization problems it addresses.
This study also follows the new derivation of TD learning in
these previous studies to find/investigate the novel nonlinearity
undiscovered so far.

In particular, we focus on the fact that an approximation
was necessary to derive the conventional TD learning from
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control as inference with linearity between the TD errors and
the degrees of updating. This approximation was generally
unavoidable to eliminate an unknown variable and allow numerical
computation. However, as the term excluded by the approximation
is nonlinear, it should be worth analyzing its utilities as the first
contribution of this study. To numerically evaluate the utilities, we
propose a novel biologically plausible algorithm that combines a
reward-punishment framework (Kobayashi et al., 2019; Wang et al.,
2021) with a modified definition of optimality (Kobayashi, 2024b),
making the nonlinear term computable in any task covered
by RL. In this study, biological plausibility is defined as the
presence of nonlinearities in organisms within contexts that are
beyond learning.

As a result, we show analytically that the nonlinear term, which
has been previously excluded, gives rise to the Weber—Fechner law
(WFL), a well-known biologically plausible characteristic (Scheler,
2017; Portugal and Svaiter, 2011; Nutter and Esker, 2006; Binhi,
2023). In particular, the degree of update of the value and
policy functions corresponding to the intensity of perception is
logarithmically affected by the scale of the value function, which is
the base stimulus: with the small scale, the update is sensitive to even
a small TD error; with the large scale, only a large TD error allows
the update enough. This WFL is dominant when the optimality is
highly uncertain, while the conventional linear behavior is found
when the optimality becomes deterministic. Although organisms
have been reported to behave in ways that reduce the uncertainty of
predictions (Parr et al., 2022), they are nevertheless forced to make
decisions under conditions of uncertainty. Hence, we can anticipate
that WFL under the uncertain optimality may also be found in
the biological relationship between TD errors and dopamine in
organisms.

Through simulations and real-robot experiments, we also
confirm that the RL algorithm incorporating the derived WFL
can effectively learn optimal policies properly and exert special
effects on learning processes and outcomes. In particular, the
proposed RL algorithm acquires tasks, and the WFL added in
the right balance maximizes rewards eventually while suppressing
punishments during learning. In addition, the capability to
accelerate learning from a small reward phase allows the robot to
efficiently learn a valve-turning task (Ahn et al., 2020) on a real
robot, decreasing the error from the target stably. Thus, WFL is
useful in RL, raising expectations that organisms have the same (or
similar) utilities.

2 Preliminaries
2.1 Reinforcement learning

In RL, an agent aims to optimize a learnable policy so that
the accumulation of future rewards from an unknown environment
(so-called return) is maximized (Sutton and Barto, 2018) under a
Markov decision process (MDP). In other words, an environment
with a task to be solved is (implicitly) defined as the tuple
(S, AR, pysp,)- Here, S € R!S! and A ¢ R denote the state and
action spaces, respectively, with the |S|-dimensional state s and the
| A|-dimensional action a. R € R is the subset on which rewards
exist, and the specific values (and even existences) of its upper
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and lower boundaries R € (R,R) are usually unknown. Po:S
R, denotes the probability for sampling the initial state of each
trajectory, and p,:S x Ax S = R, is known as the state transition
probability (or dynamics).

With such a definition, the agent repeatedly interacts with
the environment at the current state s according to the action
a determined by its policy mSxAw— R, with its learnable
parameters ¢, resulting in the next state s’ and the corresponding
reward r, which is computed using the reward function :S x A —
R. As a result, the agent obtains the return R, from the time step t as
presented in Equation 1:

(o]
R, = (l—y)Zyerk, (1)
k=0
where y € [0,1) denotes the discount factor. Note that 1-y is
multiplied for normalization to match the implementation used in
this study, although the definition without it is common.

The optimal policy 7" is defined for this, as shown in Equation 2:

7 (-|s) = argm;lxIEPT [R/|s,=5], (2)
where p_ denotes the probability for the trajectory, defined as the
joint probability of p, and 7 from ¢ to co. ¢ is optimized to represent
7" for any state.

As a remark, the maximization target is modeled as the (state)
value function V:S — R with its learnable parameters 6. When
a,=a is also given as the additional condition for computing the
above expectationas E, [R, | s; =s,a, = al, the action value function
Q:S x A R is defined for the agent’s policy. Here, Q(s,a) can be
approximated by r+yV(s") by following the recursive definition of
return (i.e., Bellman equation), and the difference between it and
V(s) is defined as the TD error, 8 :=r+yV(s") — V(s), which should
be minimized as much as possible by optimizing 0 for any state. In
addition, § can be utilized for updating ¢ so that 7 is more likely to
generate actions that make & more positive (i.e., larger return than
expected).

2.2 Update rule derived from control as
inference

To interpret the above optimal control problem as a type of
inference problem, control as inference introduces the stochastic
variable for the trajectory’s optimality O = {0,1} (Levine, 2018). As
it is relevant to the return, its conditional probability is defined
as shown in Equation 3:

p(0=115) =0 = p.

_ (3)
pO=1]sa) =R = p

where € R, denotes the inverse temperature parameter. Note that
p(O =0) can also be given as 1 —p(O =1) since O is binary. From
this definition, O can be explained so that it is more likely to be 1 if
the value is higher. When f is small, optimality is ambiguous, and as
B increases, optimality becomes deterministic.

With the probability of optimality, the optimal and non-optimal
policies are inferred according to Bayes theorem. In particular,
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with the baseline policy b(a | s) for sampling actions, 7z(a | s,0) is
obtained, as presented in Equation 4:

p(Olsa)b(als)

m(als,O)=
(@10 p(Ols)
(Q(s,u)—ﬁ)

Eﬂ—,b(a |'s) 0=1
eﬁ(V(s)—R)

= _ (4)
1— eﬁ(Q(s,a)—R)
————b(als) O0=0.

1- ep(ws)-i)

Based on this definition, a previous study (Kobayashi, 2022b)
considered the minimization problem presented in Equation 5 for
optimizing 0, the parameters of the value function V.

minE, , [KL(p(O ) [p(Olsa)], ()

where KL(p, | p,) = IEx~P1 (Inp,(x) —Inp,(x)] is Kullback-Leibler
(KL) divergence. More specifically, as the target probability
is on the right side, this can be regarded as “reverse’” KL
divergence. Since p(O | s,a) has more information than p(O | s), this
minimization problem makes p(O | s) more informative to represent
the optimality. To solve this problem, its gradient with respect to 0,
8 is derived as shown in Equation 6:

1-
1-

p
- +pyVolnp,+(1-py)Voln(1 _Pv)]

pV
=E Vepy In— =Vp,, In
89 = Lpb [ oPv Pa oPv Po

I-py

=3

Q

Eps,h [—VGV(s)ﬁpV {ﬁ(Q(s,a) -V(s))+In
1-py H

1-po ) ]’
where Aﬁ =(1+ [3)’1 €(0,1). The last proportion is obtained

by dividing the raw gradient by B(1+ B)p,. Since f3 is constant,
it can be absorbed into the learning rate, but p, appears to

(6)

xE, [*VQV(S) {(1 */1;;) (Q(s,a) = V(s)) + 24 In

introduce a bias in the convergence point, as noted in the
previous study (Kobayashi, 2022b). However, we found that the
Fisher information for p(O|V) is given as ﬁzpv(l - pv)’l, and
dividing the raw gradient by p,, can be interpreted as the sum of
the raw and natural gradients (details are in Appendix 1), which
is expected to converge to the same destination without bias
(Landro et al., 2020).

As a practical problem, py, and p, cannot be numerically
computed since they include the unknown R, the upper bound of
the reward and return. The previous study approximates the above
gradient by assuming Ag — 0 (i.e., f — 00), resulting in standard TD
learning (by assuming Q(s,a) = r + yV(s)).

In addition to the value function, the policy m (more
precisely, its parameter ¢) is also optimized through the following
minimization problem, as presented in Equation 7, with the reverse
KL divergences.

mqsin]Epe [KL((a|s)|m(al|s,0=1))—KL(n(al|s)|n(a|s,O=0))]

n(als,0=0)

n7'[(a|s,O:1) ’ )

=mink, »
In particular, the policy tries to be close to the optimal policy,
while being far away from the non-optimal policy. The gradient
with respect to ¢, g4, is also derived analytically, as shown in

Equation 8:
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Effects of the nonlinear term §,: when § is dominant, the degrees of updates depicted by the contour lines are mostly equally spaced in parallel to the

Ag=0.1 Ag=0.5
o <o
4 4
FIGURE 1
line of V= Q; when the influence of §, increases, the contour lines radiate out from the upper bound R.

/\‘; =0.9

1- Aﬁ)é +/\ﬁ6|n

\
(

v

B Verr(als)  m(als,0=0)
8= | @ls) a@lso=1)

1-
=E, , [-v¢ Inm(als) {ﬁ(Q(s,u)— V(s)) +1n I*ZH

n(als)
«E, [— bals) Volnm(als) {(1 —Aﬂ)(Q(s,a) - V(s)) +/\ﬁ In

l-py } ]
1-p, ?
8)

where the last proportion is given by dividing the raw gradient
by (1+ /). In addition, at the final step, the importance sampling
replaces 7 in the expectation operation with the baseline policy b.
Along with the value function, the approximation of Az — 0 makes
this gradient computable, resulting in the standard policy gradient
in actor-critic algorithms.

3 Weber—Fechner law in TD learning

3.1 Numerical analysis with an explicit
upper bound

The gradients to optimize the value and policy functions
are derived in Equations 6, 8, respectively. However, as the
upper bound of the reward function R is unknown and Py
and p, cannot be calculated numerically, it was necessary
to exclude the uncomputable term by setting 1z —0. As
a result, the previous study (Kobayashi, 2022b) found the
conventional update rule, where the gradients are weighted
by Q(s,a)—V(s)=r+yV(s')-V(s) =48 (ie, the TD error). On
the other hand, if the nonlinear term excluded (ie., Jy, =
In(1-py)-In(1-pg,)) is computable, it is interesting how it
affects the gradients, and this analysis is the main focus of
this study.

Therefore, we assume that R is known at once in this section.
With this assumption, the gradient including dy, is analyzed. First,
we numerically visualize the gradient according to A5 € (0,1) and
estimate the role of &, which has a stronger influence when A4
increases (i.e., B decreases). For this purpose, (1-15)d+ 140, (ie.,
the degree of updates) for /\/3 =1{0.1,0.5,0.9} in the case R = (-1,1)
is illustrated in Figure 1.
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First, at Ag = 0.1, the contour lines representing the degree of
updates are spaced equally and parallel to the line of V' = Q. This
is mainly because § is dominant; that is, the degree of updates is
linearly proportional to the TD error. Note that the behavior is
slightly different for V,Q = R because 8}, remains. The remaining
dy» however, easily converges to 0 since the large 8 (=9 in this case)
causes py, and p,, converge to 0, even with only a small difference
between V,Q and R (i.e., optimality is deterministic).

On the other hand, when )L[,» =0.9, 6}, is dominant, causing the
contour lines to extend radially from R. In other words, when the
value is close to R, the update is significantly activated even with
a small TD error, whereas when the value is far from R, only a
large TD error can sufficiently drive the update. Unlike the case with
Ag =0.1, &}, has a strong effect even when the value is far from R
because py, and p, with the small 8 (= 1/9 in this case) are changed
at approximately 1/2 without converging to 0 (i.e., optimality is
uncertain).

Finally, A5 =0.5 yields an intermediate behavior between the
above two characteristics. In particular, when the value is somewhat
close to E, the radial spread from R is observed due to the influence
of &, and when it falls below a certain level, § dominates, and it
switches to parallel contour lines. However, it should be noted that
this trend depends on the range of R, so it is not always true for Az =
{0.1,0.5,0.9}.

3.2 Mathematical analysis using the Taylor
expansion

We further analyze the characteristics of 8}, found in the above
numerical results. Since these characteristics become apparent when
V and Q_ are close to R, we apply a Taylor expansion to py, and p,,
around R, as presented in Equations 9, 10:

s p'(v-R)’

Py = - =1+p(V-R), ©)
n=0 :
co BN Q_ﬁ” _
pQ:ZM:1+[3(Q—R). (10)
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Accordingly, §,, is presented in Equation 11, :

1-py 1 ﬁ—Q
=—In — .
1-pq R-V

(11)

anln

At this point, let us interpret R— V as the baseline stimulus
strength, R— Q as the stimulus strength after the change (or -0
in R—Q=R- V-0 as the change in stimulus strength), and -4,
as the intensity of perception. If this is the case, these are subject
to the WFL. In other words, how strongly the stimulus change -8
is perceived (i.e., —6},) depends on the baseline of the stimulus
strength R—V: the smaller R—V is, the more acute the sensation
becomes, and vice versa. This is exactly the characteristic found in
the right side of Figure 1, indicating that the approximation by the
Taylor expansion is valid.

We then conclude the analysis that WFL is hidden even in the
update rule of RL derived from control as inference. WFL has also
been found in areas closely related to brain functions such as neuron
firing patterns (Scheler, 2017) and cognition (Portugal and Svaiter,
2011). Recently, it has been shown that the time steps in RL can
theoretically be a nonlinear log scale (i.e., WFL), leading to adaptive
temporal discounting (Maini and Tiganj, 2025). Therefore, it is not
implausible to find it in RL, which is also attracting attention as a
biological decision-making model (Dayan and Balleine, 2002; Doya,
2021). This hypothesis would be supported by the fact that WFL is
activated when optimality is uncertain, which is consistent with the
conditions faced by organisms (Parr et al., 2022).

Furthermore, its applicability to learning and practical
should be
experiments, with the exception that WFL represents a useful

engineering value verified through numerical
characteristic in RL and has been evolutionary preserved in
organisms. However, the above analysis was performed under
the assumption that R is known, which is contrary to the general
problem statement for RL. In the next section, therefore, we propose
a practical implementation that enables the computation of 6}, even
when R is unknown in a biologically plausible manner, followed by

an experimental verification of the benefits of WFL in RL.

4 Practical implementation

4.1 Introduction of the
reward—punishment framework

First, we address the unknown R without giving prior
knowledge of the problem to be solved. The requirements are i) the
boundary of R to define the optimality and ii) the range of R to
determine f3 (or )Lﬁ) for which WFL is valid. A naive solution would
be to empirically estimate the boundary (R, R). The estimation of the
range (R - R) does not need to be rigorous, so learning can proceed
stably if it is updated slowly. However, for py, and p,, to consistently
satisfy the definition of probability, R may need to change
frequently, which could cause instability in learning. Moreover,
the empirically estimated R is likely to be underestimated relative
to its true value, thereby preventing the full utility of WFL from
being realized.

Therefore, in this study, we introduce a more reliable solution,
the reward-punishment framework (Kobayashi et al, 2019;

Frontiers in Robotics and Al

10.3389/frobt.2025.1649154

Wang et al, 2021). Although rewards are generally defined as
scalar values that can be either positive or negative, this is a way to
separate positive rewards " € R, € R, and negative rewards, i.e.,
punishments, ¥~ € R_ € R_. This can be applied to any RL problem,
either i) by having the environment output ™ as in the experiments
of this study (see the top of Figure 2) or ii) by distributing r e R
from the environment as " = max(r,0) and r~ = min(r,0) (see
the bottom of Figure 2).

The reward-punishment framework learns the value and
policy functions for r™, respectively. In particular, the returns
and the value functions for r™~ are first defined as shown in
Equation 12, :

(o)
RY™=(1=9) ) y'riy
k=0
V() =E, [R” |5, =5]
Q" (sa)=E, [R |s,=s,a,=a].

(12)

The policies 77, which attempt to maximize them separately, are
also introduced.

Here, since only one action can be passed to the environment,
even if the agent has two policies, it is necessary to synthesize
them. Following the previous study (Wang et al., 2021), a mixture
distribution with a mixing ratio based on the value function is
designed, as shown in Equations 13, 14:

blals)=wn*(als)+(Q-w)n (als), (13)

AV

Y BTO L BT

(14)
With this design, however, only one of the policies might be activated
and the other might be ignored if the difference in the scales of 7~
is large. To alleviate this issue, a policy regularization method, PPO-
RPE (Kobayashi, 2023), for the density ratio 7~ /b with importance
sampling [see Equation 8], is introduced in this study. As it yields
7t =7 via b, the past mixture distributions transfer and share the
acquired skills with each other. In addition, as PPO-RPE is a type of
actor-critic algorithm, it can be applied not only to continuous but
also to discrete action spaces.

In any case, within the reward-punishment framework, the
upper bound of 7~ is given to be 0, making &), computable. On the
other hand, r* has only a lower bound of 0, so §), for it remains
uncomputable. In the next section, therefore, we derive §), utilizing
this lower bound.

The range of rewards, 0", which is necessary for designing f3
where WFL is effectively manifested, can be estimated from the
empirical 7. However, the assumption when deriving Equations 6,
8 (i.e., B is constant) is violated if ¢™~ fluctuates too much. In
addition, since the experienced scale of r~ is likely to gradually
decrease, the approach to record the maximum scale is not suitable

4=

for this case. From the above, ¢~ is estimated and used for the

design of 5 as shown in Equation 15, :

Omax < Max ({opa 1)

0" <o ’_+(1_00;{;x (15)
b
===
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i) Environment distinguishes reward and punishment

Agent

Environment

Action a

N

Reward r* > 0

Punishmentr= <0

Policy m(als) < [,-1]

o

Goal

State s

Next state s’

ii) Reward is distributed to positive and negative ones

Agent

Environment

Action a

N

Reward rt > 0

Punishmentr= <0
Policy m(a|s) <

’
e
]

1

b
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Start

&k

‘~-‘
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Goal
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FIGURE 2

Z—l
= Next state s’

Reward—-punishment framework: in the upper case, both rewards and punishments are directly given from the environment; in the bottom case, scalar
rewards in a subset of real space are treated by distinguishing between positive and negative ones as rewards and punishments, respectively.

where (€ (0,1) denotes the gradualness of adaptation (generally,
( is close to 1) and f; € R, denotes the baseline. This design
allows 8 to reflect the scale while limiting frequent fluctuations
of B by using the recent maximum scale and updating to
that value gradually. In addition, as this update rule does not
use V"7, it can avoid adverse effects due to the estimation
uncertainty of V7.

4.2 Inversion of the definition of optimality
using the lower bound

As mentioned above, although ™ < 0 can numerically compute
Equations 6, 8 without any approximation, r* >0 cannot do so
since it only has the lower bound. To solve this issue, we introduce
a new method for deriving gradients with WFL, inspired by a
previous study (Kobayashi, 2024b). In particular, the inversion
of the definition of optimality in Equation 3 is considered the
starting point.

p(0=0]s)=ePVOB = p

(16)
p(O=0]sa)= e BQsa)-R) _, Po

In Equation 16, the lower bound R of R is utilized for satisfying the
definition of probability. Note that the aliases p,, and p, are given for
p(O =0), unlike Equation 3.

As the previous study did not derive the gradients of Equations 5,
7 using Equation 16, their derivations are described below. First, A
for Equation 5 is derived as shown in Equation 17:
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1-p
Yt p Velnpy+ (1-p,) Vs lnu—pv)}

Py -
8=Ep [Ver In—= -Vgp, In
h PQ 1 _PQ

1-py

=il

Except for the different definitions of p, and p, and the
sign reversal of the second term, it is symmetric to Equation 6.

17)

< E,, [—VQV(S) {( 1-15)(Q(s,a) = V(s)) = A4 In

Similarly, 8 for Equation 7 is shown in Equation 18:

. Ven(als)  m(als,0=0)
8= 5| @l Mr@also=1
n(als) P
OCIEFh[_b(alS)V¢1nﬂ(a|S){(1_)Lﬂ)(Q(s,a)—V(S))—/\Blnl_p:H,
(18)

where 7(al|s,O=0) =pr{,1b(a |s) and 7m(als,0=1)=
(1-pr)d —pv)_lb(a |s) are also redefined in this study. This
gradient is also in the same format as Equation 17, except
that the signof the second term is reversed, with different
definitions for p,, and p,. Note that the impact of redefining
optimality can be confirmed when the minimization problem
is designed with “forward” KL divergence, as analyzed in the
previous study (Kobayashi, 2024b).

Both have the same degree of updates multiplied by the
gradients, and the first term coincides with the TD error ¢ as in
the original. The crucial second term appears to be different, but as
depicted in Figure 3, the contour lines extend radially from R, as in
the original. If the Taylor expansion around R is applied to p,and p,,
which are substituted into &, == ~In(1-p,) +In(1 - pQ), the same
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Weber—Fechner law using the lower bound: with the large )Ll;, the contour lines become narrower with V and Q closer to their lower bound R and

Ag=0.1 Ag=0.5
|
I
o <o ‘
2 e —— ———
4 4
FIGURE 3
wider with V and Q farther from R.

Aﬁ =0.9

(1 —/\5)5 +/\56|n

v

TABLE 1 Correspondence between WFL and the proposed update rule.

’ WEFL Update rule for r* ‘ Update rule for r-
Formula poc s_i O < ln% -0y, o< In :—3
Baseline of stimulus strength Sy \ 4
Stimulus strength after change S Q -Q
Change in stimulus strength S-S, Q-V=4¢ -(Q-V)=-¢
Intensity of perception P O -0,

WFL is confirmed. Thus, it is possible to compute the gradients with
WEL even for r*, where only R =01is known.

4.3 Expected utilities

As described above, we proposed a novel algorithm including
the terms with WFL, which had been excluded in the previous
study (Kobayashi, 2022b) (and the standard RL algorithms)
because they are computationally infeasible. Table | summarizes the
correspondence between WFL and the update rule in the proposed
algorithm. Note that since WFL is a law about the signal strength, the
terms in punishments are converted for the punishment strength by
reversing their signs.

In this study, we summarize the basic utilities of WFL in this
algorithm. First, for rewards r*, the updates of the value and policy
functions are actively promoted at V* = 0, whereas the updates are
relatively suppressed over a certain level, V* > 0. Conversely, for
punishments 7, the updates are slow under a certain level V™ «
0, but V™ =0 is pursued eventually. It is known in gradient-based
optimization that large gradients per update lead to a solution robust
to small perturbations, while small gradients lead to one of the local
solutions (Smith, 2018; Foret et al., 2021). Therefore, WFL in the
proposed algorithm can also be interpreted as seeking an early local
solution for 7" and a stable global solution for ™. Note that, as shown
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in Figures 1, 3, the utilities of WFL can be suppressed by adjusting
Ag (or B) with the activation of the standard TD learning, which is
not affected by the baseline stimulus strength (i.e., |V]).

5 Numerical verification
5.1 Toy problem

First, we investigate the feasibility of learning the optimal policy
under the proposed algorithm with WFL and the effects of WFL
on the learning process and results. As a toy problem, Pendulum-v0
implemented in OpenAI Gym is applied, while its reward function
is redefined to fit the reward—punishment framework.

r"=1+cosgq

(19)
r~=—(0.1lg] +0.001|1]) (1 + cos q),

In Equation 19, q denotes the pendulum angle, g denotes its angular
velocity, and 7 denotes the torque applied to the pendulum (i.e.,
action). In particular, the agent gets high rewards if the pendulum
is close to upright, while it is punished when the pendulum is
not stopped. In addition, this punishment is stronger when the
pendulum is close to upright. Since we know that Pendulum-v0 is
a standard and classic benchmark that eventually yields an optimal
policy, it is useful for analyzing the changes in the learning process.
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Learning results of Pendulum-v0 with different ™ the upper and bottom curves depict the learning curves for episodic averages of r* and r~,
respectively; when [45” was small, the pursuit of r* became slower, and r~ was preferentially suppressed to 0.
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With ﬁOf =1{0.1,1,10,00} (co indicates conventional TD
learning), four respective models are trained 50 times with different
random seeds in order to achieve the statistical learning results
shown in Figure 4. Note that the learning conditions, including
network architectures, are summarized in Appendix 2. As shown
in the results, learning can proceed for any 8, without collapse,
indicating that RL is valid even if the term §;,, with WFL is used. The
increase in [33’_ made the learning curves approach the conventional
curves, as expected. On the other hand, when /30 >~ becomes smaller,
unique behaviors were observed. In other words, for B, =0.1,
optimization with respect to r* was delayed, while the temporary
deterioration of ~ was restricted. This can be attributed to the fact
that optimization worked to reduce r~ to 0 as much as possible
while simultaneously maximizing r* to some extent. However, in
the former case, it might be possible that the strong effort to reduce
r~ to 0 suppressed the exploration, causing a delay in the discovery
of the optimal solution for r*. Note that 3~ = I achieved the similar
learning curve of reward to the case of Vanilla due to the nonlinear
effect of B, but their confidence intervals were hardly overlapped
at the early stages of learning.

Then, to take the advantages of both, the results of setting §; =
10 and 3; = 0.1 asymmetrically are depicted in Figure 5. Under this
setting, WFLs efforts to reduce r~ to 0 remained and suppressed the
temporary deterioration of r~, while " was successfully optimized
without much delay. In other words, the delay in learning about r*
at ;" = 0.1 can be attributed to the characteristics of WFL. Note
that the delay in maximizing r* at approximately 20 episodes is
considered an effect of the suppression of exploration. On the other
hand, " was maximized more efficiently, and r~ was smaller in
conjunction with it.

In any case, WFLs utilities analyzed in this study were
confirmed as expected in the numerical verification. In addition,
as suggested in Figure 5, the optimization behaviors for "~ can
be adjusted by setting B separately. However, we need to remark
that the separation of f;” does not mean that they function
independently since "~ necessarily depend on each other in the
learning process, as in the exploration suppression described above.
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5.2 Robotic task

The above numerical verification showed that the proposed
method with WFL can optimize the policies with its expected
learning characteristics. Based on this finding, we additionally
demonstrate that the proposed method can be useful in more
practical robotic tasks. This study focuses on the D’Claw task
in ROBEL (Ahn et al., 2020), in which three 3-DOF robotic
fingers manipulate a valve (see Figure 6). This benchmark is
unique in that it includes not only a robotic simulation but
also a real-robot version, which can automatically be initialized
to restart episodes. Hence, this task is useful to verify that the
proposed algorithm works in a real-world setting. Note that the
code for this system is not the original code but a modified
version in the literature (Yamanokuchi et al, 2022). Its state
space consists of the angles and angular velocities of the finger
joints and of the valve (in total, 22 dimensions), while the action
space consists of nine dimensions of angular changes in the
finger joints.

5.2.1 Simulations

First, the simulations confirm that the behaviors when WFL is
activated for r* individually are consistent with the toy problem.
Since ;= 0.1 was too extreme and ;=1 was insufficient for
WEL effects, 8, = 0.5 is adopted to activate WFL from here as
WEFL-R/P.

The reward function is defined as shown in Equation 20:

+
r= qVqu>0

(20)
r = —0.01||qj + qu||2,

where g, and g; denote the valve angle and the joint angles,
respectively, and Aq; denotes the angular changes in joints (ie.,
action). In particular, the goal is to turn the valve as much as possible
while keeping the fingers in the initial posture to some extent. Note
that the sign of g, reverses after one turn, so the actual goal is to stop
just before one turn.
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FIGURE 5

Learning results of Pendulum-v0 with the asymmetric ;" because of small B, = 0.1, the deterioration of r~ was restricted; although the exploration
was more or less limited, the large 8§ = 10 value enabled to maximize r" to the same level as the conventional method.

Simulation

FIGURE 6

Real robot

D'Claw task (Ahn et al., 2020): it is simulated on MuJoCo (Todorov et al., 2012)

The learning results of each condition with 20 different random
seeds are shown in Figure 7. Here, WFL-R and WFL-P denote
the asymmetric models with [30’7 =(0.5,00),(00,0.5), respectively.
Note that because the punishments were very small, unlike in
the toy problem, we plotted the sum of rewards/punishments
per episode rather than their mean. First, the pursuit of r* was
slowed down in WFL-R with WFL for r*. As its side effect, ~
always outperformed the conventional method due to the reduced
robot motion. On the other hand, WFL-P with WFL for r~ showed
improvement after approximately 4000 episodes, reflecting the
pursuit of reducing punishments and finally achieving the best
performance. In addition, probably because the range of motion
of each finger joint was maintained as its side effect, the speed
of improvement in r* was significantly increased compared to
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others. Thus, it was suggested that the appropriate addition of WFL,
including its side effects, can improve learning performance in
practical robotic tasks.

5.2.2 Real-robot experiments
Next, we demonstrate how WFL works in learning on the

real world. For simplicity, WFLs for "~ are both activated

simultaneously and compared with the conventional method.

Since the real-robot valve angle has a different domain from the
simulation angle and the angle jumps to 7 — —m in a half turn, the
reward function is modified accordingly, as shown in Equation 21:

= |qv|]qu>0qu<—%ﬂ

) . (21)
ro= —0.01||qj + qu”z'
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FIGURE 7

WFL-P) improved the maximization of rewards while reducing punishments.
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Learning results of D'Claw simulation: ﬂg" =(0.5,00),(00,0.5) are labeled as WFL-R and WFL-P, respectively; the proposed method with WFL (especially,
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Learning results of real-world D'Claw: [56" =(0.5,0.5) is labeled as WFL-RP; accelerating the increase in a small reward was confirmed, although the
increase in punishment by the side effect of the behavior for rotating the valve was not suppressed.

In other words, the goal is to stop the valve half a turn while
allowing some overshoot. Note that, as the other differences
from the above simulations, the ranges of motion and actions
(i.e., the exploration capability) are restricted to avoid hardware
malfunction.

First, the learning results with five trials are shown in Figure 8.
Note that it was difficult to verify the asymmetric 5, due to the
cost of the real-robot experiments, even with automatic episode
initialization. Therefore, the robustness of the proposed method
to hyperparameters is demonstrated by adopting the symmetric
WFL-RP as the proposed method under the assumption that
there is limited prior knowledge (i.e., WFL-P was better in the
simulations).

It was confirmed in r* that the proposed method always
outperformed the conventional method. This is probably because the
proposed method preferentially learned a small number of motion
samples that rotated the valve forward, which were rarely obtained
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by chance with the limited exploration capability. Instead, r~ of the
proposed method was slightly lower than that of the conventional
method, probably because the side effect of the behavior to rotate
the valve was larger than the behavior to maintain »~ at 0. Another
possibility that should be noted is that the regularization of 7+ = 7~
was added, but the large difference in scale between r* and ~ may
have prevented it from functioning satisfactorily, and the policy to
pursue 7" may have been prioritized.

Next, task accomplishment, which cannot be evaluated from r*~
alone, is evaluated using the terminal valve angle with the post-
learning policies. The five post-learning policies for each condition
tested 10 episodes, as shown in Figure 9. As expected from the
learning curve of r*, the proposed method produced more results
closer to the target angle, 6 = 7. Moreover, when the range of +7/4
from the target angle is considered the success, the proposed method
showed 41/50 (i.e., 82%), whereas the conventional method showed
35/50 (i.e., 70%).
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Terminal valve angles with the post-learning policies: 10 episodes were performed in each of the 5 models, and the (sorted) valve angles at the end of
the episodes were plotted; WFL-RP tended to be closer to the target angle than that in the conventional method, and it also outperformed in the
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6 Discussion and conclusion
6.1 Discussion

As shown above, although WFL in TD learning was confirmed
in this study can be shown to produce more desirable learning
processes and outcomes, whether WFL is more sensitive to reward
design than conventional TD learning is remains an open question.
For example, an inappropriate design may cause a conflict between
the reward and punishment policies, potentially preventing them
from achieving their respective objectives. Basically, objectives given
as punishments r~ should have a high priority for achievement,
and those with rewards r* should be regarded as value-added.
However, prioritization among multiple objectives is often given
as weights, which may lead to overlapping roles among multiple
parameters and make it difficult to understand. The complexity is
further increased by the fact that the impact of WFL can be adjusted
by Ag (or f).

Therefore, the need to assign such priorities to RL users and/or
task designers may pose an obstacle to real-world applications.
To alleviate this issue, further research on the design theory of
reward functions suitable for this algorithm and/or the automation
of assignment to ™~ (and tuning of hyperparameters) based on
user preferences would increase the practical value of this algorithm.
Recently, it might be a good idea to specify the context in LLM-
based reward design (Ma et al., 2024) so that the necessary factors
are setas - and those to be desired are r*, while avoiding the conflict
between them.

On the other hand, WFL, found in TD learning, originally
explains the relationship between stimuli and perception in
organisms, but it has not been discovered in brain activities
related to TD learning. Considering that RL is also used as
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decision-making models for organisms and that the relationship
between TD errors and brain activities has actually been verified,
it is possible that WFL in TD learning may be latent in our
brain activities.

Therefore, it would be important to verify the existence or
absence of WFL using this algorithm for the analysis of brain-
activity data. Moreover, the feedback from the findings may be able
to elaborate on our algorithm: for example, the hyperparameters
in the algorithm might be tuned by representing the brain-activity
data. When conducting this investigation, it may be possible to
derive a more sophisticated model if the WFL in the time direction
derived by Maini and Tiganj (2025) can also be considered in
addition to the proposed algorithm with the WFL in TD errors.
Alternatively, brain-activity data may provide suggestions for new
modeling of the heuristic update rule of §*.

6.2 Conclusion

In this study, we revealed a novel nonlinearity in TD
learning, WFL, which explains the relationship between stimuli
and perception of organisms in the update rule of the value
and policy functions in RL. Without loss of generality, it was
implemented as a novel biologically plausible RL algorithm on
the reward-punishment framework. We showed that the proposed
method can be expected to explore a local solution to maximize
rewards as early as possible while gradually aiming for a global
solution to minimize punishments. Numerical verification indicated
that the proposed method does not cause RL to collapse and retains
the characteristics of WFL. The proposed method was also useful for
robot control, and it outperformed the conventional method in the
valve-turning task using D’Claw.
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After addressing the limitations identified in this study, it would
be valuable to test its generalizability (e.g., its capability to learn tasks
with sparse rewards and/or discrete action spaces).
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Appendix A

1 Natural gradient for 0

The Fisher information for p(O|V), Z(V), is derived as follows:

) =y (S mp(0) | =p0 =105 mp0= 1))

_ 2
+p(O:0|V)(%lnP(O:0|V))2:ﬁzpv+(lfpv)<1?:1 )
v
:ﬁsz(H i;v):ﬁzlzv w

where p, =p(0O=1|V) = VR,

The natural gradient is obtained by dividing the raw gradient by
the Fisher information (Amari, 1998). As the raw gradient gV is
represented as —{(1 - Ag)d + g6, }B(1 + B)py,VV, its natural gradient
g™ can be given as —{(1 —/\ﬁ)8+/\ﬁ61n}ﬂ_1(1 +B)(1-p,)VyV. By
removing the constant coefficients related to f3, their summation can
be derived as —{(1 - 1)8 +A361,} Vo V.
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2 Learning conditions

The value and policy functions for r*~ are independently
approximated by a common network structure. The structure has
two fully connected layers as hidden layers, with 100 neurons for
each, and ReLU function is employed as its activation function.
AdaTerm (Ilboudo et al, 2023) is employed to optimize the
network parameters, and its learning rate is set to 1x 1073 for
the toy problem and 5x 107 for the robotic task. The sample
efficiency is improved with experience replay, although its buffer
size is small (ie. 1x10*) to emphasize on-policyness. Half of
the stored experiences are randomly replayed at the end of each
episode with 32 the batch size. As tricks to stabilize learning,
we introduce PPO-RPE (Kobayashi, 2023) introduced in the
main text, target networks with CAT-soft update (Kobayashi,
2024a), and regularization to make the functions smooth by L2C2
(Kobayashi, 2022a). All of these remain the default hyperparameters.
Other hyperparameters are y=0.99 for the discount rate
and (=0.999 for the empirical TD error scale estimation in

Equation 15.
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