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This study investigates a novel nonlinear update rule for value and policy 
functions based on temporal difference (TD) errors in reinforcement learning 
(RL). The update rule in standard RL states that the TD error is linearly 
proportional to the degree of updates, treating all rewards equally without any 
bias. On the other hand, recent biological studies have revealed that there 
are nonlinearities in the TD error and the degree of updates, biasing policies 
towards being either optimistic or pessimistic. Such biases in learning due to 
nonlinearities are expected to be useful and intentionally leftover features in 
biological learning. Therefore, this research explores a theoretical framework 
that can leverage the nonlinearity between the degree of the update and TD 
errors. To this end, we focus on a control as inference framework utilized in 
the previous work, in which the uncomputable nonlinear term needed to be 
approximately excluded from the derivation of the standard RL. By analyzing it, 
the Weber–Fechner law (WFL) is found, in which perception (i.e., the degree 
of updates) in response to a change in stimulus (i.e., TD error) is attenuated 
as the stimulus intensity (i.e., the value function) increases. To numerically 
demonstrate the utilities of WFL on RL, we propose a practical implementation 
using a reward–punishment framework and modify the definition of optimality. 
Further analysis of this implementation reveals that two utilities can be expected: 
i) to accelerate escaping from the situations with small rewards and ii) to 
pursue the minimum punishment as much as possible. We finally investigate 
and discuss the expected utilities through simulations and robot experiments. 
As a result, the proposed RL algorithm with WFL shows the expected utilities 
that accelerate the reward-maximizing startup and continue to suppress 
punishments during learning.

KEYWORDS

reinforcement learning, temporal difference learning, control as inference, 
reward–punishment framework, Weber–Fechner law, robot control 

 1 Introduction

Reinforcement learning (RL) (Sutton and Barto, 2018) provides robots with policies 
that allow them to interact in unknown and complex environments, replacing conventional 
model-based control with it. Temporal difference (TD) learning (Sutton, 1988) is a 
fundamental methodology in RL. For example, it has been introduced as the basis for
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proximal policy optimization (PPO) (Schulman et al., 2017) and 
soft actor-critic (SAC) (Haarnoja et al., 2018), the most famous 
algorithms in recent years, both of which are implemented on 
popular RL libraries (Raffin et al., 2021; Huang et al., 2022) 
and applied to many real robots (Andrychowicz et al., 2020; 
Wahid et al., 2021; Nematollahi et al., 2022; Kaufmann et al., 2023; 
Radosavovic et al., 2024). In TD learning, the future value predicted 
from the current state is compared to that from the state after 
transition, which is the so-called TD error. The value function for 
that prediction can be learned by making this TD error 0, and 
its learning convergence is theoretically supported by the Bellman 
equation (although some residuals tend to remain in practice). In 
addition, actor-critic methods often utilize the TD error as the 
weight of the policy gradient (Sutton et al., 1999) since it indicates 
the direction of maximizing the future value.

Although TD learning plays an important role in RL theories 
and algorithms as above, TD learning can explain many biological 
behaviors. In particular, a strong correlation between TD errors 
and the amount of dopamine or the firing rate of dopamine 
neurons, which affects memory and learning in organisms, has been 
reported (Schultz et al., 1993; O’Doherty et al., 2003; Starkweather 
and Uchida, 2021), and behavioral learning in organisms is also 
hypothesized to be based on RL (Dayan and Balleine, 2002; Doya, 
2021). Recently, a more detailed investigation of the relationship 
between TD errors and dopamine has revealed that it is not a 
simple linear relationship, as suggested by standard TD learning, 
but is biased and nonlinear (Dabney et al., 2020; Muller et al., 
2024). It has also been reported that some of the nonlinearities 
may stabilize learning performance (Hoxha et al., 2025). In the 
context of RL theory, nonlinearly transformed TD learning has 
been proposed to obtain risk-sensitive behavior (Shen et al., 2014; 
Noorani et al., 2023) and robustness to outliers (Sugiyama et al., 
2009; Cayci and Eryilmaz, 2024). The above studies suggest that 
the implicit biases introduced by nonlinearities would be effective 
both theoretically and biologically. In other words, discovering new 
nonlinearities theoretically or experimentally and understanding 
their utilities have both an engineering value, such as robot 
control, and a biological value, such as modeling the principles 
of behavioral learning in organisms. The aim of this study 
is to discover new nonlinearities theoretically and reveal their 
functions experimentally, standing on a constructivist approach 
using robots (Kuniyoshi et al., 2007).

Moreover, our previous study has found that conventional 
TD learning can be approximately derived using control as 
inference (Levine, 2018), given appropriate definitions of optimality 
and divergence (Kobayashi, 2022b). At the same time, it also 
revealed that updating the value and policy functions according 
to TD errors becomes optimistic by modifying the definition 
of the divergence. In a subsequent study, it was additionally 
found that modifying the definition of optimality leads to 
pessimistic updates (Kobayashi, 2024b). Thus, RL based on control 
as inference has the capacity to capture various nonlinearities 
due to the generality of the optimization problems it addresses. 
This study also follows the new derivation of TD learning in 
these previous studies to find/investigate the novel nonlinearity
undiscovered so far.

In particular, we focus on the fact that an approximation 
was necessary to derive the conventional TD learning from 

control as inference with linearity between the TD errors and 
the degrees of updating. This approximation was generally 
unavoidable to eliminate an unknown variable and allow numerical 
computation. However, as the term excluded by the approximation 
is nonlinear, it should be worth analyzing its utilities as the first 
contribution of this study. To numerically evaluate the utilities, we 
propose a novel biologically plausible algorithm that combines a 
reward–punishment framework (Kobayashi et al., 2019; Wang et al., 
2021) with a modified definition of optimality (Kobayashi, 2024b), 
making the nonlinear term computable in any task covered 
by RL. In this study, biological plausibility is defined as the 
presence of nonlinearities in organisms within contexts that are 
beyond learning.

As a result, we show analytically that the nonlinear term, which 
has been previously excluded, gives rise to the Weber–Fechner law
(WFL), a well-known biologically plausible characteristic (Scheler, 
2017; Portugal and Svaiter, 2011; Nutter and Esker, 2006; Binhi, 
2023). In particular, the degree of update of the value and 
policy functions corresponding to the intensity of perception is 
logarithmically affected by the scale of the value function, which is 
the base stimulus: with the small scale, the update is sensitive to even 
a small TD error; with the large scale, only a large TD error allows 
the update enough. This WFL is dominant when the optimality is 
highly uncertain, while the conventional linear behavior is found 
when the optimality becomes deterministic. Although organisms 
have been reported to behave in ways that reduce the uncertainty of 
predictions (Parr et al., 2022), they are nevertheless forced to make 
decisions under conditions of uncertainty. Hence, we can anticipate 
that WFL under the uncertain optimality may also be found in 
the biological relationship between TD errors and dopamine in 
organisms.

Through simulations and real-robot experiments, we also 
confirm that the RL algorithm incorporating the derived WFL 
can effectively learn optimal policies properly and exert special 
effects on learning processes and outcomes. In particular, the 
proposed RL algorithm acquires tasks, and the WFL added in 
the right balance maximizes rewards eventually while suppressing 
punishments during learning. In addition, the capability to 
accelerate learning from a small reward phase allows the robot to 
efficiently learn a valve-turning task (Ahn et al., 2020) on a real 
robot, decreasing the error from the target stably. Thus, WFL is 
useful in RL, raising expectations that organisms have the same (or
similar) utilities. 

2 Preliminaries

2.1 Reinforcement learning

In RL, an agent aims to optimize a learnable policy so that 
the accumulation of future rewards from an unknown environment 
(so-called return) is maximized (Sutton and Barto, 2018) under a 
Markov decision process (MDP). In other words, an environment 
with a task to be solved is (implicitly) defined as the tuple 
(S ,A,R,p0,pe). Here, S ⊂ ℝ|S| and A ⊂ ℝ|A| denote the state and 
action spaces, respectively, with the |S|-dimensional state s and the 
|A|-dimensional action a. R ⊆ ℝ is the subset on which rewards 
exist, and the specific values (and even existences) of its upper 
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and lower boundaries R ⊆ (R,R) are usually unknown. p0:S ↦
ℝ+ denotes the probability for sampling the initial state of each 
trajectory, and pe:S ×A×S ↦ℝ+ is known as the state transition 
probability (or dynamics).

With such a definition, the agent repeatedly interacts with 
the environment at the current state s according to the action 
a determined by its policy π:S ×A↦ℝ+ with its learnable 
parameters ϕ, resulting in the next state s′ and the corresponding 
reward r, which is computed using the reward function r:S ×A↦
R. As a result, the agent obtains the return Rt from the time step t as 
presented in Equation 1:

Rt = (1− γ)
∞

∑
k=0

γkrt+k, (1)

where γ ∈ [0,1) denotes the discount factor. Note that 1− γ is 
multiplied for normalization to match the implementation used in 
this study, although the definition without it is common.

The optimal policy π∗ is defined for this, as shown in Equation 2:

π∗ (⋅ ∣ s) = argmax
π
𝔼pτ
[Rt ∣ st = s] , (2)

where pτ denotes the probability for the trajectory, defined as the 
joint probability of pe and π from t to ∞. ϕ is optimized to represent 
π∗ for any state.

As a remark, the maximization target is modeled as the (state) 
value function V:S ↦R with its learnable parameters θ. When 
at = a is also given as the additional condition for computing the 
above expectation as 𝔼pτ

[Rt ∣ st = s,at = a], the action value function 
Q:S ×A↦R is defined for the agent’s policy. Here, Q(s,a) can be 
approximated by r+ γV(s′) by following the recursive definition of 
return (i.e., Bellman equation), and the difference between it and 
V(s) is defined as the TD error, δ≔ r+ γV(s′) −V(s), which should 
be minimized as much as possible by optimizing θ for any state. In 
addition, δ can be utilized for updating ϕ so that π is more likely to 
generate actions that make δ more positive (i.e., larger return than 
expected). 

2.2 Update rule derived from control as 
inference

To interpret the above optimal control problem as a type of 
inference problem, control as inference introduces the stochastic 
variable for the trajectory’s optimality O = {0,1} (Levine, 2018). As 
it is relevant to the return, its conditional probability is defined 
as shown in Equation 3:

p (O = 1 ∣ s) = eβ(V(s)−R) ≕ pV

p (O = 1 ∣ s,a) = eβ(Q(s,a)−R) ≕ pQ,
(3)

where β ∈ ℝ+ denotes the inverse temperature parameter. Note that 
p(O = 0) can also be given as 1− p(O = 1) since O is binary. From 
this definition, O can be explained so that it is more likely to be 1 if 
the value is higher. When β is small, optimality is ambiguous, and as 
β increases, optimality becomes deterministic.

With the probability of optimality, the optimal and non-optimal 
policies are inferred according to Bayes theorem. In particular, 

with the baseline policy b(a ∣ s) for sampling actions, π(a ∣ s,O) is 
obtained, as presented in Equation 4:

π (a ∣ s,O) =
p (O ∣ s,a)b (a ∣ s)

p (O ∣ s)

=

{{{{{
{{{{{
{

eβ(Q(s,a)−R)

eβ(V(s)−R)
b (a ∣ s) O = 1

1− eβ(Q(s,a)−R)

1− eβ(V(s)−R)
b (a ∣ s) O = 0.

(4)

Based on this definition, a previous study (Kobayashi, 2022b) 
considered the minimization problem presented in Equation 5 for 
optimizing θ, the parameters of the value function V.

min
θ
𝔼pe,b [KL (p (O ∣ s) ∣ p (O ∣ s,a))] , (5)

where KL(p1 ∣ p2) = 𝔼x∼p1
[lnp1(x) − lnp2(x)] is Kullback–Leibler 

(KL) divergence. More specifically, as the target probability 
is on the right side, this can be regarded as “reverse” KL 
divergence. Since p(O ∣ s,a) has more information than p(O ∣ s), this 
minimization problem makes p(O ∣ s) more informative to represent 
the optimality. To solve this problem, its gradient with respect to θ, 
gθ, is derived as shown in Equation 6:

gθ = 𝔼pe,b
[∇θpV ln

pV

pQ
−∇θpV ln

1− pV

1− pQ
+ pV∇θ lnpV + (1− pV)∇θ ln(1− pV)]

= 𝔼pe,b
[−∇θV (s)βpV{β (Q (s,a) −V (s)) + ln

1− pV

1− pQ
}]

∝ 𝔼pe,b
[−∇θV (s){(1− λβ)(Q (s,a) −V (s)) + λβ ln

1− pV

1− pQ
}], (6)

 where λβ ≔ (1+ β)−1 ∈ (0,1). The last proportion is obtained 
by dividing the raw gradient by β(1+ β)pV. Since β is constant, 
it can be absorbed into the learning rate, but pV appears to 
introduce a bias in the convergence point, as noted in the 
previous study (Kobayashi, 2022b). However, we found that the 
Fisher information for p(O|V) is given as β2pV(1− pV)

−1, and 
dividing the raw gradient by pV can be interpreted as the sum of 
the raw and natural gradients (details are in Appendix 1), which 
is expected to converge to the same destination without bias
(Landro et al., 2020).

As a practical problem, pV and pQ cannot be numerically 
computed since they include the unknown R, the upper bound of 
the reward and return. The previous study approximates the above 
gradient by assuming λβ→ 0 (i.e., β→∞), resulting in standard TD 
learning (by assuming Q(s,a) ≃ r+ γV(s′)).

In addition to the value function, the policy π (more 
precisely, its parameter ϕ) is also optimized through the following 
minimization problem, as presented in Equation 7, with the reverse 
KL divergences.

min
ϕ
𝔼pe
[KL (π (a ∣ s) ∣ π (a ∣ s,O = 1)) −KL (π (a ∣ s) ∣ π (a ∣ s,O = 0))]

=min
ϕ
𝔼pe,π[ln

π (a ∣ s,O = 0)
π (a ∣ s,O = 1)

] . (7)

 In particular, the policy tries to be close to the optimal policy, 
while being far away from the non-optimal policy. The gradient 
with respect to ϕ, gϕ, is also derived analytically, as shown in
Equation 8:
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FIGURE 1
Effects of the nonlinear term δln: when δ is dominant, the degrees of updates depicted by the contour lines are mostly equally spaced in parallel to the 
line of V =Q; when the influence of δln increases, the contour lines radiate out from the upper bound R.

gϕ = 𝔼pe,π
[
∇ϕπ (a ∣ s)

π (a ∣ s)
ln

π (a ∣ s,O = 0)
π (a ∣ s,O = 1)

]

= 𝔼pe,π
[−∇ϕ ln π (a ∣ s){β (Q (s,a) −V (s)) + ln

1− pV

1− pQ
}]

∝ 𝔼pe,b
[−

π (a ∣ s)
b (a ∣ s)
∇ϕ ln π (a ∣ s){(1− λβ)(Q (s,a) −V (s)) + λβ ln

1− pV

1− pQ
}],

(8)

 where the last proportion is given by dividing the raw gradient 
by (1+ β). In addition, at the final step, the importance sampling 
replaces π in the expectation operation with the baseline policy b. 
Along with the value function, the approximation of λβ→ 0 makes 
this gradient computable, resulting in the standard policy gradient 
in actor-critic algorithms. 

3 Weber–Fechner law in TD learning

3.1 Numerical analysis with an explicit 
upper bound

The gradients to optimize the value and policy functions 
are derived in Equations 6, 8, respectively. However, as the 
upper bound of the reward function R is unknown and pV
and pQ cannot be calculated numerically, it was necessary 
to exclude the uncomputable term by setting λβ→ 0. As 
a result, the previous study (Kobayashi, 2022b) found the 
conventional update rule, where the gradients are weighted 
by Q(s,a) −V(s) ≃ r+ γV(s′) −V(s) = δ (i.e., the TD error). On 
the other hand, if the nonlinear term excluded (i.e., δln ≔
ln (1− pV) − ln (1− pQ)) is computable, it is interesting how it 
affects the gradients, and this analysis is the main focus of
this study.

Therefore, we assume that R is known at once in this section. 
With this assumption, the gradient including δln is analyzed. First, 
we numerically visualize the gradient according to λβ ∈ (0,1) and 
estimate the role of δln, which has a stronger influence when λβ
increases (i.e., β decreases). For this purpose, (1− λβ)δ+ λβδln (i.e., 
the degree of updates) for λβ = {0.1,0.5,0.9} in the case R = (−1,1)
is illustrated in Figure 1.

First, at λβ = 0.1, the contour lines representing the degree of 
updates are spaced equally and parallel to the line of V = Q. This 
is mainly because δ is dominant; that is, the degree of updates is 
linearly proportional to the TD error. Note that the behavior is 
slightly different for V,Q ≃ R because δln remains. The remaining 
δln, however, easily converges to 0 since the large β ( = 9 in this case) 
causes pV and pQ converge to 0, even with only a small difference 
between V,Q and R (i.e., optimality is deterministic).

On the other hand, when λβ = 0.9, δln is dominant, causing the 
contour lines to extend radially from R. In other words, when the 
value is close to R, the update is significantly activated even with 
a small TD error, whereas when the value is far from R, only a 
large TD error can sufficiently drive the update. Unlike the case with 
λβ = 0.1, δln has a strong effect even when the value is far from R
because pV and pQ with the small β ( = 1/9 in this case) are changed 
at approximately 1/2 without converging to 0 (i.e., optimality is 
uncertain).

Finally, λβ = 0.5 yields an intermediate behavior between the 
above two characteristics. In particular, when the value is somewhat 
close to R, the radial spread from R is observed due to the influence 
of δln, and when it falls below a certain level, δ dominates, and it 
switches to parallel contour lines. However, it should be noted that 
this trend depends on the range of R, so it is not always true for λβ =
{0.1,0.5,0.9}. 

3.2 Mathematical analysis using the Taylor 
expansion

We further analyze the characteristics of δln found in the above 
numerical results. Since these characteristics become apparent when 
V and Q are close to R, we apply a Taylor expansion to pV and pQ
around R, as presented in Equations 9, 10:

pV =
∞

∑
n=0

βn(V−R)n

n!
≃ 1+ β(V−R) , (9)

pQ =
∞

∑
n=0

βn(Q−R)n

n!
≃ 1+ β(Q−R) . (10)
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Accordingly, δln is presented in Equation 11, :

δln = ln
1− pV

1− pQ
≃ − ln R−Q

R−V
. (11)

At this point, let us interpret R−V as the baseline stimulus 
strength, R−Q as the stimulus strength after the change (or −δ
in R−Q ≃ R−V− δ as the change in stimulus strength), and −δln
as the intensity of perception. If this is the case, these are subject 
to the WFL. In other words, how strongly the stimulus change −δ
is perceived (i.e., −δln) depends on the baseline of the stimulus 
strength R−V: the smaller R−V is, the more acute the sensation 
becomes, and vice versa. This is exactly the characteristic found in 
the right side of Figure 1, indicating that the approximation by the 
Taylor expansion is valid.

We then conclude the analysis that WFL is hidden even in the 
update rule of RL derived from control as inference. WFL has also 
been found in areas closely related to brain functions such as neuron 
firing patterns (Scheler, 2017) and cognition (Portugal and Svaiter, 
2011). Recently, it has been shown that the time steps in RL can 
theoretically be a nonlinear log scale (i.e., WFL), leading to adaptive 
temporal discounting (Maini and Tiganj, 2025). Therefore, it is not 
implausible to find it in RL, which is also attracting attention as a 
biological decision-making model (Dayan and Balleine, 2002; Doya, 
2021). This hypothesis would be supported by the fact that WFL is 
activated when optimality is uncertain, which is consistent with the 
conditions faced by organisms (Parr et al., 2022).

Furthermore, its applicability to learning and practical 
engineering value should be verified through numerical 
experiments, with the exception that WFL represents a useful 
characteristic in RL and has been evolutionary preserved in 
organisms. However, the above analysis was performed under 
the assumption that R is known, which is contrary to the general 
problem statement for RL. In the next section, therefore, we propose 
a practical implementation that enables the computation of δln even 
when R is unknown in a biologically plausible manner, followed by 
an experimental verification of the benefits of WFL in RL. 

4 Practical implementation

4.1 Introduction of the 
reward–punishment framework

First, we address the unknown R without giving prior 
knowledge of the problem to be solved. The requirements are i) the 
boundary of R to define the optimality and ii) the range of R to 
determine β (or λβ) for which WFL is valid. A naive solution would 
be to empirically estimate the boundary (R,R). The estimation of the 
range (R−R) does not need to be rigorous, so learning can proceed 
stably if it is updated slowly. However, for pV and pQ to consistently 
satisfy the definition of probability, R may need to change 
frequently, which could cause instability in learning. Moreover, 
the empirically estimated R is likely to be underestimated relative 
to its true value, thereby preventing the full utility of WFL from
being realized.

Therefore, in this study, we introduce a more reliable solution, 
the reward–punishment framework (Kobayashi et al., 2019; 

Wang et al., 2021). Although rewards are generally defined as 
scalar values that can be either positive or negative, this is a way to 
separate positive rewards r+ ∈R+ ⊆ ℝ+ and negative rewards, i.e., 
punishments, r− ∈R− ⊆ ℝ−. This can be applied to any RL problem, 
either i) by having the environment output r+,− as in the experiments 
of this study (see the top of Figure 2) or ii) by distributing r ∈R
from the environment as r+ = max (r,0) and r− = min (r,0) (see 
the bottom of Figure 2).

The reward–punishment framework learns the value and 
policy functions for r+,−, respectively. In particular, the returns 
and the value functions for r+,− are first defined as shown in
Equation 12, :

R+,−t = (1− γ)
∞

∑
k=0

γkr+,−t+k

V+,− (s) = 𝔼pτ
[R+,−t ∣ st = s]

Q+,− (s,a) = 𝔼pτ
[R+,−t ∣ st = s,at = a] .

(12)

The policies π+,−, which attempt to maximize them separately, are 
also introduced.

Here, since only one action can be passed to the environment, 
even if the agent has two policies, it is necessary to synthesize 
them. Following the previous study (Wang et al., 2021), a mixture 
distribution with a mixing ratio based on the value function is 
designed, as shown in Equations 13, 14:

b (a ∣ s) = wπ+ (a ∣ s) + (1−w)π− (a ∣ s) , (13)

w = eβwV+(s)

eβwV+(s) + e−βwV−(s)
. (14)

With this design, however, only one of the policies might be activated 
and the other might be ignored if the difference in the scales of r+,−

is large. To alleviate this issue, a policy regularization method, PPO-
RPE (Kobayashi, 2023), for the density ratio π+,−/b with importance 
sampling [see Equation 8], is introduced in this study. As it yields 
π+ ≃ π− via b, the past mixture distributions transfer and share the 
acquired skills with each other. In addition, as PPO-RPE is a type of 
actor-critic algorithm, it can be applied not only to continuous but 
also to discrete action spaces.

In any case, within the reward–punishment framework, the 
upper bound of r− is given to be 0, making δln computable. On the 
other hand, r+ has only a lower bound of 0, so δln for it remains 
uncomputable. In the next section, therefore, we derive δln utilizing 
this lower bound.

The range of rewards, σ+,−, which is necessary for designing β
where WFL is effectively manifested, can be estimated from the 
empirical r+,−. However, the assumption when deriving Equations 6, 
8 (i.e., β is constant) is violated if σ+,− fluctuates too much. In 
addition, since the experienced scale of r− is likely to gradually 
decrease, the approach to record the maximum scale is not suitable 
for this case. From the above, σ+,− is estimated and used for the 
design of β as shown in Equation 15, :

σ+,−max←max(ζσ+,−max, |r+,−|)

σ+,−← ζσ+,− + (1− ζ)σ+,−max

β+,− =
β0

σ+,−
,

(15)
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FIGURE 2
Reward–punishment framework: in the upper case, both rewards and punishments are directly given from the environment; in the bottom case, scalar 
rewards in a subset of real space are treated by distinguishing between positive and negative ones as rewards and punishments, respectively.

where ζ ∈ (0,1) denotes the gradualness of adaptation (generally, 
ζ is close to 1) and β0 ∈ ℝ+ denotes the baseline. This design 
allows β to reflect the scale while limiting frequent fluctuations 
of β by using the recent maximum scale and updating to 
that value gradually. In addition, as this update rule does not 
use V+,−, it can avoid adverse effects due to the estimation
uncertainty of V+,−. 

4.2 Inversion of the definition of optimality 
using the lower bound

As mentioned above, although r− ≤ 0 can numerically compute 
Equations 6, 8 without any approximation, r+ ≥ 0 cannot do so 
since it only has the lower bound. To solve this issue, we introduce 
a new method for deriving gradients with WFL, inspired by a 
previous study (Kobayashi, 2024b). In particular, the inversion 
of the definition of optimality in Equation 3 is considered the 
starting point.

p (O = 0 ∣ s) = e−β(V(s)−R) ≕ pV

p (O = 0 ∣ s,a) = e−β(Q(s,a)−R) ≕ pQ.
(16)

In Equation 16, the lower bound R of R is utilized for satisfying the 
definition of probability. Note that the aliases pV and pQ are given for 
p(O = 0), unlike Equation 3.

As the previous study did not derive the gradients of Equations 5, 
7 using Equation 16, their derivations are described below. First, gθ
for Equation 5 is derived as shown in Equation 17:

gθ = 𝔼pe,b
[∇θpV ln

pV

pQ
−∇θpV ln

1− pV

1− pQ
+ pV∇θ lnpV + (1− pV)∇θ ln(1− pV)]

∝ 𝔼pe,b
[−∇θV (s){(1− λβ)(Q (s,a) −V (s)) − λβ ln

1− pV

1− pQ
}]. (17)

 Except for the different definitions of pV and pQ and the 
sign reversal of the second term, it is symmetric to Equation 6. 
Similarly, gϕ for Equation 7 is shown in Equation 18:

gϕ = 𝔼pe,π
[
∇ϕπ (a ∣ s)

π (a ∣ s)
ln

π (a ∣ s,O = 0)
π (a ∣ s,O = 1)

]

∝ 𝔼pe,b
[−

π (a ∣ s)
b (a ∣ s)
∇ϕ ln π (a ∣ s){(1− λβ)(Q (s,a) −V (s)) − λβ ln

1− pV

1− pQ
}],

(18)

 where π(a ∣ s,O = 0) = pQp−1V b(a ∣ s) and π(a ∣ s,O = 1) =
(1− pQ)(1− pV)

−1b(a ∣ s) are also redefined in this study. This 
gradient is also in the same format as Equation 17, except 
that the sign of the second term is reversed, with different 
definitions for pV and pQ. Note that the impact of redefining 
optimality can be confirmed when the minimization problem 
is designed with “forward” KL divergence, as analyzed in the 
previous study (Kobayashi, 2024b).

Both have the same degree of updates multiplied by the 
gradients, and the first term coincides with the TD error δ as in 
the original. The crucial second term appears to be different, but as 
depicted in Figure 3, the contour lines extend radially from R, as in 
the original. If the Taylor expansion around R is applied to pV and pQ, 
which are substituted into δln ≔ − ln (1− pV) + ln (1− pQ), the same 
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FIGURE 3
Weber–Fechner law using the lower bound: with the large λβ, the contour lines become narrower with V and Q closer to their lower bound R and 
wider with V and Q farther from R.

TABLE 1  Correspondence between WFL and the proposed update rule.

WFL Update rule for r+ Update rule for r−

Formula p∝ S
S0

δln ∝ ln Q
V

−δln ∝ ln −Q
−V

Baseline of stimulus strength S0 V −V

Stimulus strength after change S Q −Q

Change in stimulus strength S− S0 Q−V ≃ δ −(Q−V) ≃ −δ

Intensity of perception p δln −δln

WFL is confirmed. Thus, it is possible to compute the gradients with 
WFL even for r+, where only R = 0 is known.

4.3 Expected utilities

As described above, we proposed a novel algorithm including 
the terms with WFL, which had been excluded in the previous 
study (Kobayashi, 2022b) (and the standard RL algorithms) 
because they are computationally infeasible. Table 1 summarizes the 
correspondence between WFL and the update rule in the proposed 
algorithm. Note that since WFL is a law about the signal strength, the 
terms in punishments are converted for the punishment strength by 
reversing their signs.

In this study, we summarize the basic utilities of WFL in this 
algorithm. First, for rewards r+, the updates of the value and policy 
functions are actively promoted at V+ ≃ 0, whereas the updates are 
relatively suppressed over a certain level, V+ ≫ 0. Conversely, for 
punishments r−, the updates are slow under a certain level V− ≪
0, but V− ≃ 0 is pursued eventually. It is known in gradient-based 
optimization that large gradients per update lead to a solution robust 
to small perturbations, while small gradients lead to one of the local 
solutions (Smith, 2018; Foret et al., 2021). Therefore, WFL in the 
proposed algorithm can also be interpreted as seeking an early local 
solution for r+ and a stable global solution for r−. Note that, as shown 

in Figures 1, 3, the utilities of WFL can be suppressed by adjusting 
λβ (or β) with the activation of the standard TD learning, which is 
not affected by the baseline stimulus strength (i.e., |V|). 

5 Numerical verification

5.1 Toy problem

First, we investigate the feasibility of learning the optimal policy 
under the proposed algorithm with WFL and the effects of WFL 
on the learning process and results. As a toy problem, Pendulum-v0
implemented in OpenAI Gym is applied, while its reward function 
is redefined to fit the reward–punishment framework.

r+ = 1+ cos q

r− = −(0.1|q̇| + 0.001|τ|) (1+ cos q) ,
(19)

In Equation 19, q denotes the pendulum angle, q̇ denotes its angular 
velocity, and τ denotes the torque applied to the pendulum (i.e., 
action). In particular, the agent gets high rewards if the pendulum 
is close to upright, while it is punished when the pendulum is 
not stopped. In addition, this punishment is stronger when the 
pendulum is close to upright. Since we know that Pendulum-v0 is 
a standard and classic benchmark that eventually yields an optimal 
policy, it is useful for analyzing the changes in the learning process.
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FIGURE 4
Learning results of Pendulum-v0 with different β+,−0 : the upper and bottom curves depict the learning curves for episodic averages of r+ and r−, 
respectively; when β+,−0  was small, the pursuit of r+ became slower, and r− was preferentially suppressed to 0.

With β+,−0 = {0.1,1,10,∞} (∞ indicates conventional TD 
learning), four respective models are trained 50 times with different 
random seeds in order to achieve the statistical learning results 
shown in Figure 4. Note that the learning conditions, including 
network architectures, are summarized in Appendix 2. As shown 
in the results, learning can proceed for any β+,−0  without collapse, 
indicating that RL is valid even if the term δln with WFL is used. The 
increase in β+,−0  made the learning curves approach the conventional 
curves, as expected. On the other hand, when β+,−0  becomes smaller, 
unique behaviors were observed. In other words, for β+,−0 = 0.1, 
optimization with respect to r+ was delayed, while the temporary 
deterioration of r− was restricted. This can be attributed to the fact 
that optimization worked to reduce r− to 0 as much as possible 
while simultaneously maximizing r+ to some extent. However, in 
the former case, it might be possible that the strong effort to reduce 
r− to 0 suppressed the exploration, causing a delay in the discovery 
of the optimal solution for r+. Note that β+,−0 = 1 achieved the similar 
learning curve of reward to the case of Vanilla due to the nonlinear 
effect of β+,−0 , but their confidence intervals were hardly overlapped 
at the early stages of learning.

Then, to take the advantages of both, the results of setting β+0 =
10 and β−0 = 0.1 asymmetrically are depicted in Figure 5. Under this 
setting, WFL’s efforts to reduce r− to 0 remained and suppressed the 
temporary deterioration of r−, while r+ was successfully optimized 
without much delay. In other words, the delay in learning about r+

at β+,−0 = 0.1 can be attributed to the characteristics of WFL. Note 
that the delay in maximizing r+ at approximately 20 episodes is 
considered an effect of the suppression of exploration. On the other 
hand, r+ was maximized more efficiently, and r− was smaller in 
conjunction with it.

In any case, WFL’s utilities analyzed in this study were 
confirmed as expected in the numerical verification. In addition, 
as suggested in Figure 5, the optimization behaviors for r+,− can 
be adjusted by setting β+,−0  separately. However, we need to remark 
that the separation of β+,−0  does not mean that they function 
independently since r+,− necessarily depend on each other in the 
learning process, as in the exploration suppression described above. 

5.2 Robotic task

The above numerical verification showed that the proposed 
method with WFL can optimize the policies with its expected 
learning characteristics. Based on this finding, we additionally 
demonstrate that the proposed method can be useful in more 
practical robotic tasks. This study focuses on the D’Claw task 
in ROBEL (Ahn et al., 2020), in which three 3-DOF robotic 
fingers manipulate a valve (see Figure 6). This benchmark is 
unique in that it includes not only a robotic simulation but 
also a real-robot version, which can automatically be initialized 
to restart episodes. Hence, this task is useful to verify that the 
proposed algorithm works in a real-world setting. Note that the 
code for this system is not the original code but a modified 
version in the literature (Yamanokuchi et al., 2022). Its state 
space consists of the angles and angular velocities of the finger 
joints and of the valve (in total, 22 dimensions), while the action 
space consists of nine dimensions of angular changes in the 
finger joints.

5.2.1 Simulations
First, the simulations confirm that the behaviors when WFL is 

activated for r+,− individually are consistent with the toy problem. 
Since β+,−0 = 0.1 was too extreme and β+,−0 = 1 was insufficient for 
WFL effects, β+,−0 = 0.5 is adopted to activate WFL from here as 
WFL-R/P.

The reward function is defined as shown in Equation 20:

r+ = qv𝕀qv>0

r− = −0.01‖qj +Δqj‖
2
2,

(20)

where qv and qj denote the valve angle and the joint angles, 
respectively, and Δqj denotes the angular changes in joints (i.e., 
action). In particular, the goal is to turn the valve as much as possible 
while keeping the fingers in the initial posture to some extent. Note 
that the sign of qv reverses after one turn, so the actual goal is to stop 
just before one turn.
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FIGURE 5
Learning results of Pendulum-v0 with the asymmetric β+,−0 : because of small β−0 = 0.1, the deterioration of r− was restricted; although the exploration 
was more or less limited, the large β+0 = 10 value enabled to maximize r+ to the same level as the conventional method.

FIGURE 6
D’Claw task (Ahn et al., 2020): it is simulated on MuJoCo (Todorov et al., 2012).

The learning results of each condition with 20 different random 
seeds are shown in Figure 7. Here, WFL-R and WFL-P denote 
the asymmetric models with β+,−0 = (0.5,∞), (∞,0.5), respectively. 
Note that because the punishments were very small, unlike in 
the toy problem, we plotted the sum of rewards/punishments 
per episode rather than their mean. First, the pursuit of r+ was 
slowed down in WFL-R with WFL for r+. As its side effect, r−

always outperformed the conventional method due to the reduced 
robot motion. On the other hand, WFL-P with WFL for r− showed 
improvement after approximately 4000 episodes, reflecting the 
pursuit of reducing punishments and finally achieving the best 
performance. In addition, probably because the range of motion 
of each finger joint was maintained as its side effect, the speed 
of improvement in r+ was significantly increased compared to 

others. Thus, it was suggested that the appropriate addition of WFL, 
including its side effects, can improve learning performance in 
practical robotic tasks.

5.2.2 Real-robot experiments
Next, we demonstrate how WFL works in learning on the 

real world. For simplicity, WFLs for r+,− are both activated 
simultaneously and compared with the conventional method.

Since the real-robot valve angle has a different domain from the 
simulation angle and the angle jumps to π→−π in a half turn, the 
reward function is modified accordingly, as shown in Equation 21:

r+ = |qv|𝕀qv>0∨qv<−
3
4

π

r− = −0.01‖qj +Δqj‖
2
2.

(21)
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FIGURE 7
Learning results of D’Claw simulation: β+,−0 = (0.5,∞), (∞,0.5) are labeled as WFL-R and WFL-P, respectively; the proposed method with WFL (especially, 
WFL-P) improved the maximization of rewards while reducing punishments.

FIGURE 8
Learning results of real-world D’Claw: β+,−0 = (0.5,0.5) is labeled as WFL-RP; accelerating the increase in a small reward was confirmed, although the 
increase in punishment by the side effect of the behavior for rotating the valve was not suppressed.

In other words, the goal is to stop the valve half a turn while 
allowing some overshoot. Note that, as the other differences 
from the above simulations, the ranges of motion and actions 
(i.e., the exploration capability) are restricted to avoid hardware
malfunction.

First, the learning results with five trials are shown in Figure 8. 
Note that it was difficult to verify the asymmetric β+,−0  due to the 
cost of the real-robot experiments, even with automatic episode 
initialization. Therefore, the robustness of the proposed method 
to hyperparameters is demonstrated by adopting the symmetric 
WFL-RP as the proposed method under the assumption that 
there is limited prior knowledge (i.e., WFL-P was better in the
simulations).

It was confirmed in r+ that the proposed method always 
outperformed the conventional method. This is probably because the 
proposed method preferentially learned a small number of motion 
samples that rotated the valve forward, which were rarely obtained 

by chance with the limited exploration capability. Instead, r− of the 
proposed method was slightly lower than that of the conventional 
method, probably because the side effect of the behavior to rotate 
the valve was larger than the behavior to maintain r− at 0. Another 
possibility that should be noted is that the regularization of π+ ≃ π−

was added, but the large difference in scale between r+ and r− may 
have prevented it from functioning satisfactorily, and the policy to 
pursue r+ may have been prioritized.

Next, task accomplishment, which cannot be evaluated from r+,−

alone, is evaluated using the terminal valve angle with the post-
learning policies. The five post-learning policies for each condition 
tested 10 episodes, as shown in Figure 9. As expected from the 
learning curve of r+, the proposed method produced more results 
closer to the target angle, θ = π. Moreover, when the range of ±π/4
from the target angle is considered the success, the proposed method 
showed 41/50 (i.e., 82%), whereas the conventional method showed 
35/50 (i.e., 70%).
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FIGURE 9
Terminal valve angles with the post-learning policies: 10 episodes were performed in each of the 5 models, and the (sorted) valve angles at the end of 
the episodes were plotted; WFL-RP tended to be closer to the target angle than that in the conventional method, and it also outperformed in the 
success rate where the error was within π/4.

6 Discussion and conclusion

6.1 Discussion

As shown above, although WFL in TD learning was confirmed 
in this study can be shown to produce more desirable learning 
processes and outcomes, whether WFL is more sensitive to reward 
design than conventional TD learning is remains an open question. 
For example, an inappropriate design may cause a conflict between 
the reward and punishment policies, potentially preventing them 
from achieving their respective objectives. Basically, objectives given 
as punishments r− should have a high priority for achievement, 
and those with rewards r+ should be regarded as value-added. 
However, prioritization among multiple objectives is often given 
as weights, which may lead to overlapping roles among multiple 
parameters and make it difficult to understand. The complexity is 
further increased by the fact that the impact of WFL can be adjusted
by λβ (or β).

Therefore, the need to assign such priorities to RL users and/or 
task designers may pose an obstacle to real-world applications. 
To alleviate this issue, further research on the design theory of 
reward functions suitable for this algorithm and/or the automation 
of assignment to r+,− (and tuning of hyperparameters) based on 
user preferences would increase the practical value of this algorithm. 
Recently, it might be a good idea to specify the context in LLM-
based reward design (Ma et al., 2024) so that the necessary factors 
are set as r− and those to be desired are r+, while avoiding the conflict 
between them.

On the other hand, WFL, found in TD learning, originally 
explains the relationship between stimuli and perception in 
organisms, but it has not been discovered in brain activities 
related to TD learning. Considering that RL is also used as 

decision-making models for organisms and that the relationship 
between TD errors and brain activities has actually been verified, 
it is possible that WFL in TD learning may be latent in our
brain activities.

Therefore, it would be important to verify the existence or 
absence of WFL using this algorithm for the analysis of brain-
activity data. Moreover, the feedback from the findings may be able 
to elaborate on our algorithm: for example, the hyperparameters 
in the algorithm might be tuned by representing the brain-activity 
data. When conducting this investigation, it may be possible to 
derive a more sophisticated model if the WFL in the time direction 
derived by Maini and Tiganj (2025) can also be considered in 
addition to the proposed algorithm with the WFL in TD errors. 
Alternatively, brain-activity data may provide suggestions for new 
modeling of the heuristic update rule of β+,−. 

6.2 Conclusion

In this study, we revealed a novel nonlinearity in TD 
learning, WFL, which explains the relationship between stimuli 
and perception of organisms in the update rule of the value 
and policy functions in RL. Without loss of generality, it was 
implemented as a novel biologically plausible RL algorithm on 
the reward–punishment framework. We showed that the proposed 
method can be expected to explore a local solution to maximize 
rewards as early as possible while gradually aiming for a global 
solution to minimize punishments. Numerical verification indicated 
that the proposed method does not cause RL to collapse and retains 
the characteristics of WFL. The proposed method was also useful for 
robot control, and it outperformed the conventional method in the 
valve-turning task using D’Claw.
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After addressing the limitations identified in this study, it would 
be valuable to test its generalizability (e.g., its capability to learn tasks 
with sparse rewards and/or discrete action spaces).
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Appendix A

1 Natural gradient for θ

The Fisher information for p(O|V), I(V), is derived as follows:

I (V) = 𝔼p(O|V)[(
∂

∂V
ln p (O|V))

2
] = p (O = 1|V)( ∂

∂V
ln p (O = 1|V))

2

+ p (O = 0|V)( ∂
∂V

ln p (O = 0|V))
2
= β2pV + (1− pV)(

−βpV

1− pV
)

2

= β2pV(1+
pV

1− pV
) = β2 pV

1− pV
(22)

 where pV = p(O = 1|V) = eβ(V−R).
The natural gradient is obtained by dividing the raw gradient by 

the Fisher information (Amari, 1998). As the raw gradient graw is 
represented as −{(1− λβ)δ+ λβδln}β(1+ β)pV∇θV, its natural gradient 
gnat can be given as −{(1− λβ)δ+ λβδln}β−1(1+ β)(1− pV)∇θV. By 
removing the constant coefficients related to β, their summation can 
be derived as −{(1− λβ)δ+ λβδln}∇θV. 

2 Learning conditions

The value and policy functions for r+,− are independently 
approximated by a common network structure. The structure has 
two fully connected layers as hidden layers, with 100 neurons for 
each, and ReLU function is employed as its activation function. 
AdaTerm (Ilboudo et al., 2023) is employed to optimize the 
network parameters, and its learning rate is set to 1× 10−3 for 
the toy problem and 5× 10−4 for the robotic task. The sample 
efficiency is improved with experience replay, although its buffer 
size is small (i.e. 1× 104) to emphasize on-policyness. Half of 
the stored experiences are randomly replayed at the end of each 
episode with 32 the batch size. As tricks to stabilize learning, 
we introduce PPO-RPE (Kobayashi, 2023) introduced in the 
main text, target networks with CAT-soft update (Kobayashi, 
2024a), and regularization to make the functions smooth by L2C2 
(Kobayashi, 2022a). All of these remain the default hyperparameters. 
Other hyperparameters are γ = 0.99 for the discount rate 
and ζ = 0.999 for the empirical TD error scale estimation in
Equation 15.
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