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Introduction: Developing a reliable and trustworthy navigation policy in deep 
reinforcement learning (DRL) for mobile robots is extremely challenging, 
particularly in real-world, highly dynamic environments. Particularly, exploring 
and navigating unknown environments without prior knowledge, while avoiding 
obstacles and collisions, is very cumbersome for mobile robots. 
Methods: This study introduces a novel trustworthy navigation framework that 
utilizes variational policy learning to quantify uncertainty in the estimation of 
the robot’s action, localization, and map representation. Trust-Nav employs the 
Bayesian variational approximation of the posterior distribution over the policy-
based neural network’s parameters. Policy-based and value-based learning are 
combined to guide the robot’s actions in unknown environments. We derive the 
propagation of variational moments through all layers of the policy network and 
employ a first-order approximation for the nonlinear activation functions. The 
uncertainty in robot action is measured by the propagated variational covariance 
in the DRL policy network. At the same time, the uncertainty in the robot’s 
localization and mapping is embedded in the reward function and stems from 
the traditional Theory of Optimal Experimental Design. The total loss function 
optimizes the parameters of the policy and value networks to maximize the 
robot’s cumulative reward in an unknown environment.
Results: Experiments conducted using the Gazebo robotics simulator 
demonstrate the superior performance of the proposed Trust-Nav model in 
achieving robust autonomous navigation and mapping.
Discussion: Trust-Nav consistently outperforms deterministic DRL approaches, 
particularly in complicated environments involving noisy conditions and 
adversarial attacks. This integration of uncertainty into the policy network 
promotes safer and more reliable navigation, especially in complex or 
unpredictable environments. Trust-Nav offers a step toward deployable, self-
aware robotic systems capable of recognizing and responding to their own 
limitations.
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1 Introduction

Autonomous mobile robots are designed to execute 
complex tasks, navigate, and interact with unknown real-
world environments. However, the challenges posed by the 
dynamic nature of the real world introduce a spectrum of 
obstacles that require innovative solutions (Wong et al., 2018; 
Carter-Templeton et al., 2018; Liaqat et al., 2019; Alatise and 
Hancke, 2020; Nam and Gon-Woo, 2021; Niloy et al., 2021; 
Gupta and Fernando, 2022; Wijayathunga et al., 2023). From 
surviving unpredictable barriers to responding to noisy or 
attacked environmental conditions, these challenges underscore 
the complexity of achieving autonomy in mobile robotic systems.

Deep reinforcement learning (DRL), rooted in the synergy 
of deep neural networks (DNNs) and reinforcement learning 
(RL) principles, has emerged as a powerful paradigm to endow 
autonomous robotic systems with adaptive and intelligent 
navigation and decision-making capabilities (Mnih et al., 2015; 
Wang et al., 2016; Gu et al., 2017; Zambaldi et al., 2018; 
Liu R. et al., 2021; Plaat, 2022). DRL offers a promising avenue 
for imbuing robots with the capability to learn and optimize 
behaviors autonomously with considerable success across various 
research domains, including navigation and mapping, as a 
particularly noteworthy area of exploration (Ahmed et al., 2023; 
Placed et al., 2023). Autonomous navigation encompasses a suite of 
methodologies wherein a mobile robot not only localizes itself but 
also concurrently traverses and maps an unfamiliar environment. 
This dynamic field within RL demonstrates the potential for robotic 
systems to autonomously navigate and explore unknown spaces 
while simultaneously building a coherent map of their surroundings. 
The latter process is known as active simultaneous localization 
and mapping (SLAM) (Leung et al., 2008; Trivun et al., 2015; 
Palomeras et al., 2019; Chen et al., 2020; Mihálik et al., 2022; 
Ahmed et al., 2023; Placed et al., 2023).

This paper proposes a novel trustworthy navigation (Trust-
Nav) framework that adopts DRL and develops a variational 
policy learning paradigm. The variational policy consists of a 
Bayesian policy neural network, where we define a prior distribution 
over the parameters of the policy network. When the robot 
receives observations from the environment, the distribution over 
the parameters is updated to the posterior distribution using 
Bayes’ rule. However, computing the exact posterior is often 
intractable due to the complexity and high dimensionality of neural 
networks. We approximate the posterior distribution of the policy 
network’s parameters using variational inference (Blei et al., 2017). 
The variational inference framework addresses this difficulty by 
approximating posterior estimation as an optimization problem, 
where a simpler distribution (i.e., Gaussian) is optimized to closely 
match the true posterior. To complete the Bayesian network 
structure, we propagate the moments of the Gaussian variational 
posterior through the network layers and estimate the mean and 
covariance of the predicted robot’s actions of the policy network. 
The propagated covariance represents the uncertainty associated 
with the action and is used in the loss function to inform the 
decision. Moreover, Trust-Nav also computes uncertainty in the 
robot’s localization and mapping using the D-optimal method 
(Rodríguez-Arévalo et al., 2018; Placed and Castellanos, 2022) 
that captures the global variance of the map by analyzing the 

total length of the covariance of the state vectors. The proposed 
framework can be applied to various DRL algorithms and produces 
improved robustness in autonomous robot navigation, especially in 
noisy environments. The main contributions can be summarized 
as follows. 

• Develop a novel DRL-based trustworthy, reliable, and 
collision-free autonomous navigation (Trust-Nav) framework 
that introduces closed-form variational moment propagation 
into DRL policy networks, and integrates statistical uncertainty 
in Bayesian theory to guide the robot’s actions and mappings 
for trustworthy navigation.
• Eliminate MC sampling to overcome robustness and scalability 

limitations of existing Bayesian DRL approaches, providing 
a tractable, analytically grounded framework that balances 
theoretical soundness with the computational constraints of 
embedded robotic systems.
• Combine policy-based and value-based learning and quantify 

the uncertainty in the robot’s actions and localizations to guide 
the navigation toward maximizing cumulative reward.
• Design a Bayesian policy neural network that propagates the 

mean and covariance of the variational posterior distribution 
and produces robot actions to the environment and associated 
uncertainty within each action to guide the robot’s decision-
making process.
• Adopt a reward function that accounts for the robot’s 

localization uncertainty. Both action and localization/mapping 
uncertainties are combined into a unified loss function to 
maximize the cumulative reward.
• Assess the Trust-Nav model performance and robustness 

under various noisy and attacked environments by an 
adversary using the Gazebo robotics simulator.

2 Literature review

2.1 Deep reinforcement learning for 
navigation

Deep Reinforcement Learning (DRL) enables an autonomous 
robot to learn optimal behaviors through trial-and-error 
interactions with its environment. In the context of navigation 
and exploration, the robot—equipped with sensors such as 
LiDAR and/or cameras—learns to perceive, explore, and map 
previously unknown environments by leveraging action–feedback 
loops to iteratively refine its policy (Mnih et al., 2015; 
Morales et al., 2021; Plaat, 2022).

The robot refines its behavior by receiving rewards or penalties 
based on the outcomes of its actions, as specified by a developer-
defined reward function. Although the reward signal provides 
some supervision, as it guides the robot toward optimal actions, 
the robot primarily learns through its own interactions with the 
environment, making DRL a form of semi-supervised learning. 
This framework is particularly effective in complex environments 
characterized by high-dimensional state and action spaces. For 
example, in tasks such as playing chess, the robot must reason over 
an enormous decision space to win. To manage such complexity, 
DRL integrates deep neural networks, which enable the robot to 
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approximate complex, non-linear functions and make decisions 
in high-dimensional environments. This learning paradigm closely 
resembles human learning through trial and error, as observed in the 
process of mastering strategic games such as checkers or chess.

A variety of DRL architectures have been applied to robotics 
navigation, including value-based methods such as Q-learning 
(Jang et al., 2019) and Deep Q-Networks (DQN) (Mnih et al., 2015), 
as well as their enhancements—double DQN (Van Hasselt et al., 
2016) and dueling architectures (Wang et al., 2016). While these 
approaches perform well in discrete action spaces, robotics often 
requires continuous control of motion parameters such as linear 
and angular velocities. Policy gradient methods, particularly the 
Advantage Actor–Critic (A2C) framework (Grondman et al., 2012; 
Mnih et al., 2016; Grigsby et al., 2021), address this by decoupling 
policy learning (actor) from value estimation (critic), enabling better 
action prediction in continuous or mixed action spaces.

Despite these advances, current DRL navigation frameworks 
remain limited in their ability to operate reliably in real-world 
conditions where sensor noise, environmental uncertainty, 
and adversarial disturbances are prevalent. Recent work in 
robust reinforcement learning has explored adversarial training 
(Pinto et al., 2017), distributional RL (Liu Q. et al., 2021; 
Bellemare et al., 2023), and domain randomization (Tobin et al., 
2017) to improve robustness, while adaptive control theory (Zhou, 
1998) provides decades of insight into stability under uncertainty. 
However, these strategies often lack explicit mechanisms for 
quantifying and propagating uncertainty in the decision-
making process.

Bayesian neural networks (BNNs) offer a principled approach 
to uncertainty quantification by modeling distributions over 
network parameters (Gal and Ghahramani, 2016; Kendall and 
Gal, 2017; Feng et al., 2019). In robotics, BNNs have been 
applied to perception (Dera et al., 2021) and control (Wang et al., 
2024), demonstrating improved robustness to noisy inputs. Yet, 
integrating BNNs directly into DRL navigation pipelines remains 
underexplored. Most uncertainty-aware navigation methods either 
rely on sampling-based approximations or heuristic measures of 
prediction confidence, which can be computationally costly or 
unreliable in safety-critical scenarios.

Our proposed Trust-Nav framework addresses this gap by 
analytically propagating both the mean and covariance of the 
variational posterior through the policy network, enabling real-
time, self-assessed navigation without additional sampling or 
computation. This design allows the robot to detect low-confidence 
decision states and adapt its behavior accordingly, bridging Bayesian 
uncertainty modeling with DRL and drawing conceptual parallels to 
robust and adaptive control principles. 

2.2 Reward computation for navigation

An important component of autonomous exploration is the 
computation of rewards that guide the robot from its current 
position toward informative future locations. Prior work has shown 
that reward design can be grounded in the uncertainty of the robot’s 
pose and the environment map, encouraging actions that reduce 
this uncertainty (Carrillo et al., 2012; Rodríguez-Arévalo et al., 
2018). Many of these methods are rooted in the Theory of 

Optimal Experimental Design (TOED) (Pukelsheim, 2006), which 
provides optimality criteria for selecting actions that maximize the 
information gained from new observations.

The research community has explored several TOED 
criteria, including T-optimality, A-optimality, D-optimality, E-
optimality, and Shannon’s entropy (Carrillo et al., 2012; Rodríguez-
Arévalo et al., 2018; Placed and Castellanos, 2022; Placed and 
Castellanos, 2020), each emphasizing different statistical properties 
of the state covariance matrix to infer the uncertainty in the 
robot’s localization and mapping. For example, A-optimality 
minimizes the trace of the covariance (average variance), while 
E-optimality minimizes the maximum eigenvalue (worst-case 
variance). D-optimality, in contrast, maximizes the determinant 
of the information matrix (or equivalently, minimizes the volume 
of the confidence ellipsoid), thereby capturing global variance 
reduction across all state dimensions. This property makes D-
optimality well-suited for active SLAM and exploration, where the 
objective is to efficiently reduce uncertainty throughout the map 
rather than along a single dimension.

In this paper, we adopt the D-optimal method as the most 
effective because its ability to integrate information from all map 
landmarks (the global variance of the map), represented by the 
eigenvalues λi of the state covariance matrix Σs ∈ ℝd×d, where s =
(s1,…, sd)T denotes the state vector. The D-optimal criterion fD is 
defined in (Equation 1).

fD (Σs) ≜ exp( 1
d

d

∑
i=1

log(λi)). (1)

The D-optimal function has been shown in prior robotics 
literature (Carrillo et al., 2012; Rodríguez-Arévalo et al., 2018; 
Placed and Castellanos, 2022; Placed and Castellanos, 2020) to 
yield more balanced exploration trajectories compared to alternative 
criteria. The logarithmic formulation prevents convergence to zero, 
ensuring numerical stability while providing a robust measure of 
global uncertainty for navigation, exploration, and mapping. The 
robot communicates back and forth with the environment to help 
create the map and positions using measurements from LiDAR or 
camera through the ROS framework (Macenski et al., 2022). 

3 Trust-navigation with variational 
policy

The proposed Trust-Nav adopts the policy-value DRL algorithm 
with deep neural networks to define the robot. The robot was 
equipped with a depth camera and LiDAR. The camera’s depth 
images or frames serve as inputs to the DRL neural networks, 
which determine the best action based on the environment’s state. 
While LiDAR could be used for input, the camera was found to be 
more suitable for object detection and avoidance along the robot’s 
trajectory path.

To extract useful information from images or frames, we deploy 
two convolutional neural networks (CNNs) for the policy and value 
functions, respectively. The policy CNN takes the environment states 
as input and produces probabilistic actions. At the same time, the 
value function determines the expected return for a robot starting 
at a given state and acting according to a particular policy. The two 
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networks interact with each other through the temporal difference 
(TD) learning method, where the policy network makes an action, 
and the value network returns a value to penalize incorrect actions. 

3.1 Variational policy network

We develop the policy as a Bayesian CNN with L layers, 
and the probabilistic network parameters are W = {W(l)}Ll=1, where 
W(l) is the weight matrix for the lth layer. The Bayesian CNN 
architecture follows (Dera et al., 2021). We introduce a prior 
Gaussian distribution over the network parameters, W ∼Np(0,cI), 
where c is a hyperparameter that refers to the prior variance. 
The input-output dataset for the policy network consists of states 
from the environment and the robot’s actions at time t, i.e., 
Dt = {st,at}Tt=1. Given the data and the prior, we approximate 
the posterior distribution of the parameters given the data, i.e., 
p(W |Dt) by the variational Gaussian distribution W ∼ qϕ(W) =
Nv(μ,Σ). The variational parameters ϕ = {μ,Σ} with the mean, μ, 
and covariance, Σ, are optimized by minimizing Kullback-Leibler 
(KL) divergence between the approximate and the true unknown 
posterior KL[Nv(μ,Σ)‖p(W |Dt)] or equivalently maximizing the 
evidence lower bound (ELBO) loss function that converges to the 
optimal variational density (Blei et al., 2017). The ELBO loss is 
defined in (Equation 2).

L(μ,Σ;at|st) = 𝔼Nv
(log p(at|st,W)) −KL[Nv‖Np] . (2)

The ELBO loss function consists of two terms: (i) the expected 
log-likelihood of the robot’s actions given the environment states 
and the probabilistic weights, and (ii) the regularization term, which 
is the KL divergence between the variational posterior and prior 
Gaussian distributions. The likelihood of the actions given the 
states, p(at|st,W), is modeled by a Gaussian distribution with the 
action’s mean, μat

, and covariance, Σat
, predicted at the output of the 

variational policy network. We approximate the expectation over the 
variational posterior in the first term of the ELBO loss using the first-
order Taylor approximation as defined in (Equation 3). The use of a 
first-order Taylor expansion is a deliberate choice to enable closed-
form propagation of both the mean and covariance of the variational 
posterior through nonlinear activation functions. This choice allows 
us to model the full predictive distribution in an analytically 
tractable manner, entirely avoiding the need for Monte Carlo 
(MC) sampling. MC-based uncertainty estimation, while accurate 
in theory, is computationally expensive, introduces sampling noise, 
and scales poorly with deeper network architectures—limitations 
that are particularly critical in real-time robotics. The first-
order approach therefore strikes a balance between accuracy and 
scalability, making it feasible to propagate uncertainty through 
deeper policy networks and to support low-latency inference. 
Although the first-order approximations can accumulate error in 
deep networks, our empirical results demonstrate that even with this 
assumption, the proposed framework significantly improves both 
accuracy and robustness compared to deterministic baselines and 
sampling-based Bayesian DRL approaches. This finding supports 
the suitability of the first-order approach in practical, real-time 
navigation scenarios.

We assume that the probabilistic parameters of the policy 
network are independent within and across layers. This 

independence assumption is crucial for developing a feasible 
optimization problem in high-dimensional policy networks. 
Estimating and storing a full covariance matrix across all weights 
is not computationally or mathematically tractable for large-
scale DRL models, where the parameter count can be in the 
millions. Furthermore, this independence assumption promotes 
the extraction of non-correlated, informative features and reduces 
redundancy, which is beneficial for both generalization and 
interpretability (Yang et al., 2008). Thus, the variational covariance 
of the weight vector w(l) in the lth layer can be written as Σ(l) =
σ(l)I, where I is an identity matrix and σ(l) the learnable variance. 
The second term of the ELBO loss has a closed-form mathematical 
formulation and can be written as in Equation 4, where Hl and 
Hl−1 represent the number of neurons in the lth and (l− 1)th layers, 
respectively.

𝔼W∼Nv
(log p (aT|sT,W)) ≈ −

1
2T

T

∑
t=1
[log(|Σat

|) + (at − μat
)T(Σat
)−1 (at − μat

)] .

(3)

KL[Nv‖Np] =
1
2

L

∑
l=1

Hl

∑
i=1
(‖μ(l)i ‖

2
F −Hl−1(1−

σ(l)i
c
+ log

σ(l)i
c
)). (4)

Thus, μat
 and Σat

 represent the probabilistic action mean vector 
and covariance matrix. While μ(l)i  and σ(l)i  are the mean vector and 
covariance matrix of the variational posterior distribution over the 
policy neural network’s parameters for the ith weight vector, w(l)i , in 
the lth layer. 

3.2 Policy variational moments 
propagation

In the proposed framework, the parameters of the policy 
network are modeled as probabilistic variables, specifically following 
Gaussian distributions. To accommodate this formulation, all 
network layers are redefined such that their computations operate on 
these probabilistic parameters. The variance values associated with 
the Gaussian posterior distributions capture the uncertainty in the 
model parameters. This parameter uncertainty propagates through 
the network layers, ultimately enabling the estimation of uncertainty 
in the robot’s actions at the output of the policy network. Although 
the network parameters are assumed to be independent across 
layers, the output of each layer exhibits non-trivial correlations 
due to the transformations applied during forward propagation. 
Thus, the covariance over the output of every layer exists through 
the mathematical derivation. To quantify the uncertainty at 
each stage of the network—including convolutional layers, multi-
layer perceptrons, and non-linear activation functions—we derive 
the output distributions using statistical properties of random 
variable transformations and the first-order (e.g., Taylor series) 
approximation.

The convolution and fully connected layers can be expressed as 
a multiplication between the input matrix X and the weight matrix 
W, i.e., Z = XW. The input matrix X ∈ ℝn×d has n probabilistic 
feature vectors (random vectors) as rows xT

i ∈ ℝ
1×d, and W ∈

ℝd×m has m probabilistic weight vectors as columns wj ∈ ℝd. The 
mean matrix of the input feature vectors, where the means of 
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the feature vectors are arranged in the matrix’s rows, is given in
Equation 5.

M(x) =

[[[[[[[

[

μT
x1

μT
x2

⋮

μT
xn

]]]]]]]

]

∈ ℝn×d (5)

where μxi
= 𝔼[xi] is the mean of the ith row vector. The covariance 

matrix associated with each xi, denoted by Σxi
∈ ℝd×d is defined as 

Σxi
= 𝔼[(xi − μxi

)(xi − μxi
)T].

Similarly, every column of the matrix W is wj, and the mean matrix 
of the weights, which is the matrix of the mean vectors arranged in 
its columns, is defined as M(w) = [μw1

μw2
⋯μwm
] ∈ ℝd×m with μwj

=
E[wj] and the covariance matrix Σwj

∈ ℝd×d, where i, j = 1,…,Hl. 
To simplify notation for the covariance derivation, we vectorize 

the output matrix Z into a single column vector: z = vec (Z) =
vec (XW) ∈ ℝmn×1, where vec is the vectorization operation and the 
(i, j)-th element of Z (row i, column j) appears in z at position 
(i− 1)m+ j.

This ordering ensures that the indices i (input row) and j
(weight column vector) are explicitly preserved, so that the mean 
and covariance for each element of z can be expressed in terms 
of the corresponding xi and wj. Thus, the mean and covariance 
of the output vector z are derived in Equation 6 following the 
multiplication between two random vectors. Tr represents the 
matrix trace.

μz = vec(M(x)M(w)) ,

Σz [p,q] =
{
{
{

Var(xT
i wj) , if p = q

Cov(xT
i wj,xT

i′wj′) , if p ≠ q

(6)

where the index mapping p↔ (i, j) and q↔ (i′, j′) follows 
the vectorization ordering above. Under the independence 
assumption between xi and wj the variance of each element is 
simplified in Equation 7.

Σz [p,q] =
{
{
{

Var(xT
i wj) = Tr(ΣxiΣwj) + μ

⊤
xi
Σwjμxi
+ μ⊤wj

Σxiμwj
, if p = q

Cov(xT
i wj,xT

i′wj′) = Tr(ΣxiΣwj) + μ
⊤
xi
Σwjμxi′
+ μ⊤wj

Σxiμwj′
, if p ≠ q

(7)

where the indices i = i′ and j = j′ provide the variance components of 
the matrix Σz and the indices i ≠ i′ and j ≠ j′ provide the covariance 
components. Figure 1 illustrates the vectorization process in the 
covariance propagation derivation.

The mean and covariance at the output of the activation 
function, y = F(z), are derived using the first-order Taylor 
approximation as in Equation 8.

μy ≈ F (μz) ; Σy ≈ JF Σz J
T
F , (8)

where JF  represents the Jacobian matrix of the activation function 
F  with respect to the input vector z, evaluated at the mean μz. 

3.3 Value network and reward design

We define the value function as a CNN that takes the state 
and reward from the environment as inputs and produces the 
value estimate that penalizes the robot’s incorrect actions. The 
parameters of the value network are U = {U(lv)}Lv

lv=1
, where U(lv) are 

the weight matrices for lv = 1,…,Lv layers. The critic or penalty value 
estimates, V(st,U), serve as a baseline for the policy network to 
update its parameters through policy-gradient approach and back-
propagation (Sewak, 2019). The temporal difference (TD) error, δt, 
between the subsequent state-value estimates is computed using the 
instantaneous reward and discounted state value of the subsequent 
state as in (Equation 9), where γ is the discounting factor and 
rt(st,at) is the reward. δt in (Equation 9) represents one-step return 
updates, which can be expanded to a multi-step update. The value 
function in (Equation 9), V(st;U), is the state-value CNN estimator 
parametrized by weights or parameters U .

δt = rt (st,at) + γV(st+1;U) −V(st;U) . (9)

Figure 2 illustrates the general structure of the proposed Trust-
Nav framework, where the policy and value networks form a robot 
that interacts with the environment. The detailed interaction and 
optimization procedure is provided in Algorithm 1.

3.4 Reward function

The reward function defined in Equation 10 incorporates a 
standard non-collision mechanism that imposes strong penalties 
on the robot for collisions or other undesirable behaviors with an 
exploration bonus grounded in D-optimality from TOED. Collisions 
or unsafe actions incur a large negative reward, while forward 
motion without collision receives the highest positive reward, 
turning receives a smaller positive reward, and exploration into 
unmapped areas receives an additional uncertainty-based reward.

To encourage informative exploration, we employ the D-
optimality criterion from the Theory of Optimal Experimental 
Design (TOED). In TOED, D-optimality maximizes the 
determinant of the information matrix, which is equivalent to 
minimizing the volume of the pose-map confidence ellipsoid 
associated with the estimated parameters. In the context of 
active SLAM and exploration, this property directly translates to 
maximizing global information gain about the environment and 
reducing overall localization and mapping uncertainty. Compared 
to other TOED measures such as A-optimality (which minimizes the 
average variance) or E-optimality (which minimizes the maximum 
or worst-case variance), D-optimality captures global variance 
across all state dimensions and has been shown in prior work 
(Carrillo et al., 2012; Rodríguez-Arévalo et al., 2018) to produce 
more balanced and efficient exploration trajectories in robotics.

The exploration reward is bounded using the hyperbolic 
tangent function, tanh (.), with scaling factor ζ, to prevent extreme 
exploration values from dominating the fixed forward/turn 
rewards. This normalization strategy stabilizes learning and is 
consistent with reward-bounding methods used in reinforcement 
learning for navigation. This structured reward design encourages 
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FIGURE 1
Illustration of the vectorization process in the covariance propagation derivation. The input matrix X ∈ ℝn×d multiplies the weight matrix W ∈ ℝd×m to 
yield Z = XW ∈ ℝn×m, where each entry is zi,j = x⊤i wj. The vectorization z = vec(Z) ∈ ℝnm×1 stacks row vectors of Z, so zi,j maps to position (i− 1)m+ j in z. 
This explicit index mapping preserves the correspondence between each scalar and its originating pair (xi,wj), enabling consistent computation of 
means and covariances.

FIGURE 2
The proposed Trust-Nav framework with the variational policy and value networks forming a robot that interacts with the environment, and quantifies 
uncertainty in the robot’s actions.

safe navigation while explicitly rewarding globally informative 
exploration, thus promoting efficient and robust policy learning. 
The reward function is defined in Equation 10.

rt (st,at) =

{{{{{{{{{{
{{{{{{{{{{
{

−100, if collision

1+ tanh(
ζ

fD (Σst
)
), if straight

−0.1+ tanh(
ζ

fD (Σst
)
) if turning,

(10)

where ζ is a task-dependent scale factor and fD(Σst
) is the D-

optimality criterion. The D-optimal exploration reward is derived 
from TOED (Placed and Castellanos, 2022). This design of the 
reward components follows standard practices in reinforcement 
learning for navigation tasks, where the goal is to balance safety, 
efficiency, and exploration. 

• Collision penalty (-100): A large negative reward is assigned 
to collisions to strongly discourage unsafe behaviors. This 
magnitude is consistent with navigation benchmarks, where 
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collisions must be treated as catastrophic outcomes relative to 
other objectives.
• Straight motion reward (+1): A positive baseline reward is 

assigned to forward movement to encourage progress toward 
the goal and avoid oscillatory or stagnant behaviors.
• Turning penalty (-0.1): A small negative reward is assigned 

to turning to discourage excessive rotations without progress. 
The magnitude is modest to allow necessary turns when 
required, but still biases the policy toward efficient, goal-
directed motion.

3.5 Learning objective, gradients, and 
relation to policy-gradient theory

Let πϕ(at|st) denote the marginal policy induced 
by the variational posterior over the policy network 
weights as in Equation 11.

πϕ (at|st) = ∫p (at|st,W))qϕ (W)dW , (11)

where qϕ(W) =Nv(μ,Σ). With the log-derivative trick, the policy-
gradient theorem writes the loss gradient as in Equation 12.

∇ϕJ = 𝔼πϕ
[At∇ϕ logπϕ (at|st)] (12)

where At is any unbiased advantage estimate. In our implementation 
At is the TD error δt = rt(st,at) + γV(st+1;U) −V(st;U), which is a 
standard, low-variance advantage estimator.

Because the log function is concave, Jensen gives a 
lower bound in Equation 13.

logπϕ (at|st) ≥ 𝔼Nv
(log p(at|st,W)) ELBOon logπϕ (13)

Maximizing 𝔼Nv
(log p(at|st,W)) therefore maximizes a 

surrogate for logπϕ(at|st). Replacing logπϕ with its ELBO inside 
the actor objective yields the standard advantage-weighted 
maximum-likelihood surrogate as in Equation 14.

LActor (ϕ) = ∑
t

δt𝔼Nv
(log p(at|st,W))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
ELBO− likelihood

−β KL[Nv‖Np]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
BayesianRegularizer

, (14)

where β > 0 is a regularization weight. This is directly analogous to 
REINFORCE/actor-critic with (i) an advantage weight δt and (ii) a 
Bayesian regularizer (akin to entropy/trust-region regularization).

The critic or value neural network is trained with the standard 
TD mean-squared error (MSE) as in Equation 15.

LCritic (U) =
1
2
(rt (st,at) + γV(st+1;U) −V(st;U))2 =

1
2

δ2
t , (15)

and is optimized independently of the actor’s KL/ELBO terms (no 
gradients from the actor loss flow into U . We use the critic only 
to supply the advantage estimate At = δt for the actor update; as 

noted above, δt is detached when forming ∇ϕLActor to avoid biasing 
the critic.

Summary of the learning rule: If we denote the likelihood by the 
following definition,

ℓt (ϕ,st) = 𝔼Nv
(log p(at|st,W)) ≈ logN (at;μat

(st,ϕ) ,Σat
(st,ϕ)) ,

(16)

where μat
,Σat

 are obtained analytically via our moment-propagation 
(linear layers and first-order treatment of nonlinearities). The actor 
gradient is defined in Equation 17.

∇ϕLActor (ϕ) = ∑
t

δt∇ϕℓt (ϕ) − β∇ϕKL[Nv‖Np] . (17)

The critic gradient is defined in Equation 18.

∇ULCritic (U) = δt∇U (δt) with δt detachedinactorupdates.
(18)

The interaction of the policy and value networks with the 
environment and the optimization through the TD error to 
maximize the cumulative reward is detailed in Algorithm 1. 

4 Experiments

4.1 Experimental set-up

In our experiments, we utilize OpenAI’s Gym-Gazebo extension 
(Zamora et al., 2016), which leverages the Gazebo robotics 
simulator to provide a standardized and reproducible interface for 
reinforcement learning in robotic environments. The Gym-Gazebo 
extension library facilitates the creation of simulated environments 
where robotic agents are readily accessible and can be seamlessly 
integrated with machine learning architectures for both training 
and evaluation (Zamora et al., 2016). This simulator enables precise 
control of environmental conditions and sensor characteristics, 
which is essential for isolating and quantifying the effects of 
uncertainty modeling in our framework.

The proposed Trust-Nav model is deployed and evaluated using 
a simulated TurtleBot3 robot and pre-configured environments 
provided by OpenAI’s repositories. The action space consists of 
three discrete actions: move forward, turn left, and turn right, 
with fixed linear and angular velocities defined in the TurtleBot3 
simulation. The state representation comprises processed 2D LiDAR 
scan data (360° range readings) and robot pose estimates from ROS, 
all normalized to [0,1] for stable learning.

Experimental results are systematically documented and 
analyzed in comparison to a carefully selected baseline model—Det-
Nav—which represents a deterministic navigation approach. Both 
Trust-Nav and Det-Nav share the same underlying network 
architecture; however, Det-Nav does not incorporate variational 
inference and instead relies on point estimates for action selection, 
omitting the propagation of uncertainty through the policy network. 
This comparison allows us to isolate and assess the impact of 
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1: Inputs: Number of episodes, K, maximum number

  of steps per episode T, learning rate η,

  discount factor γ, KL weight β, and the initial

  conditions for the learnable parameters ϕ = {μ,Σ},

  and U.

 2: Init: Variational policy: qϕ(W) =Nv(μ,Σ), and

  the value (critic) network parameters U.

 3: for k = 1 to K do

 4:     Reset the environment to get the initial

  state s0

 5:    for t = 1 to T do

 6:       Policy forward: propagate posterior

  means/covariances Nv(μ,Σ) through

  the policy network
         to get p(at|st,W).
 7:        Action selection: sample at ∼N (μat ,Σat)
 8:        Execute at and observe the reward

 rt(st,at) and the new state st+1
 9:        Value forward: forward pass through the

  value network, and calculate V(st;U)

  and critic TD
           error δt = rt(st,at) +γV(st+1;U) −V(st;U)
 10:        Critic loss: LCritic(U) =

1

2
δ2t.

 11:        Actor loss: LActor(ϕ) =

 δt𝔼Nv
(log p(at|st,W)) −βKL[Nv‖Np].

 12:        Update the value (critic) network

  parameters: U←U −η∇ULCritic(U).
 13:        Update the variational policy network

  parameters: ϕ← ϕ−η∇ϕLActor(ϕ).

 14:    end for

 15: end for 

Algorithm 1. Trust-Nav: Advantage-weighted variational actor–critic with 
closed-form moment propagation.

uncertainty modeling on decision-making, particularly in the 
presence of environmental noise or corruption, thereby validating 
the robustness and effectiveness of the proposed Trust-Nav 
approach. This controlled architectural parity allows us to isolate 
the contribution of uncertainty modeling to policy performance, 
avoiding confounding effects from differences in mapping, planning, 
or control modules.

Both Trust-Nav and Det-Nav models employ identical 10-
layer convolutional neural network (CNN) architectures for both 
the policy and value networks. The architecture begins with three 
convolutional layers using 32 filters of size 5× 5, followed by 
three layers with 64 filters of size 3× 3. This is succeeded by 
three additional convolutional layers with 128 filters of size 1×
1, which capture fine-grained spatial features. The final layer is 
a fully connected layer that produces the output corresponding 
to either the policy distribution or the value estimate, depending 
on the network’s role. While both Trust-Nav and Det-Nav share 
identical network architectures and the same hyperparameter search 
protocol, the final learning rates differ due to independent tuning 
for stable convergence in each method. This approach avoids 

TABLE 1  Hyperparameters for the Trust-Nav and Det-Nav models.

Hyperparameter Trust-Nav Det-Nav

Learning rate (η) 0.0002 0.001

Batch size 16 16

Discount factor (γ) 0.95 0.95

Replay memory 100,000 100,000

Episode size 1,500 steps 1,500 steps

Total number of episodes 200 200

Exploration decay rate 0.999 0.999

TABLE 2  Noise levels for random (Gaussian) noise and 
adversarial attacks.

Type of noise Levels of noise

Random noise (std) 0.0001 0.001 0.1 0.2 0.3 0.4 0.5

Adversarial noise (ε) 0.0001 0.001 0.01 0.05 0.1 – –

biasing the comparison by forcing identical learning rates despite 
differing optimization dynamics (variational inference in Trust-
Nav vs. point estimates in Det-Nav). All hyperparameter values are 
provided in Table 1 for full transparency.

Noise and disturbance analysis is conducted using realistically 
parameterized Gaussian noise and adversarial attacks (Table 2), with 
values chosen to reflect ranges reported for common mobile robot 
sensors such as LiDAR and RGB-D cameras.

The experimental pipeline is implemented using the Robot 
Operating System (ROS), which runs on a Linux-based system 
with computation accelerated by four NVIDIA Quadro RTX 6000 
GPUs (24 GB memory each). Each policy is evaluated over 200 
independent episodes per condition to ensure statistical reliability 
and consistency of results. To assess learning stability and navigation 
robustness, we track key performance metrics, including Moving 
Average Rewards, Maximum Rewards, and Cumulative Rewards. 
These metrics are summarized in Figures 3, 4 and Tables 3, 4.

4.2 Robustness analysis under noisy 
conditions

We evaluate the robustness of the proposed Trust-Nav model 
against two well-defined disturbance types: additive Gaussian noise 
and adversarial attacks, comparing it to the Det-Nav model. The 
post-training robustness analysis is performed after the models are 
fully trained and validated in a simulated training environment, 
which ensures that the performance degradation can be attributed 
purely to test-time perturbations, without affecting the learned 
policy during training. We design the experiments such that we 
start training the robot in a clean, noise-free environment before 
introducing noise to assess the effect of noise on policy performance 
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FIGURE 3
The cumulative reward of the proposed Trust-Nav (blue curve) and 
Det-Nav (red curve) in a noise-free test environment (without 
adding noise).

without influencing the learning process. Then, we incrementally 
introduce noise complexity in a test environment using random 
(Gaussian) noise and adversarial attacks to progressively degrade 
the robot’s perception. First, we evaluate the performance of the 
proposed Trust-Nav compared to Det-Nav models in a clean test 
environment (without noise). Then, we gradually add various levels 
of Gaussian or adversarial noise to the test environment states to 
evaluate the performance of each model.

Gaussian noise is introduced in seven levels of increasing 
severity, defined by the standard deviation (std) parameter, which 
is chosen to align with empirical sensor noise characteristics 
documented in robotics literature. Figure 5 demonstrates the depth 
camera observations for robot navigation under increasing Gaussian 
noise levels, where higher standard deviations progressively degrade 
the visual quality of the input. As shown in the figure, higher 
noise levels progressively corrupt the sensor observations, making 
navigation more challenging. This experiment demonstrates how 
Trust-Nav adapts to noisy depth measurements by leveraging 
uncertainty propagation in its policy.

Adversarial examples are generated using the Fast Gradient Sign 
Method (FGSM) (Goodfellow et al., 2015), with five attack levels 
controlled by ε as in Equation 19. Both disturbance types are applied 
in the test environment only, preserving a clean training phase for 
fair assessment.

sadv
t = st + ε ⋅ sign(∇st

ℓt (ϕ,st)) , where‖sadv
t ‖ ∈ [0,1] . (19)

Here, ℓt is the ELBO likelihood of the policy network defined 
in Equation 16, while the networks’ parameters will be frozen 
during attack generation. The normalization constraint ensures 
that adversarial states remain in the valid input range [0,1], i.e., 
‖st + ε sign[∇st

ℓt(ϕ,st)]‖ ∈ [0,1]. Table 2 provides ε values for the 
five levels of attacks applied to the test environment. Both Trust-
Nav and Det-Nav models are validated under all noise levels, with 
each level undergoing 200 episodes per run, with results averaged 
to ensure consistency. The complete noise/attack specifications 
are given in Table 2. 

4.3 Robot uncertainty vs. signal to noise 
ratio

The proposed Trust-Nav framework develops a robot that 
produces actions and uncertainty information simultaneously in 
the form of the actions’ distribution mean and variance-covariance 
matrix. The analysis of uncertainty under noisy conditions (when 
the environment is corrupted by Gaussian noise or adversarial 
attacks) provides insights into the navigation performance after 
deployment and possible detection of the robot’s failure due to 
environment complexity. We analyze the predictive variance of 
actions at various levels of Gaussian noise and adversarial attacks. 
The amount of noise at each level is measured using the signal-
to-noise ratio (SNR). For adversarial attacks, the signal is the 
clean input state st, and the noise is the perturbation vector ε ⋅
sign(∇st

ℓt(ϕ,st)) applied by FGSM. The SNR is typically defined in 
decibels (dB) as in Equation 20.

SNR (ε) = 10 log10(
‖st‖

2
2

‖ε ⋅ sign(∇st
ℓt (ϕ,st))‖22

). (20)

The average action variance is calculated for all the test frames 
at each noise level. We scale the action variance curves from zero 
by subtracting the variance at the baseline (clean test environment 
states without noise) at each level. The resulting average action 
variance is plotted against the respective SNR values to produce 
variance-vs-SNR curves (Figure 6), which are interpreted from right 
to left. The variance values at the extreme right side of the graph 
correspond to very high SNR (low noise levels). The addition of noise 
results in a decrease in the SNR values, progressing from right to left. 
The extreme left point represents the average variance at the lowest 
SNR (i.e., the highest levels of noise).

5 Results and discussion

5.1 Performance analysis and robustness

This section discusses the performance evaluation and the 
robustness behavior of the proposed Trust-Nav model compared 
to the baseline Det-Nav model. The average, cumulative, and 
maximum rewards demonstrate the performance metric of the 
models in the test-simulated environment. Figure 3 illustrates 
the cumulative reward obtained by the proposed Trust-Nav 
(blue curve) and Det-Nav (red curve) in a noise-free test 
environment (without adding noise). Initially, both models 
yield low reward values; however, as training progresses over 
multiple episodes, the rewards steadily increase, indicating effective 
policy learning and successful maximization of the reward
function.

Figure 4 presents the average reward values for Trust-Nav and 
Det-Nav models in a test simulated environment under varying 
levels of Gaussian noise and adversarial attacks. Each curve 
represents the average reward obtained in a separate experiment 
corresponding to a specific noise level. Figures 4b,c show the 
average rewards of Trust-Nav and Det-Nav, respectively, across 
Gaussian noise levels ranging from 0.0001 to 0.5. In Figure 4a, 
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FIGURE 4
The average reward values of Trust-Nav compared to Det-Nav, validated on Gazebo environments under various levels of Gaussian noise and 
adversarial attacks. (a) Both models are evaluated under Gaussian noise. (b) Trust-Nav is tested under Gaussian noise. (c) Det-Nav is tested under 
Gaussian noise. (d) Both models are evaluated under adversarial attacks. (e) Trust-Nav is tested under adversarial attacks. (f) Det-Nav is tested under 
adversarial attacks.

TABLE 3  Maximum and average reward values for the Trust-Nav and Det-Nav models in test environments corrupted with different levels of Gaussian 
noise (std).

Noise level (std) Trust-Nav Det-Nav

Max reward Avg reward Max reward Avg reward

0.0001 916.700 ± 1.31 916.316 ± 1.23 846.197 ± 4.56 836.894 ± 4.98

0.001 915.423 ± 2.65 915.313 ± 1.92 838.760 ± 4.89 832.734 ± 5.87

0.1 914.288 ± 2.28 913.596 ± 2.21 832.301 ± 5.69 825.627 ± 5.23

0.2 913.864 ± 2.91 913.379 ± 2.29 808.853 ± 6.98 812.423 ± 6.94

0.3 912.926 ± 3.17 913.127 ± 2.54 771.164 ± 8.79 774.136 ± 7.49

0.4 909.846 ± 2.94 912.864 ± 3.62 730.738 ± 8.96 734.537 ± 8.89

0.5 909.011 ± 3.52 911.365 ± 3.48 683.200 ± 9.25 682.930 ± 10.61

the average rewards of both models are plotted together for 
direct comparison, with solid lines representing Trust-Nav and 
dashed lines representing Det-Nav. As expected, increasing the 
standard deviation of the injected Gaussian noise has a negative 
impact on performance for both models. However, Trust-Nav 
demonstrates greater robustness by consistently achieving higher 
average rewards—approximately 900—compared to Det-Nav, 
whose performance drops to around 675 under high noise
conditions.

Figures 4e,f demonstrate the rewards achieved by Trust-Nav 
and Det-Nav models, respectively, when adversarial perturbations 

are introduced into the environment’s state observations at varying 
levels of attack severity (ε = 0.0001 - ε = 0.1). Every curve presents 
an experiment with distinct attack severity. Figure 4d provides a 
comparative view, plotting the reward trajectories of both models 
under all five levels of adversarial attacks. In this figure, solid 
lines represent Trust-Nav, while dashed lines represent Det-Nav. To 
ensure visual consistency and facilitate comparative analysis, the 
same color scheme is used across all subplots to indicate equivalent 
noise or attack severity levels.

As expected, the introduction of adversarial examples negatively 
impacts both models, with increasing attack strength leading 
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TABLE 4  Maximum and average reward values for the Trust-Nav and Det-Nav models in test environments corrupted with different levels of adversarial 
attacks (ε).

Noise level (ε) Trust-Nav Det-Nav

Max reward Avg reward Max reward Avg reward

0.0001 921.269 ± 2.12 918.213 ± 1.97 883.674 ± 5.89 878.989 ± 5.51

0.001 918.518 ± 2.11 917.156 ± 2.36 877.642 ± 5.88 868.454 ± 6.54

0.01 917.844 ± 1.98 916.469 ± 2.58 873.430 ± 6.97 863.324 ± 6.94

0.05 915.770 ± 2.56 913.695 ± 2.49 868.769 ± 6.82 862.221 ± 6.99

0.1 886.264 ± 2.96 880.293 ± 3.12 853.136 ± 9.83 818.373 ± 8.85

FIGURE 5
Depth camera observations under varying input noise levels used for robot navigation. The standard deviation (std) values (0.0, 0.1, 0.2, 0.3) represent 
increasing amounts of Gaussian perturbation added to the depth measurements. As noise grows, the sensor data becomes progressively more 
corrupted, highlighting the challenge of robust policy learning under uncertain perception.

FIGURE 6
Relationship between signal-to-noise ratio (SNR) and (a) average action variance, (b) maximum episode reward, and (c) average episode reward for 
Trust-Nav and Det-Nav under Gaussian noise and adversarial perturbations. Blue curves correspond to Trust-Nav and red curves to Det-Nav; solid lines 
indicate adversarial attacks, and dashed lines indicate Gaussian noise. Higher action variance at low SNR reflects increased navigation uncertainty, with 
Trust-Nav showing a statistically significant increase in variance compared to noise-free conditions (Wilcoxon signed-rank test, p < 0.01). Trust-Nav 
consistently maintains higher maximum and average rewards across all noise conditions, demonstrating robustness to both Gaussian and adversarial 
perturbations as compared to the Det-Nav baseline. The star marker denotes the point of statistically significant variance increase.

to greater reward degradation. Nevertheless, Trust-Nav exhibits 
significantly more robust behavior under adversarial conditions. 
Its average reward remains relatively stable across all but the 
highest attack level, decreasing only slightly from approximately 
920 to 880 when(ε = 0.1). In contrast, Det-Nav exhibits a 

more pronounced decline, with reward values decreasing from 
approximately 900 to 850 under the same conditions. These results 
highlight the enhanced robustness and reliability of Trust-Nav 
to adversarial perturbations in comparison to its deterministic
counterpart. 
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5.2 Robot uncertainty analysis and 
self-assessment

We employ the action variance at the output of the variational 
policy network in the Trust-Nav model as a quantitative metric to 
evaluate the robot’s navigation confidence (or uncertainty) without 
requiring any additional sensing, data processing or computational 
overhead. This property enables what we refer to as self-assessment, 
whereby the model internally gauges the trustworthiness of its own 
actions based on the magnitude of the output variance. Intuitively, 
higher action variance reflects increased uncertainty in navigation 
decisions, signaling low confidence in the robot’s actions under 
challenging or degraded sensing conditions.

Figure 6 illustrates the relationship between signal-to-noise ratio 
(SNR) and (a) average action variance, (b) maximum episode 
reward, and (c) average episode reward for both Trust-Nav and 
the deterministic baseline Det-Nav. Blue curves represent Trust-
Nav and red curves represent Det-Nav, with solid lines denoting 
adversarial perturbations and dashed lines denoting Gaussian noise. 
The plots read from right to left, as lower SNR values correspond to 
higher noise levels.

Across all noise levels, Trust-Nav consistently outperforms Det-
Nav in both maximum and average rewards. While both models 
experience declining performance at low SNR, Trust-Nav maintains 
significantly higher rewards, particularly under Gaussian noise, 
where the average reward decreases by only (≈ 0.5%) compared 
to (≈ 14%) for Det-Nav. Under adversarial perturbations, Trust-
Nav experiences a larger drop (≈ 8%) but still remains superior to 
Det-Nav’s (≈ 18%) reduction. Importantly, under low SNR (e.g., 
SNR < 20 dB), the action variance of Trust-Nav increases sharply, 
indicating heightened uncertainty that correlates with performance 
degradation. This relationship is statistically significant according 
to a Wilcoxon signed-rank test (p < 0.01) when comparing action 
variance at high versus low SNR, validating variance as a meaningful 
uncertainty indicator. We refer to the point of statistically significant 
variance increase by a star in Figure 6.

The increase in variance concurrent with declining reward 
demonstrates that Trust-Nav is self-aware of deteriorating 
navigation performance. This self-assessment capability is a key 
step toward safe and reliable deployment in real-world robotics, 
where the ability to detect and respond to uncertain decision states 
is essential for preventing unsafe actions. 

5.3 Discussion

This paper introduces a new deep reinforcement learning 
navigation (Trust-Nav) framework that propagates variational 
moments through the policy neural network and estimates the 
uncertainty in the robot’s actions and localization. The variational 
policy network propagates the first two moments (mean and 
covariance) of the variational posterior distribution of the network’s 
parameters and estimates the uncertainty in the robot’s actions via 
the variance of the policy distribution. We conduct a comprehensive 
analysis using the Gazebo simulated environment under various 
noisy conditions. The performance of the Trust-Nav model is 
compared with the state-of-the-art DRL navigation networks under 
multiple levels of Gaussian noise and adversarial attacks, i.e., FGSM.

Our analysis reveals that the Trust-Nav model maintains its 
reward values and outperforms the corresponding deterministic 
DRL navigation when the environment is subject to Gaussian noise 
or adversarial attacks. Furthermore, the robot’s action variance 
significantly increases when the adversarial noise is high, and 
the model’s reward values start to decrease. The moments of the 
policy variational distribution transmit vital state features from the 
environment through the policy network to the action predictions. 
The second moment (i.e., the variance) of the variational distribution 
over the policy parameters filters the state features according to their 
importance. This policy filtering mechanism of the environmental 
dynamic features via the variance of the variational distribution 
forces the robot’s action variance to increase when these features are 
corrupted with noise or adversarial attacks.

In addition to the quantitative results, we also observe qualitative 
behavioral patterns that reinforce the role of action variance 
as a self-assessment signal. For instance, under high-uncertainty 
zones corresponding to low-SNR adversarial conditions, the robot 
exhibits noticeably cautious navigation—slowing down, hesitating 
before turns, and occasionally failing to commit to decisive 
maneuvers. These behaviors coincide with spikes in action variance, 
highlighting the model’s internal recognition of unreliable decision 
states. Conversely, when operating in higher-SNR conditions, 
the variance remains low, and the robot navigates confidently, 
with smoother trajectories and fewer hesitations. This qualitative 
evidence illustrates how Trust-Nav’s uncertainty-aware design 
enables the robot to adaptively signal and respond to reliability 
degradation, offering an interpretable connection between statistical 
variance and observable robot performance. 

5.4 Deployment perspective and 
real-world applicability

Although our evaluation is conducted in simulation, the Trust-
Nav framework is designed with deployment feasibility in mind. 
By explicitly propagating both the mean and variance of the 
variational posterior through the policy network, the approach 
enables the robot to self-assess the reliability of its actions in 
real time, without introducing additional computational burden 
or requiring external supervision. This self-assessment capability 
is particularly advantageous for physical deployment, as it allows 
the robot to identify low-confidence states and adapt its behavior 
accordingly, thus enhancing safety in uncertain or adversarial 
environments. Importantly, because the proposed method operates 
directly on the learned policy outputs, it is agnostic to the underlying 
robot platform and sensing configuration, which facilitates seamless 
transfer from simulation to hardware. This positions Trust-Nav 
as a practical framework for bridging robust uncertainty-aware 
navigation with real-world autonomous systems. 

6 Conclusion

We propose Trust-Nav, a deep reinforcement learning 
framework that incorporates uncertainty estimation via a variational 
policy network. The proposed Trust-Nav is built on fundamental 
principles of Bayesian density propagation in dynamical systems. By
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propagating moments of the variational policy network, Trust-Nav 
enables robust decision-making and provides a built-in measure 
of action confidence (or equivalently uncertainty). Experiments 
in simulated environments demonstrate that Trust-Nav model 
consistently outperforms baseline models and remains robust under 
Gaussian noise and adversarial attacks. Trust-Nav models maintain 
not only higher rewards but also demonstrate reduced sensitivity 
to input corruption. When the reward values decrease due to the 
high level of adversarial attacks, the uncertainty associated with the 
robot’s actions increases significantly to warn the robot of uncertain 
actions. This integration of uncertainty into the policy network 
promotes safer and more reliable navigation, especially in complex 
or unpredictable environments. Trust-Nav offers a step toward 
deployable, self-aware robotic systems capable of recognizing and 
responding to their own limitations. 

7 Future work

While the present study introduces closed-form variational 
moment propagation within DRL policy networks—offering 
a tractable and sampling-free approach to uncertainty 
estimation—several extensions are envisioned to further enhance 
the framework’s accuracy and applicability. First, the current 
formulation adopts an independence assumption for network 
parameters across and within layers to ensure scalability and real-
time feasibility. In future work, we plan to investigate structured 
covariance approximations, such as Kronecker-factored or low-
rank representations, to capture inter-parameter correlations while 
preserving computational efficiency. Second, our method currently 
employs a first-order Taylor approximation for nonlinear activation 
functions. Although this enables a closed-form, low-latency 
uncertainty propagation, we will explore the use of unscented 
transformations, which can approximate nonlinear mappings up 
to second-order accuracy, thereby reducing approximation error 
without resorting to Monte Carlo sampling. Finally, future studies 
will expand the evaluation to include real-world robotic platforms, 
additional noise models derived from real sensor data, and 
comparisons with other uncertainty-aware DRL approaches, further 
validating the robustness and generalizability of the proposed 
framework.
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