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Introduction: Developing a reliable and trustworthy navigation policy in deep
reinforcement learning (DRL) for mobile robots is extremely challenging,
particularly in real-world, highly dynamic environments. Particularly, exploring
and navigating unknown environments without prior knowledge, while avoiding
obstacles and collisions, is very cumbersome for mobile robots.

Methods: This study introduces a novel trustworthy navigation framework that
utilizes variational policy learning to quantify uncertainty in the estimation of
the robot’s action, localization, and map representation. Trust-Nav employs the
Bayesian variational approximation of the posterior distribution over the policy-
based neural network’s parameters. Policy-based and value-based learning are
combined to guide the robot's actions in unknown environments. We derive the
propagation of variational moments through all layers of the policy network and
employ a first-order approximation for the nonlinear activation functions. The
uncertainty in robot action is measured by the propagated variational covariance
in the DRL policy network. At the same time, the uncertainty in the robot's
localization and mapping is embedded in the reward function and stems from
the traditional Theory of Optimal Experimental Design. The total loss function
optimizes the parameters of the policy and value networks to maximize the
robot’s cumulative reward in an unknown environment.

Results: Experiments conducted using the Gazebo robotics simulator
demonstrate the superior performance of the proposed Trust-Nav model in
achieving robust autonomous navigation and mapping.

Discussion: Trust-Nav consistently outperforms deterministic DRL approaches,
particularly in complicated environments involving noisy conditions and
adversarial attacks. This integration of uncertainty into the policy network
promotes safer and more reliable navigation, especially in complex or
unpredictable environments. Trust-Nav offers a step toward deployable, self-
aware robotic systems capable of recognizing and responding to their own
limitations.

deep reinforcement learning, robot uncertainty, trustworthy navigation, variational
policy, moment propagation
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1 Introduction

Autonomous mobile robots are designed to execute
complex tasks, navigate, and interact with unknown real-
world environments. However, the challenges posed by the
dynamic nature of the real world introduce a spectrum of
obstacles that require innovative solutions (Wong et al., 2018;
Carter-Templeton et al., 2018; Liaqat et al, 2019; Alatise and
Hancke, 2020; Nam and Gon-Woo, 2021; Niloy et al, 2021;
Gupta and Fernando, 2022; Wijayathunga et al., 2023). From
surviving unpredictable barriers to responding to noisy or
attacked environmental conditions, these challenges underscore
the complexity of achieving autonomy in mobile robotic systems.

Deep reinforcement learning (DRL), rooted in the synergy
of deep neural networks (DNNs) and reinforcement learning
(RL) principles, has emerged as a powerful paradigm to endow
autonomous robotic systems with adaptive and intelligent
navigation and decision-making capabilities (Mnih et al., 2015;
Wang et al, 2016; Gu et al, 2017; Zambaldi et al., 2018;
Liu R. et al,, 2021; Plaat, 2022). DRL offers a promising avenue
for imbuing robots with the capability to learn and optimize
behaviors autonomously with considerable success across various
research domains, including navigation and mapping, as a
particularly noteworthy area of exploration (Ahmed et al., 2023;
Placed et al., 2023). Autonomous navigation encompasses a suite of
methodologies wherein a mobile robot not only localizes itself but
also concurrently traverses and maps an unfamiliar environment.
This dynamic field within RL demonstrates the potential for robotic
systems to autonomously navigate and explore unknown spaces
while simultaneously building a coherent map of their surroundings.
The latter process is known as active simultaneous localization
and mapping (SLAM) (Leung et al, 2008; Trivun et al, 2015;
Palomeras et al., 2019; Chen et al.,, 2020; Mihalik et al., 2022;
Ahmed et al., 2023; Placed et al., 2023).

This paper proposes a novel trustworthy navigation (Trust-
Nav) framework that adopts DRL and develops a variational
policy learning paradigm. The variational policy consists of a
Bayesian policy neural network, where we define a prior distribution
over the parameters of the policy network. When the robot
receives observations from the environment, the distribution over
the parameters is updated to the posterior distribution using
Bayes’ rule. However, computing the exact posterior is often
intractable due to the complexity and high dimensionality of neural
networks. We approximate the posterior distribution of the policy
network’s parameters using variational inference (Blei et al., 2017).
The variational inference framework addresses this difficulty by
approximating posterior estimation as an optimization problem,
where a simpler distribution (i.e., Gaussian) is optimized to closely
match the true posterior. To complete the Bayesian network
structure, we propagate the moments of the Gaussian variational
posterior through the network layers and estimate the mean and
covariance of the predicted robot’s actions of the policy network.
The propagated covariance represents the uncertainty associated
with the action and is used in the loss function to inform the
decision. Moreover, Trust-Nav also computes uncertainty in the
robot’s localization and mapping using the D-optimal method
(Rodriguez-Arévalo et al, 2018; Placed and Castellanos, 2022)
that captures the global variance of the map by analyzing the
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total length of the covariance of the state vectors. The proposed
framework can be applied to various DRL algorithms and produces
improved robustness in autonomous robot navigation, especially in
noisy environments. The main contributions can be summarized
as follows.

Develop a novel DRL-based trustworthy, reliable, and
collision-free autonomous navigation (Trust-Nav) framework
that introduces closed-form variational moment propagation
into DRL policy networks, and integrates statistical uncertainty
in Bayesian theory to guide the robot’s actions and mappings
for trustworthy navigation.

Eliminate MC sampling to overcome robustness and scalability
limitations of existing Bayesian DRL approaches, providing
a tractable, analytically grounded framework that balances
theoretical soundness with the computational constraints of
embedded robotic systems.

Combine policy-based and value-based learning and quantify
the uncertainty in the robot’s actions and localizations to guide
the navigation toward maximizing cumulative reward.

Design a Bayesian policy neural network that propagates the
mean and covariance of the variational posterior distribution
and produces robot actions to the environment and associated
uncertainty within each action to guide the robot’s decision-
making process.

Adopt a reward function that accounts for the robot’s
localization uncertainty. Both action and localization/mapping
uncertainties are combined into a unified loss function to
maximize the cumulative reward.

Assess the Trust-Nav model performance and robustness
under various noisy and attacked environments by an
adversary using the Gazebo robotics simulator.

2 Literature review

2.1 Deep reinforcement learning for
navigation

Deep Reinforcement Learning (DRL) enables an autonomous

robot to learn optimal behaviors through trial-and-error
interactions with its environment. In the context of navigation
and exploration, the robot—equipped with sensors such as
LiDAR and/or cameras—learns to perceive, explore, and map
previously unknown environments by leveraging action-feedback
loops to iteratively refine its policy (Mnih et al, 2015;
Morales et al., 2021; Plaat, 2022).

The robot refines its behavior by receiving rewards or penalties
based on the outcomes of its actions, as specified by a developer-
defined reward function. Although the reward signal provides
some supervision, as it guides the robot toward optimal actions,
the robot primarily learns through its own interactions with the
environment, making DRL a form of semi-supervised learning.
This framework is particularly effective in complex environments
characterized by high-dimensional state and action spaces. For
example, in tasks such as playing chess, the robot must reason over
an enormous decision space to win. To manage such complexity,
DRL integrates deep neural networks, which enable the robot to
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approximate complex, non-linear functions and make decisions
in high-dimensional environments. This learning paradigm closely
resembles human learning through trial and error, as observed in the
process of mastering strategic games such as checkers or chess.

A variety of DRL architectures have been applied to robotics
navigation, including value-based methods such as Q-learning
(Jang et al., 2019) and Deep Q-Networks (DQN) (Mnih et al., 2015),
as well as their enhancements—double DQN (Van Hasselt et al,,
2016) and dueling architectures (Wang et al., 2016). While these
approaches perform well in discrete action spaces, robotics often
requires continuous control of motion parameters such as linear
and angular velocities. Policy gradient methods, particularly the
Advantage Actor-Critic (A2C) framework (Grondman et al., 2012;
Mnih et al., 2016; Grigsby et al., 2021), address this by decoupling
policy learning (actor) from value estimation (critic), enabling better
action prediction in continuous or mixed action spaces.

Despite these advances, current DRL navigation frameworks
remain limited in their ability to operate reliably in real-world
conditions where sensor noise, environmental uncertainty,
and adversarial disturbances are prevalent. Recent work in
robust reinforcement learning has explored adversarial training
(Pinto et al,, 2017), distributional RL (Liu Q. et al., 2021;
Bellemare et al., 2023), and domain randomization (Tobin et al.,
2017) to improve robustness, while adaptive control theory (Zhou,
1998) provides decades of insight into stability under uncertainty.
However, these strategies often lack explicit mechanisms for
quantifying and propagating uncertainty in the decision-
making process.

Bayesian neural networks (BNNs) offer a principled approach
to uncertainty quantification by modeling distributions over
network parameters (Gal and Ghahramani, 2016; Kendall and
Gal, 2017; Feng et al, 2019). In robotics, BNNs have been
applied to perception (Dera et al., 2021) and control (Wang et al.,
2024), demonstrating improved robustness to noisy inputs. Yet,
integrating BNNs directly into DRL navigation pipelines remains
underexplored. Most uncertainty-aware navigation methods either
rely on sampling-based approximations or heuristic measures of
prediction confidence, which can be computationally costly or
unreliable in safety-critical scenarios.

Our proposed Trust-Nav framework addresses this gap by
analytically propagating both the mean and covariance of the
variational posterior through the policy network, enabling real-
time, self-assessed navigation without additional sampling or
computation. This design allows the robot to detect low-confidence
decision states and adapt its behavior accordingly, bridging Bayesian
uncertainty modeling with DRL and drawing conceptual parallels to
robust and adaptive control principles.

2.2 Reward computation for navigation

An important component of autonomous exploration is the
computation of rewards that guide the robot from its current
position toward informative future locations. Prior work has shown
that reward design can be grounded in the uncertainty of the robot’s
pose and the environment map, encouraging actions that reduce
this uncertainty (Carrillo et al., 2012; Rodriguez-Arévalo et al.,
2018). Many of these methods are rooted in the Theory of
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Optimal Experimental Design (TOED) (Pukelsheim, 2006), which
provides optimality criteria for selecting actions that maximize the
information gained from new observations.

TOED
criteria, including T-optimality, A-optimality, D-optimality, E-

The research community has explored several
optimality, and Shannon’s entropy (Carrillo et al., 2012; Rodriguez-
Arévalo et al., 2018; Placed and Castellanos, 2022; Placed and
Castellanos, 2020), each emphasizing different statistical properties
of the state covariance matrix to infer the uncertainty in the
robots localization and mapping. For example, A-optimality
minimizes the trace of the covariance (average variance), while
E-optimality minimizes the maximum eigenvalue (worst-case
variance). D-optimality, in contrast, maximizes the determinant
of the information matrix (or equivalently, minimizes the volume
of the confidence ellipsoid), thereby capturing global variance
reduction across all state dimensions. This property makes D-
optimality well-suited for active SLAM and exploration, where the
objective is to efficiently reduce uncertainty throughout the map
rather than along a single dimension.

In this paper, we adopt the D-optimal method as the most
effective because its ability to integrate information from all map
landmarks (the global variance of the map), represented by the
eigenvalues ), of the state covariance matrix £, € R4, where s =
($p5-- ,sd)T denotes the state vector. The D-optimal criterion f, is
defined in (Equation 1).

d
fD(zs)éexpC—iZlog(Ai)). )

The D-optimal function has been shown in prior robotics
literature (Carrillo et al,, 2012; Rodriguez-Arévalo et al., 2018;
Placed and Castellanos, 2022; Placed and Castellanos, 2020) to
yield more balanced exploration trajectories compared to alternative
criteria. The logarithmic formulation prevents convergence to zero,
ensuring numerical stability while providing a robust measure of
global uncertainty for navigation, exploration, and mapping. The
robot communicates back and forth with the environment to help
create the map and positions using measurements from LiDAR or
camera through the ROS framework (Macenski et al., 2022).

3 Trust-navigation with variational
policy

The proposed Trust-Nav adopts the policy-value DRL algorithm
with deep neural networks to define the robot. The robot was
equipped with a depth camera and LiDAR. The cameras depth
images or frames serve as inputs to the DRL neural networks,
which determine the best action based on the environments state.
While LiDAR could be used for input, the camera was found to be
more suitable for object detection and avoidance along the robot’s
trajectory path.

To extract useful information from images or frames, we deploy
two convolutional neural networks (CNNs) for the policy and value
functions, respectively. The policy CNN takes the environment states
as input and produces probabilistic actions. At the same time, the
value function determines the expected return for a robot starting
at a given state and acting according to a particular policy. The two
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networks interact with each other through the temporal difference
(TD) learning method, where the policy network makes an action,
and the value network returns a value to penalize incorrect actions.

3.1 Variational policy network

We develop the policy as a Bayesian CNN with L layers,
and the probabilistic network parameters are W = {W(l)},Lzl, where
WO is the weight matrix for the I layer. The Bayesian CNN
architecture follows (Dera et al., 2021). We introduce a prior
Gaussian distribution over the network parameters, WW ~ ./\/P(O, ),
where ¢ is a hyperparameter that refers to the prior variance.
The input-output dataset for the policy network consists of states
from the environment and the robots actions at time ¢, ie.,
D,={s,a}.,. Given the data and the prior, we approximate
the posterior distribution of the parameters given the data, i.e.,
p(WID,) by the variational Gaussian distribution W ~ q¢(W) =
N, (4,%). The variational parameters ¢ = {u, X} with the mean, g,
and covariance, Z, are optimized by minimizing Kullback-Leibler
(KL) divergence between the approximate and the true unknown
posterior KL [N, (4, 2)llp(W|D,)] or equivalently maximizing the
evidence lower bound (ELBO) loss function that converges to the
optimal variational density (Blei et al., 2017). The ELBO loss is
defined in (Equation 2).

£ (wZals,) = Ey, (log p(a,ls, W)) - KL [/\/v”/\/;z] - @

The ELBO loss function consists of two terms: (i) the expected
log-likelihood of the robot’s actions given the environment states
and the probabilistic weights, and (ii) the regularization term, which
is the KL divergence between the variational posterior and prior
Gaussian distributions. The likelihood of the actions given the
states, p(a,|s,, W), is modeled by a Gaussian distribution with the
action’s mean, g, , and covariance, X, , predicted at the output of the
variational policy network. We approximate the expectation over the
variational posterior in the first term of the ELBO loss using the first-
order Taylor approximation as defined in (Equation 3). The use of a
first-order Taylor expansion is a deliberate choice to enable closed-
form propagation of both the mean and covariance of the variational
posterior through nonlinear activation functions. This choice allows
us to model the full predictive distribution in an analytically
tractable manner, entirely avoiding the need for Monte Carlo
(MC) sampling. MC-based uncertainty estimation, while accurate
in theory, is computationally expensive, introduces sampling noise,
and scales poorly with deeper network architectures—limitations
that are particularly critical in real-time robotics. The first-
order approach therefore strikes a balance between accuracy and
scalability, making it feasible to propagate uncertainty through
deeper policy networks and to support low-latency inference.
Although the first-order approximations can accumulate error in
deep networks, our empirical results demonstrate that even with this
assumption, the proposed framework significantly improves both
accuracy and robustness compared to deterministic baselines and
sampling-based Bayesian DRL approaches. This finding supports
the suitability of the first-order approach in practical, real-time
navigation scenarios.

We assume that the probabilistic parameters of the policy
network are independent within and across layers. This
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independence assumption is crucial for developing a feasible
optimization problem in high-dimensional policy networks.
Estimating and storing a full covariance matrix across all weights
is not computationally or mathematically tractable for large-
scale DRL models, where the parameter count can be in the
millions. Furthermore, this independence assumption promotes
the extraction of non-correlated, informative features and reduces
redundancy, which is beneficial for both generalization and
interpretability (Yang et al., 2008). Thus, the variational covariance
of the weight vector w'” in the Ith layer can be written as £ =
D1, where I is an identity matrix and " the learnable variance.
The second term of the ELBO loss has a closed-form mathematical
formulation and can be written as in Equation 4, where H; and
H,_, represent the number of neurons in the /th and (I - 1)th layers,
respectively.

.

Eyy-, (logparlsp W) = =5 3 [log (1%, ) + (a,-m, ) (%) (a-m,)].
t=1

3)

L H
KLV, =3 33 (- Hi

‘71@ 0_’(.1)
1- — +log— . (4)
I=1i=1 ¢ ¢

Thus, 4, and X, represent the probabilistic action mean vector
and covariance matrix. While yfl) and O'EZ) are the mean vector and
covariance matrix of the variational posterior distribution over the
policy neural networK’s parameters for the ith weight vector, W

the Ith layer.

in

3.2 Policy variational moments
propagation

In the proposed framework, the parameters of the policy
network are modeled as probabilistic variables, specifically following
Gaussian distributions. To accommodate this formulation, all
network layers are redefined such that their computations operate on
these probabilistic parameters. The variance values associated with
the Gaussian posterior distributions capture the uncertainty in the
model parameters. This parameter uncertainty propagates through
the network layers, ultimately enabling the estimation of uncertainty
in the robot’s actions at the output of the policy network. Although
the network parameters are assumed to be independent across
layers, the output of each layer exhibits non-trivial correlations
due to the transformations applied during forward propagation.
Thus, the covariance over the output of every layer exists through
the mathematical derivation. To quantify the uncertainty at
each stage of the network—including convolutional layers, multi-
layer perceptrons, and non-linear activation functions—we derive
the output distributions using statistical properties of random
variable transformations and the first-order (e.g., Taylor series)
approximation.

The convolution and fully connected layers can be expressed as
a multiplication between the input matrix X and the weight matrix
W, ie, Z=XW. The input matrix X € R™ has n probabilistic
feature vectors (random vectors) as rows xiTelRIXd, and W e
R has m probabilistic weight vectors as columns w; € R?. The
mean matrix of the input feature vectors, where the means of
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the feature vectors are arranged in the matrix’s rows, is given in
Equation 5.

T
By,
T
Hx,

M(x) — € Rnxd

by

n

where g, = E[x;] is the mean of the ith row vector. The covariance
matrix associated with each x;, denoted by %, € R is defined as
2I‘xi = ]E[(Xi _”xx)(xi _”x,)T]'

Similarly, every column of the matrix W is w;, and the mean matrix
of the weights, which is the matrix of the mean vectors arranged in
its columns, is defined as M™ = (g o1y 1 € R with By, =
E [wj] and the covariance matrix X, € R™4 where i, j=1,....,H,

To simplify notation for the covariance derivation, we vectorize
the output matrix Z into a single column vector: z =vec(Z) =
vec (XW) € R™™! where vec is the vectorization operation and the
(i,7)-th element of Z (row i, column j) appears in z at position
(i-1)m+j.

This ordering ensures that the indices i (input row) and j
(weight column vector) are explicitly preserved, so that the mean
and covariance for each element of z can be expressed in terms
of the corresponding x; and w;. Thus, the mean and covariance
of the output vector z are derived in Equation 6 following the
multiplication between two random vectors. Tr represents the
matrix trace.

H, = vec (M(")M(w)) ,
Wj) J

Cov (xiij,x;

Var (XZT ifp=q (6)

2 [p.ql= it
1 q

W

)

where the index mapping p < (i,j) and q e (i',j) follows
the vectorization ordering above. Under the independence
assumption between x; and w; the variance of each element is
simplified in Equation 7.

Var (xx’w]) =Tr (Ex ij) +[l;2w}_‘ux{ +‘uI,jEX . ifp=gq
Z,[pq) = ' ' ' .
Cov(x?wj,xz; wj/) =Tr (EXiZV',],) +‘u;)2wj;4xx_, +yleXiywj,, ifp+ q( )
7

where the indices i = i’ and j = j' provide the variance components of
the matrix X, and the indices i # i’ and j # j’ provide the covariance
components. Figure | illustrates the vectorization process in the
covariance propagation derivation.

The mean and covariance at the output of the activation
function, y=F(z), are derived using the first-order Taylor
approximation as in Equation 8.

Fyz]:(nuz)’ Zy:"]]-'zz];:) (8)

where ]  represents the Jacobian matrix of the activation function
F with respect to the input vector z, evaluated at the mean g, .
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3.3 Value network and reward design

We define the value function as a CNN that takes the state
and reward from the environment as inputs and produces the
value estimate that penalizes the robots incorrect actions. The
parameters of the value network are U = {U(lv)}lLVZI, where UM are
the weight matricesfor [, = 1,...,L, layers. The critic or penalty value
estimates, V(s,,U), serve as a baseline for the policy network to
update its parameters through policy-gradient approach and back-
propagation (Sewak, 2019). The temporal difference (TD) error, J,,
between the subsequent state-value estimates is computed using the
instantaneous reward and discounted state value of the subsequent
state as in (Equation 9), where y is the discounting factor and
r4(s;,a,) is the reward. §, in (Equation 9) represents one-step return
updates, which can be expanded to a multi-step update. The value
function in (Equation 9), V(s;U), is the state-value CNN estimator
parametrized by weights or parameters U.

8 =1 (spay) + YV (sp3U) =V (sslU). ©)

Figure 2 illustrates the general structure of the proposed Trust-
Nav framework, where the policy and value networks form a robot
that interacts with the environment. The detailed interaction and
optimization procedure is provided in Algorithm 1.

3.4 Reward function

The reward function defined in Equation 10 incorporates a
standard non-collision mechanism that imposes strong penalties
on the robot for collisions or other undesirable behaviors with an
exploration bonus grounded in D-optimality from TOED. Collisions
or unsafe actions incur a large negative reward, while forward
motion without collision receives the highest positive reward,
turning receives a smaller positive reward, and exploration into
unmapped areas receives an additional uncertainty-based reward.

To encourage informative exploration, we employ the D-
optimality criterion from the Theory of Optimal Experimental
Design (TOED). the
determinant of the information matrix, which is equivalent to

In TOED, D-optimality maximizes

minimizing the volume of the pose-map confidence ellipsoid
associated with the estimated parameters. In the context of
active SLAM and exploration, this property directly translates to
maximizing global information gain about the environment and
reducing overall localization and mapping uncertainty. Compared
to other TOED measures such as A-optimality (which minimizes the
average variance) or E-optimality (which minimizes the maximum
or worst-case variance), D-optimality captures global variance
across all state dimensions and has been shown in prior work
(Carrillo et al., 2012; Rodriguez-Arévalo et al., 2018) to produce
more balanced and efficient exploration trajectories in robotics.
The exploration reward is bounded using the hyperbolic
tangent function, tanh(.), with scaling factor (, to prevent extreme
exploration values from dominating the fixed forward/turn
rewards. This normalization strategy stabilizes learning and is
consistent with reward-bounding methods used in reinforcement
learning for navigation. This structured reward design encourages
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X e Rrnxd W e Raxm y4 vec(Z)
X1,1 X1,2 X1,3 Wi, 1 Wi, 2 21,1 21,2
Z:
X2,1 X2,2 X2,3 W2,1 w2, 2 22,1 22,2 22
X = > | 4
X3,1 X3,2 X3,3 W3, 1 w3, 2 Z3,1 Z3,2
Zy
Zs
Zg

FIGURE 1

Illustration of the vectorization process in the covariance propagation derivation. The input matrix X € R™? multiplies the weight matrix W € R™™ to
yield Z = XW € R™", where each entry is z;= x/ij. The vectorization z = vec(Z) e R"™! stacks row vectors of Z, so z;; maps to position (i—-1)m+jin z.
This explicit index mapping preserves the correspondence between each scalar and its originating pair (x;,w;), enabling consistent computation of
means and covariances.

ROS Gazebo Environment

T (st ;)
Reward

State
St

Policy TD Error
-> Network 8¢

L Z; aclse)

Trustworthy Navigation (Trust-Nav)

Network
V(s W

FIGURE 2
The proposed Trust-Nav framework with the variational policy and value networks forming a robot that interacts with the environment, and quantifies
uncertainty in the robot'’s actions.

safe navigation while explicitly rewarding globally informative  where ( is a task-dependent scale factor and f, (%) is the D-

exploration, thus promoting efficient and robust policy learning.  optimality criterion. The D-optimal exploration reward is derived
The reward function is defined in Equation 10. from TOED (Placed and Castellanos, 2022). This design of the
~100, ifcollision reward components follows standard practices in reinforcement
learning for navigation tasks, where the goal is to balance safety,

1+ tanh Lt ifstraight efficiency, and exploration.

r,(spa,) = In (Zs,) (10)

e Collision penalty (-100): A large negative reward is assigned
-0.1 +tanh< ¢ ifturning, to collisions to strongly discourage unsafe behaviors. This
(ES: magnitude is consistent with navigation benchmarks, where
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collisions must be treated as catastrophic outcomes relative to
other objectives.

e Straight motion reward (+1): A positive baseline reward is
assigned to forward movement to encourage progress toward
the goal and avoid oscillatory or stagnant behaviors.

e Turning penalty (-0.1): A small negative reward is assigned
to turning to discourage excessive rotations without progress.
The magnitude is modest to allow necessary turns when
required, but still biases the policy toward efficient, goal-
directed motion.

3.5 Learning objective, gradients, and
relation to policy-gradient theory

Let
by the
weights as in Equation 11.

the
posterior

denote marginal induced

the

policy
policy network

7y(als)

variational over

ny(als) = [ 2 @ls. W), 0Maw, a

where q,(W) = N, (1, Z). With the log-derivative trick, the policy-
gradient theorem writes the loss gradient as in Equation 12.

Vol =E,, [Atvd, log 7y (als,)] (12)

where A, is any unbiased advantage estimate. In our implementation
A, is the TD error 8, = r,(s;,a,) + yV(s,,;;U) — V(s;U), which is a
standard, low-variance advantage estimator.

Because the log function is concave, Jensen gives a
lower bound in Equation 13.

logmy (a)ls;) > Ex (logp(als,W)) ELBOonlogm,  (13)

Maximizing E Nv(log p(a,ls, W)) therefore maximizes a
surrogate for logmy(ayls,). Replacing logm, with its ELBO inside
the actor objective yields the standard advantage-weighted
maximum-likelihood surrogate as in Equation 14.

L pcor ($) = ) 8, B, (log p(als, W))-B KLININ,] . (14)
t

ELBO - likelihood Bayesian Regularizer

where 8> 0 is a regularization weight. This is directly analogous to
REINFORCE/actor-critic with (i) an advantage weight §, and (ii) a
Bayesian regularizer (akin to entropy/trust-region regularization).

The critic or value neural network is trained with the standard
TD mean-squared error (MSE) as in Equation 15.

1 1
L i (U) = E(rt(st’at) +yV (s sU) - V(st;u))z = 56%’ (15)

and is optimized independently of the actor’s KL/ELBO terms (no
gradients from the actor loss flow into U4. We use the critic only
to supply the advantage estimate A, =4, for the actor update; as
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noted above, §, is detached when forming V£ 5 ¢, to avoid biasing
the critic.

Summary of the learning rule: If we denote the likelihood by the
following definition,

¢ (¢s) = Ep, (log p(afls, W)) = log./\/'(at;yal (s ¢)’Za, (st>‘/’)) >
(16)

where i, , %, are obtained analytically via our moment-propagation

a,
(linear layers and first-order treatment of nonlinearities). The actor

gradient is defined in Equation 17.

Vo Lonctor (9) = Y 8,V 48, () = BVSKL[N,IN, | (17)
t

The critic gradient is defined in Equation 18.

Vi £ criric U) = 8,V (8,)  with 6, detached inactor updates.
(18)

The interaction of the policy and value networks with the
environment and the optimization through the TD error to
maximize the cumulative reward is detailed in Algorithm 1.

4 Experiments

4.1 Experimental set-up

In our experiments, we utilize OpenAI's Gym-Gazebo extension
(Zamora et al, 2016), which leverages the Gazebo robotics
simulator to provide a standardized and reproducible interface for
reinforcement learning in robotic environments. The Gym-Gazebo
extension library facilitates the creation of simulated environments
where robotic agents are readily accessible and can be seamlessly
integrated with machine learning architectures for both training
and evaluation (Zamora et al., 2016). This simulator enables precise
control of environmental conditions and sensor characteristics,
which is essential for isolating and quantifying the effects of
uncertainty modeling in our framework.

The proposed Trust-Nav model is deployed and evaluated using
a simulated TurtleBot3 robot and pre-configured environments
provided by OpenATs repositories. The action space consists of
three discrete actions: move forward, turn left, and turn right,
with fixed linear and angular velocities defined in the TurtleBot3
simulation. The state representation comprises processed 2D LiDAR
scan data (360° range readings) and robot pose estimates from ROS,
all normalized to [0,1] for stable learning.

Experimental results are systematically documented and
analyzed in comparison to a carefully selected baseline model—Det-
Nav—which represents a deterministic navigation approach. Both
Trust-Nav and Det-Nav share the same underlying network
architecture; however, Det-Nav does not incorporate variational
inference and instead relies on point estimates for action selection,
omitting the propagation of uncertainty through the policy network.
This comparison allows us to isolate and assess the impact of
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1: Inputs: Number of episodes, K, maximum number
of steps per episode T, learning rate n,

KL weight B, and the initial

conditions for the learnable parameters ¢={y, X},

and U.

. Init: Variational policy: q,,,(W):/\/'V(p,Z), and

discount factor v,

the value (critic) network parameters U.
3: for k=1 to K do
Reset the environment to get the initial

state s,
5: for t=1 to T do
6: Policy forward: propagate posterior

means/covariances N, (u,X) through

the policy network

to get p(ailsy, W).
Action selection: sample a,~N(p,.Z,)
Execute a, and observe the reward
ri(s;,a;) and the new state s,

9: Value forward: forward pass through the
value network, and calculate V(s;U)
and critic TD
error 6;=ri(span)+yV(se,;U)-V(ssU)

10: Critic loss: Lcmlc(u):;—éi.

11: Actor loss: L,. . (¢)=
5.E (1og p(acls,, W) - BKL [N, IV, ] .

12: Update the value (critic) network
parameters: U—U-nVy L)

13: Update the variational policy network
parameters: ¢ —¢-nNVyLyoior(9).

14 end for

15: end for

Algorithm 1. Trust-Nav: Advantage-weighted variational actor—critic with
closed-form moment propagation.

uncertainty modeling on decision-making, particularly in the
presence of environmental noise or corruption, thereby validating
the robustness and effectiveness of the proposed Trust-Nav
approach. This controlled architectural parity allows us to isolate
the contribution of uncertainty modeling to policy performance,
avoiding confounding effects from differences in mapping, planning,
or control modules.

Both Trust-Nav and Det-Nav models employ identical 10-
layer convolutional neural network (CNN) architectures for both
the policy and value networks. The architecture begins with three
convolutional layers using 32 filters of size 5x5, followed by
three layers with 64 filters of size 3 x 3. This is succeeded by
three additional convolutional layers with 128 filters of size 1x
1, which capture fine-grained spatial features. The final layer is
a fully connected layer that produces the output corresponding
to either the policy distribution or the value estimate, depending
on the network’s role. While both Trust-Nav and Det-Nav share
identical network architectures and the same hyperparameter search
protocol, the final learning rates differ due to independent tuning
for stable convergence in each method. This approach avoids
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TABLE 1 Hyperparameters for the Trust-Nav and Det-Nav models.

Hyperparameter Trust-Nav Det-Nav
Learning rate (1)) 0.0002 0.001
Batch size 16 16
Discount factor (y) 0.95 0.95
Replay memory 100,000 100,000
Episode size 1,500 steps 1,500 steps
Total number of episodes 200 200
Exploration decay rate 0.999 0.999

TABLE 2 Noise levels for random (Gaussian) noise and
adversarial attacks.

Levels of noise

Type of noise

Random noise (std) 0.0001 0.001 0.1 0.2 0.3 0.4 0.5

Adversarial noise (&) 0.0001 0.001 0.01 0.05

biasing the comparison by forcing identical learning rates despite
differing optimization dynamics (variational inference in Trust-
Nav vs. point estimates in Det-Nav). All hyperparameter values are
provided in Table 1 for full transparency.

Noise and disturbance analysis is conducted using realistically
parameterized Gaussian noise and adversarial attacks (Table 2), with
values chosen to reflect ranges reported for common mobile robot
sensors such as LIDAR and RGB-D cameras.

The experimental pipeline is implemented using the Robot
Operating System (ROS), which runs on a Linux-based system
with computation accelerated by four NVIDIA Quadro RTX 6000
GPUs (24 GB memory each). Each policy is evaluated over 200
independent episodes per condition to ensure statistical reliability
and consistency of results. To assess learning stability and navigation
robustness, we track key performance metrics, including Moving
Average Rewards, Maximum Rewards, and Cumulative Rewards.
These metrics are summarized in Figures 3, 4 and Tables 3, 4.

4.2 Robustness analysis under noisy
conditions

We evaluate the robustness of the proposed Trust-Nav model
against two well-defined disturbance types: additive Gaussian noise
and adversarial attacks, comparing it to the Det-Nav model. The
post-training robustness analysis is performed after the models are
fully trained and validated in a simulated training environment,
which ensures that the performance degradation can be attributed
purely to test-time perturbations, without affecting the learned
policy during training. We design the experiments such that we
start training the robot in a clean, noise-free environment before
introducing noise to assess the effect of noise on policy performance
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FIGURE 3
The cumulative reward of the proposed Trust-Nav (blue curve) and

Det-Nav (red curve) in a noise-free test environment (without
adding noise).

without influencing the learning process. Then, we incrementally
introduce noise complexity in a test environment using random
(Gaussian) noise and adversarial attacks to progressively degrade
the robots perception. First, we evaluate the performance of the
proposed Trust-Nav compared to Det-Nav models in a clean test
environment (without noise). Then, we gradually add various levels
of Gaussian or adversarial noise to the test environment states to
evaluate the performance of each model.

Gaussian noise is introduced in seven levels of increasing
severity, defined by the standard deviation (std) parameter, which
is chosen to align with empirical sensor noise characteristics
documented in robotics literature. Figure 5 demonstrates the depth
camera observations for robot navigation under increasing Gaussian
noise levels, where higher standard deviations progressively degrade
the visual quality of the input. As shown in the figure, higher
noise levels progressively corrupt the sensor observations, making
navigation more challenging. This experiment demonstrates how
Trust-Nav adapts to noisy depth measurements by leveraging
uncertainty propagation in its policy.

Adversarial examples are generated using the Fast Gradient Sign
Method (FGSM) (Goodfellow et al., 2015), with five attack levels
controlled by € as in Equation 19. Both disturbance types are applied
in the test environment only, preserving a clean training phase for
fair assessment.

adv

§V = st+e-sign(Vs‘€t(¢,s,)), where [s24"] € [0,1]. (19)

Here, ¢, is the ELBO likelihood of the policy network defined
in Equation 16, while the networks’ parameters will be frozen
during attack generation. The normalization constraint ensures
that adversarial states remain in the valid input range [0,1], i.e.,
[Is; + esign [Vst {’t(gb,st)] [ € [0,1]. Table 2 provides ¢ values for the
five levels of attacks applied to the test environment. Both Trust-
Nav and Det-Nav models are validated under all noise levels, with
each level undergoing 200 episodes per run, with results averaged
to ensure consistency. The complete noise/attack specifications
are given in Table 2.
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4.3 Robot uncertainty vs. signal to noise
ratio

The proposed Trust-Nav framework develops a robot that
produces actions and uncertainty information simultaneously in
the form of the actions’ distribution mean and variance-covariance
matrix. The analysis of uncertainty under noisy conditions (when
the environment is corrupted by Gaussian noise or adversarial
attacks) provides insights into the navigation performance after
deployment and possible detection of the robot’s failure due to
environment complexity. We analyze the predictive variance of
actions at various levels of Gaussian noise and adversarial attacks.
The amount of noise at each level is measured using the signal-
to-noise ratio (SNR). For adversarial attacks, the signal is the
clean input state s,, and the noise is the perturbation vector ¢-
sign (Vsle,(¢, st)) applied by FGSM. The SNR is typically defined in
decibels (dB) as in Equation 20.

2
lIsll;

(20)
lle- sign (V, £,(¢,s,)) I3

SNR(¢) = 10log,,

The average action variance is calculated for all the test frames
at each noise level. We scale the action variance curves from zero
by subtracting the variance at the baseline (clean test environment
states without noise) at each level. The resulting average action
variance is plotted against the respective SNR values to produce
variance-vs-SNR curves (Figure 6), which are interpreted from right
to left. The variance values at the extreme right side of the graph
correspond to very high SNR (low noise levels). The addition of noise
results in a decrease in the SNR values, progressing from right to left.
The extreme left point represents the average variance at the lowest
SNR (i.e., the highest levels of noise).

5 Results and discussion
5.1 Performance analysis and robustness

This section discusses the performance evaluation and the
robustness behavior of the proposed Trust-Nav model compared
to the baseline Det-Nav model. The average, cumulative, and
maximum rewards demonstrate the performance metric of the
models in the test-simulated environment. Figure 3 illustrates
the cumulative reward obtained by the proposed Trust-Nav
(blue curve) and Det-Nav (red curve) in a noise-free test
environment (without adding noise). Initially, both models
yield low reward values; however, as training progresses over
multiple episodes, the rewards steadily increase, indicating effective
policy learning and successful maximization of the reward
function.

Figure 4 presents the average reward values for Trust-Nav and
Det-Nav models in a test simulated environment under varying
levels of Gaussian noise and adversarial attacks. Each curve
represents the average reward obtained in a separate experiment
corresponding to a specific noise level. Figures4b,c show the
average rewards of Trust-Nav and Det-Nav, respectively, across
Gaussian noise levels ranging from 0.0001 to 0.5. In Figure 4a,
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FIGURE 4

The average reward values of Trust-Nav compared to Det-Nav, validated on Gazebo environments under various levels of Gaussian noise and
adversarial attacks. (a) Both models are evaluated under Gaussian noise. (b) Trust-Nav is tested under Gaussian noise. (c) Det-Nav is tested under
Gaussian noise. (d) Both models are evaluated under adversarial attacks. (e) Trust-Nav is tested under adversarial attacks. (f) Det-Nav is tested under
adversarial attacks.

TABLE 3 Maximum and average reward values for the Trust-Nav and Det-Nav models in test environments corrupted with different levels of Gaussian
noise (std).

Noise level (std) Trust-Nav ’ Det-Nav

Max reward Avg reward Max reward Avg reward

0.0001 916.700 + 1.31 916.316 + 1.23 846.197 + 4.56 836.894 + 4.98

0.001 915.423 + 2.65 915.313 + 1.92 838.760 + 4.89 832.734 + 5.87

0.1 914.288 + 2.28 913.596 + 2.21 832.301 + 5.69 825.627 + 5.23

0.2 913.864 + 2.91 913.379 + 2.29 808.853 + 6.98 812,423 + 6.94

0.3 912,926 + 3.17 913.127 + 2.54 771.164 + 8.79 774.136 + 7.49

0.4 909.846 + 2.94 912.864 + 3.62 730.738 + 8.96 734.537 + 8.89

0.5 909.011 + 3.52 911.365 + 3.48 683.200 + 9.25 682.930 + 10.61

the average rewards of both models are plotted together for  are introduced into the environment’s state observations at varying
direct comparison, with solid lines representing Trust-Nav and  levels of attack severity (e = 0.0001 - ¢ = 0.1). Every curve presents
dashed lines representing Det-Nav. As expected, increasing the  an experiment with distinct attack severity. Figure 4d provides a
standard deviation of the injected Gaussian noise has a negative ~ comparative view, plotting the reward trajectories of both models
impact on performance for both models. However, Trust-Nav ~ under all five levels of adversarial attacks. In this figure, solid
demonstrates greater robustness by consistently achieving higher  lines represent Trust-Nav, while dashed lines represent Det-Nav. To
average rewards—approximately 900—compared to Det-Nav, ensure visual consistency and facilitate comparative analysis, the
whose performance drops to around 675 under high noise  same color scheme is used across all subplots to indicate equivalent
conditions. noise or attack severity levels.

Figures 4e,f demonstrate the rewards achieved by Trust-Nav As expected, the introduction of adversarial examples negatively
and Det-Nav models, respectively, when adversarial perturbations  impacts both models, with increasing attack strength leading
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TABLE 4 Maximum and average reward values for the Trust-Nav and Det-Nav models in test environments corrupted with different levels of adversarial
attacks (e).

Noise level (¢) Trust-Nav Det-Nav
Max reward Avg reward Max reward Avg reward
0.0001 921.269 + 2.12 918.213 + 1.97 883.674 + 5.89 878.989 + 5.51
0.001 918.518 + 2.1 917.156 + 2.36 877.642 + 5.88 868.454 + 6.54
0.01 917.844 + 1.98 916.469 + 2.58 873.430 + 6.97 863.324 + 6.94
0.05 915.770 + 2.56 913.695 + 2.49 868.769 + 6.82 862.221 + 6.99
0.1 886.264 + 2.96 880.293 + 3.12 853.136 + 9.83 818.373 + 8.85

| [

std: 0.0 std: 0.1 std: 0.2 std: 0.3

FIGURE 5
Depth camera observations under varying input noise levels used for robot navigation. The standard deviation (std) values (0.0, 0.1, 0.2, 0.3) represent

increasing amounts of Gaussian perturbation added to the depth measurements. As noise grows, the sensor data becomes progressively more
corrupted, highlighting the challenge of robust policy learning under uncertain perception.

(a) Action Variance vs. SNR (b) Maximum Reward vs. SNR (c) Average Reward vs. SNR
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FIGURE 6

Relationship between signal-to-noise ratio (SNR) and (a) average action variance, (b) maximum episode reward, and (c) average episode reward for
Trust-Nav and Det-Nav under Gaussian noise and adversarial perturbations. Blue curves correspond to Trust-Nav and red curves to Det-Nav; solid lines
indicate adversarial attacks, and dashed lines indicate Gaussian noise. Higher action variance at low SNR reflects increased navigation uncertainty, with
Trust-Nav showing a statistically significant increase in variance compared to noise-free conditions (Wilcoxon signed-rank test, p < 0.01). Trust-Nav
consistently maintains higher maximum and average rewards across all noise conditions, demonstrating robustness to both Gaussian and adversarial
perturbations as compared to the Det-Nav baseline. The star marker denotes the point of statistically significant variance increase.

to greater reward degradation. Nevertheless, Trust-Nav exhibits =~ more pronounced decline, with reward values decreasing from
significantly more robust behavior under adversarial conditions.  approximately 900 to 850 under the same conditions. These results
Its average reward remains relatively stable across all but the  highlight the enhanced robustness and reliability of Trust-Nav
highest attack level, decreasing only slightly from approximately = to adversarial perturbations in comparison to its deterministic
920 to 880 when(e=0.1). In contrast, Det-Nav exhibits a  counterpart.
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5.2 Robot uncertainty analysis and
self-assessment

We employ the action variance at the output of the variational
policy network in the Trust-Nav model as a quantitative metric to
evaluate the robot’s navigation confidence (or uncertainty) without
requiring any additional sensing, data processing or computational
overhead. This property enables what we refer to as self-assessment,
whereby the model internally gauges the trustworthiness of its own
actions based on the magnitude of the output variance. Intuitively,
higher action variance reflects increased uncertainty in navigation
decisions, signaling low confidence in the robot’s actions under
challenging or degraded sensing conditions.

Figure 6 illustrates the relationship between signal-to-noise ratio
(SNR) and (a) average action variance, (b) maximum episode
reward, and (c) average episode reward for both Trust-Nav and
the deterministic baseline Det-Nav. Blue curves represent Trust-
Nav and red curves represent Det-Nav, with solid lines denoting
adversarial perturbations and dashed lines denoting Gaussian noise.
The plots read from right to left, as lower SNR values correspond to
higher noise levels.

Across all noise levels, Trust-Nav consistently outperforms Det-
Nav in both maximum and average rewards. While both models
experience declining performance at low SNR, Trust-Nav maintains
significantly higher rewards, particularly under Gaussian noise,
where the average reward decreases by only (= 0.5%) compared
to (= 14%) for Det-Nav. Under adversarial perturbations, Trust-
Nav experiences a larger drop (= 8%) but still remains superior to
Det-Nav’s (= 18%) reduction. Importantly, under low SNR (e.g.,
SNR <20 dB), the action variance of Trust-Nav increases sharply,
indicating heightened uncertainty that correlates with performance
degradation. This relationship is statistically significant according
to a Wilcoxon signed-rank test (p < 0.01) when comparing action
variance at high versus low SNR, validating variance as a meaningful
uncertainty indicator. We refer to the point of statistically significant
variance increase by a star in Figure 6.

The increase in variance concurrent with declining reward
demonstrates that Trust-Nav is self-aware of deteriorating
navigation performance. This self-assessment capability is a key
step toward safe and reliable deployment in real-world robotics,
where the ability to detect and respond to uncertain decision states
is essential for preventing unsafe actions.

5.3 Discussion

This paper introduces a new deep reinforcement learning
navigation (Trust-Nav) framework that propagates variational
moments through the policy neural network and estimates the
uncertainty in the robot’s actions and localization. The variational
policy network propagates the first two moments (mean and
covariance) of the variational posterior distribution of the network’s
parameters and estimates the uncertainty in the robot’s actions via
the variance of the policy distribution. We conduct a comprehensive
analysis using the Gazebo simulated environment under various
noisy conditions. The performance of the Trust-Nav model is
compared with the state-of-the-art DRL navigation networks under
multiple levels of Gaussian noise and adversarial attacks, i.e., FGSM.
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Our analysis reveals that the Trust-Nav model maintains its
reward values and outperforms the corresponding deterministic
DRL navigation when the environment is subject to Gaussian noise
or adversarial attacks. Furthermore, the robot’s action variance
significantly increases when the adversarial noise is high, and
the model’s reward values start to decrease. The moments of the
policy variational distribution transmit vital state features from the
environment through the policy network to the action predictions.
The second moment (i.e., the variance) of the variational distribution
over the policy parameters filters the state features according to their
importance. This policy filtering mechanism of the environmental
dynamic features via the variance of the variational distribution
forces the robot’s action variance to increase when these features are
corrupted with noise or adversarial attacks.

In addition to the quantitative results, we also observe qualitative
behavioral patterns that reinforce the role of action variance
as a self-assessment signal. For instance, under high-uncertainty
zones corresponding to low-SNR adversarial conditions, the robot
exhibits noticeably cautious navigation—slowing down, hesitating
before turns, and occasionally failing to commit to decisive
maneuvers. These behaviors coincide with spikes in action variance,
highlighting the model’s internal recognition of unreliable decision
states. Conversely, when operating in higher-SNR conditions,
the variance remains low, and the robot navigates confidently,
with smoother trajectories and fewer hesitations. This qualitative
evidence illustrates how Trust-Nav’s uncertainty-aware design
enables the robot to adaptively signal and respond to reliability
degradation, offering an interpretable connection between statistical
variance and observable robot performance.

5.4 Deployment perspective and
real-world applicability

Although our evaluation is conducted in simulation, the Trust-
Nav framework is designed with deployment feasibility in mind.
By explicitly propagating both the mean and variance of the
variational posterior through the policy network, the approach
enables the robot to self-assess the reliability of its actions in
real time, without introducing additional computational burden
or requiring external supervision. This self-assessment capability
is particularly advantageous for physical deployment, as it allows
the robot to identify low-confidence states and adapt its behavior
accordingly, thus enhancing safety in uncertain or adversarial
environments. Importantly, because the proposed method operates
directly on the learned policy outputs, it is agnostic to the underlying
robot platform and sensing configuration, which facilitates seamless
transfer from simulation to hardware. This positions Trust-Nav
as a practical framework for bridging robust uncertainty-aware
navigation with real-world autonomous systems.

6 Conclusion

We propose Trust-Nav, a deep reinforcement learning
framework that incorporates uncertainty estimation via a variational
policy network. The proposed Trust-Nav is built on fundamental
principles of Bayesian density propagation in dynamical systems. By
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propagating moments of the variational policy network, Trust-Nav
enables robust decision-making and provides a built-in measure
of action confidence (or equivalently uncertainty). Experiments
in simulated environments demonstrate that Trust-Nav model
consistently outperforms baseline models and remains robust under
Gaussian noise and adversarial attacks. Trust-Nav models maintain
not only higher rewards but also demonstrate reduced sensitivity
to input corruption. When the reward values decrease due to the
high level of adversarial attacks, the uncertainty associated with the
robot’s actions increases significantly to warn the robot of uncertain
actions. This integration of uncertainty into the policy network
promotes safer and more reliable navigation, especially in complex
or unpredictable environments. Trust-Nav offers a step toward
deployable, self-aware robotic systems capable of recognizing and
responding to their own limitations.

7 Future work

While the present study introduces closed-form variational
moment propagation within DRL policy networks—offering
a tractable and sampling-free approach to
estimation—several extensions are envisioned to further enhance

uncertainty

the framework’s accuracy and applicability. First, the current
formulation adopts an independence assumption for network
parameters across and within layers to ensure scalability and real-
time feasibility. In future work, we plan to investigate structured
covariance approximations, such as Kronecker-factored or low-
rank representations, to capture inter-parameter correlations while
preserving computational efficiency. Second, our method currently
employs a first-order Taylor approximation for nonlinear activation
functions. Although this enables a closed-form, low-latency
uncertainty propagation, we will explore the use of unscented
transformations, which can approximate nonlinear mappings up
to second-order accuracy, thereby reducing approximation error
without resorting to Monte Carlo sampling. Finally, future studies
will expand the evaluation to include real-world robotic platforms,
additional noise models derived from real sensor data, and
comparisons with other uncertainty-aware DRL approaches, further
validating the robustness and generalizability of the proposed
framework.
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