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approach to metabolic cost
reduction
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Introduction: Hip exoskeletons can lower the metabolic cost of walking in many
tasks and populations, but their assistance patterns must be tailored to each
user. We developed a simulation-based, human-in-the-loop (HIL) optimization
framework combining machine learning (ML) and global optimization to
personalize hip exoskeleton assistance patterns.

Methods: Using data from ten healthy adults, we trained a Gradient Boosting
(GB) surrogate model to predict normalized metabolic cost as a function of Peak
Magnitude and End Timing of assistive torque. GB achieved the lowest relative
absolute error percentage (RAEP) of 0.66%, outperforming Random Forest (RAEP
= 0.83%) and Support Vector Regression (RAEP = 0.98%) among nine ML
models. We then evaluated seven optimization algorithms, including Covariance
Matrix Adaptation Evolution Strategy, Bayesian Optimization, Exploitative
Bayesian Optimization, Cross-Entropy, Genetic Algorithm, Gravitational Search
Algorithm (GSA), and Particle Swarm Optimization (PSO), to identify optimal
assistance profiles.

Results: GSA predicted the lowest metabolic cost (-1.06), equivalent to an
estimated 53% reduction relative to no exoskeleton assistance, while PSO
showed the highest efficiency (AUC = 0.24).

Discussion: These simulated predictions, though not empirical measurements,
demonstrate the framework's ability to streamline algorithm selection, reduce
experimental burden, and accelerate translation of exoskeleton optimization
into rehabilitation, occupational, and performance enhancement applications
with broader biomechanical and clinical impact.
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hip exoskeleton, machine learning, human-in-the-loop optimization, metabolic
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1 Introduction

Mobility disability affects over 26.9% of older adults
worldwide (Okoro
independence, increased healthcare costs, and reduced quality
of life (Musich et al., 2018). Wearable robotic assistive devices,
such as lower-limb exoskeletons, have emerged as promising

et al, 2018), contributing to reduced

tools for improving walking efficiency by reducing the energetic
cost of walking (Shepertycky et al, 2021), providing physical
support (de Looze et al, 2016; Fox et al, 2019), and restoring
weak limb function (Jiryaei et al, 2021). Elevated metabolic
cost during walking is a common issue among older adults
and individuals with neuromuscular or vascular impairments,
often leading to early fatigue, reduced mobility, and a greater
risk of sedentary behavior, further exacerbating functional
decline and health complications (Das Gupta et al, 2019;
Antonellis et al., 2022; Mohammadzadeh Gonabadi et al., 2024c;
2024b). Despite considerable success in laboratory experiments,
many exoskeletons have shown limited benefits in real-world
applications due to the inherent complexity of human-robot
interaction and challenges related to portability and practical
deployment outside controlled environments (Hsu et al,
2021; Rodriguez-Fernandez et al, 2021; Charette et al, 2023;
Mohammadzadeh Gonabadi et al., 2024a). Because the hip can
generate substantial positive torque during daily activities, optimally
tuned hip exoskeletons have the potential to reduce metabolic
cost by up to 40% (Lee et al.,, 2017; Ding et al., 2018; Seth et al.,
2018; Arones et al, 2020; Mohammadzadeh Gonabadi et al.,
2020; 2024a). However, personalized tuning is necessary to
maximize the benefits of the exoskeleton and human performance,
which is challenging outside of a laboratory (Zhang et al., 2017;
Slade et al., 2022; Farris et al., 2023).

Human-in-the-loop (HIL) optimization has been developed as
a method for real-time personalization of exoskeleton parameters.
The structure of this HIL optimization strategy is shown in
the upper (red) loop of Figurel, where human feedback is
used to adjust assistance parameters systematically. In this
process, device control is iteratively adjusted to enhance user
performance based on physiological feedback during real-time
use (Ding et al., 2018; Rayssiguie and Erden, 2022; Farris et al.,
2023; Lakmazaheri et al., 2024; Firouzi et al., 2025; Lin et al.,
2025). HIL optimization has substantially improved exoskeleton
performance across various activities, including recent translation
into real-world conditions (Koller et al., 2016; Malcolm et al., 2017;
Sreenivasa et al., 2017; Zhang et al, 2017). However, assessing
key performance metrics such as metabolic rate often involves
costly equipment and prolonged steady-state walking, making
these experiments challenging (Mohammadzadeh Gonabadi et al.,
2020; Mohammadzadeh Gonabadi et al., 2024a; Antonellis et al.,
2022). To get around these challenges, simulation methods using
surrogate models have become more common. These models
approximate the relationship between assistance parameters
and physiological outcomes using Machine Learning (ML)
techniques trained on experimental data (Kutulakos and Slade,
2024). Once validated, surrogate models enable rapid and cost-
effective testing of numerous assistance parameter combinations
within the simulation framework, eliminating the need for
additional human trials. The lower (blue) loop in Figure 1
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outlines this surrogate-based optimization framework, where
ML predictions guide iterative parameter refinement without
requiring direct physiological measurements. Recent studies used
data-driven methods to estimate within-stride metabolic cost
during walking (Gonabadi et al, 2020; Antonellis et al., 2022;
Dzewaltowski et al., 2024; Mohammadzadeh Gonabadi et al.,
2024b; Mohammadzadeh Gonabadi et al., 2024c). They showed
that variations in biomechanical variables can predict energy
expenditure with high temporal resolution and greater consistency
compared to earlier model-based approaches (Gonabadi et al.,
2020; Antonellis et al., 2022; Dzewaltowski et al., 2024;
Mohammadzadeh Gonabadi et al, 2024b; Mohammadzadeh
Gonabadi et al, 2024c). Although these models cannot fully
capture the complexities of human adaptation, they offer
meaningful insights into parameter sensitivity and can guide
experimental design.

Complementing data-driven methods, biomechanics-based
optimization approaches have leveraged musculoskeletal modeling
and control theory to design torque profiles that minimize
joint loads and enhance gait stability (Desplenter and Trejos,
2018; Baud et al., 2021; Firouzi et al, 2025). Research on
human-adaptation dynamics has revealed how motor co-
adaptation and neuromuscular adjustments shape user responses
to exoskeleton assistance, underscoring the importance of
adaptive strategies (Poggensee and Collins, 2021; Echeveste and
Bhounsule, 2025). Energy efficiency modeling in wearables has
also progressed through predictive frameworks that account
for device mass, actuation efficiency, and user biomechanics
to estimate potential metabolic savings (Slade et al., 2022;
Chang et al., 2023; Scherb et al., 2023; Dzewaltowski et al., 2024).
Despite these advances, prior HIL optimization approaches often
require lengthy experimental sessions that induce fatigue, limit
scalability, and underrepresent inter-individual biomechanical
variability (Slade et al., 2022; Dzewaltowski et al., 2024). Our
simulation-based framework addresses these shortcomings by
employing surrogate models informed by population-level data to
benchmark global optimization algorithms, reduce experimental
demands, and enable preliminary strategy identification for
real-world translation in rehabilitation and occupational
contexts.

Recent research highlights the effectiveness of ML-based
approaches in various exoskeleton applications. Kutulakos and
Slade (Kutulakos and Slade, 2024) modeled metabolic landscapes for
ankle exoskeletons using Gaussian Process regression and simulated
HIL optimization under various user and device scenarios. Their
findings confirmed that surrogate-based frameworks can replicate
trends observed in real-time optimization and inform decisions
regarding algorithm selection and parameter tuning. Gonabadi
etal. (Mohammadzadeh Gonabadi et al., 2024b) demonstrated
the feasibility of using artificial neural networks to estimate
metabolic cost directly from ground reaction forces and joint
moments, offering a real-time alternative to indirect calorimetry.
Their findings highlight the predictive strength of biomechanical
inputs and support the integration of ML in assistive device
development and gait analysis applications. In another study
(Mohammadzadeh Gonabadi et al., 2024c), nonlinear dynamical
measures and artificial intelligence algorithms were used to classify
gait patterns, illustrating the capability of AI in capturing subtle
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FIGURE 1

Overview of the human-in-the-loop framework for personalized hip exoskeleton assistance. The system consists of two main loops: (1) Model Training
Loop (red): used to generate and collect experimental data (Mohammadzadeh Gonabadi et al., 2024a) for training a surrogate model; and (2)
Human-in-the-Loop Optimization Loop Using Surrogate Model (blue): used to optimize assistance parameters based on surrogate-predicted
metabolic cost iteratively. (A) Torque Profile Generator defines a piecewise semi-linear hip torque profile based on Peak Magnitude and End Timing. (B)
Assistance Parameter Input transmits these parameters to the exoskeleton controller. (C) Exoskeleton Actuation Interface applies the assistive torque to
the user during treadmill walking via off-board actuation. (D) Feedback: Kinematic and Kinetic Data are collected through motion capture and force
plate instrumentation. (E) Using a trained machine learning model, a Surrogate-Based Metabolic Cost Estimator predicts metabolic cost based on
biomechanical input data. (F) Parameter Update to Profile Generator enables exploration of new assistance conditions during model training. (G)
Parameter Update Loop (to Estimator) delivers proposed assistance parameters from the optimizer to the surrogate model for evaluation. (H) Feedback
to Optimization Module returns the surrogate-predicted metabolic cost associated with each evaluated parameter set. (I) Optimization Algorithm
iteratively selects parameter sets that minimize predicted metabolic cost. This framework enables efficient, data-driven tuning of hip exoskeleton
assistance, reducing reliance on repeated experimental measurements while supporting individualized optimization.

variations in neuromotor control. These results indicate that ML
models can be widely applied to personalize gait optimization
(Mohammadzadeh Gonabadi et al., 2024c). Similar techniques have
been tested on hip-knee-ankle exoskeletons and soft wearable
systems (Peng et al, 2020), confirming the broad usefulness
of this approach. Complementing these, advanced fractional-
order optimization techniques, such as tempered fractional
gradient descent (Naifar, 2025) and gradient-based algorithms
for conformable fractional derivatives (Alaia et al., 2025), provide
robust frameworks for handling non-integer order dynamics in
learning applications. Such approaches could enhance surrogate
model training and optimal control in exoskeleton systems by
improving convergence in noisy or fractional biomechanical
landscapes. While not the present study’s focus, these methods
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highlight valuable avenues for future extensions of surrogate-based
HIL optimization.

The present study introduces a surrogate-based optimization
framework for hip exoskeleton assistance (Mohammadzadeh
Gonabadi et al, 2024a). We developed a simulation-based
framework to predict and optimize the metabolic cost of hip
exoskeleton assistance. Using experimental data, we trained
predictive models and integrated them into a computational
pipeline to identify effective assistance strategies without additional
human trials. This study evaluated the accuracy of surrogate
models and compared optimization algorithm performance
in identifying low metabolic cost hip exoskeleton assistance
parameters. We introduced a simulation-based approach for hip
exoskeletons that uses a highly accurate model to enable fast
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and effective personalization. We hypothesized that BO would
outperform heuristic methods like PSO due to its probabilistic
acquisition strategy, which balances global exploration with focused
exploitation, an essential advantage in metabolic optimization tasks
with limited evaluation budgets.

2 Methods
2.1 Experimental data

This study utilized a previously published dataset collected
during treadmill walking with a bilateral semi-rigid hip exoskeleton
designed to assist hip extension through torque application during
early stance (Mohammadzadeh Gonabadi et al., 2024a). Ten healthy
adults with no known disabilities (4 males, six females; age: 27.6
+ 5.9 years; body mass: 65.3 + 13.1kg; height: 1.66 + 0.08 m)
completed a single experimental session consisting of walking
trials under multiple assistance conditions. Participants walked at a
constant speed of 1.25 m/s on an instrumented split-belt treadmill
(Bertec, Columbus, OH, United States). Three-dimensional lower-
limb kinematics were captured using a 10-camera motion capture
system operating at 120 Hz (Vicon, Oxford, United Kingdom).
In comparison, ground reaction forces were recorded at 1000 Hz
using embedded force plates (Bertec, Columbus, OH, United
States). Marker trajectories and force data were time-synchronized
and filtered using a low-pass fourth-order Butterworth filter
(6 Hz for kinematics, 20 Hz for kinetics). The hip exoskeleton
(Mohammadzadeh Gonabadi et al., 2024a) was powered by an off-
board rotary motor system (HuMoTech, Pittsburgh, PA, United
States) that delivered bilateral torques through a series-elastic
actuator coupled to the user’s thighs via custom-fitted cuffs. A
real-time controller (Gonabadi et al., 2020; Antonellis et al.,
2022; Mohammadzadeh Gonabadi et al., 2024a) was implemented
using a Simulink model executed on a SpeedGoat real-time
target machine (SpeedGoat, Bern, Switzerland), interfaced with
the hardware through a custom control box (Gonabadi et al,
2020; Antonellis et al., 2022; Mohammadzadeh Gonabadi et al.,
2024a). The assistive torque followed a piecewise semi-linear profile
with three key parameters: torque onset (fixed at 90% of the
gait cycle, just before heel strike), Peak Magnitude (ranging from
0.04 to 0.14 Nm/kg), and End Timing (ranging from 21% to
49% of the gait cycle) (Mohammadzadeh Gonabadi et al., 2024a).
Peak torque was always delivered at 17% of the gait cycle (early
stance), while variations in End Timing modulated the duration of
assistance (Mohammadzadeh Gonabadi et al., 2024a).

Twelve walking conditions were tested, consisting of ten
powered assistance profiles, one PowerOff condition (with the
exoskeleton worn but not actuated), and one NoExo condition
(without the device) (Mohammadzadeh Gonabadi et al., 2024a).
Only the ten powered assistance conditions were used for surrogate
model development and simulation-based HIL optimization. These
conditions represented active device use and captured a range of
assistive torque profiles relevant for optimization. Each condition
was performed for a sufficient duration (at least 6 min) to ensure
steady-state metabolic measurement using indirect calorimetry.
Net metabolic cost (W/kg) was computed by subtracting standing
baseline values and was normalized to the PowerOff condition to
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derive a percentage change in metabolic cost per trial. Across all
conditions, normalized net metabolic cost ranged from -34.91%
to +49.76%. A negative value indicates a reduction in metabolic
cost relative to PowerOff, whereas a positive value reflects an
increase. We chose the PowerOff condition as the reference point,
as was done in the original study. This approach allowed for
a balanced comparison that included metabolic reductions and
increases, enabling consistent modeling of the cost landscape
across assistance parameters (Mohammadzadeh Gonabadi et al.,
2024a). A combination of Peak Magnitude and End Timing
values characterized each assistance condition. These parameters
were extracted for modeling purposes and used as inputs for
surrogate model training. A few missing parameter values (e.g.,
for rare outliers or corrupted sensor readings) were imputed using
condition-type means based on Peak Magnitude category (e.g., low,
medium, high). This ensured a complete dataset for subsequent ML
model development.

This  study utilized dataset
10 healthy adults previously approved
experimental protocol (Mohammadzadeh Gonabadi et al., 2024a)

an  existing collected

from during a
at the University of Nebraska Medical Center Institutional Review
Board (protocol number: 0101-19-FB; initial approval: 22 April
2019). All participants provided written informed consent before
participation. The present work involved only secondary analysis
and modeling of this dataset; no new human experiments were
conducted.

2.2 Simulated methods

Experimental walking data from a previous study involving ten
healthy adults were used to train multiple ML models to predict
normalized metabolic cost (Mohammadzadeh Gonabadi et al.,
2024a). These included Gradient Boosting (GB), a powerful
ensemble method that builds models sequentially to minimize
prediction error using stage-wise additive modeling and decision
trees (Friedman, 2001). GB builds a predictive model by combining
many simple decision trees, much like a team of experts refining
predictions by learning from each other’s mistakes. Support Vector
Regression (SVR) was employed for its ability to model high-
dimensional nonlinear relationships using kernel functions (Smola
and Scholkopf, 2004). Polynomial Ridge (PR) and Linear Ridge
(LR) regressions provided interpretable linear models with L2
regularization to mitigate overfitting and multicollinearity (Hoerl
and Kennard, 2000; Hastie et al., 2009). Random Forest (RF),
another ensemble method, aggregates predictions from multiple
decision trees to capture nonlinear interactions and reduce variance
in the model output (Breiman, 2001). We also included four
variants of Gaussian Process (GP) regression (Rasmussen, 2004),
providing probabilistic predictions and quantifying uncertainty
in model estimates. The Gaussian Process Absolute Exponential
(GPAE) kernel is suitable for modeling moderately smooth
functions (Rasmussen, 2004). In contrast, the Gaussian Process
Matern 3/2 (GPM) kernel offers a flexible balance between
model smoothness and responsiveness to local variations in data
(Rasmussen, 2004). The Gaussian Process Rational Quadratic
(GPRQ) kernel captures data patterns with multiple length scales
and is often used when the smoothness of the underlying
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function is not known a priori (Rasmussen, 2004). Finally, the
Gaussian Process Squared Exponential (GPSE) kernel, also known
as the radial basis function, assumes highly smooth underlying
functions. It is widely used in surrogate modeling due to its
strong generalization ability (Rasmussen, 2004). This diverse set
of regressors enabled robust modeling of the complex relationship
between assistance parameters and metabolic cost across multiple
function classes and regularization strategies.

Although metabolic landscapes were simulated, they were
directly trained on experimental data from 10 healthy adults. The
surrogate model was therefore not arbitrary but grounded in real
measurements, serving as a computational approximation of user
feedback. This framework enabled controlled benchmarking of
optimization algorithms while avoiding the burden of repeated long-
duration experiments. Importantly, in real-world HIL optimization,
algorithms would operate with live user feedback, whereas the
surrogate provides a reproducible and safe environment for
preliminary evaluation.

Although individual metabolic landscapes are known to vary
due to physiological and neuromuscular differences, this study
pooled data across 10 healthy subjects to train a population-level
surrogate model. The intention was not to create a fully personalized
model for each subject but to capture generalizable trends in the
relationship between assistance parameters and metabolic cost. This
surrogate served as a representative user feedback model, enabling
simulation-based evaluation of various optimization algorithms in
a controlled environment. The study’s main goal was to determine
which optimization strategy is most effective for human-in-the-loop
exoskeleton parameter tuning. In future real-time applications, the
selected algorithm will be applied directly to honest user feedback
to personalize assistance. At the same time, the surrogate model will
remain a simulation tool for preliminary exploration.

The chosen models cover a spectrum of learning approaches,
including linear (LR, PR), non-parametric (GP), and ensemble-
based (GB, RF), to thoroughly explore the metabolic cost profile.
These surrogates were integrated with seven global optimization
algorithms to evaluate their ability to identify low-cost assistance
profiles. Covariance Matrix Adaptation Evolution Strategy
(CMAES) is a generative, model-free, and sample-efficient local
optimizer that adapts its search distribution based on the best-
performing parameter sets in each generation, making it effective
for noisy and non-convex problems (Hansen and Ostermeier, 2001).
Bayesian Optimization (BO) uses a probabilistic surrogate, often a
Gaussian process, and an acquisition function to balance exploration
and exploitation, enabling sample-efficient global optimization in
high-dimensional parameter spaces (Snock et al., 2012). Exploitative
Bayesian Optimization (EBO) is a variant of BO with a lower
exploration constant, biasing the search toward local exploitation,
which has been shown to enhance convergence in scenarios with
low measurement noise or time-varying optima (Kutulakos and
Slade, 2024). The Cross-Entropy (CE) method is a generative
optimization technique that updates a probability model using
top-performing samples. It encourages exploration but usually
needs more evaluations than BO or CMAES (Deng, 2006). The
Genetic Algorithm (GA) applies biologically inspired operations
such as selection, crossover, and mutation to evolve solutions across
generations. It is valued for its straightforward implementation
and strong global search performance (Holland, 1992; Gonabadi,
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2016; Mohammadzadeh Gonabadi et al., 2017a). Inspired by
Newtonian gravity, the Gravitational Search Algorithm (GSA)
models the agents as objects attracted to each other based on their
masses. This provides a flexible and innovative approach to solving
multidimensional optimization problems (Rashedi et al., 2009).
Lastly, Particle Swarm Optimization (PSO) models the collective
behavior of swarms and uses social and cognitive components to
improve candidate solutions iteratively. Its rapid convergence and
simplicity have made it a popular choice for nonlinear optimization
problems (Coello et al., 2004; Mohammadzadeh et al,, 2011;
Mohammadzadeh Gonabadi et al., 2017b). PSO mimics a flock of
birds searching for food, where each particle adjusts its path based
on its own and the group’s best positions. A summary of all ML
models and optimization algorithms is provided in Table 1.

2.3 Data augmentation

A simplified biomechanical representation of hip assistance
was created, modeling the exoskeleton torque profile as a
piecewise semi-linear function (Kutulakos and Slade, 2024;
Mohammadzadeh Gonabadi et al.,, 2024a). The profile increased
semi-linearly from zero to Peak Magnitude until the defined
End Timing, then returned to zero by the end of the gait cycle.
This approximation reflected the actual assistive torque behavior
described in the experimental conditions (Kutulakos and Slade,
2024; Mohammadzadeh Gonabadi et al., 2024a). To improve
generalizability and enable robust model training, the original
experimental dataset was augmented using synthetically generated
trials (Kutulakos and Slade, 2024). Each data point was perturbed
0.05),
corresponding to approximately 4.6% of the parameter range. This

with zero-mean Gaussian noise (standard deviation =
approach, previously employed in simulation studies of metabolic
landscapes for exoskeleton optimization (Kutulakos and Slade,
2024), replicates experimental variability and enriches the surrogate
model’s learning capacity (Kutulakos and Slade, 2024). Gaussian
noise augmentation has improved the accuracy and robustness
of surrogate models, particularly in regression tasks with limited
data availability (Kutulakos and Slade, 2024). The synthetic dataset
and the original powered trials were used as input for training
ML models to predict normalized metabolic cost (Kutulakos and
Slade, 2024). These predictions then served as the foundation for
surrogate-based optimization simulations.

To improve model robustness, 20 augmented samples were
generated for each of the 100 experimental trials by adding zero-
mean Gaussian noise (6 = 0.05, ~4.6% of the normalized range)
to the input parameters (Peak Magnitude and End Timing). This
produced 2000 synthetic trials in total. Unlike prior work that
perturbed metabolic cost to simulate measurement noise (Kutulakos
and Slade, 2024), we perturbed inputs to approximate variability
in how assistance parameters may vary across repeated walking
bouts. This broadened the surrogate’s training distribution while
preserving physiologically plausible ranges.

For each experimental trial, inspired by (Kutulakos and Slade,
2024), 20 synthetic samples were generated by perturbing the
assistance parameters—Peak Magnitude and End Timings—using
zero-mean Gaussian noise with a standard deviation of 0.05,
equivalent to ~4.6% of the normalized parameter range [0, 1].
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TABLE 1 Machine learning models and global optimization algorithms. The listed models were used to construct surrogate predictors of metabolic
cost, while the optimization algorithms were applied to identify low-cost assistance parameters based on the surrogate models.

#  Machine learning models Optimization algorithms

1 Linear Ridge (LR) Covariance Matrix Adaptation Evolution Strategy (CMAES)
2 Polynomial Ridge (PR) Bayesian Optimization (BO)

3 Support Vector Regression (SVR) Exploitative Bayesian Optimization (EBO)

4 Random Forest (RF) Cross-Entropy Method (CE)

5 Gradient Boosting (GB) Genetic Algorithm (GA)

6 Gaussian Process — Absolute Exponential (GPAE) Gravitational Search Algorithm (GSA)

7 Gaussian Process — Matern 3/2 (GPM) Particle Swarm Optimization (PSO)

8 Gaussian Process — Rational Quadratic (GPRQ)

9 Gaussian Process - Squared Exponential (GPSE)

These perturbations were applied solely to the input parameters,
while the corresponding normalized metabolic cost was retained
unchanged to preserve label fidelity (Kutulakos and Slade, 2024).
This augmentation approach aimed to simulate inter-trial variability
observed in experimental protocols and enhance the robustness
and generalization of surrogate model training (Kutulakos and
Slade, 2024).

2.4 Data preparation and normalization

The combined dataset consisted of 100 valid experimental trials
and 200 synthetic trials, totaling 300 samples. This augmentation
enhanced the surrogate model’s generalization ability across diverse
assistance profiles (Kutulakos and Slade, 2024). Synthetic trials
were generated to simulate physiological variability, ensuring robust
training for machine learning models (Kutulakos and Slade, 2024).
Input features included Peak Magnitude and End Timing, and the
target variable was normalized metabolic cost. All variables were
normalized to the range [0, 1] using min-max scaling to standardize
the feature space and improve model convergence. For each feature

X, the normalized value x, was computed as shown in Equation 1:

norm

X~ Xmin

1)

Xnorm =

Xmax ~ Xmin

where x .. and x,,, are the minimum and maximum values of the

max
feature across the dataset.

2.5 Machine learning (ML) model: training
and hyperparameters

Additional polynomial terms (e.g., squared features) were
included for PR to capture potential nonlinear interactions. The
resulting feature matrix and target vector were used for training and
evaluating all surrogate models (Kutulakos and Slade, 2024). Nine
regression models were developed and evaluated: LR, PR, SVR, RE,
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GB, and four variants of GP models—GPAE, GPM, GPRQ, and
GPSE. Each model was trained using five-fold cross-validation (k =
5) repeated across 100 iterations, yielding 500 (5 x 100) randomized
splits (Kutulakos and Slade, 2024; Mohammadzadeh Gonabadietal.,
2024b; Mohammadzadeh Gonabadi et al., 2024c; Gonabadi et al.,
2025). For each iteration, K-Fold cross-validation (k 5)
was applied, with 80% of the data (n = 240 trials) used for
training and 20% (n = 60) for testing in each split (Kutulakos
and Slade, 2024; Mohammadzadeh Gonabadi et al., 2024b;
Mohammadzadeh Gonabadi et al., 2024¢c; Gonabadi et al., 2025).
Model-specific configurations included the use of L2
regularization (A = 1) for both LR and PR (Hoerl and Kennard,
2000; Hastie et al., 2009), with PR incorporating a second-

degree polynomial expansion to account for nonlinear trends
(Kutulakos and Slade, 2024). SVR was trained using standardized
inputs to enable nonlinear regression mapping based on kernel
transformations (Kutulakos and Slade, 2024). RF was implemented
with 100 trees using the bagging method to reduce variance and
mitigate overfitting (Kutulakos and Slade, 2024). GB used the
LSBoost method with 100 learning cycles to iteratively minimize
prediction error (Kutulakos and Slade, 2024). All GP models
(GPAE, GPM, GPRQ, GPSE) were implemented using exact fitting
and prediction methods (Rasmussen, 2004; Kutulakos and Slade,
2024), each employing a different kernel function to reflect varying
assumptions about the smoothness and structure of the input space
(Rasmussen, 2004; Kutulakos and Slade, 2024). These diverse model
architectures were chosen to reflect a range of learning biases,
from linear parametric models to non-parametric probabilistic
approaches, supporting robust surrogate construction based on
the selected assistance parameters (Kutulakos and Slade, 2024).
Similar to the literature (Slade et al., 2022; Kutulakos and
Slade, 2024; Echeveste and Bhounsule, 2025), hyperparameters
for all models were tuned using a grid search within 5-fold
cross-validation. For GB, we optimized learning rate (0.01-0.1),
maximum tree depth (3-7), and number of estimators (100-500).
Gaussian Process kernels were selected based on empirical fit
(e.g., SE, Matern, Rational Quadratic). Ridge regressions used
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L2 regularization strength determined via cross-validation. These
procedures minimized RAEP and ensured consistent performance
across folds.

Recent advances in deep stable learning for handling
Xu 2025) provide additional
methodological support for our surrogate modeling strategy. While

imbalanced datasets et al,
their application focused on fault diagnosis in engineering systems,
the underlying principles of improving robustness and predictive
reliability are directly transferable to biomechanical optimization,
where data heterogeneity and limited sample sizes often present
similar challenges.

To prevent overfitting, we employed repeated 5-fold cross-
validation (500 iterations), regularization where available, and
constrained model complexity (e.g., limiting GB tree depth). These
measures improved generalizability and reduced the risk of models
capturing noise rather than meaningful trends (Slade et al., 2022;
Kutulakos and Slade, 2024; Echeveste and Bhounsule, 2025).

2.6 Model evaluation

Model performance was evaluated using Relative Absolute Error
(RAE) and Relative Absolute Error Percentage (RAEP) across the
100 x 5-fold cross-validation scheme. For each test sample i, the
relative absolute error RAE; and RAEP(%) were calculated as shown
in Equations 2, 3:

Yactuali = Ypred,i
= | actual,i pre 1| (2)

Yactual,i

RAE

n
RAEP(%) = (ﬁ ZRAEi> x 100 3)

i=1
where 'y, ,; and y,.q; are the ground-truth and predicted
normalized metabolic cost for the iy, trial, respectively, and n is
the number of test samples per split. RAEP reflects the average
percentage deviation from actual values, normalized to ground
truth, and allows for consistent model comparison regardless of
cost magnitude. The distributions of RAEP across all 500 splits
were aggregated and visualized to assess each model’s accuracy and
robustness. Models with lower RAEP and more concentrated error
distributions were considered superior in terms of generalization
and suitability for use in surrogate-based optimization.

2.7 Optimization and hyperparameters

The most accurate surrogate model will simulate the metabolic
landscape with the highest accuracy and guide parameter
optimization. Seven global optimization algorithms—CMAES,
BO, EBO, CE, GA, GSA, and PSO—were implemented to
identify assistance parameters (Peak Magnitude and End Timing)
that minimized predicted metabolic cost. Each optimization
algorithm was executed across 10 independent trials (re-running
10 times) to ensure robustness against stochastic variability
in initialization and search trajectory, with 200 evaluations
per trial (a total of 10 x 200 evaluations) to reflect a realistic
limit on experimental feasibility in HIL studies (Kutulakos

and Slade, 2024; Mohammadzadeh Gonabadi et al., 2024b;
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Mohammadzadeh Gonabadi et al., 2024c; Gonabadi et al., 2025).
Gaussian noise (standard deviation 0.046) was added to
the surrogate model outputs to simulate inter-trial variability

and measurement noise typically observed in metabolic cost
estimation, improving ecological validity of the optimization
simulation (Kutulakos and Slade, 2024). Assistance parameters were
bounded within the normalized range [0, 1].

CMAES was initialized with a population size of 15, a mean
vector of (0.5, 0.5), and a step-size (o) of 0.3, using an elite size of 3
to guide distribution adaptation (Hansen and Ostermeier, 2001). BO
employed an expected-improvement-plus acquisition function with
an exploration constant of 2.6 (Snoek et al., 2012), while EBO used
the same framework but with a reduced exploration constant of 0.93
to favor local exploitation (Kutulakos and Slade, 2024). CE operated
with a population size of 15, an elite fraction of 0.5 (Deng, 2006), and
a similar initialization as CMAES (Hansen and Ostermeier, 2001).
GA used a population 20 with an 80% crossover rate (Holland,
1992; Gonabadi, 2016; Mohammadzadeh Gonabadi et al., 2017a).
GSA configured 20 agents with a gravitational constant of 100 and
an acceleration constant (a) of 20 (Rashedi et al., 2009). Finally,
PSO simulated 20 particles with inertia-based position updates for
global search (Coello et al., 2004; Mohammadzadeh et al., 2011;
Mohammadzadeh Gonabadi et al., 2017b). These configurations
were chosen to represent a spectrum of exploration-exploitation
strategies
comprehensive assessment of algorithmic suitability for surrogate-

and computational complexities, allowing for a

based optimization in exoskeleton applications (Kutulakos and
Slade, 2024).

Similar to sustainability-driven optimization in other

engineering domains, such as additive manufacturing (Oladunnietal.

2025), our framework emphasizes computational efficiency to
minimize resource demands and enhance scalability. While their
application focused on reducing greenhouse gas emissions, the
methodological parallels underscore how optimization strategies
can be leveraged to improve exoskeleton control systems and
streamline personalization.

To ensure comparability across optimization algorithms, all
methods were initialized using consistent strategies, supported by
setting a fixed random seed (rng (42)) for reproducibility. CMAES
and CE began with a mean vector of (0.5, 0.5) and a standard
deviation (0) of 0.3. BO and EBO used normalized input bounds
with fixed exploration constants of 2.6 and 0.93, respectively. GA,
GSA, and PSO initialized their populations (or particles/agents)
uniformly across the normalized parameter space [0, 1]* using
identical seeds. These design choices reduced initialization bias,
ensuring that differences in performance arose from algorithm
dynamics rather than initial sampling variance. All optimization
parameters and configurations are summarized in Table 2 and
detailed further in the supplementary code repository.

2.8 Performance metrics

Optimization algorithm performance was evaluated using two
complementary metrics: Area Under the Curve (AUC) and Average
Rate of Improvement (ARI) (Bartz-Beielstein et al., 2010; Kuyu
and Vatansever, 2019; Franks et al, 2021; Tyagi et al, 2024).
AUC measures the overall optimization efficiency by quantifying

frontiersin.org

>


https://doi.org/10.3389/frobt.2025.1669600
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Mohammadzadeh Gonabadi et al.

10.3389/frobt.2025.1669600

TABLE 2 Summary of optimization algorithm configurations and initialization settings. All algorithms operated within normalized bounds [0, 1] for both
Peak Magnitude and End Timings. The maximum number of function evaluations was set to 200 per run for all methods.

Algorithm Population Initialization Key parameters Random seed used
Size/Agents Mean/Method
CMA-ES 15 Mean: (0.5, 0.5) A=15 rng (42)
0=03 Elite size = 3
Bayesian Optimization (BO) N/A (sequential) Uniform sampling in [0, 1]? Acquisition: EI+ rng (42)
Exploration constant = 2.6
Exploitative BO (EBO) N/A (sequential) Uniform sampling in [0, 1] Acquisition: EI+ rng (42)
Exploration constant = 0.93
Cross-Entropy (CE) 15 Mean: (0.5, 0.5) Elite fraction = 0.5 rng (42)
0=0.3 A =30 (2x CMAES)
Genetic Algorithm (GA) 20 Uniform sampling in [0, 1]? Crossover fraction = 0.8 rng (42)
Generations = ceil (200/20)
Gravitational Search 20 Uniform sampling in [0, 1]? Gy =100; a =20 rng (42)
Algorithm (GSA) Max iterations = ceil (200/20)
Particle Swarm Optimization 20 Uniform sampling in [0, 1)? Inertia-based updates rng (42)
(PSO) Swarm size = 20; Iterations =
ceil (200/20)

the area between the evolving minimum predicted metabolic cost
and the known global minimum (Bartz-Beielstein et al., 2010;
Kuyu and Vatansever, 2019; Franks et al., 2021; Tyagi et al,
2024). Specifically, AUC captures how closely the best-found cost
during each iteration approaches the global minimum over all 200
evaluations, normalized for interpretability (Bartz-Beielstein et al.,
2010; Kuyu and Vatansever, 2019; Franks et al., 2021; Tyagi et al.,
2024). A lower AUC indicates that the algorithm consistently
identifies cost-effective solutions throughout the optimization
trajectory (Bartz-Beielstein et al., 2010; Kuyu and Vatansever, 2019;
Franks et al., 2021; Tyagi et al., 2024). Mathematically, AUC was
computed using Equation 4:

(4)

N
AUC = %Z |§’:1)in ~ Ymin
i=1
where ?Sl)in is the minimum predicted metabolic cost at the
ith iteration, y,_. is the global minimum cost (~1.12), and
(N =200) is the total number of evaluations for each optimization
algorithm trial.

On the other hand, ARI quantifies the average per-iteration
improvement in cost by computing the mean absolute reduction
in the best-found value between consecutive evaluations (Bartz-
Beielstein et al., 2010; Kuyu and Vatansever, 2019; Franks et al., 2021;
Tyagi et al., 2024). Higher ARI values denote faster convergence
toward optimal solutions (Bartz-Beielstein et al., 2010; Kuyu and
Vatansever, 2019; Franks et al., 2021; Tyagi et al., 2024), which is
particularly valuable in HIL scenarios where experimental trials are
limited. ARI was calculated using Equation 5:
<)

~(i-1)
Ymin

Ymin

N

1
ARl = —— 5
) (5)

In general, N represents the number of evaluations in a given
optimization run, which can vary if an optimizer terminates early.
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In this study, however, we fixed (N =200) for all algorithms to
maintain identical evaluation budgets and enable fair comparisons
across optimizers. These metrics—adapted from best practices in
benchmarking optimization algorithms (Bartz-Beielstein et al,
2010; Kuyu and Vatansever, 2019; Franks et al., 2021; Tyagi et al.,
2024)—provide a comprehensive view of both optimization
efficiency (AUC) and convergence dynamics (ARI) (Bartz-
Beielstein et al., 2010; Kuyu and Vatansever, 2019; Franks et al.,
20215 Tyagi et al, 2024). ARI shows the progression speed of
each algorithm. ARI is defined as the mean absolute change in
minimum cost per iteration, normalized by the total number
of evaluations. This metric captures the dynamic improvement
profile of the optimizer across its search trajectory, providing a
measure of how quickly the algorithm approaches optimality. This
is particularly valuable in human-in-the-loop applications where
time efficiency and early gains are often more desirable than only
final performance, especially in clinical populations with limited
tolerance for prolonged testing (Bartz-Beielstein et al., 2010; Kuyu
and Vatansever, 2019; Franks et al., 2021; Tyagi et al., 2024).

ARI and AUC are particularly suited for assessing algorithm
suitability as exoskeleton parameter tuning, where convergence
speed and consistency affect user comfort, time efficiency, and
clinical feasibility (Bartz-Beielstein et al., 2010; Kuyu and Vatansever,
2019; Franks et al., 2021; Tyagi et al., 2024).

3 Results
3.1 Model performance

Figure 2 displays the RAEP distributions for each of the nine
surrogate models across all cross-validation splits. GB achieved the
lowest RAEP (0.66%) among all models, indicating the highest
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FIGURE 2

Comparison of surrogate model performance based on Relative Absolute Error Percentage (RAEP). Boxplots show RAEP distributions across all
cross-validation splits for nine machine learning models: Linear Ridge (LR), Polynomial Ridge (PR), four Gaussian Process (GP) variants—Squared
Exponential (GPSE), Matern 3/2 (GPM), Absolute Exponential (GPAE), and Rational Quadratic (GPRQ)—Support Vector Regression (SVR), Random Forest
(RF), and Gradient Boosting (GB). GB achieved the lowest RAEP (0.66%) with greater variability, indicating high accuracy with some sensitivity to data
distribution. SVR had the highest error (0.98%), while GP models and linear methods showed similar intermediate performance (0.88%). RF (0.83%)
performed better than most but did not surpass GB. The solid black line in each boxplot represents the median RAEP value, and the dashed black line
denotes the mean. While RAEP indicates that all models achieve relatively low average errors across cross-validation splits, this metric reflects
generalizability on test sets and does not capture trial-specific deviations or nonlinear dynamics.

@,
N

predictive accuracy. This model also exhibited greater variability
in distribution, likely due to its responsiveness to localized error
reduction. RF followed with an RAEP of 0.83%, outperforming
all linear models and kernel-based methods. In contrast, SVR
showed the poorest performance with an RAEP of 0.98%, reflecting
challenges in capturing the nonlinearities and variations of the
metabolic cost surface. All four GP models—GPSE, GPM, GPAE,
and GPRQ—and the LR and PR models produced nearly identical
RAEP values of 0.88%. These results suggest that while GP models
provided smooth and stable estimates, they did not outperform tree-
based ensembles in this dataset. LR and PR also failed to achieve
an acceptable accuracy, likely due to their limited ability to model
variations and nonlinear interactions in the metabolic cost time
profile. The boxplots reveal that while GB delivered the lowest
median and mean RAEDP, it also had a broader interquartile range,
reflecting higher sensitivity to data distribution and outliers. This
trade-oft suggests that GB offers the most flexible and accurate
surrogate for capturing complex cost patterns, at the expense of
higher variability in certain conditions.

Figure 3 illustrates the trial-wise comparison of actual versus
predicted normalized metabolic cost across the complete dataset
for each surrogate model. Among all models, GB (Figure 3I)
demonstrated the highest alignment between predicted and actual
trends, closely tracking the full dynamic range of trial-level
metabolic responses. The model captured peaks and valleys with
minimal lag, reflecting its strong temporal fidelity and low overall
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RAEP. RF (Figure 3H) and the GP models—GPSE, GPM, GPAE, and
GPRQ (Figures 3C-F)—showed moderate agreement with actual
values but exhibited some smoothing, particularly in capturing rapid
fluctuations. While they followed general trends, their predictions
tended to underestimate trial-to-trial variability. Linear models LR
and PR (Figures 3A,B) showed the weakest performance, failing to
capture significant inflection points and producing flat or lagged
predictions. SVR (Figure 3G) struggled particularly in low-cost
regions, displaying more frequent divergence from the ground
truth. These differences highlight the limitations of models that
lack the expressive capacity needed to model nonlinear trial-level
dynamics. Figure 3 reinforces the conclusion that GB offers the best
overall predictive accuracy and provides the most reliable trial-level
performance across varying metabolic cost profiles.

Although LR and PR achieved relatively low RAEP values
(~0.88%) (Figure 2), their
performance was not considered acceptable for surrogate-based

in the cross-validation analysis

optimization. This is because optimization requires models that
capture localized trial-to-trial variations and nonlinear dynamics
of the metabolic cost landscape. Figures 3, 4 show that LR and
PR produced flatter predictions and featureless landscapes, failing
to represent critical nonlinearities between assistance parameters
and metabolic cost. The apparent discrepancy between Figures 2,
3 arises from their distinct methodologies: Figure 2 reports
averaged RAEP from cross-validation, which masks trial-specific
deviations, whereas Figure 3 evaluates trial-level fidelity using
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Trial-wise comparison of actual versus predicted metabolic cost across all models. Each subplot shows predicted (red dashed line) and actual (black
line) normalized metabolic cost across 100 test trials for a single model. The x-axis represents trial indices normalized to the [0, 1] range to emphasize
pattern alignment and model comparison rather than raw trial numbering. The subplots correspond to: (A) Linear Ridge (LR), (B) Polynomial Ridge (PR),
(C) Gaussian Process Squared Exponential (GPSE), (D) Gaussian Process Matern 3/2 (GPM), (E) Gaussian Process Absolute Exponential (GPAE), (F)
Gaussian Process Rational Quadratic (GPRQ), (G) Support Vector Regression (SVR), (H) Random Forest (RF), and (I) Gradient Boosting (GB). GB (1)
exhibited the closest agreement with actual values, accurately tracking the trend and magnitude. RF (H) and GP models (C—F) showed moderate
fidelity, whereas LR (A), PR (B), and SVR (G) failed to capture rapid changes or peak variations. These plots emphasize GB's superior predictive
performance and trial-level reliability for metabolic cost estimation. Unlike Figure 2, which summarizes average errors, this figure emphasizes
trial-specific fidelity using models trained on the full dataset. Linear and Polynomial Ridge produce flatter predictions and fail to capture trial-level
nonlinearities, whereas Gradient Boosting aligns more closely with actual data, underscoring its superior expressiveness.
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models trained on the full dataset (Slade et al., 2022; Kutulakos
and Slade, 2024; Echeveste and Bhounsule, 2025). Thus, while
RAEP confirms that LR and PR can achieve low average error,
their inability to reproduce nonlinear dynamics makes them less
reliable compared to GB and RE which better capture complex
cost patterns.

Figure 4 presents each surrogate model’s predicted metabolic
time profiles using filled contour plots, with overlaid actual data
points shown as circles. The plots depict each model’s mapping of
the normalized assistance parameter space, characterized by Peak
Magnitude (y-axis) and End Timing (x-axis), to the corresponding
predicted changes in normalized metabolic cost. Notably, GB
(Figure 41) captures sharp transitions and localized cost gradients,
showing a highly responsive and detailed cost surface. The filled
contours in the GB plot reveal strong differentiation across regions,
consistent with the model’s ability to generalize complex, nonlinear
interactions between parameters. In contrast, LR (Figure 4A) and
PR (Figure 4B) produce relatively flat and featureless landscapes,
suggesting limited ability to represent nonlinear cost changes. GP
models—GPSE, GPM, GPAE, and GPRQ (Figures 4C-F)—generate
smoothly varying surfaces that interpolate well across the space but
lack high-frequency response near dense data clusters. This reflects
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their kernel-driven behavior, which favors continuity over local
sensitivity. SVR (Figure 4G) shows a more spread-out prediction
pattern with rough gradients, failing to align closely with the actual
metabolic cost pattern. RF (Figure 4H) demonstrates improved
spatial granularity, particularly near more concentrated regions of
the parameter space, though its boundaries remain blocky due
to the discrete nature of tree-based predictions. These landscape
visualizations reinforce earlier quantitative findings: GB provides
the most spatially expressive and data-consistent model, making
it the most appropriate choice for surrogate-based optimization of
exoskeleton assistance.

3.2 Optimization results

Optimization results are summarized in Table 3. Compared to
all other algorithms, GSA reached the lowest normalized metabolic
cost (—1.06), indicating the most considerable reduction over the
PowerOff baseline. This solution was located at (Peak Magnitude =
0.20) and (End Timing = 0.83), a region identified across multiple
high-performing methods. PSO also reached near-optimal cost
(~1.00), but with a much lower Mean ARI (0.30 x 107°), indicating
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experimental data points used for training. The subplots correspond to: (A) Linear Ridge (LR), (B) Polynomial Ridge (PR), (C) Gaussian Process Squared
Exponential (GPSE), (D) Gaussian Process Matern 3/2 (GPM), (E) Gaussian Process Absolute Exponential (GPAE), (F) Gaussian Process Rational Quadratic
(GPRQ), (G) Support Vector Regression (SVR), (H) Random Forest (RF), and (I) Gradient Boosting (GB). GB (I) generated the most detailed and
responsive cost surface, capturing sharp gradients and nonlinear parameter interactions. RF (H) and GP models (C—F) showed smoother interpolations
with moderate spatial resolution. SVR (G) produced more diffuse gradients, while LR (A) and PR (B) failed to reflect meaningful topographic variation.

These visualizations support GB's superior spatial expressiveness and consistency with the actual data distribution.

slower convergence despite strong endpoint performance. BO and
EBO predicted final costs of —0.999 and —0.990, respectively, with
moderate AUC values (BO: 0.32, EBO: 0.27), highlighting efficient
early search performance. EBO reached the highest Mean ARI (3.29
x 107°), suggesting the most rapid cost reduction per iteration.
In contrast, CMAES and CE resulted in higher costs (-0.68 and
—0.74, respectively) and less efficient convergence (AUC: 0.56 and
0.46). GA produced the highest final cost (0.40), exceeding the
baseline, and confirming the weakest optimization performance in
this context.

Figure 5 shows optimization outcomes using the GB model’s
convergence trajectories (Figure 5A) and the predicted metabolic
pattern (Figure 5B). In Figure 5A, BO, EBO, and PSO converged
rapidly within the first 100 evaluations, with EBO showing the
most rapid decline, aligning with its high ARI. While ultimately
reaching the lowest cost, GSA showed greater variance over time,
consistent with its higher AUC (0.61). Figure 5B displays the optimal
solutions from all algorithms on the GB-predicted cost surface. Most
optima are clustered within a region defined by Peak Magnitude
= (0.10-0.20) and End Timing = (0.75-0.85), representing a
biomechanically meaningful and metabolically favorable range.
This agreement across algorithms validates the surrogate model’s
reliability in guiding the search toward physiologically optimal
assistance profiles.
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Figure 6 summarizes the performance of all optimization
algorithms using bar plots for key evaluation metrics. Figure 6A
shows the average convergence time. BO and EBO required the
longest mean time to converge (26.01 s and 24.01 s, respectively),
reflecting the added computational cost of their model-fitting steps.
In contrast, CMAES, CE, GA, and GSA ALL converged in less
than 1 s, while PSO required a moderate 1.26 s to converge. These
runtimes represent computational latency only and do not account
for biological stabilization times inherent to human experiments.
Figure 6B presents the normalized metabolic cost at optimum.
Among all algorithms, GB predicted the largest metabolic reduction,
with an optimal normalized metabolic cost of —1.06, corresponding
to a 53% predicted reduction compared to the no-assistance
baseline. It should be noted that this reduction reflects model-based
predictions rather than direct human metabolic measurements.
PSO, BO, and EBO converged to similarly low values near —1.00,
indicating strong final performance. CE and CMAES reached
higher-cost plateaus (-0.74 and —0.68, respectively), while GA
performed poorly with a final cost of 0.40, failing to reduce
metabolic cost. Figure 6C displays the mean AUC, a measure of
optimization efficiency. PSO predicted the lowest AUC (0.24),
followed by EBO (0.27) and BO (0.32), indicating compelling
early exploration and convergence. In contrast, GSA had the
highest AUC (0.61), suggesting slower but ultimately effective
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TABLE 3 Optimization results summary. Summary of performance metrics for the seven optimization algorithms integrated with the Gradient Boosting
(GB) surrogate model. The table includes: (1) the number of evaluations to convergence, (2) the mean computational time in seconds, (3) the optimal
assistance parameters—Peak Magnitude and End Timing—identified by each algorithm, (4) the mean normalized metabolic cost achieved at
convergence, (5) the mean area under the convergence curve (AUC) as a measure of optimization efficiency, and (6) the average rate of improvement
(ARI) representing convergence speed. Algorithms include Covariance Matrix Adaptation Evolution Strategy (CMAES), Bayesian Optimization (BO),
Exploitative Bayesian Optimization (EBO), Cross-Entropy (CE), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), and Particle Swarm
Optimization (PSO). To improve clarity for biomechanics-focused readers, we provide brief interpretations of the key metrics used in this study. The
Relative Absolute Error Percentage (RAEP) quantifies how closely the surrogate model predicts metabolic cost relative to experimental ground truth,
with lower RAEP reflecting greater predictive accuracy and alignment with physiological outcomes. The Area Under the Convergence Curve (AUC)
measures the efficiency of an optimizer by integrating error reduction across iterations; a smaller AUC indicates faster and more reliable convergence
toward an optimal assistance profile. The Adjusted Rank Index (ARI) evaluates the consistency and robustness of optimizer performance across repeated
simulations, helping to identify stable strategies that are more likely to generalize in practice. The predicted metabolic cost provides surrogate-based
estimates of energy expenditure under different assistance profiles, normalized to baseline walking, where lower values suggest potential reductions in
user effort. Finally, optimization runtime represents computational latency in simulation rather than biological stabilization time, allowing algorithms to
be compared on efficiency while acknowledging that human-in-the-loop experiments are dominated by physiological adaptation timescales.

Algorithm  Number of Mean time (s) | Peak End timing Normalized Mean AUC Mean ARI
evaluations magnitude Metabolic
cost
CMAES 200.00 0.60 0.44 0.68 -0.68 0.56 1.85x 107°
BO 200.00 26.01 0.12 0.80 ~1.00 032 232x10°
EBO 200.00 24.01 0.19 0.82 -0.99 0.27 329% 107
CE 200.00 0.60 0.42 0.79 ~0.74 0.46 258x107°
GA 200.00 0.73 0.10 0.56 0.40 033 257 %107
GSA 200.00 0.59 0.20 0.83 -1.06 0.61 221x107°
PSO 200.00 1.26 0.13 0.82 ~1.00 0.24 030 x 107

convergence. Figure 6D compares the ARI across algorithms. EBO  effective in data-limited conditions, heuristic methods such as
predicted the highest Mean ARI (3.29 x 107), reflecting the steepest ~ PSO and GSA remain highly competitive when paired with robust
per-iteration improvement. CE (2.58 x 107°) and GA (2.57 x  surrogate models.
107°) also demonstrated strong ARI values, while BO and GSA
showed moderate improvement rates (2.32 x 107> and 2.21 x 107>,
respectively). Despite its substantial final cost, PSO had the lowest 4.1 Mode[ing the metabolic landscape
ARI (0.30 x 107°), indicating slower per-step progress.
Consistent with prior efforts to simulate HIL optimization
using surrogate models for ankle exoskeletons (Kutulakos and
4 Discussion Slade, 2024), this study constructed metabolic cost landscapes for
hip exoskeleton assistance using a broad array of ML models.
This study assessed the predictive accuracy of surrogate  Kutulakos and Slade (Kutulakos and Slade, 2024) used several
models and compared the performance of optimization algorithms  variants of GP regression to generate synthetic metabolic landscapes
in identifying metabolically efficient hip exoskeleton assistance  and reported an average prediction error of approximately 10%
settings. It was hypothesized that BO, with its probabilistic =~ on their ankle exoskeleton dataset. They emphasized that this
acquisition mechanism that strategically balances exploration  error level is relatively low given the estimated 5% standard
and exploitation, would surpass heuristic approaches such as  deviation of first-order metabolic cost measurements (Zhang et al.,
PSO, particularly in scenarios constrained by limited evaluation ~ 2017). In comparison, our best-performing model, GB, achieved
resources. Our findings partially supported this hypothesis. By  a markedly lower RAEP of 0.66%, substantially improving upon
achieving a 53% metabolic cost reduction within seconds, the  the 10% benchmark and indicating greater predictive fidelity
proposed simulation-based surrogate modeling and optimization  in capturing the relationship between assistance parameters and
framework significantly reduces experimental burden and  metabolic cost in the context of hip exoskeletons. While the
supports real-time adaptive control, advancing the deployment four GP variants used in our study—GPSE, GPM, GPAE, and
of personalized exoskeleton strategies. While BO and EBO  GPRQ—produced stable RAEP values (~0.88%), consistent with the
demonstrated high convergence efficiency and strong predictive  performance range reported in (Kutulakos and Slade, 2024), they
accuracy when coupled with the GB surrogate model, PSO and  were outperformed by ensemble-based models. GB showed higher
GSA also showed exceptional performance. Specifically, GSA  sensitivity to localized variations and better captured inter-subject
predicted the lowest predicted normalized metabolic cost (-1.06),  metabolic trends, while RF (RAEP = 0.83%) also demonstrated
and PSO recorded the most efficient convergence (AUC = 0.24).  solid performance. These results suggest that tree-based models
These outcomes suggest that, although BO-based strategies are ~ may better capture complex, non-linear patterns commonly seen
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FIGURE 5

Optimization convergence and parameter landscape. (A) Convergence trajectories of seven global optimization algorithms over 200 evaluations, using
the Gradient Boosting (GB) surrogate model. Algorithms include: Covariance Matrix Adaptation Evolution Strategy (CMAES), Bayesian Optimization
(BO), Exploitative Bayesian Optimization (EBO), Cross-Entropy (CE), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), and Particle Swarm
Optimization (PSO). BO, EBO, and PSO reached near-optimal solutions within the first 100 evaluations. GSA ultimately reached the lowest final cost but
showed greater variability across iterations. (B) The GB-predicted metabolic cost surface is visualized as a filled contour plot across the assistance
parameter space (Peak Magnitude and End Timing). Final optimal solutions from each algorithm are plotted, showing that most solutions converged
within a low-cost region between Peak Magnitude 0.10-0.20 and End Timing 0.75-0.85.
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in hip assistance settings. Moreover, unlike the surrogate training
in (Kutulakos and Slade, 2024), which relied on unaugmented
data, we expanded our dataset by adding Gaussian noise (mean
= 0, SD = 0.05) to simulate physiological and sensor variability,
thereby increasing model robustness. This augmentation enabled
the ML models to reflect real-world uncertainties in metabolic
measurement, ultimately improving their reliability for downstream
optimization tasks. In addition, Monteiro etal. (Monteiro et al.,
2024) implemented an EGPR model to estimate real-time metabolic
cost during HIL optimization for knee exoskeleton assistance. They
reported an RAEP of 26% across five participants, which is still
higher than the error observed in our study (Monteiro et al,
2024). Altogether, these findings highlight the effectiveness of
GB for modeling the metabolic landscape in HIL simulation,
providing accurate predictions compared to traditional GP models
and greater robustness for practical optimization. GB’s sequential
error correction and ability to capture localized nonlinear patterns
explain its superior performance over GP models, which assume
smoother cost landscapes.

Although RAEP is a standard metric for evaluating surrogate
model accuracy, in this study, it yielded uniformly low values
across all models, making it less informative for distinguishing
performance differences among optimizers. For this reason, RAEP
should be interpreted cautiously and primarily as a measure
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of overall model fit, while metrics such as AUC and ARI
provide more meaningful insight into optimizer efficiency and
convergence behavior.

While the surrogate landscape provides a computationally
efficient means to test optimization strategies, it remains an
approximation of real physiology. As such, the reported metabolic
reductions represent model-based predictions rather than empirical
measurements. Future validation in live HIL trials is required to
confirm the translational relevance of these findings. Uncertainty
was evaluated using multiple complementary approaches. Gaussian
Process models provided predictive confidence intervals, while
ensemble methods (GB, RF) allowed assessment of stability via
tree variance. Additionally, variability across 500 cross-validation
splits highlighted sensitivity to training/test partitioning. Together,
these measures provided insight into model robustness and the
reliability of surrogate predictions (Slade et al., 2022; Kutulakos and
Slade, 2024; Echeveste and Bhounsule, 2025).

4.2 Simulating HIL optimization
This study advances simulation-based HIL optimization by

evaluating multiple global algorithms for identifying individualized
hip exoskeleton assistance parameters. The optimization framework
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Optimization algorithm performance comparison. Summary of key performance metrics for Covariance Matrix Adaptation Evolution Strategy (CMAES),
Bayesian Optimization (BO), Exploitative Bayesian Optimization (EBO), Cross-Entropy (CE), Genetic Algorithm (GA), Gravitational Search Algorithm
(GSA), and Particle Swarm Optimization (PSO). (A) Mean time to convergence, highlighting the higher computational cost of BO and EBO relative to
other methods. (B) Final normalized metabolic cost predicted by each algorithm, with GSA attaining the lowest value. (C) Mean area under the
convergence curve (AUC), where lower values indicate higher optimization efficiency. (D) Average rate of improvement (ARI), representing the
steepness of per-iteration cost reduction, with EBO yielding the highest ARI. The error bars reflect variability across repeated optimization runs,

providing uncertainty quantification for convergence efficiency and predicted metabolic cost outcomes. To improve clarity for biomechanics-focused
readers, we provide brief interpretations of the key metrics used in this study. The Relative Absolute Error Percentage (RAEP) quantifies how closely the
surrogate model predicts metabolic cost relative to experimental ground truth, with lower RAEP reflecting greater predictive accuracy and alignment

with physiological outcomes. The Area Under the Convergence Curve (AUC) measures the efficiency of an optimizer by integrating error reduction
across iterations; a smaller AUC indicates faster and more reliable convergence toward an optimal assistance profile. The Adjusted Rank Index (ARI)
evaluates the consistency and robustness of optimizer performance across repeated simulations, helping to identify stable strategies that are more
likely to generalize in practice. The predicted metabolic cost provides surrogate-based estimates of energy expenditure under different assistance
profiles, normalized to baseline walking, where lower values suggest potential reductions in user effort. Finally, optimization runtime represents
computational latency in simulation rather than biological stabilization time, allowing algorithms to be compared on efficiency while acknowledging
that human-in-the-loop experiments are dominated by physiological adaptation timescales.

yielded a metabolic cost reduction of up to 53%, with GSA
achieving the lowest normalized metabolic cost (—1.06) at a Peak
Magnitude of 0.20 and End Timing of 0.83. This assistance
timing aligns with late stance, coinciding with peak activity of the
hip extensors, and is supported by prior biomechanical studies
emphasizing late-phase torque application to reduce muscular
demand (Mohammadzadeh Gonabadi et al, 2020; Rodriguez-
Fernandez et al, 2021). While BO and EBO were expected to
outperform due to their probabilistic acquisition strategies that
balance global exploration with exploitation (Kutulakos and Slade,
2024), PSO showed superior efficiency (AUC = 0.24) with a modest
computation time of 1.26 s, leveraging swarm intelligence to rapidly
converge on high-performing parameter sets (Lee et al., 2017). EBO
predicted the steepest convergence (ARI = 3.29 x 107°), followed
by BO (ARI = 2.32 x 107°), though both required longer runtimes
(24-26 s). CMAES, CE, GSA, and GA all converged in less than 1 s,
but CMAES and CE lagged in cost minimization, and GA failed to
reach a meaningful minimum. Gaussian noise (o = 0.046) and 10
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repeated trials of 200 evaluations ensured robust convergence and
reproducibility (Kutulakos and Slade, 2024).

Our findings partially diverge from Kutulakos and Slade
(Kutulakos and Slade, 2024), who simulated HIL optimization
for ankle exoskeletons and found that BO and EBO converged
fastest (~60 evaluations) in a 4-parameter space (peak time, rise
time, fall time, and peak torque), outperforming CMAES and
CE. While their CMAES showed robustness in high-dimensional
and time-varying settings, our results showed CMAES trailing
behind BO-based methods in a simpler 2D space. This likely
reflects BO’s higher exploration constant (Snoek et al,, 2012),
facilitating broader sampling and more efficient convergence in low-
dimensional landscapes (Kutulakos and Slade, 2024). Comparisons
with experimental HIL benchmarks underscore the practical
implications of these findings. Zhang et al. reported a 17% + 3%
metabolic reduction with CMAES over ~2 h for ankle exoskeleton
optimization (Zhang et al., 2017); Ding et al. predicted a 17.4% +
3.2% reduction with BO for a hip exosuit in ~90 min (Ding et al.,
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2018); and Slade etal. predicted a 23% + 8% reduction using
short walking bouts with BO for ankle exoskeleton in a real-
world setting (Slade et al., 2022). Our surrogate-based framework
predicted a 53% reduction in seconds, reinforcing its time-efficiency
and optimization efficacy for pre-tuning and algorithm evaluation
before live deployment.

The broad low-cost region identified by the surrogate
landscape (Peak Magnitude = 0.10-0.20, End Timing = 0.75-0.85;
Figure 5B) suggests that diverse parameter sets may yield similar
benefits, offering greater flexibility for adaptive controllers
than the narrow optima often observed in experimental HIL
studies (Zhang et al., 2017; Ding et al., 2018; Slade et al., 2022;
Wang et al.,, 2022). Moreover, the optimal End Timing of 0.83
supports phase-aligned torque delivery targeting peak hip extensor
activity (Mohammadzadeh Gonabadi et al, 2020), in contrast
to ankle-focused strategies that support plantarflexors during
push-off (Slade et al, 2022). The moderate Peak Magnitude of
0.20 Nm/kg mitigates over-assistance risks while maintaining
biomechanical synergy (Lin et al., 2025). The reliability of PSO and
BO/EBO supports their potential integration into adaptive control
systems. At the same time, the fast execution times of CMAES
and CE may suit applications requiring low-latency updates.
Practically, this framework enables metabolic cost reduction in
clinical rehabilitation (e.g., improving endurance for individuals
with mobility impairments), enhances safety in occupational
applications (e.g., reducing fatigue during heavy labor), and boosts
athletic training efficiency. However, the relatively longer runtimes
of BO and EBO (~25 s) indicate that faster algorithms like CMAES
or CE may be more appropriate for real-time adaptation scenarios.
the
two torque parameters studied—Peak Magnitude and End

To ground our parameterization biomechanically,

Timing—were selected because they represent the most influential
Peak
Magnitude defines the level of external torque applied to

biomechanical factors in hip exoskeleton assistance.

the hip extensors during stance, directly influencing muscle
activation and joint loading, while End Timing determines
when assistance is withdrawn, shaping the transition into swing
and neuromuscular adaptation. Prior experimental studies have
shown that both magnitude and timing critically modulate
metabolic cost and gait stability, supporting their selection as
physiologically meaningful variables (Gonabadi et al, 2020;
Antonellis et al., 2022; Dzewaltowski et al., 2024; Mohammadzadeh
Gonabadi et al., 2024a; Mohammadzadeh Gonabadi and Fallahtafti,
2025). The optimized outputs from our algorithms can therefore
be interpreted as assistance strategies that shape the hip extension
moment profile in ways that may reduce muscular effort or enhance
propulsion, consistent with observed human adaptation patterns
in exoskeleton studies. Because our analysis relied on previously
collected experimental data, we were constrained to these two
parameters and could not include additional variables (e.g., onset
timing, torque profile shape). We acknowledge this as a limitation,
and future work should extend the framework to incorporate richer
biomechanical descriptors for improved generalizability.

Regarding the augmented dataset, interpolation and controlled
perturbations were used to expand the input space while
preserving biomechanical plausibility, ensuring that torque
profiles remained within safe and physiologically realistic
ranges observed in prior exoskeleton trials (Slade et al., 2018;
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Slade et al., 2022; Gonabadi et al., 2020). This approach enhances
robustness without introducing unrealistic patterns. Each ML
model underwent hyperparameter tuning via grid-search or library
optimization. For Gradient Boosting, tree depth, number of trees,
and learning rate were tuned; for Random Forest, number of trees
and depth; for SVR, kernel type and penalty factor; and for ridge
regressions, regularization coeflicients. Gaussian Process kernels
were implemented with stable defaults. Overfitting risks, given
the modest dataset size, were mitigated using repeated five-fold
cross-validation (100 iterations). Although leave-one-subject-out
validation would further address inter-individual variability, it was
not implemented here and is acknowledged as future work.

For optimization algorithms, we included a diverse set spanning
evolutionary, swarm-based, and Bayesian families to evaluate both
exploration and exploitation strategies in a surrogate-based HIL
context (Myunghee et al., 2017; Slade et al, 2018; Slade et al.,
2022; Bryan et al., 2021; Ma et al., 2024; Echeveste and Bhounsule,
2025). Gradient-based methods were excluded because surrogate
landscapes are highly nonlinear, often non-convex, and prone to
local minima, making them less reliable for global exploration in
this application (Slade et al., 2018; Slade et al., 2022). Finally, while
this study focused on simulation-based evaluation, we recognize
the ethical considerations in extending such optimization methods
to clinical populations. Future patient trials will require careful
Institutional Review Board (IRB) oversight, informed consent, and
close monitoring to ensure participant safety, especially when testing
algorithms that adaptively adjust torque in real time.

Ultimately, selecting the most appropriate optimization
algorithm depends on the specific application goals and targeted
population (Kutulakos and Slade, 2024). If the primary objective
is to achieve the maximum possible reduction in metabolic cost,
algorithms such as GSA may be preferred, even if they require more
iterations or longer convergence times. However, prolonged walking
trials may be impractical or fatiguing in clinical populations, such
as individuals with mobility impairments. In these cases, faster-
converging algorithms like PSO or CE, which can identify near-
optimal solutions within fewer iterations, may be more suitable.
For healthy individuals, tolerating longer optimization procedures
to achieve greater metabolic reductions may be acceptable. This
trade-off between convergence speed and optimization accuracy
highlights the need for thoughtful algorithm selection tailored to the
device context and the user population (Kutulakos and Slade, 2024).

Similar simulation-first approaches have been applied in other
engineering domains, where surrogate modeling and optimization
have effectively reduced experimental costs and accelerated iteration
cycles. For example, sustainable additive manufacturing has
leveraged computational optimization to minimize resource usage
and emissions (Oladunni et al., 2025), while deep stable learning
methods have enhanced predictive robustness under imbalanced
data conditions (Xu et al., 2025). Drawing from these parallels,
our framework highlights the potential of surrogate-informed HIL
optimization to minimize costly real-world trial-and-error, thereby
improving scalability and translational readiness.

Integrating biomechanics and motor adaptation perspectives
further underscores the potential of surrogate-based frameworks
to enhance exoskeleton control. Neuromuscular adaptation during
exoskeleton use reflects gait plasticity, whereby users adjust stride
patterns and muscle recruitment in response to assistance, often
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achieving improved energy efficiency over repeated sessions
(Baud et al., 2021; Rodriguez-Fernandez et al., 2021; Sanjeevi et al.,
2021).
approaches have been shown to accelerate adaptation, enabling

Biofeedback mechanisms and perturbation-based
users to refine coordination and reduce metabolic cost more
rapidly (Desplenter and Trejos, 2018; Dzewaltowski et al., 2024;
Lakmazaheri and Collins, 2025). Hierarchical control strategies,
combining high-level intent recognition with torque modulation,
account for such adaptive processes by incorporating within-stride
variability into optimization (Slade et al., 2022; Echeveste and
Bhounsule, 2025). In this context, the ability of the GB surrogate
model to capture nonlinear parameter interactions parallels these
adaptive responses, highlighting translational potential for tailoring
assistance strategies to inter-individual adaptation dynamics.

In practical applications, surrogate models trained on data
from healthy individuals could provide initial estimates of optimal
assistance parameters for new users. These predictions could then
be refined using limited personalized trials, enabling efficient
customization of hip exoskeleton settings for clinical or real-
world deployment. This simulation-based framework provides
a foundation for translational application by identifying which
optimization algorithms are most promising for HIL trials. In
practice, surrogate-based insights can narrow the search space
and initialize parameter settings, reducing the number of physical
iterations required. The next step is to validate these algorithms in
experimental HIL studies with the same hip exoskeleton device,
where real-time metabolic feedback, user-specific adaptation, and
fatigue effects can be directly assessed. Ultimately, this approach
enables a more efficient pathway from simulation to clinical
deployment, where optimization strategies can be tailored to
patients and workers in rehabilitation and occupational settings.

4.3 Limitations

methods
limitations

Although the surrogate-based
demonstrated promising performance,

optimization
several

should be acknowledged. First, based on simulations run on
a standard laptop, the reported computation times for each
optimization algorithm may not directly translate to realistic
experimental scenarios (Kutulakos and Slade, 2024). In human
trials, optimization time is largely constrained not by computational
latency but by the participant’s physiological response to torque
perturbations and the duration required to reach a steady
2024b).
Therefore, the purpose of reporting timing metrics in this

metabolic state (Mohammadzadeh Gonabadi et al,
study was to enable a controlled, relative comparison across
algorithms under identical computational conditions, rather
than to suggest real-world applicability of absolute convergence
durations (Mohammadzadeh Gonabadi et al., 2024c). Second,
the current simulations assume instantaneous feedback from
the surrogate model, significantly accelerating the optimization
process. In contrast (Mohammadzadeh Gonabadi et al., 2024c),
real HIL experiments require waiting for the human body’s
metabolic response to stabilize, often over several minutes per
condition (Kutulakos and Slade, 2024). Thus, although BO or EBO
required approximately 24-26 s to converge in the framework, actual
implementation with human participants could take substantially
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longer due to biological delays and fatigue constraints. While
the surrogate model captures key input-output relationships, its
predictions do not account for biological variability, adaptation, or
real-world gait dynamics. Thus, the reported 53% reduction should
be interpreted as a model-based prediction, pending empirical
validation in human-in-the-loop optimization experiments.

It is important to clarify that the reported runtimes (e.g.,
BO: 26 s) represent computational latency only and do not reflect
the dominant biological stabilization periods required in real HIL
experiments, which often extend to several minutes per condition
and can accumulate to ~2 h for a full optimization session. While
the proposed surrogate-based framework offers substantial potential
to reduce this experimental burden, its real-world speed remains
constrained by participant fatigue and adaptation. As a limitation,
future work should explicitly validate the true time savings in live
HIL optimization experiments with the same exoskeleton system
to confirm translational feasibility. While uncertainty was partially
quantified through Gaussian Process confidence intervals, ensemble
variance, and cross-validation variability, we acknowledge that real-
world variability—particularly in clinical populations—may exceed
model-based estimates. Future work should expand uncertainty
quantification to better capture patient-specific unpredictability.
While the present framework provides simulation-based predictions
of optimal assistance patterns, these results have not yet been
validated in real human-in-the-loop trials. Real-world experiments
will be necessary to confirm the predicted metabolic cost reductions,
capture adaptation and fatigue effects, and ensure clinical and
translational relevance. The addition of error bars in Figure 6 helps
convey variability in simulated outcomes, but physical trials remain
the definitive step to establish robustness and generalizability.
Our augmentation strategy perturbed input parameters to enrich
surrogate training, which assumes that trial-to-trial variability in
assistance settings can be represented as Gaussian noise. While
this improved robustness, it does not directly model physiological
variability or device measurement error, and future studies should
examine whether input perturbations adequately reflect real-world
variability in exoskeleton assistance.

Since our analysis relied on previously collected experimental
data (Gonabadi et al, 2020; Antonellis et al, 2022;
Dzewaltowski et al., 2024; Mohammadzadeh Gonabadi et al.,
2024a), we were constrained to the torque parameters of Peak
Magnitude and End Timing, and could not evaluate additional
variables such as onset timing or torque profile shape. While
these two parameters capture key biomechanical influences
on hip assistance, this restricted scope limits generalizability.
Future work should extend the framework to incorporate richer
biomechanical descriptors and multi-parameter profiles to better
reflect physiological variability and improve translational relevance.
Furthermore, optimization metrics such as AUC and predicted
metabolic cost were not directly linked to biomechanics outcomes
(e.g., gait stability, neuromuscular adaptation), as the primary aim
was to benchmark optimization algorithms for surrogate-based HIL
personalization. This is acknowledged as a limitation, with future
extensions aiming to integrate biomechanics-outcome analyses.
Finally, while simulation provided valuable insights, extending
these methods to clinical populations will require careful ethical
oversight, informed consent, and participant monitoring in future
patient trials.
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The surrogate model was trained on pooled data from healthy
adults, which may not fully capture inter-individual variability
or the unique metabolic landscapes of clinical populations. Gait
variability influenced by factors such as pathology, age, or fitness
may amplify errors in optimization, as clinical users often adapt
differently or require extended habituation (Antonellis et al,
2018; Leibman and Choi, 2025; Mohammadzadeh Gonabadi and
Fallahtafti, 2025). Long-term neuromuscular plasticity and learning
effects, while critical to sustained performance, were not captured
in our simulations. Performance differences between healthy and
clinical groups remain a key concern; individuals with spinal
cord injury or post-stroke hemiparesis may experience greater gait
instability or reduced adaptability, requiring population-specific
retraining and experimental validation (Young and Ferris, 2017;
Zhu et al.,, 2021; Edwards et al., 2022; Sado et al., 2022; Lee et al.,
2025). Future studies should integrate adaptive learning models
and validate across diverse cohorts to enhance translational
potential.

Furthermore, this study’s optimization results were derived
using a limited dataset from 10 healthy adults. While this cohort
offers a proof-of-concept for healthy populations, it restricts
the generalizability of the findings to broader user groups
such as older adults, clinical populations, or individuals with
gait impairments (Kutulakos and Slade, 2024). Expanding the
dataset and incorporating more heterogeneous subject profiles
would strengthen the robustness of the surrogate model and
its predictive performance (Mohammadzadeh Gonabadi et al,
2024b). Another key limitation lies in the torque control
strategy. Using static, piecewise semi-linear torque profiles,
defined by Peak Magnitude and End Timing, simplifies the
complexity of dynamic human gait. While effective for initial
modeling, real-world gait is highly adaptive and phase-varying
(Kutulakos and Slade, 2024). Future work should incorporate
adaptive or time-varying torque profiles that respond to real-
time biomechanical states. Additionally, the current framework
(Kutulakos and Slade, 2024) does not incorporate physiological
signals such as electromyography (EMG) (Lin et al, 2025),
which could enhance surrogate modeling by capturing muscle
activation patterns associated with metabolic demand. Future
work could also explore incorporating other physiological or
biomechanical outcomes, such as gait stability (Fallahtafti et al.,
2021; Mohammadzadeh Gonabadi and Fallahtafti, 2025) or joint
loading, into the simulation framework. Prior studies involving
ankle exoskeletons have demonstrated that integrating EMG
can refine assistance strategies and better align them with
natural neuromuscular control (Lin et al, 2025). Extending
this approach to hip exoskeletons could further personalize
assistance by tailoring torque delivery to individual muscle
responses. Future research should also work toward expanding
the surrogate modeling framework to support time-varying,
high-dimensional optimization scenarios (Kutulakos and Slade,
2024), leveraging real-time biomechanical and physiological inputs
such as EMG to enhance adaptive control strategies across a
wider range of users. Finally, the torque profile was modeled as
a piecewise semi-linear function, which was selected based on
the literature for computational efficiency and to approximate
hip assistance torque in experimental conditions (Kutulakos and
Slade, 2024; Mohammadzadeh Gonabadi et al., 2024a). While
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this approach is widely used, it oversimplifies the complexity of
real gait dynamics and may reduce generalizability in clinical
populations with irregular gait. Future work should explore more
adaptive and physiologically informed profiles, such as EMG-driven
or kinematic-based representations, to improve robustness and
translational applicability.

5 Conclusion

This study introduced a surrogate-based HIL optimization
framework for personalizing hip exoskeleton assistance. Among the
evaluated ML regressors, GB demonstrated the highest predictive
accuracy (RAEP = 0.66%). When paired with global optimizers,
GSA predicted the lowest normalized metabolic cost (—-1.06), while
PSO and EBO exhibited superior convergence efficiency based on
AUC and ARI metrics. Beyond individual algorithm performance,
this framework approach offers a generalized methodology for
screening optimization algorithms and hyperparameters before any
human testing. Researchers developing new exoskeletons or assistive
devices can gather a small set of assistance trials, fit a surrogate
model, and run virtual HIL optimizations to identify the algorithms
most likely to succeed in practice. In the clinic, the same surrogate
can guide a brief calibration session in which the optimizer samples
a few gait cycles and then recommends patient-specific peak-torque
magnitudes and timing parameters, delivering a custom assistance
profile in minutes rather than hours of metabolic titration. This
process can significantly reduce experimental burden, enhance
reproducibility, and streamline the deployment of personalized
assistive strategies. Looking forward, this framework could be
embedded into real-time adaptive controllers, enabling assistance
profiles to update dynamically as patients adapt or as clinical
needs evolve. Future research should validate these simulation-
informed strategies in both healthy and clinical populations to
ensure safety and translational viability. Ultimately, these steps
will accelerate the deployment of exoskeleton technologies across
rehabilitation, occupational, and performance domains, ensuring
that optimization strategies remain responsive to diverse user
populations. Beyond exoskeleton research, the methodological
principles of surrogate-based optimization can be extended to
other biomechanical and engineering applications where system-
level sustainability and efficiency are critical. Similar strategies
have been successfully applied in domains such as sustainable
additive manufacturing (Oladunni et al, 2025), underscoring
the transferability of these approaches to wearable robotics and
supporting their potential for broader cross-disciplinary impact.
Future work should validate surrogate-informed settings in
human trials, incorporate physiological signals such as EMG,
and extend the framework to time-varying, higher-dimensional,
and adaptive controllers that can serve diverse users in real-world
conditions.
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