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Introduction: Hip exoskeletons can lower the metabolic cost of walking in many 
tasks and populations, but their assistance patterns must be tailored to each 
user. We developed a simulation-based, human-in-the-loop (HIL) optimization 
framework combining machine learning (ML) and global optimization to 
personalize hip exoskeleton assistance patterns.
Methods: Using data from ten healthy adults, we trained a Gradient Boosting 
(GB) surrogate model to predict normalized metabolic cost as a function of Peak 
Magnitude and End Timing of assistive torque. GB achieved the lowest relative 
absolute error percentage (RAEP) of 0.66%, outperforming Random Forest (RAEP 
= 0.83%) and Support Vector Regression (RAEP = 0.98%) among nine ML 
models. We then evaluated seven optimization algorithms, including Covariance 
Matrix Adaptation Evolution Strategy, Bayesian Optimization, Exploitative 
Bayesian Optimization, Cross-Entropy, Genetic Algorithm, Gravitational Search 
Algorithm (GSA), and Particle Swarm Optimization (PSO), to identify optimal 
assistance profiles.
Results: GSA predicted the lowest metabolic cost (−1.06), equivalent to an 
estimated 53% reduction relative to no exoskeleton assistance, while PSO 
showed the highest efficiency (AUC = 0.24).
Discussion: These simulated predictions, though not empirical measurements, 
demonstrate the framework’s ability to streamline algorithm selection, reduce 
experimental burden, and accelerate translation of exoskeleton optimization 
into rehabilitation, occupational, and performance enhancement applications 
with broader biomechanical and clinical impact.
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1 Introduction

Mobility disability affects over 26.9% of older adults 
worldwide (Okoro et al., 2018), contributing to reduced 
independence, increased healthcare costs, and reduced quality 
of life (Musich et al., 2018). Wearable robotic assistive devices, 
such as lower-limb exoskeletons, have emerged as promising 
tools for improving walking efficiency by reducing the energetic 
cost of walking (Shepertycky et al., 2021), providing physical 
support (de Looze et al., 2016; Fox et al., 2019), and restoring 
weak limb function (Jiryaei et al., 2021). Elevated metabolic 
cost during walking is a common issue among older adults 
and individuals with neuromuscular or vascular impairments, 
often leading to early fatigue, reduced mobility, and a greater 
risk of sedentary behavior, further exacerbating functional 
decline and health complications (Das Gupta et al., 2019; 
Antonellis et al., 2022; Mohammadzadeh Gonabadi et al., 2024c; 
2024b). Despite considerable success in laboratory experiments, 
many exoskeletons have shown limited benefits in real-world 
applications due to the inherent complexity of human-robot 
interaction and challenges related to portability and practical 
deployment outside controlled environments (Hsu et al., 
2021; Rodríguez-Fernández et al., 2021; Charette et al., 2023; 
Mohammadzadeh Gonabadi et al., 2024a). Because the hip can 
generate substantial positive torque during daily activities, optimally 
tuned hip exoskeletons have the potential to reduce metabolic 
cost by up to 40% (Lee et al., 2017; Ding et al., 2018; Seth et al., 
2018; Arones et al., 2020; Mohammadzadeh Gonabadi et al., 
2020; 2024a). However, personalized tuning is necessary to 
maximize the benefits of the exoskeleton and human performance, 
which is challenging outside of a laboratory (Zhang et al., 2017; 
Slade et al., 2022; Farris et al., 2023).

Human-in-the-loop (HIL) optimization has been developed as 
a method for real-time personalization of exoskeleton parameters. 
The structure of this HIL optimization strategy is shown in 
the upper (red) loop of Figure 1, where human feedback is 
used to adjust assistance parameters systematically. In this 
process, device control is iteratively adjusted to enhance user 
performance based on physiological feedback during real-time 
use (Ding et al., 2018; Rayssiguie and Erden, 2022; Farris et al., 
2023; Lakmazaheri et al., 2024; Firouzi et al., 2025; Lin et al., 
2025). HIL optimization has substantially improved exoskeleton 
performance across various activities, including recent translation 
into real-world conditions (Koller et al., 2016; Malcolm et al., 2017; 
Sreenivasa et al., 2017; Zhang et al., 2017). However, assessing 
key performance metrics such as metabolic rate often involves 
costly equipment and prolonged steady-state walking, making 
these experiments challenging (Mohammadzadeh Gonabadi et al., 
2020; Mohammadzadeh Gonabadi et al., 2024a; Antonellis et al., 
2022). To get around these challenges, simulation methods using 
surrogate models have become more common. These models 
approximate the relationship between assistance parameters 
and physiological outcomes using Machine Learning (ML) 
techniques trained on experimental data (Kutulakos and Slade, 
2024). Once validated, surrogate models enable rapid and cost-
effective testing of numerous assistance parameter combinations 
within the simulation framework, eliminating the need for 
additional human trials. The lower (blue) loop in Figure 1 

outlines this surrogate-based optimization framework, where 
ML predictions guide iterative parameter refinement without 
requiring direct physiological measurements. Recent studies used 
data-driven methods to estimate within-stride metabolic cost 
during walking (Gonabadi et al., 2020; Antonellis et al., 2022; 
Dzewaltowski et al., 2024; Mohammadzadeh Gonabadi et al., 
2024b; Mohammadzadeh Gonabadi et al., 2024c). They showed 
that variations in biomechanical variables can predict energy 
expenditure with high temporal resolution and greater consistency 
compared to earlier model-based approaches (Gonabadi et al., 
2020; Antonellis et al., 2022; Dzewaltowski et al., 2024; 
Mohammadzadeh Gonabadi et al., 2024b; Mohammadzadeh 
Gonabadi et al., 2024c). Although these models cannot fully 
capture the complexities of human adaptation, they offer 
meaningful insights into parameter sensitivity and can guide 
experimental design.

Complementing data-driven methods, biomechanics-based 
optimization approaches have leveraged musculoskeletal modeling 
and control theory to design torque profiles that minimize 
joint loads and enhance gait stability (Desplenter and Trejos, 
2018; Baud et al., 2021; Firouzi et al., 2025). Research on 
human-adaptation dynamics has revealed how motor co-
adaptation and neuromuscular adjustments shape user responses 
to exoskeleton assistance, underscoring the importance of 
adaptive strategies (Poggensee and Collins, 2021; Echeveste and 
Bhounsule, 2025). Energy efficiency modeling in wearables has 
also progressed through predictive frameworks that account 
for device mass, actuation efficiency, and user biomechanics 
to estimate potential metabolic savings (Slade et al., 2022; 
Chang et al., 2023; Scherb et al., 2023; Dzewaltowski et al., 2024). 
Despite these advances, prior HIL optimization approaches often 
require lengthy experimental sessions that induce fatigue, limit 
scalability, and underrepresent inter-individual biomechanical 
variability (Slade et al., 2022; Dzewaltowski et al., 2024). Our 
simulation-based framework addresses these shortcomings by 
employing surrogate models informed by population-level data to 
benchmark global optimization algorithms, reduce experimental 
demands, and enable preliminary strategy identification for 
real-world translation in rehabilitation and occupational
contexts.

Recent research highlights the effectiveness of ML-based 
approaches in various exoskeleton applications. Kutulakos and 
Slade (Kutulakos and Slade, 2024) modeled metabolic landscapes for 
ankle exoskeletons using Gaussian Process regression and simulated 
HIL optimization under various user and device scenarios. Their 
findings confirmed that surrogate-based frameworks can replicate 
trends observed in real-time optimization and inform decisions 
regarding algorithm selection and parameter tuning. Gonabadi 
et al. (Mohammadzadeh Gonabadi et al., 2024b) demonstrated 
the feasibility of using artificial neural networks to estimate 
metabolic cost directly from ground reaction forces and joint 
moments, offering a real-time alternative to indirect calorimetry. 
Their findings highlight the predictive strength of biomechanical 
inputs and support the integration of ML in assistive device 
development and gait analysis applications. In another study 
(Mohammadzadeh Gonabadi et al., 2024c), nonlinear dynamical 
measures and artificial intelligence algorithms were used to classify 
gait patterns, illustrating the capability of AI in capturing subtle 
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FIGURE 1
Overview of the human-in-the-loop framework for personalized hip exoskeleton assistance. The system consists of two main loops: (1) Model Training 
Loop (red): used to generate and collect experimental data (Mohammadzadeh Gonabadi et al., 2024a) for training a surrogate model; and (2) 
Human-in-the-Loop Optimization Loop Using Surrogate Model (blue): used to optimize assistance parameters based on surrogate-predicted 
metabolic cost iteratively. (A) Torque Profile Generator defines a piecewise semi-linear hip torque profile based on Peak Magnitude and End Timing. (B)
Assistance Parameter Input transmits these parameters to the exoskeleton controller. (C) Exoskeleton Actuation Interface applies the assistive torque to 
the user during treadmill walking via off-board actuation. (D) Feedback: Kinematic and Kinetic Data are collected through motion capture and force 
plate instrumentation. (E) Using a trained machine learning model, a Surrogate-Based Metabolic Cost Estimator predicts metabolic cost based on 
biomechanical input data. (F) Parameter Update to Profile Generator enables exploration of new assistance conditions during model training. (G)
Parameter Update Loop (to Estimator) delivers proposed assistance parameters from the optimizer to the surrogate model for evaluation. (H) Feedback 
to Optimization Module returns the surrogate-predicted metabolic cost associated with each evaluated parameter set. (I) Optimization Algorithm 
iteratively selects parameter sets that minimize predicted metabolic cost. This framework enables efficient, data-driven tuning of hip exoskeleton 
assistance, reducing reliance on repeated experimental measurements while supporting individualized optimization.

variations in neuromotor control. These results indicate that ML 
models can be widely applied to personalize gait optimization 
(Mohammadzadeh Gonabadi et al., 2024c). Similar techniques have 
been tested on hip–knee–ankle exoskeletons and soft wearable 
systems (Peng et al., 2020), confirming the broad usefulness 
of this approach. Complementing these, advanced fractional-
order optimization techniques, such as tempered fractional 
gradient descent (Naifar, 2025) and gradient-based algorithms 
for conformable fractional derivatives (Alaia et al., 2025), provide 
robust frameworks for handling non-integer order dynamics in 
learning applications. Such approaches could enhance surrogate 
model training and optimal control in exoskeleton systems by 
improving convergence in noisy or fractional biomechanical 
landscapes. While not the present study’s focus, these methods 

highlight valuable avenues for future extensions of surrogate-based 
HIL optimization.

The present study introduces a surrogate-based optimization 
framework for hip exoskeleton assistance (Mohammadzadeh 
Gonabadi et al., 2024a). We developed a simulation-based 
framework to predict and optimize the metabolic cost of hip 
exoskeleton assistance. Using experimental data, we trained 
predictive models and integrated them into a computational 
pipeline to identify effective assistance strategies without additional 
human trials. This study evaluated the accuracy of surrogate 
models and compared optimization algorithm performance 
in identifying low metabolic cost hip exoskeleton assistance 
parameters. We introduced a simulation-based approach for hip 
exoskeletons that uses a highly accurate model to enable fast 
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and effective personalization. We hypothesized that BO would 
outperform heuristic methods like PSO due to its probabilistic 
acquisition strategy, which balances global exploration with focused 
exploitation, an essential advantage in metabolic optimization tasks 
with limited evaluation budgets. 

2 Methods

2.1 Experimental data

This study utilized a previously published dataset collected 
during treadmill walking with a bilateral semi-rigid hip exoskeleton 
designed to assist hip extension through torque application during 
early stance (Mohammadzadeh Gonabadi et al., 2024a). Ten healthy 
adults with no known disabilities (4 males, six females; age: 27.6 
± 5.9 years; body mass: 65.3 ± 13.1 kg; height: 1.66 ± 0.08 m) 
completed a single experimental session consisting of walking 
trials under multiple assistance conditions. Participants walked at a 
constant speed of 1.25 m/s on an instrumented split-belt treadmill 
(Bertec, Columbus, OH, United States). Three-dimensional lower-
limb kinematics were captured using a 10-camera motion capture 
system operating at 120 Hz (Vicon, Oxford, United Kingdom). 
In comparison, ground reaction forces were recorded at 1000 Hz 
using embedded force plates (Bertec, Columbus, OH, United 
States). Marker trajectories and force data were time-synchronized 
and filtered using a low-pass fourth-order Butterworth filter 
(6 Hz for kinematics, 20 Hz for kinetics). The hip exoskeleton 
(Mohammadzadeh Gonabadi et al., 2024a) was powered by an off-
board rotary motor system (HuMoTech, Pittsburgh, PA, United 
States) that delivered bilateral torques through a series-elastic 
actuator coupled to the user’s thighs via custom-fitted cuffs. A 
real-time controller (Gonabadi et al., 2020; Antonellis et al., 
2022; Mohammadzadeh Gonabadi et al., 2024a) was implemented 
using a Simulink model executed on a SpeedGoat real-time 
target machine (SpeedGoat, Bern, Switzerland), interfaced with 
the hardware through a custom control box (Gonabadi et al., 
2020; Antonellis et al., 2022; Mohammadzadeh Gonabadi et al., 
2024a). The assistive torque followed a piecewise semi-linear profile 
with three key parameters: torque onset (fixed at 90% of the 
gait cycle, just before heel strike), Peak Magnitude (ranging from 
0.04 to 0.14 Nm/kg), and End Timing (ranging from 21% to 
49% of the gait cycle) (Mohammadzadeh Gonabadi et al., 2024a). 
Peak torque was always delivered at 17% of the gait cycle (early 
stance), while variations in End Timing modulated the duration of 
assistance (Mohammadzadeh Gonabadi et al., 2024a).

Twelve walking conditions were tested, consisting of ten 
powered assistance profiles, one PowerOff condition (with the 
exoskeleton worn but not actuated), and one NoExo condition 
(without the device) (Mohammadzadeh Gonabadi et al., 2024a). 
Only the ten powered assistance conditions were used for surrogate 
model development and simulation-based HIL optimization. These 
conditions represented active device use and captured a range of 
assistive torque profiles relevant for optimization. Each condition 
was performed for a sufficient duration (at least 6 min) to ensure 
steady-state metabolic measurement using indirect calorimetry. 
Net metabolic cost (W/kg) was computed by subtracting standing 
baseline values and was normalized to the PowerOff condition to 

derive a percentage change in metabolic cost per trial. Across all 
conditions, normalized net metabolic cost ranged from −34.91% 
to +49.76%. A negative value indicates a reduction in metabolic 
cost relative to PowerOff, whereas a positive value reflects an 
increase. We chose the PowerOff condition as the reference point, 
as was done in the original study. This approach allowed for 
a balanced comparison that included metabolic reductions and 
increases, enabling consistent modeling of the cost landscape 
across assistance parameters (Mohammadzadeh Gonabadi et al., 
2024a). A combination of Peak Magnitude and End Timing 
values characterized each assistance condition. These parameters 
were extracted for modeling purposes and used as inputs for 
surrogate model training. A few missing parameter values (e.g., 
for rare outliers or corrupted sensor readings) were imputed using 
condition-type means based on Peak Magnitude category (e.g., low, 
medium, high). This ensured a complete dataset for subsequent ML 
model development.

This study utilized an existing dataset collected 
from 10 healthy adults during a previously approved 
experimental protocol (Mohammadzadeh Gonabadi et al., 2024a) 
at the University of Nebraska Medical Center Institutional Review 
Board (protocol number: 0101-19-FB; initial approval: 22 April 
2019). All participants provided written informed consent before 
participation. The present work involved only secondary analysis 
and modeling of this dataset; no new human experiments were 
conducted. 

2.2 Simulated methods

Experimental walking data from a previous study involving ten 
healthy adults were used to train multiple ML models to predict 
normalized metabolic cost (Mohammadzadeh Gonabadi et al., 
2024a). These included Gradient Boosting (GB), a powerful 
ensemble method that builds models sequentially to minimize 
prediction error using stage-wise additive modeling and decision 
trees (Friedman, 2001). GB builds a predictive model by combining 
many simple decision trees, much like a team of experts refining 
predictions by learning from each other’s mistakes. Support Vector 
Regression (SVR) was employed for its ability to model high-
dimensional nonlinear relationships using kernel functions (Smola 
and Schölkopf, 2004). Polynomial Ridge (PR) and Linear Ridge 
(LR) regressions provided interpretable linear models with L2 
regularization to mitigate overfitting and multicollinearity (Hoerl 
and Kennard, 2000; Hastie et al., 2009). Random Forest (RF), 
another ensemble method, aggregates predictions from multiple 
decision trees to capture nonlinear interactions and reduce variance 
in the model output (Breiman, 2001). We also included four 
variants of Gaussian Process (GP) regression (Rasmussen, 2004), 
providing probabilistic predictions and quantifying uncertainty 
in model estimates. The Gaussian Process Absolute Exponential 
(GPAE) kernel is suitable for modeling moderately smooth 
functions (Rasmussen, 2004). In contrast, the Gaussian Process 
Matern 3/2 (GPM) kernel offers a flexible balance between 
model smoothness and responsiveness to local variations in data 
(Rasmussen, 2004). The Gaussian Process Rational Quadratic 
(GPRQ) kernel captures data patterns with multiple length scales 
and is often used when the smoothness of the underlying 
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function is not known a priori (Rasmussen, 2004). Finally, the 
Gaussian Process Squared Exponential (GPSE) kernel, also known 
as the radial basis function, assumes highly smooth underlying 
functions. It is widely used in surrogate modeling due to its 
strong generalization ability (Rasmussen, 2004). This diverse set 
of regressors enabled robust modeling of the complex relationship 
between assistance parameters and metabolic cost across multiple 
function classes and regularization strategies.

Although metabolic landscapes were simulated, they were 
directly trained on experimental data from 10 healthy adults. The 
surrogate model was therefore not arbitrary but grounded in real 
measurements, serving as a computational approximation of user 
feedback. This framework enabled controlled benchmarking of 
optimization algorithms while avoiding the burden of repeated long-
duration experiments. Importantly, in real-world HIL optimization, 
algorithms would operate with live user feedback, whereas the 
surrogate provides a reproducible and safe environment for 
preliminary evaluation.

Although individual metabolic landscapes are known to vary 
due to physiological and neuromuscular differences, this study 
pooled data across 10 healthy subjects to train a population-level 
surrogate model. The intention was not to create a fully personalized 
model for each subject but to capture generalizable trends in the 
relationship between assistance parameters and metabolic cost. This 
surrogate served as a representative user feedback model, enabling 
simulation-based evaluation of various optimization algorithms in 
a controlled environment. The study’s main goal was to determine 
which optimization strategy is most effective for human-in-the-loop 
exoskeleton parameter tuning. In future real-time applications, the 
selected algorithm will be applied directly to honest user feedback 
to personalize assistance. At the same time, the surrogate model will 
remain a simulation tool for preliminary exploration.

The chosen models cover a spectrum of learning approaches, 
including linear (LR, PR), non-parametric (GP), and ensemble-
based (GB, RF), to thoroughly explore the metabolic cost profile. 
These surrogates were integrated with seven global optimization 
algorithms to evaluate their ability to identify low-cost assistance 
profiles. Covariance Matrix Adaptation Evolution Strategy 
(CMAES) is a generative, model-free, and sample-efficient local 
optimizer that adapts its search distribution based on the best-
performing parameter sets in each generation, making it effective 
for noisy and non-convex problems (Hansen and Ostermeier, 2001). 
Bayesian Optimization (BO) uses a probabilistic surrogate, often a 
Gaussian process, and an acquisition function to balance exploration 
and exploitation, enabling sample-efficient global optimization in 
high-dimensional parameter spaces (Snoek et al., 2012). Exploitative 
Bayesian Optimization (EBO) is a variant of BO with a lower 
exploration constant, biasing the search toward local exploitation, 
which has been shown to enhance convergence in scenarios with 
low measurement noise or time-varying optima (Kutulakos and 
Slade, 2024). The Cross-Entropy (CE) method is a generative 
optimization technique that updates a probability model using 
top-performing samples. It encourages exploration but usually 
needs more evaluations than BO or CMAES (Deng, 2006). The 
Genetic Algorithm (GA) applies biologically inspired operations 
such as selection, crossover, and mutation to evolve solutions across 
generations. It is valued for its straightforward implementation 
and strong global search performance (Holland, 1992; Gonabadi, 

2016; Mohammadzadeh Gonabadi et al., 2017a). Inspired by 
Newtonian gravity, the Gravitational Search Algorithm (GSA) 
models the agents as objects attracted to each other based on their 
masses. This provides a flexible and innovative approach to solving 
multidimensional optimization problems (Rashedi et al., 2009). 
Lastly, Particle Swarm Optimization (PSO) models the collective 
behavior of swarms and uses social and cognitive components to 
improve candidate solutions iteratively. Its rapid convergence and 
simplicity have made it a popular choice for nonlinear optimization 
problems (Coello et al., 2004; Mohammadzadeh et al., 2011; 
Mohammadzadeh Gonabadi et al., 2017b). PSO mimics a flock of 
birds searching for food, where each particle adjusts its path based 
on its own and the group’s best positions. A summary of all ML 
models and optimization algorithms is provided in Table 1.

2.3 Data augmentation

A simplified biomechanical representation of hip assistance 
was created, modeling the exoskeleton torque profile as a 
piecewise semi-linear function (Kutulakos and Slade, 2024; 
Mohammadzadeh Gonabadi et al., 2024a). The profile increased 
semi-linearly from zero to Peak Magnitude until the defined 
End Timing, then returned to zero by the end of the gait cycle. 
This approximation reflected the actual assistive torque behavior 
described in the experimental conditions (Kutulakos and Slade, 
2024; Mohammadzadeh Gonabadi et al., 2024a). To improve 
generalizability and enable robust model training, the original 
experimental dataset was augmented using synthetically generated 
trials (Kutulakos and Slade, 2024). Each data point was perturbed 
with zero-mean Gaussian noise (standard deviation = 0.05), 
corresponding to approximately 4.6% of the parameter range. This 
approach, previously employed in simulation studies of metabolic 
landscapes for exoskeleton optimization (Kutulakos and Slade, 
2024), replicates experimental variability and enriches the surrogate 
model’s learning capacity (Kutulakos and Slade, 2024). Gaussian 
noise augmentation has improved the accuracy and robustness 
of surrogate models, particularly in regression tasks with limited 
data availability (Kutulakos and Slade, 2024). The synthetic dataset 
and the original powered trials were used as input for training 
ML models to predict normalized metabolic cost (Kutulakos and 
Slade, 2024). These predictions then served as the foundation for 
surrogate-based optimization simulations.

To improve model robustness, 20 augmented samples were 
generated for each of the 100 experimental trials by adding zero-
mean Gaussian noise (σ = 0.05, ∼4.6% of the normalized range) 
to the input parameters (Peak Magnitude and End Timing). This 
produced 2000 synthetic trials in total. Unlike prior work that 
perturbed metabolic cost to simulate measurement noise (Kutulakos 
and Slade, 2024), we perturbed inputs to approximate variability 
in how assistance parameters may vary across repeated walking 
bouts. This broadened the surrogate’s training distribution while 
preserving physiologically plausible ranges.

For each experimental trial, inspired by (Kutulakos and Slade, 
2024), 20 synthetic samples were generated by perturbing the 
assistance parameters—Peak Magnitude and End Timings—using 
zero-mean Gaussian noise with a standard deviation of 0.05, 
equivalent to ∼4.6% of the normalized parameter range [0, 1]. 
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TABLE 1  Machine learning models and global optimization algorithms. The listed models were used to construct surrogate predictors of metabolic 
cost, while the optimization algorithms were applied to identify low-cost assistance parameters based on the surrogate models.

# Machine learning models Optimization algorithms

1 Linear Ridge (LR) Covariance Matrix Adaptation Evolution Strategy (CMAES)

2 Polynomial Ridge (PR) Bayesian Optimization (BO)

3 Support Vector Regression (SVR) Exploitative Bayesian Optimization (EBO)

4 Random Forest (RF) Cross-Entropy Method (CE)

5 Gradient Boosting (GB) Genetic Algorithm (GA)

6 Gaussian Process – Absolute Exponential (GPAE) Gravitational Search Algorithm (GSA)

7 Gaussian Process – Matern 3/2 (GPM) Particle Swarm Optimization (PSO)

8 Gaussian Process – Rational Quadratic (GPRQ)

9 Gaussian Process – Squared Exponential (GPSE)

These perturbations were applied solely to the input parameters, 
while the corresponding normalized metabolic cost was retained 
unchanged to preserve label fidelity (Kutulakos and Slade, 2024). 
This augmentation approach aimed to simulate inter-trial variability 
observed in experimental protocols and enhance the robustness 
and generalization of surrogate model training (Kutulakos and 
Slade, 2024). 

2.4 Data preparation and normalization

The combined dataset consisted of 100 valid experimental trials 
and 200 synthetic trials, totaling 300 samples. This augmentation 
enhanced the surrogate model’s generalization ability across diverse 
assistance profiles (Kutulakos and Slade, 2024). Synthetic trials 
were generated to simulate physiological variability, ensuring robust 
training for machine learning models (Kutulakos and Slade, 2024). 
Input features included Peak Magnitude and End Timing, and the 
target variable was normalized metabolic cost. All variables were 
normalized to the range [0, 1] using min-max scaling to standardize 
the feature space and improve model convergence. For each feature 
x, the normalized value xnorm was computed as shown in Equation 1:

xnorm =
x− xmin

xmax − xmin
(1)

where xmin and xmax are the minimum and maximum values of the 
feature across the dataset. 

2.5 Machine learning (ML) model: training 
and hyperparameters

Additional polynomial terms (e.g., squared features) were 
included for PR to capture potential nonlinear interactions. The 
resulting feature matrix and target vector were used for training and 
evaluating all surrogate models (Kutulakos and Slade, 2024). Nine 
regression models were developed and evaluated: LR, PR, SVR, RF, 

GB, and four variants of GP models—GPAE, GPM, GPRQ, and 
GPSE. Each model was trained using five-fold cross-validation (k = 
5) repeated across 100 iterations, yielding 500 (5 × 100) randomized 
splits (Kutulakos and Slade, 2024; Mohammadzadeh Gonabadi et al., 
2024b; Mohammadzadeh Gonabadi et al., 2024c; Gonabadi et al., 
2025). For each iteration, K-Fold cross-validation (k = 5) 
was applied, with 80% of the data (n = 240 trials) used for 
training and 20% (n = 60) for testing in each split (Kutulakos 
and Slade, 2024; Mohammadzadeh Gonabadi et al., 2024b; 
Mohammadzadeh Gonabadi et al., 2024c; Gonabadi et al., 2025).

Model-specific configurations included the use of L2 
regularization (λ = 1) for both LR and PR (Hoerl and Kennard, 
2000; Hastie et al., 2009), with PR incorporating a second-
degree polynomial expansion to account for nonlinear trends 
(Kutulakos and Slade, 2024). SVR was trained using standardized 
inputs to enable nonlinear regression mapping based on kernel 
transformations (Kutulakos and Slade, 2024). RF was implemented 
with 100 trees using the bagging method to reduce variance and 
mitigate overfitting (Kutulakos and Slade, 2024). GB used the 
LSBoost method with 100 learning cycles to iteratively minimize 
prediction error (Kutulakos and Slade, 2024). All GP models 
(GPAE, GPM, GPRQ, GPSE) were implemented using exact fitting 
and prediction methods (Rasmussen, 2004; Kutulakos and Slade, 
2024), each employing a different kernel function to reflect varying 
assumptions about the smoothness and structure of the input space 
(Rasmussen, 2004; Kutulakos and Slade, 2024). These diverse model 
architectures were chosen to reflect a range of learning biases, 
from linear parametric models to non-parametric probabilistic 
approaches, supporting robust surrogate construction based on 
the selected assistance parameters (Kutulakos and Slade, 2024).

Similar to the literature (Slade et al., 2022; Kutulakos and 
Slade, 2024; Echeveste and Bhounsule, 2025), hyperparameters 
for all models were tuned using a grid search within 5-fold 
cross-validation. For GB, we optimized learning rate (0.01–0.1), 
maximum tree depth (3–7), and number of estimators (100–500). 
Gaussian Process kernels were selected based on empirical fit 
(e.g., SE, Matern, Rational Quadratic). Ridge regressions used 
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L2 regularization strength determined via cross-validation. These 
procedures minimized RAEP and ensured consistent performance 
across folds.

Recent advances in deep stable learning for handling 
imbalanced datasets (Xu et al., 2025) provide additional 
methodological support for our surrogate modeling strategy. While 
their application focused on fault diagnosis in engineering systems, 
the underlying principles of improving robustness and predictive 
reliability are directly transferable to biomechanical optimization, 
where data heterogeneity and limited sample sizes often present 
similar challenges.

To prevent overfitting, we employed repeated 5-fold cross-
validation (500 iterations), regularization where available, and 
constrained model complexity (e.g., limiting GB tree depth). These 
measures improved generalizability and reduced the risk of models 
capturing noise rather than meaningful trends (Slade et al., 2022; 
Kutulakos and Slade, 2024; Echeveste and Bhounsule, 2025). 

2.6 Model evaluation

Model performance was evaluated using Relative Absolute Error 
(RAE) and Relative Absolute Error Percentage (RAEP) across the 
100 × 5-fold cross-validation scheme. For each test sample i, the 
relative absolute error RAEi and RAEP(%) were calculated as shown 
in Equations 2, 3:

RAEi =
|yactual,i − ypred,i|

yactual,i
(2)

RAEP(%) = ( 1
n

n

∑
i=1

RAEi)× 100 (3)

where yactual,i and ypred,i are the ground-truth and predicted 
normalized metabolic cost for the ith trial, respectively, and n is 
the number of test samples per split. RAEP reflects the average 
percentage deviation from actual values, normalized to ground 
truth, and allows for consistent model comparison regardless of 
cost magnitude. The distributions of RAEP across all 500 splits 
were aggregated and visualized to assess each model’s accuracy and 
robustness. Models with lower RAEP and more concentrated error 
distributions were considered superior in terms of generalization 
and suitability for use in surrogate-based optimization. 

2.7 Optimization and hyperparameters

The most accurate surrogate model will simulate the metabolic 
landscape with the highest accuracy and guide parameter 
optimization. Seven global optimization algorithms—CMAES, 
BO, EBO, CE, GA, GSA, and PSO—were implemented to 
identify assistance parameters (Peak Magnitude and End Timing) 
that minimized predicted metabolic cost. Each optimization 
algorithm was executed across 10 independent trials (re-running 
10 times) to ensure robustness against stochastic variability 
in initialization and search trajectory, with 200 evaluations 
per trial (a total of 10 × 200 evaluations) to reflect a realistic 
limit on experimental feasibility in HIL studies (Kutulakos 
and Slade, 2024; Mohammadzadeh Gonabadi et al., 2024b; 

Mohammadzadeh Gonabadi et al., 2024c; Gonabadi et al., 2025). 
Gaussian noise (standard deviation = 0.046) was added to 
the surrogate model outputs to simulate inter-trial variability 
and measurement noise typically observed in metabolic cost 
estimation, improving ecological validity of the optimization 
simulation (Kutulakos and Slade, 2024). Assistance parameters were 
bounded within the normalized range [0, 1].

CMAES was initialized with a population size of 15, a mean 
vector of (0.5, 0.5), and a step-size (σ) of 0.3, using an elite size of 3 
to guide distribution adaptation (Hansen and Ostermeier, 2001). BO 
employed an expected-improvement-plus acquisition function with 
an exploration constant of 2.6 (Snoek et al., 2012), while EBO used 
the same framework but with a reduced exploration constant of 0.93 
to favor local exploitation (Kutulakos and Slade, 2024). CE operated 
with a population size of 15, an elite fraction of 0.5 (Deng, 2006), and 
a similar initialization as CMAES (Hansen and Ostermeier, 2001). 
GA used a population 20 with an 80% crossover rate (Holland, 
1992; Gonabadi, 2016; Mohammadzadeh Gonabadi et al., 2017a). 
GSA configured 20 agents with a gravitational constant of 100 and 
an acceleration constant (α) of 20 (Rashedi et al., 2009). Finally, 
PSO simulated 20 particles with inertia-based position updates for 
global search (Coello et al., 2004; Mohammadzadeh et al., 2011; 
Mohammadzadeh Gonabadi et al., 2017b). These configurations 
were chosen to represent a spectrum of exploration-exploitation 
strategies and computational complexities, allowing for a 
comprehensive assessment of algorithmic suitability for surrogate-
based optimization in exoskeleton applications (Kutulakos and 
Slade, 2024).

Similar to sustainability-driven optimization in other 
engineering domains, such as additive manufacturing (Oladunni et al., 
2025), our framework emphasizes computational efficiency to 
minimize resource demands and enhance scalability. While their 
application focused on reducing greenhouse gas emissions, the 
methodological parallels underscore how optimization strategies 
can be leveraged to improve exoskeleton control systems and 
streamline personalization.

To ensure comparability across optimization algorithms, all 
methods were initialized using consistent strategies, supported by 
setting a fixed random seed (rng (42)) for reproducibility. CMAES 
and CE began with a mean vector of (0.5, 0.5) and a standard 
deviation (σ) of 0.3. BO and EBO used normalized input bounds 
with fixed exploration constants of 2.6 and 0.93, respectively. GA, 
GSA, and PSO initialized their populations (or particles/agents) 
uniformly across the normalized parameter space [0, 1]2 using 
identical seeds. These design choices reduced initialization bias, 
ensuring that differences in performance arose from algorithm 
dynamics rather than initial sampling variance. All optimization 
parameters and configurations are summarized in Table 2 and 
detailed further in the supplementary code repository.

2.8 Performance metrics

Optimization algorithm performance was evaluated using two 
complementary metrics: Area Under the Curve (AUC) and Average 
Rate of Improvement (ARI) (Bartz-Beielstein et al., 2010; Kuyu 
and Vatansever, 2019; Franks et al., 2021; Tyagi et al., 2024). 
AUC measures the overall optimization efficiency by quantifying 
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TABLE 2  Summary of optimization algorithm configurations and initialization settings. All algorithms operated within normalized bounds [0, 1] for both 
Peak Magnitude and End Timings. The maximum number of function evaluations was set to 200 per run for all methods.

 Algorithm Population
Size/Agents

Initialization
Mean/Method

Key parameters Random seed used

CMA-ES 15 Mean: (0.5, 0.5)
σ = 0.3

λ = 15
Elite size = 3

rng (42)

Bayesian Optimization (BO) N/A (sequential) Uniform sampling in [0, 1]2 Acquisition: EI+
Exploration constant = 2.6

rng (42)

Exploitative BO (EBO) N/A (sequential) Uniform sampling in [0, 1]2 Acquisition: EI+
Exploration constant = 0.93

rng (42)

Cross-Entropy (CE) 15 Mean: (0.5, 0.5)
σ = 0.3

Elite fraction = 0.5
λ = 30 (2× CMAES)

rng (42)

Genetic Algorithm (GA) 20 Uniform sampling in [0, 1]2 Crossover fraction = 0.8
Generations = ceil (200/20)

rng (42)

Gravitational Search 
Algorithm (GSA)

20 Uniform sampling in [0, 1]2 G0 = 100; α = 20
Max iterations = ceil (200/20)

rng (42)

Particle Swarm Optimization 
(PSO)

20 Uniform sampling in [0, 1]2 Inertia-based updates
Swarm size = 20; Iterations = 
ceil (200/20)

rng (42)

the area between the evolving minimum predicted metabolic cost 
and the known global minimum (Bartz-Beielstein et al., 2010; 
Kuyu and Vatansever, 2019; Franks et al., 2021; Tyagi et al., 
2024). Specifically, AUC captures how closely the best-found cost 
during each iteration approaches the global minimum over all 200 
evaluations, normalized for interpretability (Bartz-Beielstein et al., 
2010; Kuyu and Vatansever, 2019; Franks et al., 2021; Tyagi et al., 
2024). A lower AUC indicates that the algorithm consistently 
identifies cost-effective solutions throughout the optimization 
trajectory (Bartz-Beielstein et al., 2010; Kuyu and Vatansever, 2019; 
Franks et al., 2021; Tyagi et al., 2024). Mathematically, AUC was 
computed using Equation 4:

AUC = 1
N

N

∑
i=1
|ŷ(i)min − ymin| (4)

where ŷ(i)min is the minimum predicted metabolic cost at the 
ith iteration, ymin is the global minimum cost (−1.12), and 
(N = 200) is the total number of evaluations for each optimization 
algorithm trial.

On the other hand, ARI quantifies the average per-iteration 
improvement in cost by computing the mean absolute reduction 
in the best-found value between consecutive evaluations (Bartz-
Beielstein et al., 2010; Kuyu and Vatansever, 2019; Franks et al., 2021; 
Tyagi et al., 2024). Higher ARI values denote faster convergence 
toward optimal solutions (Bartz-Beielstein et al., 2010; Kuyu and 
Vatansever, 2019; Franks et al., 2021; Tyagi et al., 2024), which is 
particularly valuable in HIL scenarios where experimental trials are 
limited. ARI was calculated using Equation 5:

ARI = 1
N− 1

N

∑
i=2
|ŷ(i)min − ŷ(i−1)min | (5)

In general, N represents the number of evaluations in a given 
optimization run, which can vary if an optimizer terminates early. 

In this study, however, we fixed (N = 200) for all algorithms to 
maintain identical evaluation budgets and enable fair comparisons 
across optimizers. These metrics—adapted from best practices in 
benchmarking optimization algorithms (Bartz-Beielstein et al., 
2010; Kuyu and Vatansever, 2019; Franks et al., 2021; Tyagi et al., 
2024)—provide a comprehensive view of both optimization 
efficiency (AUC) and convergence dynamics (ARI) (Bartz-
Beielstein et al., 2010; Kuyu and Vatansever, 2019; Franks et al., 
2021; Tyagi et al., 2024). ARI shows the progression speed of 
each algorithm. ARI is defined as the mean absolute change in 
minimum cost per iteration, normalized by the total number 
of evaluations. This metric captures the dynamic improvement 
profile of the optimizer across its search trajectory, providing a 
measure of how quickly the algorithm approaches optimality. This 
is particularly valuable in human-in-the-loop applications where 
time efficiency and early gains are often more desirable than only 
final performance, especially in clinical populations with limited 
tolerance for prolonged testing (Bartz-Beielstein et al., 2010; Kuyu 
and Vatansever, 2019; Franks et al., 2021; Tyagi et al., 2024).

ARI and AUC are particularly suited for assessing algorithm 
suitability as exoskeleton parameter tuning, where convergence 
speed and consistency affect user comfort, time efficiency, and 
clinical feasibility (Bartz-Beielstein et al., 2010; Kuyu and Vatansever, 
2019; Franks et al., 2021; Tyagi et al., 2024). 

3 Results

3.1 Model performance

Figure 2 displays the RAEP distributions for each of the nine 
surrogate models across all cross-validation splits. GB achieved the 
lowest RAEP (0.66%) among all models, indicating the highest 

Frontiers in Robotics and AI 08 frontiersin.org

https://doi.org/10.3389/frobt.2025.1669600
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Mohammadzadeh Gonabadi et al. 10.3389/frobt.2025.1669600

FIGURE 2
Comparison of surrogate model performance based on Relative Absolute Error Percentage (RAEP). Boxplots show RAEP distributions across all 
cross-validation splits for nine machine learning models: Linear Ridge (LR), Polynomial Ridge (PR), four Gaussian Process (GP) variants—Squared 
Exponential (GPSE), Matern 3/2 (GPM), Absolute Exponential (GPAE), and Rational Quadratic (GPRQ)—Support Vector Regression (SVR), Random Forest 
(RF), and Gradient Boosting (GB). GB achieved the lowest RAEP (0.66%) with greater variability, indicating high accuracy with some sensitivity to data 
distribution. SVR had the highest error (0.98%), while GP models and linear methods showed similar intermediate performance (0.88%). RF (0.83%) 
performed better than most but did not surpass GB. The solid black line in each boxplot represents the median RAEP value, and the dashed black line 
denotes the mean. While RAEP indicates that all models achieve relatively low average errors across cross-validation splits, this metric reflects 
generalizability on test sets and does not capture trial-specific deviations or nonlinear dynamics.

predictive accuracy. This model also exhibited greater variability 
in distribution, likely due to its responsiveness to localized error 
reduction. RF followed with an RAEP of 0.83%, outperforming 
all linear models and kernel-based methods. In contrast, SVR 
showed the poorest performance with an RAEP of 0.98%, reflecting 
challenges in capturing the nonlinearities and variations of the 
metabolic cost surface. All four GP models—GPSE, GPM, GPAE, 
and GPRQ—and the LR and PR models produced nearly identical 
RAEP values of 0.88%. These results suggest that while GP models 
provided smooth and stable estimates, they did not outperform tree-
based ensembles in this dataset. LR and PR also failed to achieve 
an acceptable accuracy, likely due to their limited ability to model 
variations and nonlinear interactions in the metabolic cost time 
profile. The boxplots reveal that while GB delivered the lowest 
median and mean RAEP, it also had a broader interquartile range, 
reflecting higher sensitivity to data distribution and outliers. This 
trade-off suggests that GB offers the most flexible and accurate 
surrogate for capturing complex cost patterns, at the expense of 
higher variability in certain conditions.

Figure 3 illustrates the trial-wise comparison of actual versus 
predicted normalized metabolic cost across the complete dataset 
for each surrogate model. Among all models, GB (Figure 3I) 
demonstrated the highest alignment between predicted and actual 
trends, closely tracking the full dynamic range of trial-level 
metabolic responses. The model captured peaks and valleys with 
minimal lag, reflecting its strong temporal fidelity and low overall 

RAEP. RF (Figure 3H) and the GP models—GPSE, GPM, GPAE, and 
GPRQ (Figures 3C–F)—showed moderate agreement with actual 
values but exhibited some smoothing, particularly in capturing rapid 
fluctuations. While they followed general trends, their predictions 
tended to underestimate trial-to-trial variability. Linear models LR 
and PR (Figures 3A,B) showed the weakest performance, failing to 
capture significant inflection points and producing flat or lagged 
predictions. SVR (Figure 3G) struggled particularly in low-cost 
regions, displaying more frequent divergence from the ground 
truth. These differences highlight the limitations of models that 
lack the expressive capacity needed to model nonlinear trial-level 
dynamics. Figure 3 reinforces the conclusion that GB offers the best 
overall predictive accuracy and provides the most reliable trial-level 
performance across varying metabolic cost profiles.

Although LR and PR achieved relatively low RAEP values 
(∼0.88%) in the cross-validation analysis (Figure 2), their 
performance was not considered acceptable for surrogate-based 
optimization. This is because optimization requires models that 
capture localized trial-to-trial variations and nonlinear dynamics 
of the metabolic cost landscape. Figures 3, 4 show that LR and 
PR produced flatter predictions and featureless landscapes, failing 
to represent critical nonlinearities between assistance parameters 
and metabolic cost. The apparent discrepancy between Figures 2, 
3 arises from their distinct methodologies: Figure 2 reports 
averaged RAEP from cross-validation, which masks trial-specific 
deviations, whereas Figure 3 evaluates trial-level fidelity using 
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FIGURE 3
Trial-wise comparison of actual versus predicted metabolic cost across all models. Each subplot shows predicted (red dashed line) and actual (black 
line) normalized metabolic cost across 100 test trials for a single model. The x-axis represents trial indices normalized to the [0, 1] range to emphasize 
pattern alignment and model comparison rather than raw trial numbering. The subplots correspond to: (A) Linear Ridge (LR), (B) Polynomial Ridge (PR),
(C) Gaussian Process Squared Exponential (GPSE), (D) Gaussian Process Matern 3/2 (GPM), (E) Gaussian Process Absolute Exponential (GPAE), (F)
Gaussian Process Rational Quadratic (GPRQ), (G) Support Vector Regression (SVR), (H) Random Forest (RF), and (I) Gradient Boosting (GB). GB (I)
exhibited the closest agreement with actual values, accurately tracking the trend and magnitude. RF (H) and GP models (C–F) showed moderate 
fidelity, whereas LR (A), PR (B), and SVR (G) failed to capture rapid changes or peak variations. These plots emphasize GB’s superior predictive 
performance and trial-level reliability for metabolic cost estimation. Unlike Figure 2, which summarizes average errors, this figure emphasizes 
trial-specific fidelity using models trained on the full dataset. Linear and Polynomial Ridge produce flatter predictions and fail to capture trial-level 
nonlinearities, whereas Gradient Boosting aligns more closely with actual data, underscoring its superior expressiveness.

models trained on the full dataset (Slade et al., 2022; Kutulakos 
and Slade, 2024; Echeveste and Bhounsule, 2025). Thus, while 
RAEP confirms that LR and PR can achieve low average error, 
their inability to reproduce nonlinear dynamics makes them less 
reliable compared to GB and RF, which better capture complex
cost patterns.

Figure 4 presents each surrogate model’s predicted metabolic 
time profiles using filled contour plots, with overlaid actual data 
points shown as circles. The plots depict each model’s mapping of 
the normalized assistance parameter space, characterized by Peak 
Magnitude (y-axis) and End Timing (x-axis), to the corresponding 
predicted changes in normalized metabolic cost. Notably, GB 
(Figure 4I) captures sharp transitions and localized cost gradients, 
showing a highly responsive and detailed cost surface. The filled 
contours in the GB plot reveal strong differentiation across regions, 
consistent with the model’s ability to generalize complex, nonlinear 
interactions between parameters. In contrast, LR (Figure 4A) and 
PR (Figure 4B) produce relatively flat and featureless landscapes, 
suggesting limited ability to represent nonlinear cost changes. GP 
models—GPSE, GPM, GPAE, and GPRQ (Figures 4C–F)—generate 
smoothly varying surfaces that interpolate well across the space but 
lack high-frequency response near dense data clusters. This reflects 

their kernel-driven behavior, which favors continuity over local 
sensitivity. SVR (Figure 4G) shows a more spread-out prediction 
pattern with rough gradients, failing to align closely with the actual 
metabolic cost pattern. RF (Figure 4H) demonstrates improved 
spatial granularity, particularly near more concentrated regions of 
the parameter space, though its boundaries remain blocky due 
to the discrete nature of tree-based predictions. These landscape 
visualizations reinforce earlier quantitative findings: GB provides 
the most spatially expressive and data-consistent model, making 
it the most appropriate choice for surrogate-based optimization of 
exoskeleton assistance. 

3.2 Optimization results

Optimization results are summarized in Table 3. Compared to 
all other algorithms, GSA reached the lowest normalized metabolic 
cost (−1.06), indicating the most considerable reduction over the 
PowerOff baseline. This solution was located at (Peak Magnitude = 
0.20) and (End Timing = 0.83), a region identified across multiple 
high-performing methods. PSO also reached near-optimal cost 
(−1.00), but with a much lower Mean ARI (0.30 × 10−5), indicating 
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FIGURE 4
Predicted metabolic landscapes with overlaid actual data points for each surrogate model. Filled contour plots represent predicted normalized 
metabolic cost over the assistance parameter space, defined by End Timing (x-axis) and Peak Magnitude (y-axis). Overlaid circles indicate the actual 
experimental data points used for training. The subplots correspond to: (A) Linear Ridge (LR), (B) Polynomial Ridge (PR), (C) Gaussian Process Squared 
Exponential (GPSE), (D) Gaussian Process Matern 3/2 (GPM), (E) Gaussian Process Absolute Exponential (GPAE), (F) Gaussian Process Rational Quadratic 
(GPRQ), (G) Support Vector Regression (SVR), (H) Random Forest (RF), and (I) Gradient Boosting (GB). GB (I) generated the most detailed and 
responsive cost surface, capturing sharp gradients and nonlinear parameter interactions. RF (H) and GP models (C–F) showed smoother interpolations 
with moderate spatial resolution. SVR (G) produced more diffuse gradients, while LR (A) and PR (B) failed to reflect meaningful topographic variation. 
These visualizations support GB’s superior spatial expressiveness and consistency with the actual data distribution.

slower convergence despite strong endpoint performance. BO and 
EBO predicted final costs of −0.999 and −0.990, respectively, with 
moderate AUC values (BO: 0.32, EBO: 0.27), highlighting efficient 
early search performance. EBO reached the highest Mean ARI (3.29 
× 10−5), suggesting the most rapid cost reduction per iteration. 
In contrast, CMAES and CE resulted in higher costs (−0.68 and 
−0.74, respectively) and less efficient convergence (AUC: 0.56 and 
0.46). GA produced the highest final cost (0.40), exceeding the 
baseline, and confirming the weakest optimization performance in 
this context.

Figure 5 shows optimization outcomes using the GB model’s 
convergence trajectories (Figure 5A) and the predicted metabolic 
pattern (Figure 5B). In Figure 5A, BO, EBO, and PSO converged 
rapidly within the first 100 evaluations, with EBO showing the 
most rapid decline, aligning with its high ARI. While ultimately 
reaching the lowest cost, GSA showed greater variance over time, 
consistent with its higher AUC (0.61). Figure 5B displays the optimal 
solutions from all algorithms on the GB-predicted cost surface. Most 
optima are clustered within a region defined by Peak Magnitude 
= (0.10–0.20) and End Timing = (0.75–0.85), representing a 
biomechanically meaningful and metabolically favorable range. 
This agreement across algorithms validates the surrogate model’s 
reliability in guiding the search toward physiologically optimal 
assistance profiles.

Figure 6 summarizes the performance of all optimization 
algorithms using bar plots for key evaluation metrics. Figure 6A 
shows the average convergence time. BO and EBO required the 
longest mean time to converge (26.01 s and 24.01 s, respectively), 
reflecting the added computational cost of their model-fitting steps. 
In contrast, CMAES, CE, GA, and GSA ALL converged in less 
than 1 s, while PSO required a moderate 1.26 s to converge. These 
runtimes represent computational latency only and do not account 
for biological stabilization times inherent to human experiments. 
Figure 6B presents the normalized metabolic cost at optimum. 
Among all algorithms, GB predicted the largest metabolic reduction, 
with an optimal normalized metabolic cost of −1.06, corresponding 
to a 53% predicted reduction compared to the no-assistance 
baseline. It should be noted that this reduction reflects model-based 
predictions rather than direct human metabolic measurements. 
PSO, BO, and EBO converged to similarly low values near −1.00, 
indicating strong final performance. CE and CMAES reached 
higher-cost plateaus (−0.74 and −0.68, respectively), while GA 
performed poorly with a final cost of 0.40, failing to reduce 
metabolic cost. Figure 6C displays the mean AUC, a measure of 
optimization efficiency. PSO predicted the lowest AUC (0.24), 
followed by EBO (0.27) and BO (0.32), indicating compelling 
early exploration and convergence. In contrast, GSA had the 
highest AUC (0.61), suggesting slower but ultimately effective 
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TABLE 3  Optimization results summary. Summary of performance metrics for the seven optimization algorithms integrated with the Gradient Boosting 
(GB) surrogate model. The table includes: (1) the number of evaluations to convergence, (2) the mean computational time in seconds, (3) the optimal 
assistance parameters—Peak Magnitude and End Timing—identified by each algorithm, (4) the mean normalized metabolic cost achieved at 
convergence, (5) the mean area under the convergence curve (AUC) as a measure of optimization efficiency, and (6) the average rate of improvement 
(ARI) representing convergence speed. Algorithms include Covariance Matrix Adaptation Evolution Strategy (CMAES), Bayesian Optimization (BO), 
Exploitative Bayesian Optimization (EBO), Cross-Entropy (CE), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), and Particle Swarm 
Optimization (PSO). To improve clarity for biomechanics-focused readers, we provide brief interpretations of the key metrics used in this study. The 
Relative Absolute Error Percentage (RAEP) quantifies how closely the surrogate model predicts metabolic cost relative to experimental ground truth, 
with lower RAEP reflecting greater predictive accuracy and alignment with physiological outcomes. The Area Under the Convergence Curve (AUC) 
measures the efficiency of an optimizer by integrating error reduction across iterations; a smaller AUC indicates faster and more reliable convergence 
toward an optimal assistance profile. The Adjusted Rank Index (ARI) evaluates the consistency and robustness of optimizer performance across repeated 
simulations, helping to identify stable strategies that are more likely to generalize in practice. The predicted metabolic cost provides surrogate-based 
estimates of energy expenditure under different assistance profiles, normalized to baseline walking, where lower values suggest potential reductions in 
user effort. Finally, optimization runtime represents computational latency in simulation rather than biological stabilization time, allowing algorithms to 
be compared on efficiency while acknowledging that human-in-the-loop experiments are dominated by physiological adaptation timescales.

Algorithm Number of 
evaluations

Mean time (s) Peak 
magnitude

End timing Normalized 
Metabolic 
cost

Mean AUC Mean ARI

CMAES 200.00 0.60 0.44 0.68 −0.68 0.56 1.85 × 10−5

BO 200.00 26.01 0.12 0.80 −1.00 0.32 2.32 × 10−5

EBO 200.00 24.01 0.19 0.82 −0.99 0.27 3.29 × 10−5

CE 200.00 0.60 0.42 0.79 −0.74 0.46 2.58 × 10−5

GA 200.00 0.73 0.10 0.56 0.40 0.33 2.57 × 10−5

GSA 200.00 0.59 0.20 0.83 −1.06 0.61 2.21 × 10−5

PSO 200.00 1.26 0.13 0.82 −1.00 0.24 0.30 × 10−5

convergence. Figure 6D compares the ARI across algorithms. EBO 
predicted the highest Mean ARI (3.29 × 10−5), reflecting the steepest 
per-iteration improvement. CE (2.58 × 10−5) and GA (2.57 × 
10−5) also demonstrated strong ARI values, while BO and GSA 
showed moderate improvement rates (2.32 × 10−5 and 2.21 × 10−5, 
respectively). Despite its substantial final cost, PSO had the lowest 
ARI (0.30 × 10−5), indicating slower per-step progress.

4 Discussion

This study assessed the predictive accuracy of surrogate 
models and compared the performance of optimization algorithms 
in identifying metabolically efficient hip exoskeleton assistance 
settings. It was hypothesized that BO, with its probabilistic 
acquisition mechanism that strategically balances exploration 
and exploitation, would surpass heuristic approaches such as 
PSO, particularly in scenarios constrained by limited evaluation 
resources. Our findings partially supported this hypothesis. By 
achieving a 53% metabolic cost reduction within seconds, the 
proposed simulation-based surrogate modeling and optimization 
framework significantly reduces experimental burden and 
supports real-time adaptive control, advancing the deployment 
of personalized exoskeleton strategies. While BO and EBO 
demonstrated high convergence efficiency and strong predictive 
accuracy when coupled with the GB surrogate model, PSO and 
GSA also showed exceptional performance. Specifically, GSA 
predicted the lowest predicted normalized metabolic cost (−1.06), 
and PSO recorded the most efficient convergence (AUC = 0.24). 
These outcomes suggest that, although BO-based strategies are 

effective in data-limited conditions, heuristic methods such as 
PSO and GSA remain highly competitive when paired with robust 
surrogate models. 

4.1 Modeling the metabolic landscape

Consistent with prior efforts to simulate HIL optimization 
using surrogate models for ankle exoskeletons (Kutulakos and 
Slade, 2024), this study constructed metabolic cost landscapes for 
hip exoskeleton assistance using a broad array of ML models. 
Kutulakos and Slade (Kutulakos and Slade, 2024) used several 
variants of GP regression to generate synthetic metabolic landscapes 
and reported an average prediction error of approximately 10% 
on their ankle exoskeleton dataset. They emphasized that this 
error level is relatively low given the estimated 5% standard 
deviation of first-order metabolic cost measurements (Zhang et al., 
2017). In comparison, our best-performing model, GB, achieved 
a markedly lower RAEP of 0.66%, substantially improving upon 
the 10% benchmark and indicating greater predictive fidelity 
in capturing the relationship between assistance parameters and 
metabolic cost in the context of hip exoskeletons. While the 
four GP variants used in our study—GPSE, GPM, GPAE, and 
GPRQ—produced stable RAEP values (∼0.88%), consistent with the 
performance range reported in (Kutulakos and Slade, 2024), they 
were outperformed by ensemble-based models. GB showed higher 
sensitivity to localized variations and better captured inter-subject 
metabolic trends, while RF (RAEP = 0.83%) also demonstrated 
solid performance. These results suggest that tree-based models 
may better capture complex, non-linear patterns commonly seen 
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FIGURE 5
Optimization convergence and parameter landscape. (A) Convergence trajectories of seven global optimization algorithms over 200 evaluations, using 
the Gradient Boosting (GB) surrogate model. Algorithms include: Covariance Matrix Adaptation Evolution Strategy (CMAES), Bayesian Optimization 
(BO), Exploitative Bayesian Optimization (EBO), Cross-Entropy (CE), Genetic Algorithm (GA), Gravitational Search Algorithm (GSA), and Particle Swarm 
Optimization (PSO). BO, EBO, and PSO reached near-optimal solutions within the first 100 evaluations. GSA ultimately reached the lowest final cost but 
showed greater variability across iterations. (B) The GB-predicted metabolic cost surface is visualized as a filled contour plot across the assistance 
parameter space (Peak Magnitude and End Timing). Final optimal solutions from each algorithm are plotted, showing that most solutions converged 
within a low-cost region between Peak Magnitude 0.10–0.20 and End Timing 0.75–0.85.

in hip assistance settings. Moreover, unlike the surrogate training 
in (Kutulakos and Slade, 2024), which relied on unaugmented 
data, we expanded our dataset by adding Gaussian noise (mean 
= 0, SD = 0.05) to simulate physiological and sensor variability, 
thereby increasing model robustness. This augmentation enabled 
the ML models to reflect real-world uncertainties in metabolic 
measurement, ultimately improving their reliability for downstream 
optimization tasks. In addition, Monteiro et al. (Monteiro et al., 
2024) implemented an EGPR model to estimate real-time metabolic 
cost during HIL optimization for knee exoskeleton assistance. They 
reported an RAEP of 26% across five participants, which is still 
higher than the error observed in our study (Monteiro et al., 
2024). Altogether, these findings highlight the effectiveness of 
GB for modeling the metabolic landscape in HIL simulation, 
providing accurate predictions compared to traditional GP models 
and greater robustness for practical optimization. GB’s sequential 
error correction and ability to capture localized nonlinear patterns 
explain its superior performance over GP models, which assume 
smoother cost landscapes.

Although RAEP is a standard metric for evaluating surrogate 
model accuracy, in this study, it yielded uniformly low values 
across all models, making it less informative for distinguishing 
performance differences among optimizers. For this reason, RAEP 
should be interpreted cautiously and primarily as a measure 

of overall model fit, while metrics such as AUC and ARI 
provide more meaningful insight into optimizer efficiency and 
convergence behavior.

While the surrogate landscape provides a computationally 
efficient means to test optimization strategies, it remains an 
approximation of real physiology. As such, the reported metabolic 
reductions represent model-based predictions rather than empirical 
measurements. Future validation in live HIL trials is required to 
confirm the translational relevance of these findings. Uncertainty 
was evaluated using multiple complementary approaches. Gaussian 
Process models provided predictive confidence intervals, while 
ensemble methods (GB, RF) allowed assessment of stability via 
tree variance. Additionally, variability across 500 cross-validation 
splits highlighted sensitivity to training/test partitioning. Together, 
these measures provided insight into model robustness and the 
reliability of surrogate predictions (Slade et al., 2022; Kutulakos and 
Slade, 2024; Echeveste and Bhounsule, 2025). 

4.2 Simulating HIL optimization

This study advances simulation-based HIL optimization by 
evaluating multiple global algorithms for identifying individualized 
hip exoskeleton assistance parameters. The optimization framework 
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FIGURE 6
Optimization algorithm performance comparison. Summary of key performance metrics for Covariance Matrix Adaptation Evolution Strategy (CMAES), 
Bayesian Optimization (BO), Exploitative Bayesian Optimization (EBO), Cross-Entropy (CE), Genetic Algorithm (GA), Gravitational Search Algorithm 
(GSA), and Particle Swarm Optimization (PSO). (A) Mean time to convergence, highlighting the higher computational cost of BO and EBO relative to 
other methods. (B) Final normalized metabolic cost predicted by each algorithm, with GSA attaining the lowest value. (C) Mean area under the 
convergence curve (AUC), where lower values indicate higher optimization efficiency. (D) Average rate of improvement (ARI), representing the 
steepness of per-iteration cost reduction, with EBO yielding the highest ARI. The error bars reflect variability across repeated optimization runs, 
providing uncertainty quantification for convergence efficiency and predicted metabolic cost outcomes. To improve clarity for biomechanics-focused 
readers, we provide brief interpretations of the key metrics used in this study. The Relative Absolute Error Percentage (RAEP) quantifies how closely the 
surrogate model predicts metabolic cost relative to experimental ground truth, with lower RAEP reflecting greater predictive accuracy and alignment 
with physiological outcomes. The Area Under the Convergence Curve (AUC) measures the efficiency of an optimizer by integrating error reduction 
across iterations; a smaller AUC indicates faster and more reliable convergence toward an optimal assistance profile. The Adjusted Rank Index (ARI) 
evaluates the consistency and robustness of optimizer performance across repeated simulations, helping to identify stable strategies that are more 
likely to generalize in practice. The predicted metabolic cost provides surrogate-based estimates of energy expenditure under different assistance 
profiles, normalized to baseline walking, where lower values suggest potential reductions in user effort. Finally, optimization runtime represents 
computational latency in simulation rather than biological stabilization time, allowing algorithms to be compared on efficiency while acknowledging 
that human-in-the-loop experiments are dominated by physiological adaptation timescales.

yielded a metabolic cost reduction of up to 53%, with GSA 
achieving the lowest normalized metabolic cost (−1.06) at a Peak 
Magnitude of 0.20 and End Timing of 0.83. This assistance 
timing aligns with late stance, coinciding with peak activity of the 
hip extensors, and is supported by prior biomechanical studies 
emphasizing late-phase torque application to reduce muscular 
demand (Mohammadzadeh Gonabadi et al., 2020; Rodríguez-
Fernández et al., 2021). While BO and EBO were expected to 
outperform due to their probabilistic acquisition strategies that 
balance global exploration with exploitation (Kutulakos and Slade, 
2024), PSO showed superior efficiency (AUC = 0.24) with a modest 
computation time of 1.26 s, leveraging swarm intelligence to rapidly 
converge on high-performing parameter sets (Lee et al., 2017). EBO 
predicted the steepest convergence (ARI = 3.29 × 10−5), followed 
by BO (ARI = 2.32 × 10−5), though both required longer runtimes 
(24–26 s). CMAES, CE, GSA, and GA all converged in less than 1 s, 
but CMAES and CE lagged in cost minimization, and GA failed to 
reach a meaningful minimum. Gaussian noise (σ = 0.046) and 10 

repeated trials of 200 evaluations ensured robust convergence and 
reproducibility (Kutulakos and Slade, 2024).

Our findings partially diverge from Kutulakos and Slade 
(Kutulakos and Slade, 2024), who simulated HIL optimization 
for ankle exoskeletons and found that BO and EBO converged 
fastest (∼60 evaluations) in a 4-parameter space (peak time, rise 
time, fall time, and peak torque), outperforming CMAES and 
CE. While their CMAES showed robustness in high-dimensional 
and time-varying settings, our results showed CMAES trailing 
behind BO-based methods in a simpler 2D space. This likely 
reflects BO’s higher exploration constant (Snoek et al., 2012), 
facilitating broader sampling and more efficient convergence in low-
dimensional landscapes (Kutulakos and Slade, 2024). Comparisons 
with experimental HIL benchmarks underscore the practical 
implications of these findings. Zhang et al. reported a 17% ± 3% 
metabolic reduction with CMAES over ∼2 h for ankle exoskeleton 
optimization (Zhang et al., 2017); Ding et al. predicted a 17.4% ± 
3.2% reduction with BO for a hip exosuit in ∼90 min (Ding et al., 
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2018); and Slade et al. predicted a 23% ± 8% reduction using 
short walking bouts with BO for ankle exoskeleton in a real-
world setting (Slade et al., 2022). Our surrogate-based framework 
predicted a 53% reduction in seconds, reinforcing its time-efficiency 
and optimization efficacy for pre-tuning and algorithm evaluation 
before live deployment.

The broad low-cost region identified by the surrogate 
landscape (Peak Magnitude = 0.10–0.20, End Timing = 0.75–0.85; 
Figure 5B) suggests that diverse parameter sets may yield similar 
benefits, offering greater flexibility for adaptive controllers 
than the narrow optima often observed in experimental HIL 
studies (Zhang et al., 2017; Ding et al., 2018; Slade et al., 2022; 
Wang et al., 2022). Moreover, the optimal End Timing of 0.83 
supports phase-aligned torque delivery targeting peak hip extensor 
activity (Mohammadzadeh Gonabadi et al., 2020), in contrast 
to ankle-focused strategies that support plantarflexors during 
push-off (Slade et al., 2022). The moderate Peak Magnitude of 
0.20 Nm/kg mitigates over-assistance risks while maintaining 
biomechanical synergy (Lin et al., 2025). The reliability of PSO and 
BO/EBO supports their potential integration into adaptive control 
systems. At the same time, the fast execution times of CMAES 
and CE may suit applications requiring low-latency updates. 
Practically, this framework enables metabolic cost reduction in 
clinical rehabilitation (e.g., improving endurance for individuals 
with mobility impairments), enhances safety in occupational 
applications (e.g., reducing fatigue during heavy labor), and boosts 
athletic training efficiency. However, the relatively longer runtimes 
of BO and EBO (∼25 s) indicate that faster algorithms like CMAES 
or CE may be more appropriate for real-time adaptation scenarios.

To ground our parameterization biomechanically, the 
two torque parameters studied—Peak Magnitude and End 
Timing—were selected because they represent the most influential 
biomechanical factors in hip exoskeleton assistance. Peak 
Magnitude defines the level of external torque applied to 
the hip extensors during stance, directly influencing muscle 
activation and joint loading, while End Timing determines 
when assistance is withdrawn, shaping the transition into swing 
and neuromuscular adaptation. Prior experimental studies have 
shown that both magnitude and timing critically modulate 
metabolic cost and gait stability, supporting their selection as 
physiologically meaningful variables (Gonabadi et al., 2020; 
Antonellis et al., 2022; Dzewaltowski et al., 2024; Mohammadzadeh 
Gonabadi et al., 2024a; Mohammadzadeh Gonabadi and Fallahtafti, 
2025). The optimized outputs from our algorithms can therefore 
be interpreted as assistance strategies that shape the hip extension 
moment profile in ways that may reduce muscular effort or enhance 
propulsion, consistent with observed human adaptation patterns 
in exoskeleton studies. Because our analysis relied on previously 
collected experimental data, we were constrained to these two 
parameters and could not include additional variables (e.g., onset 
timing, torque profile shape). We acknowledge this as a limitation, 
and future work should extend the framework to incorporate richer 
biomechanical descriptors for improved generalizability.

Regarding the augmented dataset, interpolation and controlled 
perturbations were used to expand the input space while 
preserving biomechanical plausibility, ensuring that torque 
profiles remained within safe and physiologically realistic 
ranges observed in prior exoskeleton trials (Slade et al., 2018; 

Slade et al., 2022; Gonabadi et al., 2020). This approach enhances 
robustness without introducing unrealistic patterns. Each ML 
model underwent hyperparameter tuning via grid-search or library 
optimization. For Gradient Boosting, tree depth, number of trees, 
and learning rate were tuned; for Random Forest, number of trees 
and depth; for SVR, kernel type and penalty factor; and for ridge 
regressions, regularization coefficients. Gaussian Process kernels 
were implemented with stable defaults. Overfitting risks, given 
the modest dataset size, were mitigated using repeated five-fold 
cross-validation (100 iterations). Although leave-one-subject-out 
validation would further address inter-individual variability, it was 
not implemented here and is acknowledged as future work.

For optimization algorithms, we included a diverse set spanning 
evolutionary, swarm-based, and Bayesian families to evaluate both 
exploration and exploitation strategies in a surrogate-based HIL 
context (Myunghee et al., 2017; Slade et al., 2018; Slade et al., 
2022; Bryan et al., 2021; Ma et al., 2024; Echeveste and Bhounsule, 
2025). Gradient-based methods were excluded because surrogate 
landscapes are highly nonlinear, often non-convex, and prone to 
local minima, making them less reliable for global exploration in 
this application (Slade et al., 2018; Slade et al., 2022). Finally, while 
this study focused on simulation-based evaluation, we recognize 
the ethical considerations in extending such optimization methods 
to clinical populations. Future patient trials will require careful 
Institutional Review Board (IRB) oversight, informed consent, and 
close monitoring to ensure participant safety, especially when testing 
algorithms that adaptively adjust torque in real time.

Ultimately, selecting the most appropriate optimization 
algorithm depends on the specific application goals and targeted 
population (Kutulakos and Slade, 2024). If the primary objective 
is to achieve the maximum possible reduction in metabolic cost, 
algorithms such as GSA may be preferred, even if they require more 
iterations or longer convergence times. However, prolonged walking 
trials may be impractical or fatiguing in clinical populations, such 
as individuals with mobility impairments. In these cases, faster-
converging algorithms like PSO or CE, which can identify near-
optimal solutions within fewer iterations, may be more suitable. 
For healthy individuals, tolerating longer optimization procedures 
to achieve greater metabolic reductions may be acceptable. This 
trade-off between convergence speed and optimization accuracy 
highlights the need for thoughtful algorithm selection tailored to the 
device context and the user population (Kutulakos and Slade, 2024).

Similar simulation-first approaches have been applied in other 
engineering domains, where surrogate modeling and optimization 
have effectively reduced experimental costs and accelerated iteration 
cycles. For example, sustainable additive manufacturing has 
leveraged computational optimization to minimize resource usage 
and emissions (Oladunni et al., 2025), while deep stable learning 
methods have enhanced predictive robustness under imbalanced 
data conditions (Xu et al., 2025). Drawing from these parallels, 
our framework highlights the potential of surrogate-informed HIL 
optimization to minimize costly real-world trial-and-error, thereby 
improving scalability and translational readiness.

Integrating biomechanics and motor adaptation perspectives 
further underscores the potential of surrogate-based frameworks 
to enhance exoskeleton control. Neuromuscular adaptation during 
exoskeleton use reflects gait plasticity, whereby users adjust stride 
patterns and muscle recruitment in response to assistance, often 
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achieving improved energy efficiency over repeated sessions 
(Baud et al., 2021; Rodríguez-Fernández et al., 2021; Sanjeevi et al., 
2021). Biofeedback mechanisms and perturbation-based 
approaches have been shown to accelerate adaptation, enabling 
users to refine coordination and reduce metabolic cost more 
rapidly (Desplenter and Trejos, 2018; Dzewaltowski et al., 2024; 
Lakmazaheri and Collins, 2025). Hierarchical control strategies, 
combining high-level intent recognition with torque modulation, 
account for such adaptive processes by incorporating within-stride 
variability into optimization (Slade et al., 2022; Echeveste and 
Bhounsule, 2025). In this context, the ability of the GB surrogate 
model to capture nonlinear parameter interactions parallels these 
adaptive responses, highlighting translational potential for tailoring 
assistance strategies to inter-individual adaptation dynamics.

In practical applications, surrogate models trained on data 
from healthy individuals could provide initial estimates of optimal 
assistance parameters for new users. These predictions could then 
be refined using limited personalized trials, enabling efficient 
customization of hip exoskeleton settings for clinical or real-
world deployment. This simulation-based framework provides 
a foundation for translational application by identifying which 
optimization algorithms are most promising for HIL trials. In 
practice, surrogate-based insights can narrow the search space 
and initialize parameter settings, reducing the number of physical 
iterations required. The next step is to validate these algorithms in 
experimental HIL studies with the same hip exoskeleton device, 
where real-time metabolic feedback, user-specific adaptation, and 
fatigue effects can be directly assessed. Ultimately, this approach 
enables a more efficient pathway from simulation to clinical 
deployment, where optimization strategies can be tailored to 
patients and workers in rehabilitation and occupational settings. 

4.3 Limitations

Although the surrogate-based optimization methods 
demonstrated promising performance, several limitations 
should be acknowledged. First, based on simulations run on 
a standard laptop, the reported computation times for each 
optimization algorithm may not directly translate to realistic 
experimental scenarios (Kutulakos and Slade, 2024). In human 
trials, optimization time is largely constrained not by computational 
latency but by the participant’s physiological response to torque 
perturbations and the duration required to reach a steady 
metabolic state (Mohammadzadeh Gonabadi et al., 2024b). 
Therefore, the purpose of reporting timing metrics in this 
study was to enable a controlled, relative comparison across 
algorithms under identical computational conditions, rather 
than to suggest real-world applicability of absolute convergence 
durations (Mohammadzadeh Gonabadi et al., 2024c). Second, 
the current simulations assume instantaneous feedback from 
the surrogate model, significantly accelerating the optimization 
process. In contrast (Mohammadzadeh Gonabadi et al., 2024c), 
real HIL experiments require waiting for the human body’s 
metabolic response to stabilize, often over several minutes per 
condition (Kutulakos and Slade, 2024). Thus, although BO or EBO 
required approximately 24–26 s to converge in the framework, actual 
implementation with human participants could take substantially 

longer due to biological delays and fatigue constraints. While 
the surrogate model captures key input–output relationships, its 
predictions do not account for biological variability, adaptation, or 
real-world gait dynamics. Thus, the reported 53% reduction should 
be interpreted as a model-based prediction, pending empirical 
validation in human-in-the-loop optimization experiments.

It is important to clarify that the reported runtimes (e.g., 
BO: 26 s) represent computational latency only and do not reflect 
the dominant biological stabilization periods required in real HIL 
experiments, which often extend to several minutes per condition 
and can accumulate to ∼2 h for a full optimization session. While 
the proposed surrogate-based framework offers substantial potential 
to reduce this experimental burden, its real-world speed remains 
constrained by participant fatigue and adaptation. As a limitation, 
future work should explicitly validate the true time savings in live 
HIL optimization experiments with the same exoskeleton system 
to confirm translational feasibility. While uncertainty was partially 
quantified through Gaussian Process confidence intervals, ensemble 
variance, and cross-validation variability, we acknowledge that real-
world variability—particularly in clinical populations—may exceed 
model-based estimates. Future work should expand uncertainty 
quantification to better capture patient-specific unpredictability. 
While the present framework provides simulation-based predictions 
of optimal assistance patterns, these results have not yet been 
validated in real human-in-the-loop trials. Real-world experiments 
will be necessary to confirm the predicted metabolic cost reductions, 
capture adaptation and fatigue effects, and ensure clinical and 
translational relevance. The addition of error bars in Figure 6 helps 
convey variability in simulated outcomes, but physical trials remain 
the definitive step to establish robustness and generalizability. 
Our augmentation strategy perturbed input parameters to enrich 
surrogate training, which assumes that trial-to-trial variability in 
assistance settings can be represented as Gaussian noise. While 
this improved robustness, it does not directly model physiological 
variability or device measurement error, and future studies should 
examine whether input perturbations adequately reflect real-world 
variability in exoskeleton assistance.

Since our analysis relied on previously collected experimental 
data (Gonabadi et al., 2020; Antonellis et al., 2022; 
Dzewaltowski et al., 2024; Mohammadzadeh Gonabadi et al., 
2024a), we were constrained to the torque parameters of Peak 
Magnitude and End Timing, and could not evaluate additional 
variables such as onset timing or torque profile shape. While 
these two parameters capture key biomechanical influences 
on hip assistance, this restricted scope limits generalizability. 
Future work should extend the framework to incorporate richer 
biomechanical descriptors and multi-parameter profiles to better 
reflect physiological variability and improve translational relevance. 
Furthermore, optimization metrics such as AUC and predicted 
metabolic cost were not directly linked to biomechanics outcomes 
(e.g., gait stability, neuromuscular adaptation), as the primary aim 
was to benchmark optimization algorithms for surrogate-based HIL 
personalization. This is acknowledged as a limitation, with future 
extensions aiming to integrate biomechanics-outcome analyses. 
Finally, while simulation provided valuable insights, extending 
these methods to clinical populations will require careful ethical 
oversight, informed consent, and participant monitoring in future 
patient trials.
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The surrogate model was trained on pooled data from healthy 
adults, which may not fully capture inter-individual variability 
or the unique metabolic landscapes of clinical populations. Gait 
variability influenced by factors such as pathology, age, or fitness 
may amplify errors in optimization, as clinical users often adapt 
differently or require extended habituation (Antonellis et al., 
2018; Leibman and Choi, 2025; Mohammadzadeh Gonabadi and 
Fallahtafti, 2025). Long-term neuromuscular plasticity and learning 
effects, while critical to sustained performance, were not captured 
in our simulations. Performance differences between healthy and 
clinical groups remain a key concern; individuals with spinal 
cord injury or post-stroke hemiparesis may experience greater gait 
instability or reduced adaptability, requiring population-specific 
retraining and experimental validation (Young and Ferris, 2017; 
Zhu et al., 2021; Edwards et al., 2022; Sado et al., 2022; Lee et al., 
2025). Future studies should integrate adaptive learning models 
and validate across diverse cohorts to enhance translational 
potential.

Furthermore, this study’s optimization results were derived 
using a limited dataset from 10 healthy adults. While this cohort 
offers a proof-of-concept for healthy populations, it restricts 
the generalizability of the findings to broader user groups 
such as older adults, clinical populations, or individuals with 
gait impairments (Kutulakos and Slade, 2024). Expanding the 
dataset and incorporating more heterogeneous subject profiles 
would strengthen the robustness of the surrogate model and 
its predictive performance (Mohammadzadeh Gonabadi et al., 
2024b). Another key limitation lies in the torque control 
strategy. Using static, piecewise semi-linear torque profiles, 
defined by Peak Magnitude and End Timing, simplifies the 
complexity of dynamic human gait. While effective for initial 
modeling, real-world gait is highly adaptive and phase-varying 
(Kutulakos and Slade, 2024). Future work should incorporate 
adaptive or time-varying torque profiles that respond to real-
time biomechanical states. Additionally, the current framework 
(Kutulakos and Slade, 2024) does not incorporate physiological 
signals such as electromyography (EMG) (Lin et al., 2025), 
which could enhance surrogate modeling by capturing muscle 
activation patterns associated with metabolic demand. Future 
work could also explore incorporating other physiological or 
biomechanical outcomes, such as gait stability (Fallahtafti et al., 
2021; Mohammadzadeh Gonabadi and Fallahtafti, 2025) or joint 
loading, into the simulation framework. Prior studies involving 
ankle exoskeletons have demonstrated that integrating EMG 
can refine assistance strategies and better align them with 
natural neuromuscular control (Lin et al., 2025). Extending 
this approach to hip exoskeletons could further personalize 
assistance by tailoring torque delivery to individual muscle 
responses. Future research should also work toward expanding 
the surrogate modeling framework to support time-varying, 
high-dimensional optimization scenarios (Kutulakos and Slade, 
2024), leveraging real-time biomechanical and physiological inputs 
such as EMG to enhance adaptive control strategies across a 
wider range of users. Finally, the torque profile was modeled as 
a piecewise semi-linear function, which was selected based on 
the literature for computational efficiency and to approximate 
hip assistance torque in experimental conditions (Kutulakos and 
Slade, 2024; Mohammadzadeh Gonabadi et al., 2024a). While 

this approach is widely used, it oversimplifies the complexity of 
real gait dynamics and may reduce generalizability in clinical 
populations with irregular gait. Future work should explore more 
adaptive and physiologically informed profiles, such as EMG-driven 
or kinematic-based representations, to improve robustness and 
translational applicability. 

5 Conclusion

This study introduced a surrogate-based HIL optimization 
framework for personalizing hip exoskeleton assistance. Among the 
evaluated ML regressors, GB demonstrated the highest predictive 
accuracy (RAEP = 0.66%). When paired with global optimizers, 
GSA predicted the lowest normalized metabolic cost (−1.06), while 
PSO and EBO exhibited superior convergence efficiency based on 
AUC and ARI metrics. Beyond individual algorithm performance, 
this framework approach offers a generalized methodology for 
screening optimization algorithms and hyperparameters before any 
human testing. Researchers developing new exoskeletons or assistive 
devices can gather a small set of assistance trials, fit a surrogate 
model, and run virtual HIL optimizations to identify the algorithms 
most likely to succeed in practice. In the clinic, the same surrogate 
can guide a brief calibration session in which the optimizer samples 
a few gait cycles and then recommends patient-specific peak-torque 
magnitudes and timing parameters, delivering a custom assistance 
profile in minutes rather than hours of metabolic titration. This 
process can significantly reduce experimental burden, enhance 
reproducibility, and streamline the deployment of personalized 
assistive strategies. Looking forward, this framework could be 
embedded into real-time adaptive controllers, enabling assistance 
profiles to update dynamically as patients adapt or as clinical 
needs evolve. Future research should validate these simulation-
informed strategies in both healthy and clinical populations to 
ensure safety and translational viability. Ultimately, these steps 
will accelerate the deployment of exoskeleton technologies across 
rehabilitation, occupational, and performance domains, ensuring 
that optimization strategies remain responsive to diverse user 
populations. Beyond exoskeleton research, the methodological 
principles of surrogate-based optimization can be extended to 
other biomechanical and engineering applications where system-
level sustainability and efficiency are critical. Similar strategies 
have been successfully applied in domains such as sustainable 
additive manufacturing (Oladunni et al., 2025), underscoring 
the transferability of these approaches to wearable robotics and 
supporting their potential for broader cross-disciplinary impact. 
Future work should validate surrogate-informed settings in 
human trials, incorporate physiological signals such as EMG, 
and extend the framework to time-varying, higher-dimensional, 
and adaptive controllers that can serve diverse users in real-world 
conditions.
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