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Introduction: This study develops an intelligent, adaptable traffic control 
strategy using advanced management algorithms to enhance urban mobility 
in smart cities. The proposed method aims to minimize wait times, 
reduce congestion, and improve environmental health through better traffic 
management.
Methods: The approach thoroughly investigates and evaluates rule-based 
(Fixed-Time), optimization-based (Max-Pressure and Delay-Based), and 
machine-learning–driven (Reinforcement Learning) algorithms under various 
traffic conditions. This enables the system to automatically select the algorithm 
that most effectively minimizes wait times and reduces traffic congestion. 
Microscopic traffic simulations are employed to test the system, and various 
statistical analyses are conducted to evaluate performance. A Reinforcement 
Learning (RL) variant is further utilized to validate the method's effectiveness 
against alternative approaches.
Results: The selected algorithms are executed on high-performance Field 
Programmable Gate Array (FPGA) platforms, which are suitable for embedded, 
energy-constrained smart city environments due to their lower latency and 
power consumption compared to general-purpose GPUs. The proposed 
system achieves a speedup of over 7× compared to modern high-speed 
general-purpose processing units (GPPUs), demonstrating the efficiency of the 
custom FPGA-based pipelined architecture in real-time traffic management 
applications.
Discussion: The method not only improves traffic flow but also significantly 
reduces fuel consumption and carbon dioxide emissions. This study further 
explores how the proposed solution can be leveraged to address Kuwait’s 
significant traffic challenges and contribute to improving air quality in the region.
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smart cities, traffic signal control, field programmable gate Array(FPGA), max-pressure 
Algorithm’ delay-based optimization, intelligent transportation systems (ITS), real-time 
traffic management 

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1669952
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1669952&domain=pdf&date_stamp=2025-09-20
mailto:momany.a@gust.edu.kw
mailto:momany.a@gust.edu.kw
https://doi.org/10.3389/frobt.2025.1669952
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1669952/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1669952/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1669952/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1669952/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1669952/full
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Almomany et al. 10.3389/frobt.2025.1669952

1 Introduction

Smart cities are gaining popularity as a way to utilize new 
technologies to improve the lives of people living in cities by 
managing city infrastructure in an efficient manner. As cities 
expand and more people own cars, traffic jams become increasingly 
common, making life more complicated and exacerbating air 
pollution, greenhouse gas emissions, and fuel use. Recent 
technology advancements can be utilized effectively to address 
the traffic management issue and achieve the goals of preserving 
the environment, improving the air quality and public health, and 
boosting economic productivity (Michailidis et al., 2025), (Ault and 
Sharon, 2021).

Fixed-time plans and other traditional methods of controlling 
traffic signals do not always function effectively in cities, as 
traffic is constantly changing, leading to less efficient intersection 
operations and longer lines of cars (Banerjee, 2024). Researchers 
have developed advanced traffic signal control strategies that 
combine ideas from traffic flow theory, mathematical optimization, 
and, increasingly, artificial intelligence techniques (Michailidis et al., 
2025), (Alvarez Lopez et al., 2019). These strategies address 
these problems by constructing an efficient real-time solution 
that has the capability to overcome the issues of road queues, 
including lengthy and undesirable delays. However, researchers 
and practitioners still struggle to consistently achieve near-optimal 
control in a wide range of changing and complex scenarios as 
urban traffic systems become more complicated and larger (Ault and 
Sharon, 2021), (Ayeelyan et al., 2022).

This study examines a set of state-of-the-art algorithms for traffic 
signal control, such as Fixed-Time, Max-Pressure, Delay-Based, 
and the Hybrid Delay approach, under various demand scenarios, 
utilizing microscopic traffic simulation models (Alvarez Lopez et al., 
2019). To further expand the limits of adaptive traffic control, 
we also examine a type of reinforcement learning (RL). This 
technique can learn optimal policies by interacting with the 
traffic environment in real time (Michailidis et al., 2025), (Ault 
and Sharon, 2021), (Ayeelyan et al., 2022). By comparing these 
algorithms, we can gain insight into their strengths and weaknesses, 
which enables us to select the most effective control strategy for a 
given traffic condition.

While the software-level algorithm introduces improvements at 
the traffic-responsive level, high-demand urban corridors introduce 
more timing challenges. To achieve the desired level of real-
time requirement, high-speed hardware computation devices can 
be used, such as the field programmable gate arrays (FPGAs) 
platform (Almomany and Jarrah, 2024), (Jarrah et al., 2022a), 
(Jarrah et al., 2022b). Delays in making decisions, even as short 
as a few milliseconds, can lead to significant difficulties at busy 
intersections (Banerjee, 2024), (Helbing et al., 2000). This study also 
investigates the possibility of implementing these algorithms on the 
FPGA devices, which can process data in parallel to get decision 
cycles with very low latency (Banerjee, 2024). FPGA technology not 
only speeds up computations but also makes it possible to deploy 
intelligent transportation systems in a way that is scalable and uses 
less energy (Almomany et al., 2020).

The work also has a positive environmental impact. State-of-the-
art traffic control systems contribute to reducing vehicle emissions 
and fuel consumption by making traffic flow more smoothly 

and reducing stop-and-go conditions (Alvarez Lopez et al., 2019), 
(Ayeelyan et al., 2022); this is especially important in places like 
Kuwait, where urban growth as well as economic growth have made 
traffic worse, which is a big concern for air quality (Helbing et al., 
2000). This study demonstrates the real benefits of using intelligent 
systems in Kuwait by putting the research in the perspective 
of the country’s unique traffic patterns and infrastructure. These 
benefits include reducing congestion hot spots and enhancing urban 
air quality.

The proposed study uses a strict experimental design with multi-
seed and multi-demand (Alvarez Lopez et al., 2019) simulations 
to make sure that the results are strong and can be applied 
to other situations. This method takes into account the random 
differences in how vehicles arrive and how drivers behave, which 
enables us to make statistically sound conclusions about how each 
control algorithm performs compared to the others. Furthermore, 
a set of related statistical analyses, including confidence intervals 
and hypothesis testing, is performed to demonstrate the observed 
differences, ensuring that the recommendations are based on 
substantial evidence.

This proposed study enables three significant contributions. 
First, it fills a large gap in the literature on holistic algorithmic 
benchmarking (Ault and Sharon, 2021), (Alvarez Lopez et al., 2019), 
(Almomany and Jarrah, 2024) by giving a detailed comparison of 
four state-of-the-art traffic control algorithms and an RL-based 
approach under various demand scenarios. Second, it shows that 
FPGA-based hardware acceleration for traffic control decision-
making is feasible and valuable, offering significant improvements in 
computational latency that are important for real-time applications. 
Third, by situating the study within the context of Kuwait’s 
specific areas, it introduces a functional, constructed approach 
to utilizing new traffic control systems to address challenges in 
this area, which could also be applicable in other cities around 
the world. This study also contributes to the body of knowledge 
on how intelligent traffic control systems can enhance the quality 
of life for residents in smart cities by incorporating algorithmic 
innovation, rigorous simulation, hardware optimization, and 
local contextual analysis (Michailidis et al., 2025), (Ault and 
Sharon, 2021), (Alvarez Lopez et al., 2019). It shows how important 
it is to combine different areas of study, like traffic engineering, 
artificial intelligence, and hardware design, to come up with 
solutions that work in both theory and practice, especially in 
complicated urban settings.

This study investigates four main types of traffic signal 
control algorithms: Fixed-Time (Muralidharan et al., 2015), Max-
Pressure (Varaiya, 2013), Delay-Based (Wu et al., 2018), and 
a Hybrid approach (Kouvelas et al., 2017). These algorithms 
range from static scheduling to highly responsive methods that 
depend on the current state of the system. We make use of 
the Simulation of Urban Mobility (SUMO) platform, which 
is a popular tool for modeling and analyzing transportation 
networks and control strategies. This open-source, microscopic 
traffic simulator systematically implements the aforementioned 
algorithms in realistic urban settings (Alvarez Lopez et al., 2019). 
This section thoroughly describes the design and functionality 
of each algorithm that enhances the traffic control system. 
Also, we provide a comprehensive overview of the design and 
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operation of each algorithm employed to enhance the traffic
control system. 

1.1 Advanced traffic signal control 
algorithms

1.1.1 Fixed-time control
One of the oldest methods in traffic management is fixed-time 

signal control, in which traffic signals work based on predetermined 
cycle lengths, phase splits, and offsets. Usually, these numbers are 
based on past traffic volumes and are only updated occasionally. The 
most promising aspect of this method is that it’s easy to understand, 
set up, and maintain. However, it struggles to accommodate real-
time traffic fluctuations, which often result in inadequate use of 
green light durations during times of varying demand levels.

Making use of the well-known Webster’s formula, shown below, 
that is still widely documented in modern studies (Gartner et al., 
2001), a fixed-time control strategy can be mathematically defined 
by enhancing the cycle length Fc and the green times gnt
for each stage t, usually by minimizing the average delay per 
vehicle, as in Equation 1.

Fc =
1.5 ⋅ Ltime + 5

1−Y
, gnt =

yt

Y
(Fc − Ltime) (1)

Where Ltime is the total amount of time lost per cycle and Y is the 
sum of the critical flow ratios yt for all approaches. This formulation 
attempts to keep the flow of traffic through the intersection while 
balancing delays.

Despite its constraints in dynamic circumstances, fixed-time 
control remains a standard for comparative investigations. This 
persistence is due to its extensive historical use and its fundamental 
role in the design of basic traffic signals (Li et al., 2014). For 
example, in [(Li et al., 2014)], the authors used fixed-time control 
as a baseline for testing adaptive systems, demonstrating how much 
more effective and responsive strategies were at achieving results. 
This work highlights how classical fixed-time plans serve as the basis 
for evaluating actuated and adaptive algorithms. 

1.1.2 Max-pressure control
In 2013, Varaiya (Varaiya, 2013) proposed a novel approach 

to traffic signal control known as max-pressure control. This 
decentralized strategy dynamically selects signal phases to maximize 
the pressure, defined as the difference between incoming and 
outgoing vehicle queues, weighted by lane capacities. The method 
naturally encourages the network to focus on load balancing 
by prioritizing movements with significant imbalances. For every 
intersection, the phase ϕ∗ is mathematically chosen to make this 
pressure as high as possible. Here, μab is the saturation flow rate from 
lane a to lane b, and qa and qb are the lengths of the queues.

ϕ∗ = argmax
ϕ
∑
(a,b)∈ϕ

μab (qa − qb) (2)

This formulation yields an emergent property: the network 
tends to self-stabilize, maintaining low overall queue lengths 
even under heavy traffic. Extensive research has examined the 
stability and throughput optimality of this approach. For instance, 
(Wongpiromsarn et al., 2012) demonstrated that max-pressure 

control maximizes throughput under certain stochastic demand 
models. More recently, (Kouvelas et al., 2017) provided empirical 
evidence of its applicability in urban networks, showing that max-
pressure policies outperform static timing plans, particularly in 
environments with highly variable demand. 

1.1.3 Delay-based control
The main objective of delay-based controllers is to minimize 

the total time that cars have to wait at intersections. While max-
pressure strategies examine the lengths of queues, delay-based 
strategies use real-time estimates to predict vehicle delays. These 
strategies dynamically adjust the duration of green lights to reduce 
the overall delay.

To reach this goal, the process of making decisions at each 
interval includes looking at the following, as in Equation 3:

min
gt
∑

t
Dt (gt) ,and:∑

t
gt ≤ C− L (3)

where Dt(gt) is the estimated delay for approach t based on the green 
time given to it gt, and C is the length of the traffic cycle. People 
often use cumulative arrival and departure curves or models like the 
Akçelik delay formula to figure out delay functions.

Papageorgiou et al. (2003) found that adding real-time delay 
measurements to highly congested networks significantly improves 
their performance. Lin et al. (2015) also used short-term traffic 
predictions to help reduce delays, which made the average wait time 
at intersections even shorter. 

1.1.4 Hybrid delay approach
The hybrid delay management approach combines components 

of both delay minimization and pressure balancing. It adjusts 
policies based on traffic conditions. When there are little to moderate 
traffic conditions, the system runs in delay minimization mode to 
reduce travel times. As traffic becomes more congested, it shifts 
toward max-pressure or queue balancing to avoid traffic congestion.

Thereby, the hybrid controller effectively addresses the following 
optimization problems as in Equation 4.

{{{
{{{
{

argminϕ∑
a

Da (ga) , ρ < ρth

argmaxϕ ∑
(a,b)∈ϕ

μab (qa − qb) , otherwise
(4)

Where ρ is the level of network congestion (such as the average 
occupancy) compared to a threshold ρt, these kinds of hybrid 
methods are particularly effective even when traffic demand 
fluctuates.

Diakaki et al. (2002), Michailidis et al. (2025) researches show 
that hybrid controllers can keep delays low in regular traffic and 
control spillbacks in heavy traffic. Due to their versatility, these 
controllers are an excellent choice for addressing various types of 
city traffic challenges. 

1.1.5 Reinforcement learning in traffic signal 
control

Reinforcement Learning (RL) has become an effective tool 
(Gabler and Wollherr, 2024), (Pham et al., 2025) for improving 
traffic signal control by enabling an agent to develop adaptable 
strategies that reduce congestion and delay (Agrahari et al., 2024). 
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RL frameworks do not rely on predefined traffic patterns, unlike 
traditional methods. Instead, they learn optimal ways to control 
traffic by interacting with the environment (Wang et al., 2024). 
The intersection control problem is usually modeled with a Markov 
Decision Process (MDP). This model encompasses various states, 
including the length of a queue and the number of people in 
a room, as well as decisions such as changing the phases of a 
signal and rewards designed to reduce wait times or increase 
throughput. Recent studies have indicated that RL works very well 
in traffic situations that are constantly changing and challenging 
to predict. For instance, in (Saadi et al., 2025), the authors 
demonstrated how the RL approach can be applied in traffic control 
management, significantly reducing delays compared to fixed-time 
or actuated systems. They demonstrate that it can reduce delays 
by a significant factor compared to fixed-time or actuated systems. 
In an existing study (Van der Pol and Oliehoek, 2016), the authors 
also demonstrated that deep Q-learning methods can change traffic 
lights to fit patterns of congestion that do not happen frequently; 
this makes the whole system work much better. These improvements 
make RL a promising approach to developing innovative traffic 
management systems that can adapt in real-time, thereby helping to 
ease congestion in cities.

A Markov Decision Process (MDP) is often used to describe 
the problem of traffic signal control. It is defined by the tuple 
(S,A,P,R,γ), where: 

• S represents an entire set of states, including the number of cars 
on incoming lanes and the total length of the queues.
• A is the set of prospective actions, such as determining the next 

traffic phase and how long that the green light remains on.
• P(s′|s,a) represents the state transition probability, which 

indicates how likely it is that you will move from state s to state 
s′ when action a is taken.
• R(s,a) represents the immediate reward obtained after taking 

action a in state s; this reward is normally designed to minimize 
total delay or queue length.
• γ ∈ [0,1] is the discount factor, indicating the significance of 

future rewards.

The goal is to identify a policy π:S→ A that optimizes 
the anticipated cumulative discounted reward over time as 
described in Equation 5.

max
π
 𝔼[

∞

∑
t=0

γtR(st,at)] (5)

where the action at = π(st) is chosen according to the policy at time 
step t.

The rest of this proposed research study is organized in 
the following order: The investigation of the recent research on 
advanced traffic management is handled in Section 2, and FPGA 
high-speed computation platform is discussed in Section 3. In 
Section 4, the methodological framework is laid out, including the 
simulation models, traffic demand scenarios, and hardware design 
processes. Section 4 illustrates and discusses the experimental 
results, including the performance of the algorithms with varying 
traffic loads and the significant speedup achieved with FPGA 
acceleration. Section 5 examines the practical implications of this 
for real-world use in Kuwait, focusing on fuel savings and reduced 
emissions. Finally, Section 6 wraps up the paper by listing the 

main findings, the study’s limitations, and recommendations for 
future research. 

2 Literature review

Over the past 5 years, numerous researchers have investigated 
the implementation of advanced traffic signal control systems 
to mitigate traffic congestion in cities. Recent studies have 
increasingly utilized data-driven methods, such as reinforcement 
learning (RL) and deep learning, to develop adaptive traffic light 
strategies that outperform fixed-time or actuated controls. In 
a related study (Michailidis et al., 2025), the authors proposed 
a thorough review that demonstrates how RL frameworks 
enable traffic controllers to learn the most effective policies 
from immediate changes in traffic state, thereby making them 
more responsive to unpredictable demand. In a parallel manner, 
the authors in (Ayeelyan et al., 2022) demonstrated that 
incorporating experience replay and target networks into deep 
RL architectures yields significant reductions in average delays at
junctions.

Researchers have also investigated strategies that combine 
classical queue-based or pressure-based models with learning 
methods; these are similar to algorithmic improvements. The 
authors of Kouvelas et al. (2017) indicated that networks can stay 
stable no matter how much traffic there is by using max-pressure 
logic and local delay minimization together. In Lin et al. (2015), 
the authors employed predictive control strategies that utilize short-
term traffic forecasts to make the flow smoother and reduce 
spillbacks simultaneously.

Alvarez Lopez et al. (2019) enhanced the SUMO simulation 
framework to increase its scalability, allowing it to accommodate 
a range of demanding experiments. This enhancement made it 
possible to test traffic management algorithms using statistics 
rigorously; these features have been essential to evaluate RL-based 
and hybrid controllers in real-world situations with stochastic 
vehicle arrivals.

At the same time, the application of hardware solutions is 
another crucial area of research. According to Banerjee (2024), 
real-time applications can be made achievable even in high-
traffic environments by drastically lowering latency through the 
development of intelligent traffic light controllers on FPGA 
devices. This line of investigation underscores the importance 
of computational efficiency in delivering workable and scalable 
solutions. The design of controllers that can function effectively 
in various urban networks while maintaining performance in the 
presence of sensor noise and erratic driver behavior remains a 
challenge. Innovation in city traffic management solutions is driven 
by the necessity to address these issues. Table 1 gives a short 
summary of important studies from the last 10 years that used 
AI to control traffic lights. It describes the methods used in each 
study, such as reinforcement learning, deep learning, or multi-
agent systems, as well as the main results and any improvements in 
performance that were reported. This summary puts the proposed 
method in the context of other research and shows how AI 
is becoming more and more important for improving urban
mobility.
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TABLE 1  Recent AI-Based traffic signal control approaches and their performance outcomes.

Study/Year Approach Key contribution Results References

Tan et al. (2019) Deep RL (DQN) Applies DRL with realistic traffic scenarios +47% delay reduction vs. fixed-timing Tan et al. (2024)

Gao et al. (2017) Deep RL w/experience replay Learns from raw traffic data Up to 86% reduction vs. fixed Gao et al. (2017)

Agrahari et al. (2024) Review paper AI techniques for adaptive TSC Taxonomy of RL, DRL, fuzzyetc. Agrahari et al. (2024)

Xiao (2025) Reinforcement Learning Highlights RL benefits in TSC Improved flow Xiao (2025)

Othman et al. (2025) Multi-agent RL Decentralized multimodal control Person-delay optimized Othman et al. (2025)

3 FPGA technology

Field Programmable Gate Arrays (FPGAs) have become 
powerful tools for spatially reconfigurable computing. They have 
been used successfully in many areas, including pattern recognition, 
image processing, signal processing, real-time control systems, 
networking, machine learning, cybersecurity, and cyber-physical 
systems (Almomany et al., 2022a). This technology enables the 
possibility of dynamically changing control logic and data paths at a 
very fine level, even while the program is running. This means that 
hardware configurations can be very closely matched to the time and 
algorithmic needs of particular applications (Almomany and Jarrah, 
2024). Because of this, FPGA-based solutions can attain close to the 
high performance and low energy use of dedicated ASICs while still 
being as flexible as software implementations on general-purpose 
multi-core CPUs (Almomany et al., 2020). Three main types of 
FPGA-based spatially reconfigurable environments are popular in 
business: commodity FPGA accelerator cards, stand-alone System-
on-Programmable-Chip (SOPC) systems, and new cloud-based 
FPGA platforms. Accelerator cards, which are often used as PCIe 
add-ons, are designed for high performance and include high-end 
FPGAs with extensive local DDR memory. They also often come 
with high-speed networking and flash storage for configuration. 
SOPC systems, on the other hand, have both embedded processors 
and FPGAs, making them stand-alone computing platforms. Cloud 
providers now offer FPGA resources that can be managed through 
virtualized infrastructures, such as OpenStack, making them more 
widely available (Almomany et al., 2022b). FPGA deployments 
have some benefits, but they also have significant drawbacks. For 
example, it can be hard to optimize time-shared hardware resources, 
and there are long reconfiguration delays—sometimes lasting 
seconds—because their internal clock speeds are over 300 MHz 
(Almomany and Jarrah, 2024), (Almomany et al., 2022a). 

4 Methodology and simulation 
environment

For this study, we used the Simulation of Urban 
Mobility (SUMO) (Erdmann, 2015) to investigate the four distinct 
approaches of regulating traffic signals: Fixed-Time, Max-Pressure, 
Delay-Based, and a Hybrid Delay/Max-Pressure approach. Utilizing 
the proposed grid tool, the netgenerate, we created a regular 
grid network with 16 intersections, each with two lanes in each 

direction and 300 m of road between them. We used the “–tls.guess” 
option to automatically add traffic lights at each intersection, 
making the cross-junctions appear more realistic, like those found 
in real cities.

The SUMO tool, known as randomTrips.py, generates 
random traffic demands by creating trips for vehicles between 
random pairs of origins and destinations throughout the entire 
network. We established three levels of traffic demand to make sure 
that there were a variety of congestion situations: 

• Low demand: 1200 trips per hour (every 3 s).
• Medium demand: trips every 2 s (about 1800 trips per hour).
• High demand: trips every 1 s (about 3600 trips per hour).

We ran each level of demand with several different independent 
seeds (42, 123, 2025, 5555, and 9999) to account for the random 
changes in the number of vehicles arriving and the amount of 
network congestion.

We used the TraCI API to connect each control strategy to 
SUMO through a Python script. The script altered the phases 
of the traffic lights according to the algorithm. The Fixed-Time 
controller made sure that each phase had a fixed cycle of 30 s. 
The Max-Pressure controller selected the phase with the most 
significant difference between the lengths of the incoming and 
outgoing queues. It did this at each timestep. The Delay-Based 
controller prioritized phases with the longest lane delays, while the 
Hybrid controller utilized both pressure and delay heuristics with 
configurable thresholds.

The Max-Pressure algorithm was parallelized and written in 
VHDL to work with FPGA platforms, aiming to explore hardware 
acceleration. This design utilizes parallel comparators and counters 
to achieve intersection decision latencies of under 2 ns, which is 
significantly faster than CPU micro-benchmarks that average 37 ns 
per intersection decision.

All of the simulations kept track of critical data, such as the 
number of vehicles waiting, the average lane occupancy, and the 
amount of CO2 emissions. They did this over 3600 simulation steps, 
which is the same as 1 hour of traffic flow. The data was then 
stored in structured CSV files for later analysis. Table 2 gives a 
full list of the simulation parameters and experimental setups used 
in this study. We adjusted the frequency of trips to evaluate the 
effectiveness of controllers under three different road conditions: 
low, medium, and high. To assess the robustness of the results, 
multi-seed experiments were conducted by systematically varying 
the random seed in traffic generation. This approach enabled the 
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TABLE 2  Summary of experimental configurations.

Parameter Value

Grid size 4× 4intersections (16 total)

Road length 300 m per segment

Lanes 2 lanes per direction

Traffic lights Automatically generated with –tls.guess

Demand levels Low (3 s/trip), Medium (2 s/trip), High (1 s/trip)

Seeds used 42, 123, 2025, 5555, 9999

Simulation duration 3600 steps (1 h)

Metrics logged Total waiting, mean waiting, CO2emissions

possibility of accomplishing statistical analysis on different types 
of traffic realizations. We developed each control approach as a 
Python script that operates in real-time with SUMO, adjusting the 
phases of traffic signals according to the logic of each approach. At 
the same time, a Max-Pressure controller architecture was designed 
in VHDL to run on FPGA platforms, aiming to explore hardware 
acceleration. This demonstrated that the latency of calculations was 
significantly reduced and the throughput was increased compared 
to CPU-based implementations. Additionally, SUMO’s emission 
modules were utilized to track CO2 emissions, allowing for the 
simultaneous investigation of both environmental and traffic effects. 
Stop-and-go traffic at signalized intersections, frequent speeding up 
and slowing down, and long periods of idling are the main causes of 
CO2 emissions. Our proposed adaptive signal control method cuts 
down on fuel consumption and, as a result, CO2 emissions by cutting 
down on the time cars spend idling and improving the timing of 
green light phases.

Figure 1 illustrates an innovative framework for the suggested 
innovative traffic management system. The system utilizes an AI-
based selector to continuously monitor real-time road conditions, 
including the number of vehicles and the length of queues. Then 
it selects the most effective method for controlling traffic. This 
selector examines several factors, including total wait time, CO2
emissions, and queue statistics, to identify the algorithm that 
works best. Then, the chosen traffic control logic, which can 
be Max-Pressure, Delay-Based, Hybrid, or any other advanced 
reinforcement learning method, is implemented on FPGA hardware 
so that it can respond in real-time. The FPGA then sends 
control signals to traffic lights, enabling the system to adapt 
and enhance traffic flow in response to changing demand levels, 
all facilitated by continuous feedback loops. The FPGA-based 
computing design can construct an efficient pipelined architecture 
that enables the overlapping of multiple instructions, allowing more 
operations to be executed within each clock cycle. This architectural 
choice is particularly beneficial for applications with a real-time 
requirement. Furthermore, the design’s scalability benefits from 
the flexible resources offered by FPGAs; higher-capacity devices 
can support more complex implementations (Almomany et al., 
2020). By utilizing FPGAs with greater resources, the system can 

be extended to handle more sophisticated designs. This adaptability 
ensures that the system can meet growing computational demands 
while maintaining real-time responsiveness (Almomany et al., 
2024). Numerous studies have evaluated the cost-effectiveness 
of using field programmable gate arrays (FPGAs) as computing 
platforms to reduce energy consumption while meeting real-time 
performance requirements. For instance, (Qasaimeh et al., 2019) 
highlight the significant benefits of FPGAs in real-time embedded 
applications, especially in signal and image processing. Compared to 
traditional CPUs and GPUs, FPGAs offer greater parallelism, lower 
latency, and hardware-level reconfigurability, enabling more efficient 
execution of complex computations. These features make FPGAs 
particularly suitable for embedded systems operating under strict 
resource constraints. Additionally, FPGAs exhibit deterministic 
behavior and superior energy efficiency—critical advantages for 
time-sensitive applications such as real-time traffic control in 
smart cities. Further research supports their applicability in edge 
computing, where consistent throughput across varying workloads, 
architectural flexibility, and fine-grained parallelism are essential. 
Notably, FPGAs demonstrate 3—4 times lower power consumption 
and up to 30.7 times higher energy efficiency compared to GPUs 
(Biookaghazadeh et al., 2018), making them ideal for energy-
constrained IoT environments. FPGAs come in different classes with 
varying resource capabilities. Standalone FPGA boards, which are 
well-suited for commercial and academic use, typically cost between 
$200 and $800. More advanced boards designed for complex 
applications may range in the thousands of dollars [Ref]. While the 
initial cost of FPGA platforms may exceed that of general-purpose 
microcontrollers or GPUs, their long-term advantages—such as 
energy savings, reusability, and reliability—can outweigh the upfront 
investment. As noted by Maschi et al. (2021), integrating FPGAs into 
large-scale commercial systems may require software adaptations 
and infrastructure realignment, potentially increasing initial costs. 
However, in smart city and IoT deployments, their low power 
consumption, reconfigurability, and long operational lifespan make 
FPGAs a cost-effective and sustainable solution, particularly for 
cities with limited budgets (Ramamoorthy, 2025).

5 Results and discussion

We used the SUMO traffic simulator to develop and evaluate 
four traffic control algorithms in the first part of this study: Fixed-
Time, Max-Pressure, Delay-Based, and a Hybrid strategy. Our 
initial attempts were conducted with a steady traffic demand of 
approximately 3,600 vehicles, following a static pattern. Under these 
circumstances, the results clearly showed that Delay-Based and 
Hybrid controllers performed significantly worse than Fixed-Time 
and Max-Pressure strategies in terms of both total waiting time 
(Figure 2) and the accumulated area under the curve (AUC) of 
waiting vehicles (Figure 3). The Delay-Based and Hybrid strategies 
had mean waiting times that were too high, with more than 
1600 vehicles waiting. In contrast, the Fixed-Time and Max-Pressure 
strategies maintained their values at significantly lower levels, 
around 78 and 77, respectively.

The significant variation observed can largely be attributed 
to the fact that the early Delay and Hybrid controllers had 
naive parameter settings, such as overly conservative thresholds 
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FIGURE 1
Intelligent AI-FPGA-Integrated Framework for Adaptive Traffic Signal 
Control. The system monitors road conditions, utilizes AI to select an 
appropriate algorithm according to aspects such as emissions and 
wait times, and accelerates control execution on FPGA hardware.

or basic delay estimates, which made the phase switching less 
responsive. As a result, Fixed-Time and Max-Pressure maintained 
stable cycle executions, even when traffic loads were consistently 
low, effectively preventing queues from growing too quickly. These 
insights informed the addition of adaptive logic to the final design, 
allowing the system to monitor real-time queue lengths and phase 
delays. This enables it to switch to more stable algorithms, such as 
Max-Pressure or Fixed-Time, when the Delay or Hybrid controllers 
are not functioning as expected.

We realized that static, single-demand simulations do not 
accurately reflect how fundamental urban traffic changes. To 
address this, we introduced three demand levels–Low, Medium, and 
High–and ran multiple seeds to introduce random variability. This 
approach created a variety of trip distributions to more closely mimic 
real-life traffic situations. The multi-seed trials showed that the 
variations in performance between each of the algorithms decreased 
significantly when the conditions were more realistic. For instance, 
under high demand, the average wait times for all controllers stayed 
close to 80 vehicles, with standard deviations less than 1.0.

Table 3 and Figure 4 present these combined results, 
which confirm that adjusting delay thresholds and hybrid 
switching strategies significantly improved performance during 
fluctuating traffic conditions. These enhancements demonstrate the 
framework’s robustness in maintaining smooth traffic flow under 
unpredictable demand patterns.

This study established an emission framework to estimate 
the quantity of CO2 emissions from automobiles under each 
proposed traffic control strategy in order to evaluate the strategies’ 
environmental effects. The total emissions were figured by 
incorporating immediate fuel consumption and speed-dependent 
emission rates for all cars, using approaches comparable to 
those found in the Motor Vehicle Emission Simulator (MOVES) 
developed by the U.S. Environmental Protection Agency,and 
Handbook Emission Factors for Road Transport (HBEFA) 
frameworks (Erdmann, 2015), (Barth and Boriboonsomsin, 2000) 
that are commonly used in Europe. These models link the speed 
and acceleration information of vehicles to emission indicators, 

which lets us roughly measure emissions in the proposed traffic 
simulations. In our tests, we found that the total CO2 emissions 
from the different control algorithms were broadly similar; this 
means that none of the approaches delivered significant variations 
in overall emission rates given the demand scenarios and cycle 
lengths we employed. Figure 5 shows how much CO2 each algorithm 
produces in comparison to the others.

It is important to note, however, that although our specific 
results did not show an apparent decrease, numerous studies 
have demonstrated that reducing traffic congestion generally leads 
to improved air quality and lower greenhouse gas emissions by 
reducing idle times and making stop-and-go driving patterns 
smoother (Cui, 2025), (Jiang et al., 2017); Thus, innovative 
traffic management systems are crucial not only for enhancing 
mobility but also for significantly benefiting the environment. 
Recent advancements reveal that the environmental benefits and 
capacity enhancements of intelligent traffic control systems can 
be significantly improved by the incorporation of Connected 
Automated Vehicles (CAVs). For example, (Qin et al., 2024) created 
an analytical model for mixed traffic at unsignalized priority 
intersections that included both connected automated vehicles 
(CAVs) and regular vehicles (RVs). Their results show that more 
CAVs, better headways, and platoon formation all make minor 
roads much more useful. These insights show that FPGA-accelerated 
adaptive control systems and new CAV technologies could work 
together to make urban intersections more efficient while also 
reducing emissions.

This study presents an FPGA-accelerated architecture that 
executes traffic control computations in parallel, significantly 
reducing decision latency. This comes in addition to improvements 
to the algorithms. The constructed hardware solution utilizes 
parallelism and pipeline construction to expedite decision-making 
for all four traffic control algorithms, as shown in Figure 6.

For example, the Max-Pressure algorithm was run on an FPGA 
with parallel lane counters that fed a multi-stage comparator tree. 
This resulted in a fully pipelined architecture with approximately 
three stages for an 8-lane intersection as shown in Figure 7. This 
allows one decision to be made at each intersection every clock 
cycle after the pipeline is complete, resulting in a total latency of 
approximately 15 ns on a 200 MHz device.

As shown in Table 4, Fixed-Time had been translated into a 
periodic state machine that required only one stage (latency ≈
5 ns). Delay-Based and Hybrid controllers used shared counters and 
more threshold comparators with 2–4 pipeline stages. The FPGA 
is approximately 2–7 times faster than the Apple M4 Max CPU 
baseline, which results in an average of 36.78 ns per decision. It also 
guarantees deterministic throughput.

These results demonstrate that FPGA acceleration is beneficial 
not only for the Max-Pressure controller, which requires substantial 
processing power, but also for simpler algorithms, where the FPGA 
ensures the system operates at high speed consistently, regardless 
of the demand. In the Max-Pressure approach, the constructed 
design has a multi-level comparator tree to determine the highest 
level of differential pressure. On the other side, the Delay-Based 
controller used parallel delay accumulators for each lane, followed 
by threshold comparators. The Fixed-Time controller was linked to 
a minimal period counter, which only needed one pipeline stage. 
For the Hybrid controller, a single architecture was created that 
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FIGURE 2
Initial single-demand results showing significantly higher waiting times for Delay and Hybrid controllers versus Fixed-Time and Max-Pressure under 
3600 vehicle scenario.

FIGURE 3
Initial comparison of total waiting time across Fixed-Time, Max-Pressure, Delay-Based, and Hybrid controllers on baseline scenario.

used shared parallel counters for both queue lengths and delays. 
Based on real-time traffic levels, multiplexers determined the best 
strategy, allowing them to switch between delay-based thresholds 
and pressure-based decisions. Figure 8 illustrates the proposed 
approach for parallelizing and implementing the constructed design 
on an FPGA.

In Figure 9, the design reveals a parallel pipeline structure for 
Fixed-Time, Max-Pressure, Delay-Based, and Hybrid controllers. 
These controllers all process incoming traffic data streams 
simultaneously. A selection mechanism, which takes into account 
current traffic conditions, determines which control strategy to 
employ. This approach significantly reduces decision latency and 
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TABLE 3  Mean waiting times (vehicles) under multi-seed experiments.

Algorithm Low demand Medium demand High demand

Fixed-Time 77.27± 0.60 80.22± 0.21 80.68± 0.32

Max-Pressure 78.62± 0.96 80.42± 0.20 80.93± 0.17

Delay-Based 55.37± 10.75 79.63± 0.09 80.47± 0.08

Hybrid 78.20± 0.68 80.28± 0.30 80.74± 0.19

TABLE 4  Estimated FPGA pipeline latencies and speedups over the CPU implementation.

Algorithm Pipeline stages Latency (ns) Speedup vs. CPU

Max-Pressure 3 ≈15 2.5×

Fixed-Time 1 ≈5 7×

Delay-Based 2 ≈10 3.5×

Hybrid 4 ≈20 1.8×

FIGURE 4
Mean waiting times under low, medium, and high traffic demand levels, comparing all four algorithms.

facilitates multi-metric optimization, including delay, CO2, and 
throughput.

We first modeled the FPGA VHDL modules in Python to 
ensure they were correct. Then, we utilized high-level synthesis 
(HLS) frameworks to convert them into synthesizable VHDL 
automatically. This made it easy to look into pipeline depths and 
trade-offs in resources quickly. We used ModelSim to simulate 
the IP cores and sent them to a Kintex-7 device to examine the 
execution time.

While using the FPGA high-speed computation platform offers 
several advantages, its practical deployment presents multiple 
challenges. The high initial cost of these dedicated platforms, 
along with the need for more expertise in hardware description 
languages and underlying hardware, can be a major concern; this 
expertise is required as the process of optimization to create a more 

efficient design requires such knowledge. The integration with data 
acquisition devices and adapting to new smart sensor requirements 
may also demand additional effort to address compatibility and 
reliability issues. To overcome these challenges, city planners and 
technology providers must collaborate to ensure that new TMS are 
implemented in a way that is both environmentally friendly and 
cost-efficient. 

5.1 Kuwait relevance

Kuwait has a hard time getting around cities because it is so small 
and there are so many cars on the road. According to NationMaster, 
Kuwait has approximately 527 cars for every 1,000 people, which 
is significantly more than the global average of around 182 cars 
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FIGURE 5
Comparison of total CO2 emissions under different traffic control algorithms.

FIGURE 6
FPGA-based computation platform with custom-designed pipeline 
stages. This architecture enables overlapping of multiple 
computations, allowing more operations to be completed per clock 
cycle. As a result, the total number of clock cycles required to execute 
one full task is significantly reduced, thereby enhancing the system’s 
overall efficiency and throughput.

per 1,000 people (List of countries and territories, 2024). It is also 
higher than the number of vehicles in some non-Gulf countries, 
such as India (India (158 vehicles per 1,000) vehicles for every 
1,000 people) (List of countries and territories, 2024). The high rate 
of motorization, combined with a rapidly growing population (most 
of whom reside in cities), has made traffic congestion a persistent 
issue on major roads, including the Fifth Ring Road, King Fahd 
Highway, and Airport Road, particularly during rush hour.

This traffic congestion has repercussions that extend beyond 
simply hindering drivers. Kuwait’s air quality is still a big problem 
for both the environment and people’s health. The World Health 

Organization says that the safe level of PM2.5 in Kuwait City is 
5 μ g/m3. However, the levels are always higher than that, averaging 
between 30−−46 μg/m3 (IQAir, 2023). Natural sources like dust 
storms add to particulate matter, but studies show that vehicular 
emissions are the leading human-made cause of air pollution in cities 
across Kuwait (Elmi and Al Rifai, 2012). When traffic is heavy, cars 
have to stop and go more frequently, which increases CO2 and NOx
emissions and worsens air quality. It also uses more fuel.

In this situation, using a intelligent, adaptive traffic control 
system that selects from several algorithms based on real-
time demand conditions, like the one suggested in this study, 
looks like a good way to solve the problem. The system can 
make decisions in under a second by utilizing advanced traffic 
signal control logic on high-performance FPGA hardware. 
This enables the implementation of faster and more precise 
adjustments to traffic signal timings, resulting in smoother 
traffic flow, shorter lines, and reduced wait times for cars at
intersections.

The proposed solution has a multi-algorithm architecture 
that includes Fixed-Time, Max-Pressure, Delay-Based, and Hybrid 
approaches. This implies it can tolerate a wide range of traffic styles 
well. It can change to fit different situations, which makes it perfect 
for addressing the problems of a city like Kuwait City. Additionally, 
the system’s ability to adapt to changing traffic needs makes 
it a scalable foundation for long-term, creative urban planning 
projects. It helps the environment and public health by lowering 
emissions and fuel use, and it also makes it easier for people to get
around. 

6 Conclusion & future work

This study demonstrates a unified and adaptable traffic 
control framework that aims to make smart cities more 
mobile, less congested, and better for environmental health. 
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FIGURE 7
FPGA pipeline for Max-Pressure control: parallel lane counters feed a comparator tree, selecting the highest pressure lane in approximately 
three stages.

FIGURE 8
FPGA parallel Architecture.

FIGURE 9
Unified FPGA architecture for parallelized traffic control algorithms.

The study demonstrates that dynamically selecting the best 
control method—Fixed-Time, Max-Pressure, Delay-Based, 
or Hybrid—based on real-time traffic conditions improves 
performance. We examined the proposed system using practical 
modelling tools and rigorous statistical tests to ensure that 
the proposed design could handle varying levels of demand. 
Furthermore, utilizing a high-speed FPGA as a hardware 
computation platform can significantly accelerate the entire 
process, ensuring that it meets the real-time requirements. The 
proposed solution held considerable promise for minimizing 
the traffic congestion on major roads in Kuwait, reducing fuel 
consumption, and enhancing air quality. The proposed framework 
not only facilitates easier mobility for individuals but also lays 
the groundwork for scalable, energy-efficient traffic management 
systems that align with the objectives of new urban development. 
The ability to adaptively optimise signal control in response to 
altering traffic loads overcomes a long-standing problem with 
conventional fixed-time strategies; this demonstrates the benefits of 
combining algorithmic flexibility with a hardware-level solution. In 
comparison to modern high-performance CPUs, this study suggests 
an effective, real-time traffic control system design that combines 
reinforcement learning algorithms with FPGA-based acceleration, 
resulting in a speedup of more than seven times. The proposed 
framework dynamically chooses the best traffic control strategies, 
which significantly reduce congestion and CO2 emissions while 
ensuring that hardware runs efficiently. While promising, there are 
some problems that need to be worked out, such as the need for real-
world deployment and testing for scalability across larger networks. 
Overall, this work offers a flexible and low-latency solution for 
smart cities, setting the stage for more research on coordinated 
multi-agent control and smooth integration with urban IoT
systems.

Subsequent research will expand upon this study to synchronize 
traffic throughout the city, entailing the creation of a network of
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interconnected traffic signals capable of real-time data sharing. 
This expansion will enable global optimization, rather than making 
decisions based on local conditions. We will utilize advanced 
predictive modeling that leverages historical traffic data and real-
time sensor inputs to forecast how traffic will flow on the city’s 
roads. The planned system will utilize machine learning to suggest 
alternative routes in real-time, thereby reducing traffic throughout 
the city while balancing travel time, environmental impacts, and 
network capacity. Moving from isolated adaptive control to holistic, 
predictive traffic management is a crucial step toward creating smart 
cities that are sustainable without the threat of traffic jams. We will 
conduct additional experiments to assess the effectiveness of the 
proposed system in conjunction with wearable technologies and 
smartwatches. These efforts will enable drivers to receive real-time 
alerts and personalized route suggestions directly on their devices. 
The goal of this integration is to enhance situational awareness, 
expedite reaction times, and facilitate the implementation of 
adaptive rerouting strategies.
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