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FROG: a new people detection
dataset for knee-high 2D range
finders

Fernando Amodeo'*, Noé Pérez-Higueras', Luis Merino and
Fernando Caballero

Service Robotics Lab, Universidad Pablo de Olavide, Seville, Spain

Mobile robots require knowledge of the environment, especially of humans
located in its vicinity. While the most common approaches for detecting humans
involve computer vision, an often overlooked hardware feature of robots for
people detection are their 2D range finders. These were originally intended
for obstacle avoidance and mapping/SLAM tasks. In most robots, they are
conveniently located at a height approximately between the ankle and the
knee, so they can be used for detecting people too, and with a larger field
of view and depth resolution compared to cameras. In this paper, we present
a new dataset for people detection using knee-high 2D range finders called
FROG. This dataset has greater laser resolution, scanning frequency, and more
complete annotation data compared to existing datasets such as DROW (Beyer
et al, 2018). Particularly, the FROG dataset contains annotations for 100% of
its laser scans (unlike DROW which only annotates 5%), 17x more annotated
scans, 100x more people annotations, and over twice the distance traveled
by the robot. We propose a benchmark based on the FROG dataset, and
analyze a collection of state-of-the-art people detectors based on 2D range
finder data. We also propose and evaluate a new end-to-end deep learning
approach for people detection. Our solution works with the raw sensor data
directly (not needing hand-crafted input data features), thus avoiding CPU
preprocessing and releasing the developer of understanding specific domain
heuristics. Experimental results show how the proposed people detector attains
results comparable to the state of the art, while an optimized implementation
for ROS can operate at more than 500 Hz.

human-aware robotics, 2D LIDAR, people detection, dataset, ROS, benchmark, deep
learning

1 Introduction

Nowadays, mobile robots are becoming part of our daily lives. Robots must be capable of
sharing the space with humans in their operational environments. Therefore, human social
conventions must be taken into account when navigating within the scenario in order to
improve people’s comfort. The first step to achieve this is human perception. Robots must
be able to detect people in their surroundings, distinguishing them from other static and
dynamic obstacles.

In the last few years, image-based algorithms for detection and tracking of people have
evolved significantly. Moreover, these algorithms can also work in 3D space by using cameras
with depth perception. However, the use of these cameras for human detection in the robot
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navigation task still presents some drawbacks. The field of view of
most cameras is very limited, and so is the depth perception range.
Robots usually work around these limitations by making use of
several cameras, which thus increases the complexity of the system
and the computation requirements.

On the other hand, most commercial and non-commercial
ground robots include 2D LiDAR range finders. This includes
industrial robots used in warehouses such as autonomous mobile
robots (AMRs) and automated guided vehicles (AGVs), which must
perform people detection if their specification calls for sharing
the operating environment with human workers. In any case,
another major driving motivation for 2D LiDAR usage is reducing
the total cost of the robot, while still providing a platform that
can reliably perform obstacle detection and robot localization.
The cost of 2D LiDAR sensors has gone down in recent years,
and economical models for hobbyist/educational use can even be
found in mainstream marketplaces. In addition, LiDARs provide
accurate range measurements closely achieving full 360° coverage
as well as long range detection, making them a good choice for
the aforementioned use cases. Furthermore, in most cases, these
sensors are installed on robots at a plane parallel to the ground that
is approximately knee height.

A number of robotics researchers have worked on using 2D
range finders to detect people in the proximity of a robot. The
first approaches used hand-crafted features and classical algorithms
(Arras etal, 2007; Pantofaru, 2010), while later approaches
employed deep learning techniques (Beyer et al, 2017; 2018;
Guerrero-Higueras et al., 2019; Jia et al., 2020; 2021). However, most
publicly available datasets for people detection in robotics involve
other kinds of sensors, or require relabeling. Very few datasets
specifically geared for 2D range finders exist, the most notable of
which is the DROW dataset (Beyer et al., 2017; 2018).

This work aims to fill this gap by releasing a completely new
2D range finder dataset specifically focused on person detection.
The laser scans were recorded as part of the Fun Robot Outdoor
Guide (FROG) project (Evers et al., 2014). The scenario consists
of a tour of the Royal Alcézar of Seville, an iconic Mudéjar palace
receiving over 1.5 million visitors a year. Our dataset contains a large
number of laser scans, and unlike Beyer et al. (2017) every single one
is annotated. This is possible using our semi-automatic annotation
tool, which considerably reduces the workload required to annotate
such an extensive dataset.

Overall, we present the following contributions:

o A fully annotated 2D range finder person detection dataset
including a variety of indoors and outdoors scenes, crowded
scenes, and challenging features (such as pillars, bushes, slopes,
etc.). This dataset contains a total of over 400k LiDAR scans,
all of which are annotated (compared to DROW, which only
annotates 5%), a total of over 1 million people annotations,
around 3h of recorded time, and a total travel distance
of over 10 km.

o A deep learning based people detection model that learns
people-distinguishing features directly from the range data
vector without requiring a preprocessing step, and produces
person location proposals using techniques analogous to those
of image-based object detectors. Our optimized ROS-based
implementation also achieves inference times of less than 2 ms,
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which is considerably faster than the best currently available
solutions.

o A benchmarking codebase and methodology complementing
and supporting our dataset, which allows researchers to
evaluate their own 2D range finder person detectors under
standardized metrics and metric computation code.

2 Related work

In this section we survey existing datasets related to people
detection and range finders, with attention to their composition and
attributes. We also survey existing works that aim to detect people
using these sensors. Our findings, detailed below, show that most
datasets are either geared towards autonomous driving tasks (with
limited genericity and relevance to people detection), or involve
other kinds of sensors. People detectors also tend to be based on
classical algorithms or make use of hand-crafted input processing.
We focused on studying detectors involving the use of deep learning,
even if they also contain non-deep processes.

2.1 Annotated 2D LiDAR datasets

There are many datasets with people annotations in the form of
bounding boxes or segmentation masks, geared towards plain 2D
images or sensors such as RGBD cameras or 3D LiDAR. However,
there is a scarcity of people detection datasets geared towards 2D
LiDAR sensors, containing annotated 2D range data.

With the rise of autonomous (self-driving) cars, several
multimodal datasets have been recorded and released, such
as nuScenes (Caesar et al, 2020), KITTI (Geiger et al,
2013), and PedX (Kim et al., 2019). These datasets focus on traffic
scenes, where most objects on the roads are vehicles, and pedestrians
are sparsely distributed.

Focused on common pedestrian situations in indoor and
outdoor environments, we found datasets with pedestrians
annotated in images and 3D LiDAR point clouds like JRDB
(Martin-Martin et al.,, 2023), SCAND (Karnan et al., 2022),
STCrowd (Cong et al., 2022) or WILDTRACK (Chavdarova et al.,
2018) (the latter only based on static camera images in outdoor
scenarios). There also exist 2D LiDAR datasets for general purpose
segmentation such as Semantic2D (Xie and Dames, 2024), however
they contain many more classes besides “person”, and thus they are
not well suited for training people detectors.

Other datasets provide annotated trajectories of human
pedestrians performed in a wunique controlled laboratory
environment like the THOR dataset (Rudenko et al., 2020) or the
Magni Human Motion dataset (Schreiter et al., 2022). These datasets
are dedicated to learning social navigation (as opposed to simply
people detection), and only the latter provides data from a robot’s
mounted 2D LiDAR sensor.

In this work, we focus on datasets with annotated pedestrians
in 2D laser scans, and people detectors based on the same sensory
input. The DROW dataset was introduced in Beyer et al. (2017) for
the detection of wheelchairs (WC) and walking aids (wa) in laser scan
data. The authors recorded 113 sequences at an elderly care facility.
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In a follow-up work (Beyer et al., 2018), the authors added person
(wp) annotations. We found the following drawbacks in the dataset:

o During the annotation process, the scans were batched in
groups of 100, and only 1 out of 4 batches was provided to
human volunteers. Moreover, within each batch, only 1 out of
5 scans was annotated. This combination results in just 1 out
of 20 scans (5% of the total) carrying annotations, with the
remaining 95% being left completely unannotated. Even though
the authors justified this decision in reducing the workload
of the annotators, as well as reserving the unannotated scans
within each batch for temporal approaches; it still means a large
majority of the data is unusable for direct supervised learning,
reducing the variability of input samples and prompting the
use of data augmentation. In addition, temporal approaches
such as DR-SPAAM (Jia et al., 2020) do not necessarily follow
the prescribed temporal window stride hyperparameter, instead
experimenting with different strides (such as T = 10).

« Despite the authors’ efforts in adding people annotations, the
dataset is still mainly focused on detecting mobility aids,
meaning the amount and quality of person annotations is
inadequate for other use cases, compromising the genericity of
the dataset.

o As pointed out by Jia et al. (2020), the validation set
is considerably more challenging than the training or test
sets because it contains more people annotations at farther
distances (meaning sparser points). This causes problems
during hyperparameter search, and can also lead researchers to
make mistakes when trying to assess any possible overfitting.

Another recently available 2D LiDAR dataset for people
detection is Sixth Sense (Arreghini et al., 2025). This dataset
leverages an additional Azure Kinect sensor to produce
unsupervised people detections. However, the dataset is very
short (around 55k scans at 10 Hz), and it is recorded fully
indoors within a university campus. Moreover, the person
detection data is not directly in the form of annotations, instead
being presented as the output of 360° human distance/presence
detectors; thus requiring further processing to separate each person
instance and generate person annotations usable with existing

detectors.

2.2 People detectors

There are plenty of different detectors and trackers of people
based on images and depth perception, as commented previously.
These include face detectors, full-body detectors, or even skeleton
detectors. However, the field of people detection in 2D range data
has not been thoroughly explored and researched. We consider this
to be related to the complexity of the problem, given the scarcity
of reliable information that can be extracted from the range data in
order to detect people.

Arras et al. developed a segment-based classifier that detected
peoples legs using hand-crafted features extracted from each
segment (Arras et al., 2007). Later, an implementation of Arras’s
leg detector classifier was released for its use with the ROS
middleware (Pantofaru, 2010).
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Particularly, we are interested in more novel approaches based
on Deep Learning. The PeTra (People Tracking) detector (Guerrero-
Higueras et al., 2019) replaced the shallow learning based algorithm
in Arrass leg detector with a deep 2D fully convolutional
segmentation network (using a projected 2D occupancy map of
the range data as input), while still maintaining a classical post-
processing step for extracting locations of individual legs from
the segmentation output, as well as combining legs into person
detections. The authors also propose using a Kalman filter to
produce smoother person tracking over time.

The DROW (Distance RObust Wheelchair/Walker) detector
(Beyer et al., 2017; 2018) proposes creating many small fixed-size
windows centered around every point of the scan called “cutouts”,
which are normalized to contain the same fixed number of range
values. This eliminates the spatial density variability problem caused
by laser points at different distances. Then, a 1D convolutional
network is used to extract features from each cutout, and decide
both whether a person is nearby, as well as regress a spatial offset
to said person. The regressed spatial offsets are taken as votes,
and used to refine the final detected location of the person. The
network is trained with a dataset of range data created and labeled
by the same authors (DROW dataset). The authors then followed
up with an improved version of their detector that fuses temporal
information (Beyer et al., 2018), and spatially aligning cutouts
with those of recent past scans with the help of odometry data
from the robot.

A newer people detector work (Jia et al., 2020) proposes Distance
Robust Spatial-Attention and Auto-regressive Model (DR-SPAAM).
Similar to DROW, it continues to use cutouts of the laser scan data,
but also using a forward looking paradigm to aggregate temporal
information. Instead of computing spatially aligned cutouts on
the past scans, it uses a similarity-based spatial attention module,
which allows the CNN to learn to associate misaligned features
from a spatial neighborhood. The same authors also present a self-
supervised approach of the DR-SPAAM detector (Jia et al., 2021) in
which a calibrated camera with a conventional image-based object
detector model is initially used to detect the people in the scene, and
subsequently used to generate “pseudo-labels” in the range data for
self-supervised learning.

Finally, more recent works include Li2Former (Yang et al.,
2024), which replaces the traditional CNN used by the cutout-based
approach with a Transformer-based architecture; however at the
expense of increased model and training complexity, and heavier
runtime processing leading to decreased speed. Moreover, to the best
of our knowledge there are no publicly available implementations of
this detector ready for use by robotics researchers.

A general trend in the surveyed detectors is the combination of
a deep learning network with non-deep pre-processing and post-
processing steps. In particular, the cutout-based approach increases
the dimensionality of the input by virtue of generating as many
cutouts as there are points in each range data vector. Likewise,
the temporal approach involves aggregating data from several
scans at once, possibly with alignment steps (both deep and non-
deep). This in particular is used to justify the reduced annotation
coverage of the DROW dataset, which significantly harms the
development of detectors based on more direct approaches. These
factors all result in increased memory and computational overhead
at both training and inference time-according to Jia et al. (2020),
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their baseline implementation of the DROW detector (without
temporal aggregation) needs 97.4 ms per scan (10.4 FPS) on an
edge device suitable for robotics (Jetson AGX), while a special
“faster” implementation of DR-SPAAM called “DR-SPAAM +” needs
44.3 ms per scan (22.6 FPS). One of the motivations of this work is
encouraging further research into removing the need for these non-
deep steps, and specifically in Section 4 we will propose an initial
approach into a fully deep person detector based on 2D range data.

3 FROG dataset

The FROG dataset is a large dataset of people detection in 2D
LiDAR data covering a populated public space, the Royal Alcazar of
Seville. The Alcazar isa UNESCO World Heritage Site famous for its
Mudéjar Hispano-Muslim architecture and its verdant gardens and
courtyards, which receives over 1.5 million visitors a year—one of the
most visited monuments in Spain. As a result, the dataset presents
arich variety of highly populated areas and scenarios, both indoors
and outdoors.

The FROG dataset for 2D laser people detection is available
for download from our website'. The source of the data is our
previous dataset (Ramon-Vigo et al, 2014), which contains a
larger collection of raw sensor data appropriate for localization and
human-robot interaction purposes. This data was also previously
made publicly available?.

The mobile robotic platform shown in Figure I is used to
record the data of different sensors onboard. In particular, the
FROG dataset provides the data of the front-mounted 2D LiDAR,
along with annotations about the people in the field of view of
the sensor (180°), at a maximum distance of 10 m. We select this
maximum distance due to the sparsity of LiDAR points (around
4 cm separation) making it challenging to reliably detect thin
objects (people’s legs) beyond such distances. The odometry data is
also provided.

The recorded data encompasses different time slots along 4 days
of experiments. Each sequence consists of a tour around the Alcézar.
The trajectory of the robot during one such tour can be seen in
Figure 2. Table 1 shows a summary of several features of the recorded
sequences. Around 40% of the scans are recorded outdoors, while
around 60% are indoors.

We focus on comparing our FROG dataset against the DROW
dataset, the only currently available dataset that has been used
to evaluate and compare 2D laser based people detectors. Table 2
shows a detailed quantitative comparison. Although the DROW
dataset includes more hours of recordings, only a very small
portion of the data is annotated-only 5.17% of the scans have
associated annotations in the . wp files (this number includes empty
lists of people). On the other side, the FROG dataset provides
annotations for every single scan, a richer variety of crowded
scenarios, over twice as many people per scan on average, and greatly
increased laser/temporal resolutions. Moreover, our robot was able
to move at faster navigation speeds than those achieved in DROW’s
scenario, and thus traversed longer paths-over twice the distance

1 https://robotics.upo.es/datasets/frog/laser2d_people/
2 https://robotics.upo.es/datasets/frog/upo/
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compared to the odometry information provided by the DROW
dataset.

3.1 Laser scan labeling tool

Recording data from a robot typically involves using the
ROS framework, which provides many facilities for interacting
with device drivers, such as capturing data from the robot’s
sensors. In ROS, the data of the 2D laser range finder sensors is
provided through the structure given by the message sensor_
msgs/LaserScan. In a nutshell, the range data is expressed as
an array of distances in meters. Each position in the array can be
mapped to a specific laser angle using metadata included in the ROS
message, specifically the minimum/maximum angles covered by the
sensor and the angle increment between measures. Finally, captured
data from one or more sensors is usually stored in a format known
as a ROS bag file.

We present our graphical tool used to annotate the dataset.
It loads ROS bag files containing ROS laser scan messages, and
graphically displays them using a top-down projection. The tool
also allows visualizing image messages from a camera side by side
(sensor_msgs/Image) if they are available either in the same
ROS bag file or in an external time-synchronized bag file. This can
help the user identify the people to be labeled in the scene. The scan
labeler is implemented using Python 3, PyQt5 and ROS Noetic. It
is publicly available on GitHub?, where a detailed description and
instructions for use are included.

The main interface of the application can be seen in Figure 3.
On the left side panel we can observe the projected laser scan
(in red). The scan can then be labeled by creating/removing
annotation circles enclosing the laser points that correspond to
each person using the mouse. The user can at any time create,
move, modify the radius or delete any circle. Moreover, the tool
includes several options for playing back the laser scans and
moving forwards/backwards in time at different speeds. Support
for additional annotation classes is also present, like baby strollers,
wheelchairs or other walking aids, and intended for future use.

An important feature of our tool is the ability to track the
group of points inside each circle through time. When the user
advances from one scan to the next, the center point of each circle
is automatically recomputed as the mean of the points that still fall
within the circle, which allows tracking each labeled person. This
simple tracking does not depend on any automatic detection and is
supervised by a human annotator to correct or restart it in case the
tracking fails or non-person scan points are included in the circles.
The tool does not enforce a minimum number of LiDAR points to
create or track a circle-the human annotator is in charge of creating
or deleting them appropriately based on the LiDAR information, as
well as additional information such as the visual image or intuition.
Our tool also assigns an internal identifier to each tracklet that the
user creates, and these identifiers are temporally consistent for each
tracklet (but there are no globally consistent IDs). Thanks to this
feature, the annotation circles move along with people in subsequent
scans, which considerably simplifies and speeds up the annotation

3 https://github.com/robotics-upo/laserscan_labeler
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Left: image of the robot platform used for recording. Right: reference frames of the robot. The front mounted 2D LiDAR sensor (laserfront) is placed
at X = 0.22 m and Z = 0.33 m with respect to the base of the robot (base_11ink).

FIGURE 2
Example navigation plan used by the robot during capture of the
FROG dataset.

process. The annotators are entirely responsible for resolving edge
cases. For example, when people stand close by, the annotators were
instructed to shrink the circles to contain only the scan points for
each individual; avoiding grouping more than one person in the
same circle and handling some partial occlusions.
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TABLE 1 General overview of the annotated sequences in the FROG
dataset. Each session lasted about half an hour, and we report the total
number of scans and annotated people in each sequence.

distance
10:31 26m42s 1666.00 m 64238 127600
11:36 29m4ls 1845.66 m 71417 214707
12:43 31m43s 1970.69 m 76088 258298
14:57 29m09s 1824.06 m 70062 133197
15:53 25m16s 1569.47 m 60758 133023
16:41 29m29s 1843.57 m 70923 153658
Total 2h52m30s 10719.45 m 413486 1020483

In the specific case of the FROG dataset, the workload is
distributed across four human annotators, all members of our
laboratory group. Each annotator is in charge of annotating one or
two ROS bag files. The work is carried out using our tool, annotating
each bag in several sessions of around 10000 scans, taking breaks
in between.

The output of the annotation tool is the list of circles associated
with every annotated scan. Each circle includes the person tracklet
identifier, center position (in Cartesian coordinates), and circle
radius. Besides the list of circles, the timestamp and index of the
scan within the sequence is also included so that the annotations
can be traced to the original bag. In addition, the tool also
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TABLE 2 Comparison between the DROW and FROG datasets, showing
different general metrics about each, and also including a comparison of
the 2D LiDAR sensor used by the robots.
DROW

Scenario FROG (ours)

Elderly care

Royal Alcazar of

facility Seville
Total scans 464013 413486
Annotated scans 24012 413486
Populated scans 14339 292889
Recorded time ca. 10h ca.3h
Travel distance 5.18 km 10.72 km
People annotations 28984 1020483
Avg. # people/scan 1.2 2.5
Max. # people/scan 17 16
Laser model SICK S300 Hokuyo UTM-30LX
Laser frequency ca. 13 Hz 40 Hz
Laser height 37 cm 35cm
Laser points 450 720
Laser FoV 225° 180°
Laser resolution 0.5° 0.25°

supports generating segmentation data from the circles, containing
the classification of each point in the laser scan data.

Finally, the tool supports exporting the aforementioned data
in different file formats: .CcSv, . json, .mat (Matlab) and . npy
(NumPy). This variety of formats is intended to make human review
of the data easier, as well as subsequent loading in post-processing
scripts. The finalized format of the FROG dataset is explained in the
following section.

3.2 Format

The FROG dataset is finally delivered as a series of HDF5-
formatted (The HDF Group, 2024) files. We use this file format in
order to enable greater data loading efficiency, because HDF5 is
specifically designed to store and organize large amounts of data,
supporting partial/random access and easily integrating into Python
NumPy code.

‘We make available a collection of Python scripts and modules in
order to facilitate the loading process, as part of our benchmarking
suite described in Section 5. This also includes the scripts we used
to process the ROS bag files and the annotated scan data generated
using our labeling tool, as well as exporting the data into the final
HDFS5 files; so that other researchers may be able to replicate our
methodology with their own data.
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We define the following arrays (known as datasets in HDF5
parlance):

« scans: This is a float32 array of dimension (N,720)
containing each individual laser scan vector, where N is the
total number of scans in the file. Each individual value is
measured in meters.

o timestamps: This is a Tloat64 array of dimension (N)
containing the timestamp of each scan (in seconds since the
UTC Unix epoch).

o circles: This is a float32 array of dimension (M,6)
containing all person annotations, where M is the total number
of person annotations in the file. The second dimension
contains six values as following, specifying the position (in both
cartesian and polar coordinates) of the person.

« 0and 1: Specifies the X/Y position (in meters) of the person.

o 2:Specifies the radius (in meters) of the bounding circle that
surrounds the person.

o 3 and 4: Specifies the angle (in radians) and distance from
the origin (in meters) of the person.

o 5: Specifies the half-angle that covers the bounding circle
when projected from the origin.

Person annotations are associated with only a single scan, and
the exact range of entries in the c1rcles array that correspond to
eachscanisdefinedbythecircle_idxand circle_numarrays
(explained below).

o circle_idx: Thisisan uint32 array of dimension (N) that
specifies the index into circles of the first person annotation
associated with each scan, the other annotations being stored
sequentially afterwards.

o circle_num: This is an Uint32 array of dimension (N)
that specifies the total number of person annotations associated
with each scan.

o split: This is an uint8 array of dimension (N) exclusive
to the file containing the benchmark training/validation sets,
specifying which scans belong to which set (0 = training,
1 = validation). The suggested split roughly follows a 90:10
proportion.

An important thing to note is that we follow the standard
axis convention in robotics (see Figure 4). That is, the X-axis
points forward, the Y-axis points left, and positive angles are
counterclockwise. This causes the laser scan vectors to effectively be
stored right-to-left.

Besides the HDF5-formatted files, we also make available the
raw CSV files created with our labeling tool. These files contain
partial people tracklets, meaning a single person may be associated
with multiple tracklets depending on occlusions and other factors
that affect the labeling process. Although existing 2D LiDAR people
detection works (including this work) do not make use of them, we
believe they may be useful to future researchers interested in the
tracking approach.

Finally, we also make available the odometry data from each
session as separate files in.Npz (compressed NumPy) format.
Each file contains two arrays, tS (containing timestamps) and
data (containing X-position, Y-position and Z-rotation odometry
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FIGURE 4

Example annotated laser scan showing the coordinate system used in the FROG dataset, matching the standard conventions used in robotics. The
distances shown are in meters. Blue dots: points from the scan. Green circles: annotated people.

samples for each timestamp). Like Beyer et al. (2017), the values
are relative to an arbitrary initial state of the robot-only the
differences between samples are meaningful. The odometry samples
are not aligned with the scans due to differences in sample
rate, and it is up to downstream users to devise a way to
interpolate the state of the robot at each scan timestamp. Users
should also keep in mind the relationship between the base
frame of the robot, and the mounted laser frame, as explained in
Section 3.
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4 People detection

In addition to the FROG dataset, we propose a new end-
to-end deep learning network that can detect people from 2D
laser scan data. This network is inspired by image-based object
detection networks such as Faster-RCNN (Ren et al., 2015) or the
YOLO (Redmon et al,, 2016) family of detectors, and motivated
by the lack of approaches that are fully based on deep learning,
instead relying on hand-crafted (non-deep) pre-processing and
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Laser Feature Extractor (LFE) network architecture, applied to a segmentation task. Each 1D convolutional block consists of three consecutive
depthwise separable (Chollet, 2017) 1D convolutions of different kernel sizes (9, 7 and 5 respectively). Some blocks also contain a global feature
aggregator, which performs a global maxpool of the input and concatenates the resulting features to each individual position of the input. Finally, a
residual path adds the input of the block to the output of the last convolution. The segmentation mask is generated by an “inverse” LFE

similar to U-Net (Ronneberger et al., 2015) followed by a pointwise convolution that produces the final output logits.

post-processing steps that need to be performed outside accelerators
(GPU and TPU), such as the cutout generation and vote aggregation
processes introduced by Beyer et al. (2017). We theorize those
non-deep processes to be a source of processing speed bottlenecks
(especially when performed on weak edge CPUs), which limits
their ability to run on a robot’s built-in hardware. There are two
contributions in our proposal: a network that can learn to extract
features from 2D range finder data for use with downstream
tasks, and a grid-based people detection head similar to RPN
(Ren et al., 2015).

4.1 Laser Feature Extractor (LFE)

A 2D laser scan reading is usually presented as a 1D vector of
range measurements, the position of each element within which
determining the angle of the laser beam with respect to the origin.
Deep learning algorithms learn to extract a set of abstract features
about their input (as opposed to a specific set of features designed
by humans), and use those features to solve a given problem (such
as classification).

We propose a new Fully Convolutional Network, called the
Laser Feature Extractor (LFE), which extracts features from a
1D vector of range measurements. This network is inspired by
image classification and segmentation networks such as U-Net
(Ronneberger et al., 2015), ResNets (He et al., 2016) or MobileNet
(Howard et al., 2017). Its architecture (shown in Figure 5) consists
of a stack of residual/convolutional and maxpool downscaling
layers used to extract a feature map. There are three residual
blocks in total, each containing three convolutional layers. All
intermediate convolutional layers have 32 filters each. In order
to reduce the search space and improve runtime speed, all
convolutional layers are depthwise separable (Chollet, 2017): this
means they are decomposed into two steps: a stack of independent
convolutions (one applied to each corresponding channel), followed
by a pointwise convolution. The activation function used after

Frontiers in Robotics and Al

each convolution is ReLU, followed by batch normalization and
dropout layers.

LFE generates features at three different levels of downsampling:
the original resolution of the range data, the data downsampled
by 2, and the data downsampled by 6 (in other words, combined
downsampling by 2 and 3). This is especially useful given the
polar nature of range data, thus allowing features to be extracted
at close distances (where the input resolution is bigger) and also
at farther distances (where the input resolution is smaller). The
downsampling factors have been chosen to increase the likelihood
of evenly dividing the number of points in the laser scan vector (for
instance, DROW’s 450 points cannot be divided by 4).

4.1.1 Training protocol

While the backbone of an object detector is traditionally
pretrained with a simpler classification problem (and dataset such
as ImageNet (Deng et al, 2009)), there is no such equivalent
available for 2D laser scan data. In order to validate LFE on its
own, we consider the laser scan segmentation problem (similar
to PeTra (Guerrero-Higueras et al., 2019)), and use it to allow
LFE to learn relevant features for detecting people. In order to
use LFE in a segmentation problem, we attach an “inverse LFE”,
making the whole network similar to U-Net (Ronneberger et al.,
2015). This network thus learns a binary label for each input point,
identifying which points are part of people’s legs (and which are not).
The segmentation output can also be post-processed with classical
algorithms (such as SciPy’s find_peaks function) in order to
generate discrete people detections, something which we will revisit
in a later section of this paper.

4.2 People Proposal Network (PPN)

The second component of the network is the People Proposal
Network (PPN). This network (shown in Figure 6) is directly
inspired and based on the Region Proposal Network (RPN)
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People Proposal Network (PPN) architecture, incorporating a LFE backbone. The features extracted by the LFE are further processed by a depthwise
separable (Chollet, 2017) 1D convolutional layer with kernel size 3, after which the outputs (M x 3) for each sector in the grid are generated by a final
pointwise 1D convolutional layer. The Non Maximum Suppression (NMS) process parses the grid output and generates the final people detections.

introduced by the foundational object detection work Faster-RCNN
(Ren et al., 2015). We adapt the anchor grid of object proposals of
the RPN so that it can be used in the fundamentally 1D problem
of laser scan data people detection. In the original RPN the anchor
grid is bidimensional; each element of the feature map represents a
2D subarea of the original image, and several anchors are trained
in parallel for each 2D subarea using different aspect ratio priors.
In our People Proposal Network the anchor grid corresponds to
sectors of the full field of view of the laser, with their amplitude
and number determined by the largest downsampling performed by
LFE. We place multiple anchors at each sector, each having different
distance priors fully and evenly covering the entire range of the
depth axis. The field of view of the PPN has the shape of a circular
ring sector (see Figure 7). An important consequence of this design
is that anchors are more densely placed in central (near) areas of
the field, while being sparser at far areas. This is due to dealing
with a polar coordinate system as opposed to a Cartesian coordinate
system-this is in line with the nature of 1D laser scan data.

In mathematical terms, the center point of each anchor in the
grid corresponds to the polar coordinate (Bi,rj). Given N (number
of angular sectors), M (number of depth sectors), ¢ (angular field
of view of the laser), r,;, (minimum depth) and r,,, (maximum
depth); we define 0, = — %(p+(% +i)1% with i=0,1,...,N—1, and
T = Tin + (% +j) e with j=0,1,..., M~ 1. Afterwards, we can
define the Cartesian coordinates P;; = (; cos0;,; sin6,).

The PPN receives the feature maps extracted by LFE as input,
and outputs three target values for each anchor: s (objectness), Ad
(distance offset) and A€ (arc offset). The feature maps generated
at different downsampling levels are maxpooled into the same
resolution and concatenated in order to generate a single input
feature map. The objectness score is learned as a classification
problem, while the distance/arc offsets are learned as a regression
problem. These offsets are centered on each individual anchor’s
center point. We learn the arc offset instead of the angle offset so that
the learned offsets are in the same displacement scale as the distance
offsets, instead of having drastically different scales depending on
how close to the origin each individual anchor is. Furthermore, we
normalize their scale by dividing both offsets by the anchor spacing

Ao~ ear

along the depth axis: , where d

ear a0d d, are the minimum

anchors
and maximum detection distances considered, respectively. We also
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empirically show that resulting target offsets used for learning have a
close-to-normal distribution (u, 4 ¢y, = 0,044, 05, = 1), see Table 3.

At inference time, the distance and arc offsets of each anchor are
decoded into Cartesian XY coordinates representing the center of a
bounding circle, and paired with their corresponding classification
scores. Note that these centers are usually located between the
two legs of a person, and they do not necessarily correspond to
individual sensor measurements; in fact they rarely do (if ever).
As in Beyer et al. (2017); Jia et al. (2020), all circles are defined
to have the same radius. Like Ren et al. (2015), the output from
the network then undergoes a Non-Maximum Suppression (NMS)
filter. Traditional NMS as applied in object detection is based on the
Intersection over Union (IoU) measurement between bounding box
proposals. In our case we use a simple distance function between
person center proposals. In other words, two person proposals
overlap if the distance between their centers is smaller than a given
hyperparameter, which usually matches the most common ground
truth circle diameter.

4.2.1 Training protocol

The training process of the network involves generating anchor
classification and regression data for every scan, based on the person
annotations in the ground truth. In a similar way to Ren et al. (2015),
we group all anchors in the grid into two categories: positive and
negative. The overlap metric used as criterion is once again the
distance between circle centers, and the boundary between groups
is a tunable hyperparameter.

The loss function used is the following:

1 1

L= N Lot v L

ods T
N+

where L reg i the Smooth L1

regression loss and N,/N_ are the number of positive/negative

s s the classification loss, £
anchors respectively. Positive and negative anchors both contribute
to classification loss, while only positive anchors contribute to
regression loss. Both losses are scaled so that they have the same
magnitude, by virtue of dividing by the number of contributing
anchors respectively. Given the large imbalance between positive
and negative anchors, we combine the traditional binary cross-
entropy loss with the Dice loss (Sudre et al., 2017) (a smooth variant
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TABLE 3 Statistical information (mean and standard deviation) about the
two regression targets in the generated training data: distance offset
(Ad) and arc offset (A¢f).

Target U o
Ad 0.0605 0.9166
Ae 0.0019 0.8773

of the F, score), taking the average of the two (Galdran et al., 2023)
as classification loss. We do not follow the approach in Ren et al.
(2015) (resampling the positive and negative anchors within each
scan to be in a fixed 1:1 proportion, with each scan producing the
same overall number of anchors) because said imbalance is greater
than the one in 2D object detection, causing that approach to be
rendered unfeasible. This is also an effect of the unevenness of
anchor density with respect to distance, meaning a large number
of scans do not contain enough positive anchors to properly fill the
desired quota.

5 FROG benchmark

We propose using the FROG dataset as a new benchmark
for 2D laser range finder based people detectors. As such, we
carry out several experiments with existing detectors, as well as
our own proposed detectors. In particular, we select the DROW3
(Beyer et al, 2018), DR-SPAAM (Jia et al, 2020) and PeTra
(Guerrero-Higueras et al., 2019) detectors from the state of the
art for an initial benchmark based on the FROG dataset, in
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addition to a well known baseline provided by the ROS framework
(Pantofaru, 2010). The benchmark codebase we developed to
perform these experiments can be found on GitHub*, and it provides
a common implementation of all metrics and evaluation protocols
for maximum consistency.

We define a subset of the FROG dataset to be used in this
benchmark, containing training/validation and testing sets. The
training/validation set is sourced from two different sequences
recorded around the time of greatest attendance (around noon,
maximizing the number of person annotations) and later randomly
split in 90:10 proportion. The testing set is sourced from another
different sequence. In both cases, scans with empty lists of person
annotations are excluded from the benchmark. Models are trained
on the training set, and metrics are calculated and reported on the
testing set. The validation set is only used to provide feedback during
the training process, as well as optimizing hyperparameters. We
provide all the data, and do not withhold the labels associated with
the testing set.

5.1 Evaluation criteria and process

We follow existing practices in Beyer et al. (2017), Beyer et al.
(2018), Jia et al. (2020), Jia et al. (2021), and use the same
metrics for evaluation purposes. These metrics revolve around the
Precision-Recall (PR) curve, which is intended to show the overall
performance profile of the model at different desired precision/recall
tradeoffs. Particularly, we consider the following:

4 https://github.com/robotics-upo/2DLaserPeopleBenchmark
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o Average Precision: This is the main evaluation metric used by
the object detection community, and it is nominally equivalent
to the area under the PR curve (AuC). However, estimating this
area can be a challenging process due to discontinuities created
by small variations in example ranking. For this reason, we
follow the object detection community (specifically MS COCO
(Lin et al., 2014)) in using the 101-recall-point interpolation
method to calculate this metric. This contrasts with Beyer et al.
(2017), which applied the trapezoidal rule instead. As a note,
we believe this metric produces unexpected behavior when
evaluating certain methods. In Section 5.3 this is explained with
more detail.

o Peak F1 score: This is the maximum F1 score obtained along the
PR curve. Note that the F1 score is the harmonic mean between
the Precision and Recall values.

o Equal Error Rate (EER): This is the closest value along the PR
curve at which Precision equals Recall.

These metrics can be parametrized: for example, AP, considers
detections to be positive if there exists an unmatched ground
truth annotation within d m of the detection. This d parameter is
known as the association distance, and it is analogous to the IoU
threshold of object detection metrics. Note that only people centers
are considered, as opposed to full circles. Following established
2D LiDAR people detection work (Beyer et al.,, 2018; Jia et al,
2020), we calculate the PR curve and evaluate all associated
metrics using two different values for d: 0.5m and 0.3 m. In
addition, we calculate averaged mAP, mPeak F1 and mEER
metrics for d=[0.3:0.05:0.5]
performance at different association distances with a single value,

m in order to capture overall

similarly to MS COCO and its mAP metric over a range of IoU
thresholds.

In order to calculate the PR curve, we first obtain the collection
of person detections produced by each model for each scan in the
tested split. Each person detection is expected to have a confidence
score (0.0-1.0), and X/Y positions. We ignore very low confidence
detections (with score < 0.01), as well as detections falling outside
a 10 m distance threshold; so that the evaluation process takes a
reasonable amount of time, and also to avoid unfairly rewarding
methods that generate hundreds of noisy detections with very
low confidence scores. Within each scan, detections are matched
to their closest ground truth annotation. If multiple detections
are matched to the same ground truth, the one closest to the
annotation becomes a True Positive and the others are considered
False Positives. Detections that are farther than d to any ground
truth annotation are also considered False Positives. Following
existing aforementioned works, the matchups between detections
and ground truth circles are recalculated after processing every
detection (in descending order of confidence score), so that higher
confidence detections can initially count as True Positives in case a
lower confidence detection (processed later) is closer to a ground
truth annotation-this ultimately only replaces one detection for
another, and does not change the total tally of True Positives. A final
global aggregation process traverses the complete list of detections
across scans (also in descending order), accumulating a count of
True Positives and thus computing every (P,R) point of the curve.
If multiple detections share the same confidence score, they are
summarized as a single point in the PR curve.
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Lastly, we also report the end-to-end inference time as an
evaluation metric. Specifically, we use the ROS environment with
each detector’s provided ROS node, and measure the total time taken
by the node to process each laser scan and output detected people.
This is calculated by playing back the test set at a laser frequency high
enough to bottleneck all detectors, and dividing the simulated time
by the number of received people detection messages. Concretely,
we play back the test set at 20 times the speed, resulting in a 800 Hz
laser frequency sustained for 88.49s.

5.2 Experimental setup

As mentioned previously, we select a baseline and several state-
of-the-art detectors (as well as our own detectors) to be evaluated as
part of the first benchmark using the FROG dataset. In this section
we will discuss the exact methodology used to test each detector,
including hyperparameters used, challenges encountered during
evaluation, adaptations needed to produce meaningful results, and
other miscellaneous details.

The platform used to train and evaluate models is a desktop PC
sporting an Intel Core i9-9900X CPU with 128 GB of RAM and an
NVIDIA TITAN RTX GPU with 24 GB of VRAM.

5.2.1 ROS leg_detector baseline

ROS 1 distributions offer a standard package containing a pre-
trained 2D laser based leg detector/person tracker. This detector
implements a variant of Arras et al. (2007), a classical algorithm
based on hand-crafted geometric segment features followed by a
random forest classifier. We include its results in the benchmark
because it is a commonly used solution in the field of robotics,
making it relevant as a baseline to which compare the performance
of other detectors. In order to more accurately represent the baseline
as typically employed in robotics projects, we follow Beyer et al.
(2018) and use the provided pre-trained forest as-is (with all
default hyperparameters); i.e., not retraining the model with
data from the FROG dataset. People tracking measurement
results are captured via ROS bag, and later converted into
the common evaluation format expected by our benchmarking
codebase.

5.2.2 PeTra

We evaluate PeTra (Guerrero-Higueras et al., 2019) as a modern
representative of leg-based detectors. This work essentially replaces
ROS leg_detector’s classical algorithm with an image-based
2D fully convolutional segmentation network, which detects points
belonging to people’s legs. This segmentation output is later post-
processed in order to extract individual leg locations, and pairs
detected legs to produce final person location proposals. The source
code was made available online by its authors’.

We train PeTras segmentation network using 512 x 256 as
the resolution of the 2D image onto which the laser scan data
is projected, with the height dimension being half of the width
dimension in order to save computational resources (given that the
FoV of the laser is 180° and otherwise the bottom half of the image

5 https://github.com/ClaudiaAlvarezAparicio/petra
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Precision-recall curves for the person detector models. We show curves for both association distances: 0.5 m and 0.3 m.

would always remain unused). In addition, we randomly sample a
set of 12000 scans from FROG’s training dataset to convert into
projected 2D images instead of converting them all, due to the
increased memory and computation requirements of working with
2D images as opposed to 1D laser scan vectors.

We train the network for 30 epochs with a batch size of 16 scans
using the Adam optimizer with 7 = 5x 1074,

PeTra uses OpenCV’s findContours routine to find shapes
corresponding to legs; however it does not generate a detection
score. In order to solve this, we take the average output of the
network associated with each point belonging to each contour as its
overall detection score. Unfortunately, due to the fact that PeTra is
trained using Dice loss, many points end up with the maximal 1.0
score allowed by the output of the sigmoid (after the inevitable loss of
precision), meaning that a large number of detections are generated
with confidence 1.0. This results in a very short PR curve, as can
be seen in Figure 8. To remedy this problem, we also evaluate PeTra
with the same mixed loss function used by our own segmentation-
based detector, resulting in a model we called PeTra . This allows us
to lower the overconfidence of the detections, and thus plot a more
meaningful PR curve for PeTra.

We perform inference speed tests using PeTras provided
Docker image based on ROS 1 Melodic. We do not evaluate
PeTrasxseparately because it only differs in model weights. In order
to ensure accurate results, we set the subscriber queue length to 1,
and move the detector code into the subscriber callback (the original

code performs detections as a separate timer task, independent of
laser frequency).

5.2.3 DROW3 & DR-SPAAM

We evaluate DROW3 (Beyer et al., 2018) and DR-SPAAM
(Jia et al, 2020) as representatives of the cutout-based input
preprocessing approach. In particular, we evaluate the most up to
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date implementation of both models® with minimal modifications to
the code in order to add support for loading the FROG dataset. These
modifications include adding custom training configuration files
and disabling the code that deletes certain log folders—this allows
us to directly read the generated detections and run our common
benchmarking code, which is shared with all other models we have
evaluated.

We train and evaluate both DROW3 and DR-SPAAM in single-
scan mode, that is, no information from previous scans is used
to generate predictions. We do this in order to enable a fair
comparison with other models that do not make use of temporal
information. In addition, we also train and present results for DR-
SPAAM using a temporal window size of 5 scans, so that said
approach is also represented in the benchmark. DROW3 cannot
be evaluated in multi-scan mode because the codebase used for
training does not support reading odometry information. We use
the same cutout hyperparameters selected in Jia et al. (2020) for
optimal person detection, in particular: 56 points (1.0 m x 1.0 m),
window size.

We train the networks for 5 epochs with a batch size of 8, the
Adam optimizer, and with an exponential learning rate schedule
ranging from 107> initially to 107® at the end of training. In
particular, we use 5 epochs so that the overall number of minibatches
processed during training on the FROG dataset is of the same order
of magnitude as when training using the DROW dataset.

We perform inference speed tests using ROS 1 Noetic, the
provided dr _spaam_ros package, and the latest available version
of PyTorch at the time of writing (v2.0.1 with CUDA support).

6 https://github.com/VisualComputinglnstitute/2D_lidar_person_

detection

frontiersin.org



https://doi.org/10.3389/frobt.2025.1671673
https://github.com/VisualComputingInstitute/2D_lidar_person_detection
https://github.com/VisualComputingInstitute/2D_lidar_person_detection
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

Amodeo et al.

10.3389/frobt.2025.1671673

TABLE 4 Benchmark results for several person detector models. Besides the baseline, all models are trained on FROG's train split, and evaluated on
FROG's test split. Average Precision (AP), Peak F, and Equal Error Rate (EER) are reported for two association distances: 0.5 m and 0.3 m, as well as
averaged across [0.3:0.05:0.5]m. End-to-end inference times obtained with each detector's ROS node are also reported, in milliseconds.

Method d=0.5m d=03m Time (ms)
mAP ‘ mPeak F; ‘ mEER AP Peak F; AP ‘ Peak F; ‘

ROS leg_detector 15.8 30.8 30.5 20.2 35.2 34.9 10.0 24.3 24.1 1.77
PeTra 496 66.4 662 50.1 66.6 66.4 49.1 66.1 65.9 28.17
PeTra* 58.3 67.7 67.1 59.0 67.9 67.3 57.9 67.4 66.8 —

LFE-Peaks (ours) 64.9 70.2 70.2 65.6 70.7 70.7 63.2 69.0 69.0 1.76
LFE-PPN (ours) 66.5 68.7 68.6 69.2 69.5 69.5 62.5 67.3 67.2 1.49
DROW3 (T'=1) 73.6 71.9 71.6 73.9 72.0 71.8 73.0 71.6 714 13.08
DR-SPAAM (T = 1) 73.3 71.9 71.6 73.7 72.1 71.8 72.7 71.6 71.3 13.95
DR-SPAAM (T = 5) 75.3 73.4 733 75.6 73.6 73.4 74.7 73.2 73.0 13.99

“DR-SPAAM " is not included in the comparison due to not being
included in the ROS package provided by the authors.

5.24 LFE & PPN

We first train LFE on the segmentation problem described in
Section 4.1.1, using a batch size of 32 and the AdamW (Loshchilov
and Hutter, 2019) optimizer with # =107 and 1 =4x107. We
set a target of 100 epochs, with an early stopping patience of 20
epochsand AL
LFE on its own as a person detector by adding a classical post-

nin = 1072, As mentioned previously, we also evaluate
processing step based around SciPys find_peaks function, a
combination we are calling LFE-Peaks. The post-processing finds
the height and width of the peaks in the segmentation signal, and
afterwards computes centroids based on the Cartesian coordinates of
the corresponding points in the range data. Centroids that are close
together are interpreted as legs or part of legs, and merged together
into final person detections using a NMS-like process. Outlier points
are discarded from each centroid, so that we do not take into account
parts of the background in the averaging formula. In a similar way to
our adaptation of PeTra, the confidence score is the average output of
the network corresponding to all points assigned to each detection.

LFE-PPN embeds LFE as its backbone, which can either
be trained from scratch, or its weights reused from the LFE
segmentation experiment and further fine-tuned during LFE-PPN
training. For the purposes of this experiment, we follow and report
the latter approach, although we have not observed any quantitative
differences between the two. We employ a batch size of 4, use the
AdamW optimizer with # = 10 and A = 4 x 107, and set a target of
150 epochs with an early stopping patience of 20 epochs and AL
107,

We perform inference speed tests using ROS 2 Humble and

min

our own developed implementation of a person detection node
based on either LFE-Peaks or LFE-PPN, using C++ and ONNX
Runtime v1.14.17 with the CUDA backend. This runtime framework

7 https://onnxruntime.ai/
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is selected because of its intended use as a standalone inference
engine with direct compatibility with C++, and its ability to use
multiple backends tailored to different ML accelerators, such as
those available on edge devices. In the case of LFE-Peaks, an
embedded Python interpreter is used to execute the classical peak
finding and post processing algorithm. Our ROS package is publicly
available on GitHub®.

5.3 Results

We present the quantitative results of the benchmark (shown
in Table 4), as well as the corresponding Precision-Recall curves
in Figure 8. Methods based on cutout preprocessing (DROW3 and
DR-SPAAM) obtain the overall best metrics, as expected of the
state of the art; while our own proposed methods (LFE and PPN)
achieve good results considering how they utilize fewer or no
hand-crafted features in their design. The ROS leg_detector
baseline produces very poor results, clearly indicating the end of its
usefulness after the development of much better detectors; however
they are consistent with the results obtained by Beyer et al. (2018)
on the DROW dataset.

Counter-intuitive behavior can be observed in the behavior
of the Average Precision metric. We suspect this metric rewards
methods with a longer PR curve, said length being a result of
incorporating a larger number of low confidence/quality guesses,
which serendipitously inflates the maximum recall score (at the
expense of precision). Methods which do not generate such guesses
are unfairly punished. Another reason for this effect has to do
with the nature of score outputs. Networks trained using binary
crossentropy loss do not reach the extreme values (1.0, 0.0), and thus
they produce many more data points for the Precision-Recall curve,
while networks trained with other loss functions (such as PeTra’s
Dice loss) may saturate towards the extremes due to loss of precision

8 https://github.com/robotics-upo/upo_laser_people_detector
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FIGURE 9

Scene 4

Scene 6

Collection of qualitative results, sampled from the FROG dataset’'s test set. In the case of PeTra and DR-SPAAM, we only show the best variant

(PeTraxand DR-SPAAM with T = 5) for clarity. Several scenes showcasing the

are included.

caused by extreme logit value outputs. For this reason we believe the
Peak-F1 and EER metrics present a fairer comparison in practice.

We can observe that the PR curves and metrics of DROW3
and DR-SPAAM in single scan mode are practically identical. We
believe this to be related to the lack of temporal information used
during training, indicating that the contributions in Jia et al. (2020)
are not focused on improving the baseline network architecture
introduced by Beyer et al. (2018). On the other hand, full DR-
SPAAM with a temporal window size of 5 scans achieves the best
metrics overall, although its PR curve dips below that of DROW3 in
the low recall section.

PeTra presents a challenging problem during evaluation. As
explained earlier, its choice of loss function generates a large number
of detections with the maximum possible confidence score (1.0),
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performance of the detectors in different types of environments

causing a significant portion of the data to be lumped together as
a single point, which in turn results in a degenerate PR curve. We
correct this by changing the loss function to incorporate binary
crossentropy. The resulting model (PeTra*) does not present this
problem, and thus achieves results more in line with the ones
obtained by other models. Despite being limited in the size of the
training set, its results are fairly reasonable.

LFE-Peaks and LFE-PPN manage to outperform the state of
the art in the low recall/high precision zone of the PR graph. LFE-
Peaks in particular is able to trade blows against LFE-PPN and be
competitive on its own against DROW3, however it loses in mAP
and AP @ 0.5 m due to the length of its PR curve (stopping at less
than 80% recall, while LFE-PPN is able to cross that threshold).
These results clearly indicate that the 1D convolutional layers in
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LFE are capable of competently learning people-identifying features
directly from range data. The PPN shows results that clearly validate
the idea of replacing classical post-processing algorithms with a
fully deep approach inspired by object detection, however it still
requires further tuning and improvements to be able to outperform
the state of the art. Of note is its difference in performance depending
on the associating distance, which we theorize could be caused
by shortcomings in the design of the regression targets, or the
distribution of the training data; thus indicating the need to further
adjust people center proposal generation.

In terms of inference speed, we can observe large differences
between processing times achieved by each detector. Some
implementations (leg_detector and our LFE-Peaks/LFE-PPN
nodes) take less than 2 ms to process each scan. Comparing these
three detectors, there is a difference of about 0.3 ms between LFE-
PPN and the other two-in other words, LFE-PPN is 15% faster. DR-
SPAAM takes around 14 ms (similar to the time reported in Jia et al.
(2020)) regardless of temporal window size thanks to its auto-
regressive architecture. DROW3’s network architecture is slightly
faster than DR-SPAAM’, taking around 13 ms. Finally, PeTra
takes around 28 ms. Some of these large differences could be
attributed to a variety of reasons not necessarily related to model
architecture, such as differences in the software technologies
used. For instance, DROW3/DR-SPAAM’s ROS node is fully
implemented in Python and PyTorch (which in turn includes
rospy serialization/deserialization overhead), while the rest are
all implemented in C++. PeTra uses TensorFlow v1.x-a long since
deprecated branch that is no longer maintained, while our LFE/PPN
nodes use ONNX Runtime-a library specifically designed for
fast inference times in deployed applications. In any case, this
comparison involves real systems that are currently available for
use by robotics researchers.

Finally, we qualitatively evaluate the detectors. We provide a video®
showing the laser scan sequence (with the reference image feed from
the robot in the upper right corner), and plotted circles corresponding
to both the ground truth and each detector. We only plot detections
whose confidence is greater or equal than a given threshold matching
the confidence of the point at the Peak-F1 score of each detector.
Stills from the video can be seen in Figure 9, showing several types of
environments: indoors (Scenes 1, 4, 6), outdoors (2, 3, 5), crowded (4),
with challenging geometry (1, 2, 6). The most interesting thing to note
about the detectors is their different ways of producing false positives.
Certain kinds of challenging geometry (such as pillars, fences or wall
corners) can cause models to incorrectly predict the presence of people.
Models that do not aggregate information from several scans tend to
make more mistakes in these situations.

6 Conclusions and future work

We showcased a brand new dataset for people detection using
2D range finders called FROG, as well as the process and tools we
used to semi-automatically carry out the annotation process. We also
proposed our own deep learning based people detectors leveraging
this data; and afterwards we designed, implemented and carried out

9 https://youtu.be/czzddmL1pLlI
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a benchmark intended to evaluate people detectors using the FROG
dataset. We obtained and reported results for a collection of state-of-
the-art detectors, and commented on the performance of each one.
We can draw certain conclusions: 2D LiDAR-based person detection
is still an open problem, and we hope we contribute to it through our
dataset and our proposed models.

As future work, we intend to improve our models so that a fully
deep learning based approach (without non-deep pre-processing
and classical post-processing steps) can surpass the performance of
existing models, besides already providing a faster implementation.
Moreover, we plan to focus our efforts on the speed and usability
of the models when executed directly on a real robot platform
with low power on-device Al accelerators, as opposed to a separate
desktop system with powerful hardware. Regarding the dataset,
we recorded more sequences than we annotated. This opens the
possibility of extending the dataset in the future, and using the new
data as a hidden test set for competition purposes. Moreover, the
FROG dataset is well suited to supporting further analysis of the
generalization capability of people detectors, as the nature of its
scenario generates difficult targets, such as far away or fast moving
people. Finally, we propose further exploring the potential of self-
supervised approaches (Jia et al., 2021; Arreghini et al., 2025), as
well as fusing detection results from different sensor sources for a
combined integral approach to people detection.
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