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FROG: a new people detection 
dataset for knee-high 2D range 
finders

Fernando Amodeo†*, Noé Pérez-Higueras†, Luis Merino and 
Fernando Caballero

Service Robotics Lab, Universidad Pablo de Olavide, Seville, Spain

Mobile robots require knowledge of the environment, especially of humans 
located in its vicinity. While the most common approaches for detecting humans 
involve computer vision, an often overlooked hardware feature of robots for 
people detection are their 2D range finders. These were originally intended 
for obstacle avoidance and mapping/SLAM tasks. In most robots, they are 
conveniently located at a height approximately between the ankle and the 
knee, so they can be used for detecting people too, and with a larger field 
of view and depth resolution compared to cameras. In this paper, we present 
a new dataset for people detection using knee-high 2D range finders called 
FROG. This dataset has greater laser resolution, scanning frequency, and more 
complete annotation data compared to existing datasets such as DROW (Beyer 
et al., 2018). Particularly, the FROG dataset contains annotations for 100% of 
its laser scans (unlike DROW which only annotates 5%), 17x more annotated 
scans, 100x more people annotations, and over twice the distance traveled 
by the robot. We propose a benchmark based on the FROG dataset, and 
analyze a collection of state-of-the-art people detectors based on 2D range 
finder data. We also propose and evaluate a new end-to-end deep learning 
approach for people detection. Our solution works with the raw sensor data 
directly (not needing hand-crafted input data features), thus avoiding CPU 
preprocessing and releasing the developer of understanding specific domain 
heuristics. Experimental results show how the proposed people detector attains 
results comparable to the state of the art, while an optimized implementation 
for ROS can operate at more than 500 Hz.
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learning 

 1 Introduction

Nowadays, mobile robots are becoming part of our daily lives. Robots must be capable of 
sharing the space with humans in their operational environments. Therefore, human social 
conventions must be taken into account when navigating within the scenario in order to 
improve people’s comfort. The first step to achieve this is human perception. Robots must 
be able to detect people in their surroundings, distinguishing them from other static and 
dynamic obstacles.

In the last few years, image-based algorithms for detection and tracking of people have 
evolved significantly. Moreover, these algorithms can also work in 3D space by using cameras 
with depth perception. However, the use of these cameras for human detection in the robot
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navigation task still presents some drawbacks. The field of view of 
most cameras is very limited, and so is the depth perception range. 
Robots usually work around these limitations by making use of 
several cameras, which thus increases the complexity of the system 
and the computation requirements.

On the other hand, most commercial and non-commercial 
ground robots include 2D LiDAR range finders. This includes 
industrial robots used in warehouses such as autonomous mobile 
robots (AMRs) and automated guided vehicles (AGVs), which must 
perform people detection if their specification calls for sharing 
the operating environment with human workers. In any case, 
another major driving motivation for 2D LiDAR usage is reducing 
the total cost of the robot, while still providing a platform that 
can reliably perform obstacle detection and robot localization. 
The cost of 2D LiDAR sensors has gone down in recent years, 
and economical models for hobbyist/educational use can even be 
found in mainstream marketplaces. In addition, LiDARs provide 
accurate range measurements closely achieving full 360° coverage 
as well as long range detection, making them a good choice for 
the aforementioned use cases. Furthermore, in most cases, these 
sensors are installed on robots at a plane parallel to the ground that 
is approximately knee height.

A number of robotics researchers have worked on using 2D 
range finders to detect people in the proximity of a robot. The 
first approaches used hand-crafted features and classical algorithms 
(Arras et al., 2007; Pantofaru, 2010), while later approaches 
employed deep learning techniques (Beyer et al., 2017; 2018; 
Guerrero-Higueras et al., 2019; Jia et al., 2020; 2021). However, most 
publicly available datasets for people detection in robotics involve 
other kinds of sensors, or require relabeling. Very few datasets 
specifically geared for 2D range finders exist, the most notable of 
which is the DROW dataset (Beyer et al., 2017; 2018).

This work aims to fill this gap by releasing a completely new 
2D range finder dataset specifically focused on person detection. 
The laser scans were recorded as part of the Fun Robot Outdoor 
Guide (FROG) project (Evers et al., 2014). The scenario consists 
of a tour of the Royal Alcázar of Seville, an iconic Mudéjar palace 
receiving over 1.5 million visitors a year. Our dataset contains a large 
number of laser scans, and unlike Beyer et al. (2017) every single one 
is annotated. This is possible using our semi-automatic annotation 
tool, which considerably reduces the workload required to annotate 
such an extensive dataset.

Overall, we present the following contributions:

• A fully annotated 2D range finder person detection dataset 
including a variety of indoors and outdoors scenes, crowded 
scenes, and challenging features (such as pillars, bushes, slopes, 
etc.). This dataset contains a total of over 400k LiDAR scans, 
all of which are annotated (compared to DROW, which only 
annotates 5%), a total of over 1 million people annotations, 
around 3 h of recorded time, and a total travel distance 
of over 10 km.

• A deep learning based people detection model that learns 
people-distinguishing features directly from the range data 
vector without requiring a preprocessing step, and produces 
person location proposals using techniques analogous to those 
of image-based object detectors. Our optimized ROS-based 
implementation also achieves inference times of less than 2 ms, 

which is considerably faster than the best currently available 
solutions.

• A benchmarking codebase and methodology complementing 
and supporting our dataset, which allows researchers to 
evaluate their own 2D range finder person detectors under 
standardized metrics and metric computation code.

2 Related work

In this section we survey existing datasets related to people 
detection and range finders, with attention to their composition and 
attributes. We also survey existing works that aim to detect people 
using these sensors. Our findings, detailed below, show that most 
datasets are either geared towards autonomous driving tasks (with 
limited genericity and relevance to people detection), or involve 
other kinds of sensors. People detectors also tend to be based on 
classical algorithms or make use of hand-crafted input processing. 
We focused on studying detectors involving the use of deep learning, 
even if they also contain non-deep processes. 

2.1 Annotated 2D LiDAR datasets

There are many datasets with people annotations in the form of 
bounding boxes or segmentation masks, geared towards plain 2D 
images or sensors such as RGBD cameras or 3D LiDAR. However, 
there is a scarcity of people detection datasets geared towards 2D 
LiDAR sensors, containing annotated 2D range data.

With the rise of autonomous (self-driving) cars, several 
multimodal datasets have been recorded and released, such 
as nuScenes (Caesar et al., 2020), KITTI (Geiger et al., 
2013), and PedX (Kim et al., 2019). These datasets focus on traffic 
scenes, where most objects on the roads are vehicles, and pedestrians 
are sparsely distributed.

Focused on common pedestrian situations in indoor and 
outdoor environments, we found datasets with pedestrians 
annotated in images and 3D LiDAR point clouds like JRDB 
(Martín-Martín et al., 2023), SCAND (Karnan et al., 2022), 
STCrowd (Cong et al., 2022) or WILDTRACK (Chavdarova et al., 
2018) (the latter only based on static camera images in outdoor 
scenarios). There also exist 2D LiDAR datasets for general purpose 
segmentation such as Semantic2D (Xie and Dames, 2024), however 
they contain many more classes besides “person”, and thus they are 
not well suited for training people detectors.

Other datasets provide annotated trajectories of human 
pedestrians performed in a unique controlled laboratory 
environment like the THÖR dataset (Rudenko et al., 2020) or the 
Magni Human Motion dataset (Schreiter et al., 2022). These datasets 
are dedicated to learning social navigation (as opposed to simply 
people detection), and only the latter provides data from a robot’s 
mounted 2D LiDAR sensor.

In this work, we focus on datasets with annotated pedestrians 
in 2D laser scans, and people detectors based on the same sensory 
input. The DROW dataset was introduced in Beyer et al. (2017) for 
the detection of wheelchairs (wc) and walking aids (wa) in laser scan 
data. The authors recorded 113 sequences at an elderly care facility. 

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1671673
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Amodeo et al. 10.3389/frobt.2025.1671673

In a follow-up work (Beyer et al., 2018), the authors added person 
(wp) annotations. We found the following drawbacks in the dataset:

• During the annotation process, the scans were batched in 
groups of 100, and only 1 out of 4 batches was provided to 
human volunteers. Moreover, within each batch, only 1 out of 
5 scans was annotated. This combination results in just 1 out 
of 20 scans (5% of the total) carrying annotations, with the 
remaining 95% being left completely unannotated. Even though 
the authors justified this decision in reducing the workload 
of the annotators, as well as reserving the unannotated scans 
within each batch for temporal approaches; it still means a large 
majority of the data is unusable for direct supervised learning, 
reducing the variability of input samples and prompting the 
use of data augmentation. In addition, temporal approaches 
such as DR-SPAAM (Jia et al., 2020) do not necessarily follow 
the prescribed temporal window stride hyperparameter, instead 
experimenting with different strides (such as T = 10).

• Despite the authors’ efforts in adding people annotations, the 
dataset is still mainly focused on detecting mobility aids, 
meaning the amount and quality of person annotations is 
inadequate for other use cases, compromising the genericity of 
the dataset.

• As pointed out by Jia et al. (2020), the validation set 
is considerably more challenging than the training or test 
sets because it contains more people annotations at farther 
distances (meaning sparser points). This causes problems 
during hyperparameter search, and can also lead researchers to 
make mistakes when trying to assess any possible overfitting.

Another recently available 2D LiDAR dataset for people 
detection is Sixth Sense (Arreghini et al., 2025). This dataset 
leverages an additional Azure Kinect sensor to produce 
unsupervised people detections. However, the dataset is very 
short (around 55k scans at 10 Hz), and it is recorded fully 
indoors within a university campus. Moreover, the person 
detection data is not directly in the form of annotations, instead 
being presented as the output of 360° human distance/presence 
detectors; thus requiring further processing to separate each person 
instance and generate person annotations usable with existing
detectors. 

2.2 People detectors

There are plenty of different detectors and trackers of people 
based on images and depth perception, as commented previously. 
These include face detectors, full-body detectors, or even skeleton 
detectors. However, the field of people detection in 2D range data 
has not been thoroughly explored and researched. We consider this 
to be related to the complexity of the problem, given the scarcity 
of reliable information that can be extracted from the range data in 
order to detect people.

Arras et al. developed a segment-based classifier that detected 
people’s legs using hand-crafted features extracted from each 
segment (Arras et al., 2007). Later, an implementation of Arras’s 
leg detector classifier was released for its use with the ROS 
middleware (Pantofaru, 2010).

Particularly, we are interested in more novel approaches based 
on Deep Learning. The PeTra (People Tracking) detector (Guerrero-
Higueras et al., 2019) replaced the shallow learning based algorithm 
in Arras’s leg detector with a deep 2D fully convolutional 
segmentation network (using a projected 2D occupancy map of 
the range data as input), while still maintaining a classical post-
processing step for extracting locations of individual legs from 
the segmentation output, as well as combining legs into person 
detections. The authors also propose using a Kalman filter to 
produce smoother person tracking over time.

The DROW (Distance RObust Wheelchair/Walker) detector 
(Beyer et al., 2017; 2018) proposes creating many small fixed-size 
windows centered around every point of the scan called “cutouts”, 
which are normalized to contain the same fixed number of range 
values. This eliminates the spatial density variability problem caused 
by laser points at different distances. Then, a 1D convolutional 
network is used to extract features from each cutout, and decide 
both whether a person is nearby, as well as regress a spatial offset 
to said person. The regressed spatial offsets are taken as votes, 
and used to refine the final detected location of the person. The 
network is trained with a dataset of range data created and labeled 
by the same authors (DROW dataset). The authors then followed 
up with an improved version of their detector that fuses temporal 
information (Beyer et al., 2018), and spatially aligning cutouts 
with those of recent past scans with the help of odometry data 
from the robot.

A newer people detector work (Jia et al., 2020) proposes Distance 
Robust Spatial-Attention and Auto-regressive Model (DR-SPAAM). 
Similar to DROW, it continues to use cutouts of the laser scan data, 
but also using a forward looking paradigm to aggregate temporal 
information. Instead of computing spatially aligned cutouts on 
the past scans, it uses a similarity-based spatial attention module, 
which allows the CNN to learn to associate misaligned features 
from a spatial neighborhood. The same authors also present a self-
supervised approach of the DR-SPAAM detector (Jia et al., 2021) in 
which a calibrated camera with a conventional image-based object 
detector model is initially used to detect the people in the scene, and 
subsequently used to generate “pseudo-labels” in the range data for 
self-supervised learning.

Finally, more recent works include Li2Former (Yang et al., 
2024), which replaces the traditional CNN used by the cutout-based 
approach with a Transformer-based architecture; however at the 
expense of increased model and training complexity, and heavier 
runtime processing leading to decreased speed. Moreover, to the best 
of our knowledge there are no publicly available implementations of 
this detector ready for use by robotics researchers.

A general trend in the surveyed detectors is the combination of 
a deep learning network with non-deep pre-processing and post-
processing steps. In particular, the cutout-based approach increases 
the dimensionality of the input by virtue of generating as many 
cutouts as there are points in each range data vector. Likewise, 
the temporal approach involves aggregating data from several 
scans at once, possibly with alignment steps (both deep and non-
deep). This in particular is used to justify the reduced annotation 
coverage of the DROW dataset, which significantly harms the 
development of detectors based on more direct approaches. These 
factors all result in increased memory and computational overhead 
at both training and inference time–according to Jia et al. (2020), 
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their baseline implementation of the DROW detector (without 
temporal aggregation) needs 97.4 ms per scan (10.4 FPS) on an 
edge device suitable for robotics (Jetson AGX), while a special 
“faster” implementation of DR-SPAAM called “DR-SPAAM∗” needs 
44.3 ms per scan (22.6 FPS). One of the motivations of this work is 
encouraging further research into removing the need for these non-
deep steps, and specifically in Section 4 we will propose an initial 
approach into a fully deep person detector based on 2D range data. 

3 FROG dataset

The FROG dataset is a large dataset of people detection in 2D 
LiDAR data covering a populated public space, the Royal Alcázar of 
Seville. The Alcázar is a UNESCO World Heritage Site famous for its 
Mudéjar Hispano-Muslim architecture and its verdant gardens and 
courtyards, which receives over 1.5 million visitors a year–one of the 
most visited monuments in Spain. As a result, the dataset presents 
a rich variety of highly populated areas and scenarios, both indoors 
and outdoors.

The FROG dataset for 2D laser people detection is available 
for download from our website1. The source of the data is our 
previous dataset (Ramón-Vigo et al., 2014), which contains a 
larger collection of raw sensor data appropriate for localization and 
human-robot interaction purposes. This data was also previously 
made publicly available2.

The mobile robotic platform shown in Figure 1 is used to 
record the data of different sensors onboard. In particular, the 
FROG dataset provides the data of the front-mounted 2D LiDAR, 
along with annotations about the people in the field of view of 
the sensor (180°), at a maximum distance of 10 m. We select this 
maximum distance due to the sparsity of LiDAR points (around 
4 cm separation) making it challenging to reliably detect thin 
objects (people’s legs) beyond such distances. The odometry data is 
also provided.

The recorded data encompasses different time slots along 4 days 
of experiments. Each sequence consists of a tour around the Alcázar. 
The trajectory of the robot during one such tour can be seen in 
Figure 2. Table 1 shows a summary of several features of the recorded 
sequences. Around 40% of the scans are recorded outdoors, while 
around 60% are indoors.

We focus on comparing our FROG dataset against the DROW 
dataset, the only currently available dataset that has been used 
to evaluate and compare 2D laser based people detectors. Table 2 
shows a detailed quantitative comparison. Although the DROW 
dataset includes more hours of recordings, only a very small 
portion of the data is annotated–only 5.17% of the scans have 
associated annotations in the.wp files (this number includes empty 
lists of people). On the other side, the FROG dataset provides 
annotations for every single scan, a richer variety of crowded 
scenarios, over twice as many people per scan on average, and greatly 
increased laser/temporal resolutions. Moreover, our robot was able 
to move at faster navigation speeds than those achieved in DROW’s 
scenario, and thus traversed longer paths–over twice the distance 

1 https://robotics.upo.es/datasets/frog/laser2d_people/

2 https://robotics.upo.es/datasets/frog/upo/

compared to the odometry information provided by the DROW
dataset.

3.1 Laser scan labeling tool

Recording data from a robot typically involves using the 
ROS framework, which provides many facilities for interacting 
with device drivers, such as capturing data from the robot’s 
sensors. In ROS, the data of the 2D laser range finder sensors is 
provided through the structure given by the message sensor_
msgs/LaserScan. In a nutshell, the range data is expressed as 
an array of distances in meters. Each position in the array can be 
mapped to a specific laser angle using metadata included in the ROS 
message, specifically the minimum/maximum angles covered by the 
sensor and the angle increment between measures. Finally, captured 
data from one or more sensors is usually stored in a format known 
as a ROS bag file.

We present our graphical tool used to annotate the dataset. 
It loads ROS bag files containing ROS laser scan messages, and 
graphically displays them using a top-down projection. The tool 
also allows visualizing image messages from a camera side by side 
(sensor_msgs/Image) if they are available either in the same 
ROS bag file or in an external time-synchronized bag file. This can 
help the user identify the people to be labeled in the scene. The scan 
labeler is implemented using Python 3, PyQt5 and ROS Noetic. It 
is publicly available on GitHub3, where a detailed description and 
instructions for use are included.

The main interface of the application can be seen in Figure 3. 
On the left side panel we can observe the projected laser scan 
(in red). The scan can then be labeled by creating/removing 
annotation circles enclosing the laser points that correspond to 
each person using the mouse. The user can at any time create, 
move, modify the radius or delete any circle. Moreover, the tool 
includes several options for playing back the laser scans and 
moving forwards/backwards in time at different speeds. Support 
for additional annotation classes is also present, like baby strollers, 
wheelchairs or other walking aids, and intended for future use.

An important feature of our tool is the ability to track the 
group of points inside each circle through time. When the user 
advances from one scan to the next, the center point of each circle 
is automatically recomputed as the mean of the points that still fall 
within the circle, which allows tracking each labeled person. This 
simple tracking does not depend on any automatic detection and is 
supervised by a human annotator to correct or restart it in case the 
tracking fails or non-person scan points are included in the circles. 
The tool does not enforce a minimum number of LiDAR points to 
create or track a circle–the human annotator is in charge of creating 
or deleting them appropriately based on the LiDAR information, as 
well as additional information such as the visual image or intuition. 
Our tool also assigns an internal identifier to each tracklet that the 
user creates, and these identifiers are temporally consistent for each 
tracklet (but there are no globally consistent IDs). Thanks to this 
feature, the annotation circles move along with people in subsequent 
scans, which considerably simplifies and speeds up the annotation 

3 https://github.com/robotics-upo/laserscan_labeler
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FIGURE 1
Left: image of the robot platform used for recording. Right: reference frames of the robot. The front mounted 2D LiDAR sensor (laserfront) is placed 
at X = 0.22 m and Z = 0.33 m with respect to the base of the robot (base_link).

FIGURE 2
Example navigation plan used by the robot during capture of the 
FROG dataset.

process. The annotators are entirely responsible for resolving edge 
cases. For example, when people stand close by, the annotators were 
instructed to shrink the circles to contain only the scan points for 
each individual; avoiding grouping more than one person in the 
same circle and handling some partial occlusions.

TABLE 1  General overview of the annotated sequences in the FROG 
dataset. Each session lasted about half an hour, and we report the total 
number of scans and annotated people in each sequence.

Start time Duration Travel 
distance

Scans People

10:31 26 m 42 s 1666.00 m 64238 127600

11:36 29 m 41 s 1845.66 m 71417 214707

12:43 31 m 43 s 1970.69 m 76088 258298

14:57 29 m 09 s 1824.06 m 70062 133197

15:53 25 m 16 s 1569.47 m 60758 133023

16:41 29 m 29 s 1843.57 m 70923 153658

Total 2 h 52 m 30 s 10719.45 m 413486 1020483

In the specific case of the FROG dataset, the workload is 
distributed across four human annotators, all members of our 
laboratory group. Each annotator is in charge of annotating one or 
two ROS bag files. The work is carried out using our tool, annotating 
each bag in several sessions of around 10000 scans, taking breaks 
in between.

The output of the annotation tool is the list of circles associated 
with every annotated scan. Each circle includes the person tracklet 
identifier, center position (in Cartesian coordinates), and circle 
radius. Besides the list of circles, the timestamp and index of the 
scan within the sequence is also included so that the annotations 
can be traced to the original bag. In addition, the tool also 
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TABLE 2  Comparison between the DROW and FROG datasets, showing 
different general metrics about each, and also including a comparison of 
the 2D LiDAR sensor used by the robots.

Scenario DROW FROG (ours)

Elderly care 
facility

Royal Alcázar of 
Seville

Total scans 464013 413486

Annotated scans 24012 413486

Populated scans 14339 292889

Recorded time ca. 10 h ca. 3 h

Travel distance 5.18 km 10.72 km

People annotations 28984 1020483

Avg. # people/scan 1.2 2.5

Max. # people/scan 17 16

Laser model SICK S300 Hokuyo UTM-30LX

Laser frequency ca. 13 Hz 40 Hz

Laser height 37 cm 35 cm

Laser points 450 720

Laser FoV 225° 180°

Laser resolution 0.5° 0.25°

supports generating segmentation data from the circles, containing 
the classification of each point in the laser scan data.

Finally, the tool supports exporting the aforementioned data 
in different file formats: .csv, .json, .mat (Matlab) and.npy
(NumPy). This variety of formats is intended to make human review 
of the data easier, as well as subsequent loading in post-processing 
scripts. The finalized format of the FROG dataset is explained in the 
following section. 

3.2 Format

The FROG dataset is finally delivered as a series of HDF5-
formatted (The HDF Group, 2024) files. We use this file format in 
order to enable greater data loading efficiency, because HDF5 is 
specifically designed to store and organize large amounts of data, 
supporting partial/random access and easily integrating into Python 
NumPy code.

We make available a collection of Python scripts and modules in 
order to facilitate the loading process, as part of our benchmarking 
suite described in Section 5. This also includes the scripts we used 
to process the ROS bag files and the annotated scan data generated 
using our labeling tool, as well as exporting the data into the final 
HDF5 files; so that other researchers may be able to replicate our 
methodology with their own data.

We define the following arrays (known as datasets in HDF5 
parlance):

• scans: This is a float32 array of dimension (N,720)
containing each individual laser scan vector, where N is the 
total number of scans in the file. Each individual value is 
measured in meters.

• timestamps: This is a float64 array of dimension (N)
containing the timestamp of each scan (in seconds since the 
UTC Unix epoch).

• circles: This is a float32 array of dimension (M,6)
containing all person annotations, where M is the total number 
of person annotations in the file. The second dimension 
contains six values as following, specifying the position (in both 
cartesian and polar coordinates) of the person.
• 0 and 1: Specifies the X/Y position (in meters) of the person.
• 2: Specifies the radius (in meters) of the bounding circle that 

surrounds the person.
• 3 and 4: Specifies the angle (in radians) and distance from 

the origin (in meters) of the person.
• 5: Specifies the half-angle that covers the bounding circle 

when projected from the origin.

Person annotations are associated with only a single scan, and 
the exact range of entries in the circles array that correspond to 
each scan is defined by the circle_idx and circle_num arrays 
(explained below).

• circle_idx: This is an uint32 array of dimension (N) that 
specifies the index into circles of the first person annotation 
associated with each scan, the other annotations being stored 
sequentially afterwards.

• circle_num: This is an uint32 array of dimension (N)
that specifies the total number of person annotations associated 
with each scan.

• split: This is an uint8 array of dimension (N) exclusive 
to the file containing the benchmark training/validation sets, 
specifying which scans belong to which set (0 = training, 
1 = validation). The suggested split roughly follows a 90:10 
proportion.

An important thing to note is that we follow the standard 
axis convention in robotics (see Figure 4). That is, the X-axis 
points forward, the Y-axis points left, and positive angles are 
counterclockwise. This causes the laser scan vectors to effectively be 
stored right-to-left.

Besides the HDF5-formatted files, we also make available the 
raw CSV files created with our labeling tool. These files contain 
partial people tracklets, meaning a single person may be associated 
with multiple tracklets depending on occlusions and other factors 
that affect the labeling process. Although existing 2D LiDAR people 
detection works (including this work) do not make use of them, we 
believe they may be useful to future researchers interested in the 
tracking approach.

Finally, we also make available the odometry data from each 
session as separate files in.npz (compressed NumPy) format. 
Each file contains two arrays, ts (containing timestamps) and
data (containing X-position, Y-position and Z-rotation odometry 
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FIGURE 3
Main interface of the laser scan labeling tool. The tool displays the laser scan and the video feed from a camera topic side by side, and allows the user 
to easily create and track annotations using the mouse.

FIGURE 4
Example annotated laser scan showing the coordinate system used in the FROG dataset, matching the standard conventions used in robotics. The 
distances shown are in meters. Blue dots: points from the scan. Green circles: annotated people.

samples for each timestamp). Like Beyer et al. (2017), the values 
are relative to an arbitrary initial state of the robot–only the 
differences between samples are meaningful. The odometry samples 
are not aligned with the scans due to differences in sample 
rate, and it is up to downstream users to devise a way to 
interpolate the state of the robot at each scan timestamp. Users 
should also keep in mind the relationship between the base 
frame of the robot, and the mounted laser frame, as explained in
Section 3.

4 People detection

In addition to the FROG dataset, we propose a new end-
to-end deep learning network that can detect people from 2D 
laser scan data. This network is inspired by image-based object 
detection networks such as Faster-RCNN (Ren et al., 2015) or the 
YOLO (Redmon et al., 2016) family of detectors, and motivated 
by the lack of approaches that are fully based on deep learning, 
instead relying on hand-crafted (non-deep) pre-processing and 
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FIGURE 5
Laser Feature Extractor (LFE) network architecture, applied to a segmentation task. Each 1D convolutional block consists of three consecutive 
depthwise separable (Chollet, 2017) 1D convolutions of different kernel sizes (9, 7 and 5 respectively). Some blocks also contain a global feature 
aggregator, which performs a global maxpool of the input and concatenates the resulting features to each individual position of the input. Finally, a 
residual path adds the input of the block to the output of the last convolution. The segmentation mask is generated by an “inverse” LFE 
similar to U-Net (Ronneberger et al., 2015) followed by a pointwise convolution that produces the final output logits.

post-processing steps that need to be performed outside accelerators 
(GPU and TPU), such as the cutout generation and vote aggregation 
processes introduced by Beyer et al. (2017). We theorize those 
non-deep processes to be a source of processing speed bottlenecks 
(especially when performed on weak edge CPUs), which limits 
their ability to run on a robot’s built-in hardware. There are two 
contributions in our proposal: a network that can learn to extract 
features from 2D range finder data for use with downstream 
tasks, and a grid-based people detection head similar to RPN
(Ren et al., 2015). 

4.1 Laser Feature Extractor (LFE)

A 2D laser scan reading is usually presented as a 1D vector of 
range measurements, the position of each element within which 
determining the angle of the laser beam with respect to the origin. 
Deep learning algorithms learn to extract a set of abstract features 
about their input (as opposed to a specific set of features designed 
by humans), and use those features to solve a given problem (such 
as classification).

We propose a new Fully Convolutional Network, called the 
Laser Feature Extractor (LFE), which extracts features from a 
1D vector of range measurements. This network is inspired by 
image classification and segmentation networks such as U-Net 
(Ronneberger et al., 2015), ResNets (He et al., 2016) or MobileNet 
(Howard et al., 2017). Its architecture (shown in Figure 5) consists 
of a stack of residual/convolutional and maxpool downscaling 
layers used to extract a feature map. There are three residual 
blocks in total, each containing three convolutional layers. All 
intermediate convolutional layers have 32 filters each. In order 
to reduce the search space and improve runtime speed, all 
convolutional layers are depthwise separable (Chollet, 2017): this 
means they are decomposed into two steps: a stack of independent 
convolutions (one applied to each corresponding channel), followed 
by a pointwise convolution. The activation function used after 

each convolution is ReLU, followed by batch normalization and 
dropout layers.

LFE generates features at three different levels of downsampling: 
the original resolution of the range data, the data downsampled 
by 2, and the data downsampled by 6 (in other words, combined 
downsampling by 2 and 3). This is especially useful given the 
polar nature of range data, thus allowing features to be extracted 
at close distances (where the input resolution is bigger) and also 
at farther distances (where the input resolution is smaller). The 
downsampling factors have been chosen to increase the likelihood 
of evenly dividing the number of points in the laser scan vector (for 
instance, DROW’s 450 points cannot be divided by 4). 

4.1.1 Training protocol
While the backbone of an object detector is traditionally 

pretrained with a simpler classification problem (and dataset such 
as ImageNet (Deng et al., 2009)), there is no such equivalent 
available for 2D laser scan data. In order to validate LFE on its 
own, we consider the laser scan segmentation problem (similar 
to PeTra (Guerrero-Higueras et al., 2019)), and use it to allow 
LFE to learn relevant features for detecting people. In order to 
use LFE in a segmentation problem, we attach an “inverse LFE”, 
making the whole network similar to U-Net (Ronneberger et al., 
2015). This network thus learns a binary label for each input point, 
identifying which points are part of people’s legs (and which are not). 
The segmentation output can also be post-processed with classical 
algorithms (such as SciPy’s find_peaks function) in order to 
generate discrete people detections, something which we will revisit 
in a later section of this paper. 

4.2 People Proposal Network (PPN)

The second component of the network is the People Proposal 
Network (PPN). This network (shown in Figure 6) is directly 
inspired and based on the Region Proposal Network (RPN) 
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FIGURE 6
People Proposal Network (PPN) architecture, incorporating a LFE backbone. The features extracted by the LFE are further processed by a depthwise 
separable (Chollet, 2017) 1D convolutional layer with kernel size 3, after which the outputs (M×3) for each sector in the grid are generated by a final 
pointwise 1D convolutional layer. The Non Maximum Suppression (NMS) process parses the grid output and generates the final people detections.

introduced by the foundational object detection work Faster-RCNN 
(Ren et al., 2015). We adapt the anchor grid of object proposals of 
the RPN so that it can be used in the fundamentally 1D problem 
of laser scan data people detection. In the original RPN the anchor 
grid is bidimensional; each element of the feature map represents a 
2D subarea of the original image, and several anchors are trained 
in parallel for each 2D subarea using different aspect ratio priors. 
In our People Proposal Network the anchor grid corresponds to 
sectors of the full field of view of the laser, with their amplitude 
and number determined by the largest downsampling performed by 
LFE. We place multiple anchors at each sector, each having different 
distance priors fully and evenly covering the entire range of the 
depth axis. The field of view of the PPN has the shape of a circular 
ring sector (see Figure 7). An important consequence of this design 
is that anchors are more densely placed in central (near) areas of 
the field, while being sparser at far areas. This is due to dealing 
with a polar coordinate system as opposed to a Cartesian coordinate 
system–this is in line with the nature of 1D laser scan data.

In mathematical terms, the center point of each anchor in the 
grid corresponds to the polar coordinate (θi, rj). Given N (number 
of angular sectors), M (number of depth sectors), φ (angular field 
of view of the laser), rmin (minimum depth) and rmax (maximum 
depth); we define θi = −

1
2

φ+ ( 1
2
+ i) φ

N
 with i = 0,1,…,N− 1, and 

rj = rmin + (
1
2
+ j) rmax−rmin

M
 with j = 0,1,…,M− 1. Afterwards, we can 

define the Cartesian coordinates Pij = (rj cosθi, rj sinθi).
The PPN receives the feature maps extracted by LFE as input, 

and outputs three target values for each anchor: s (objectness), Δd
(distance offset) and Δℓ (arc offset). The feature maps generated 
at different downsampling levels are maxpooled into the same 
resolution and concatenated in order to generate a single input 
feature map. The objectness score is learned as a classification 
problem, while the distance/arc offsets are learned as a regression 
problem. These offsets are centered on each individual anchor’s 
center point. We learn the arc offset instead of the angle offset so that 
the learned offsets are in the same displacement scale as the distance 
offsets, instead of having drastically different scales depending on 
how close to the origin each individual anchor is. Furthermore, we 
normalize their scale by dividing both offsets by the anchor spacing 
along the depth axis: dfar−dnear

Nanchors
, where dnear and dfar are the minimum 

and maximum detection distances considered, respectively. We also 

empirically show that resulting target offsets used for learning have a 
close-to-normal distribution (μΔd,μΔℓ ≈ 0,σΔd,σΔℓ ≈ 1), see Table 3.

At inference time, the distance and arc offsets of each anchor are 
decoded into Cartesian XY coordinates representing the center of a 
bounding circle, and paired with their corresponding classification 
scores. Note that these centers are usually located between the 
two legs of a person, and they do not necessarily correspond to 
individual sensor measurements; in fact they rarely do (if ever). 
As in Beyer et al. (2017); Jia et al. (2020), all circles are defined 
to have the same radius. Like Ren et al. (2015), the output from 
the network then undergoes a Non-Maximum Suppression (NMS) 
filter. Traditional NMS as applied in object detection is based on the 
Intersection over Union (IoU) measurement between bounding box 
proposals. In our case we use a simple distance function between 
person center proposals. In other words, two person proposals 
overlap if the distance between their centers is smaller than a given 
hyperparameter, which usually matches the most common ground 
truth circle diameter. 

4.2.1 Training protocol
The training process of the network involves generating anchor 

classification and regression data for every scan, based on the person 
annotations in the ground truth. In a similar way to Ren et al. (2015), 
we group all anchors in the grid into two categories: positive and 
negative. The overlap metric used as criterion is once again the 
distance between circle centers, and the boundary between groups 
is a tunable hyperparameter.

The loss function used is the following:

L = 1
N+ +N−

Lcls +
1

N+
Lreg

where Lcls is the classification loss, Lreg is the Smooth L1 
regression loss and N+/N− are the number of positive/negative 
anchors respectively. Positive and negative anchors both contribute 
to classification loss, while only positive anchors contribute to 
regression loss. Both losses are scaled so that they have the same 
magnitude, by virtue of dividing by the number of contributing 
anchors respectively. Given the large imbalance between positive 
and negative anchors, we combine the traditional binary cross-
entropy loss with the Dice loss (Sudre et al., 2017) (a smooth variant 
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FIGURE 7
Example anchor grid used by the People Proposal Network during training on the FROG dataset. The boundaries of the field of view are drawn in gray. 
The laser scan data is represented by navy blue dots. Green circles are ground truth people annotations. Orange and yellow circles are examples of 
positive and negative anchor circles respectively (not all shown). An anchor is considered as positive (s = 1) if it is close enough to a ground truth person.

TABLE 3  Statistical information (mean and standard deviation) about the 
two regression targets in the generated training data: distance offset 
(Δd) and arc offset (Δℓ).

Target μ σ

Δd 0.0605 0.9166

Δℓ 0.0019 0.8773

of the F1 score), taking the average of the two (Galdran et al., 2023) 
as classification loss. We do not follow the approach in Ren et al. 
(2015) (resampling the positive and negative anchors within each 
scan to be in a fixed 1:1 proportion, with each scan producing the 
same overall number of anchors) because said imbalance is greater 
than the one in 2D object detection, causing that approach to be 
rendered unfeasible. This is also an effect of the unevenness of 
anchor density with respect to distance, meaning a large number 
of scans do not contain enough positive anchors to properly fill the
desired quota. 

5 FROG benchmark

We propose using the FROG dataset as a new benchmark 
for 2D laser range finder based people detectors. As such, we 
carry out several experiments with existing detectors, as well as 
our own proposed detectors. In particular, we select the DROW3 
(Beyer et al., 2018), DR-SPAAM (Jia et al., 2020) and PeTra 
(Guerrero-Higueras et al., 2019) detectors from the state of the 
art for an initial benchmark based on the FROG dataset, in 

addition to a well known baseline provided by the ROS framework 
(Pantofaru, 2010). The benchmark codebase we developed to 
perform these experiments can be found on GitHub4, and it provides 
a common implementation of all metrics and evaluation protocols 
for maximum consistency.

We define a subset of the FROG dataset to be used in this 
benchmark, containing training/validation and testing sets. The 
training/validation set is sourced from two different sequences 
recorded around the time of greatest attendance (around noon, 
maximizing the number of person annotations) and later randomly 
split in 90:10 proportion. The testing set is sourced from another 
different sequence. In both cases, scans with empty lists of person 
annotations are excluded from the benchmark. Models are trained 
on the training set, and metrics are calculated and reported on the 
testing set. The validation set is only used to provide feedback during 
the training process, as well as optimizing hyperparameters. We 
provide all the data, and do not withhold the labels associated with 
the testing set. 

5.1 Evaluation criteria and process

We follow existing practices in Beyer et al. (2017), Beyer et al. 
(2018), Jia et al. (2020), Jia et al. (2021), and use the same 
metrics for evaluation purposes. These metrics revolve around the 
Precision-Recall (PR) curve, which is intended to show the overall 
performance profile of the model at different desired precision/recall 
tradeoffs. Particularly, we consider the following:

4 https://github.com/robotics-upo/2DLaserPeopleBenchmark
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• Average Precision: This is the main evaluation metric used by 
the object detection community, and it is nominally equivalent 
to the area under the PR curve (AuC). However, estimating this 
area can be a challenging process due to discontinuities created 
by small variations in example ranking. For this reason, we 
follow the object detection community (specifically MS COCO 
(Lin et al., 2014)) in using the 101-recall-point interpolation 
method to calculate this metric. This contrasts with Beyer et al. 
(2017), which applied the trapezoidal rule instead. As a note, 
we believe this metric produces unexpected behavior when 
evaluating certain methods. In Section 5.3 this is explained with 
more detail.

• Peak F1 score: This is the maximum F1 score obtained along the 
PR curve. Note that the F1 score is the harmonic mean between 
the Precision and Recall values.

• Equal Error Rate (EER): This is the closest value along the PR 
curve at which Precision equals Recall.

These metrics can be parametrized: for example, APd considers 
detections to be positive if there exists an unmatched ground 
truth annotation within d m of the detection. This d parameter is 
known as the association distance, and it is analogous to the IoU 
threshold of object detection metrics. Note that only people centers 
are considered, as opposed to full circles. Following established 
2D LiDAR people detection work (Beyer et al., 2018; Jia et al., 
2020), we calculate the PR curve and evaluate all associated 
metrics using two different values for d: 0.5 m and 0.3 m. In 
addition, we calculate averaged mAP, mPeak F1 and mEER 
metrics for d = [0.3:0.05:0.5] m in order to capture overall 
performance at different association distances with a single value, 
similarly to MS COCO and its mAP metric over a range of IoU
thresholds.

In order to calculate the PR curve, we first obtain the collection 
of person detections produced by each model for each scan in the 
tested split. Each person detection is expected to have a confidence 
score (0.0–1.0), and X/Y positions. We ignore very low confidence 
detections (with score <  0.01), as well as detections falling outside 
a 10 m distance threshold; so that the evaluation process takes a 
reasonable amount of time, and also to avoid unfairly rewarding 
methods that generate hundreds of noisy detections with very 
low confidence scores. Within each scan, detections are matched 
to their closest ground truth annotation. If multiple detections 
are matched to the same ground truth, the one closest to the 
annotation becomes a True Positive and the others are considered 
False Positives. Detections that are farther than d to any ground 
truth annotation are also considered False Positives. Following 
existing aforementioned works, the matchups between detections 
and ground truth circles are recalculated after processing every 
detection (in descending order of confidence score), so that higher 
confidence detections can initially count as True Positives in case a 
lower confidence detection (processed later) is closer to a ground 
truth annotation–this ultimately only replaces one detection for 
another, and does not change the total tally of True Positives. A final 
global aggregation process traverses the complete list of detections 
across scans (also in descending order), accumulating a count of 
True Positives and thus computing every (P,R) point of the curve. 
If multiple detections share the same confidence score, they are 
summarized as a single point in the PR curve.

Lastly, we also report the end-to-end inference time as an 
evaluation metric. Specifically, we use the ROS environment with 
each detector’s provided ROS node, and measure the total time taken 
by the node to process each laser scan and output detected people. 
This is calculated by playing back the test set at a laser frequency high 
enough to bottleneck all detectors, and dividing the simulated time 
by the number of received people detection messages. Concretely, 
we play back the test set at 20 times the speed, resulting in a 800 Hz 
laser frequency sustained for 88.49s. 

5.2 Experimental setup

As mentioned previously, we select a baseline and several state-
of-the-art detectors (as well as our own detectors) to be evaluated as 
part of the first benchmark using the FROG dataset. In this section 
we will discuss the exact methodology used to test each detector, 
including hyperparameters used, challenges encountered during 
evaluation, adaptations needed to produce meaningful results, and 
other miscellaneous details.

The platform used to train and evaluate models is a desktop PC 
sporting an Intel Core i9-9900X CPU with 128 GB of RAM and an 
NVIDIA TITAN RTX GPU with 24 GB of VRAM. 

5.2.1 ROS leg_detector baseline
ROS 1 distributions offer a standard package containing a pre-

trained 2D laser based leg detector/person tracker. This detector 
implements a variant of Arras et al. (2007), a classical algorithm 
based on hand-crafted geometric segment features followed by a 
random forest classifier. We include its results in the benchmark 
because it is a commonly used solution in the field of robotics, 
making it relevant as a baseline to which compare the performance 
of other detectors. In order to more accurately represent the baseline 
as typically employed in robotics projects, we follow Beyer et al. 
(2018) and use the provided pre-trained forest as-is (with all 
default hyperparameters); i.e., not retraining the model with 
data from the FROG dataset. People tracking measurement 
results are captured via ROS bag, and later converted into 
the common evaluation format expected by our benchmarking
codebase. 

5.2.2 PeTra
We evaluate PeTra (Guerrero-Higueras et al., 2019) as a modern 

representative of leg-based detectors. This work essentially replaces 
ROS leg_detector’s classical algorithm with an image-based 
2D fully convolutional segmentation network, which detects points 
belonging to people’s legs. This segmentation output is later post-
processed in order to extract individual leg locations, and pairs 
detected legs to produce final person location proposals. The source 
code was made available online by its authors5.

We train PeTra’s segmentation network using 512× 256 as 
the resolution of the 2D image onto which the laser scan data 
is projected, with the height dimension being half of the width 
dimension in order to save computational resources (given that the 
FoV of the laser is 180°, and otherwise the bottom half of the image 

5 https://github.com/ClaudiaAlvarezAparicio/petra
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FIGURE 8
Precision-recall curves for the person detector models. We show curves for both association distances: 0.5 m and 0.3 m.

would always remain unused). In addition, we randomly sample a 
set of 12000 scans from FROG’s training dataset to convert into 
projected 2D images instead of converting them all, due to the 
increased memory and computation requirements of working with 
2D images as opposed to 1D laser scan vectors.

We train the network for 30 epochs with a batch size of 16 scans 
using the Adam optimizer with η = 5× 10−4.

PeTra uses OpenCV’s findContours routine to find shapes 
corresponding to legs; however it does not generate a detection 
score. In order to solve this, we take the average output of the 
network associated with each point belonging to each contour as its 
overall detection score. Unfortunately, due to the fact that PeTra is 
trained using Dice loss, many points end up with the maximal 1.0 
score allowed by the output of the sigmoid (after the inevitable loss of 
precision), meaning that a large number of detections are generated 
with confidence 1.0. This results in a very short PR curve, as can 
be seen in Figure 8. To remedy this problem, we also evaluate PeTra 
with the same mixed loss function used by our own segmentation-
based detector, resulting in a model we called PeTra∗. This allows us 
to lower the overconfidence of the detections, and thus plot a more 
meaningful PR curve for PeTra.

We perform inference speed tests using PeTra’s provided 
Docker image based on ROS 1 Melodic. We do not evaluate 
PeTra∗separately because it only differs in model weights. In order 
to ensure accurate results, we set the subscriber queue length to 1, 
and move the detector code into the subscriber callback (the original 
code performs detections as a separate timer task, independent of 
laser frequency). 

5.2.3 DROW3 & DR-SPAAM
We evaluate DROW3 (Beyer et al., 2018) and DR-SPAAM 

(Jia et al., 2020) as representatives of the cutout-based input 
preprocessing approach. In particular, we evaluate the most up to 

date implementation of both models6 with minimal modifications to 
the code in order to add support for loading the FROG dataset. These 
modifications include adding custom training configuration files 
and disabling the code that deletes certain log folders–this allows 
us to directly read the generated detections and run our common 
benchmarking code, which is shared with all other models we have 
evaluated.

We train and evaluate both DROW3 and DR-SPAAM in single-
scan mode, that is, no information from previous scans is used 
to generate predictions. We do this in order to enable a fair 
comparison with other models that do not make use of temporal 
information. In addition, we also train and present results for DR-
SPAAM using a temporal window size of 5 scans, so that said 
approach is also represented in the benchmark. DROW3 cannot 
be evaluated in multi-scan mode because the codebase used for 
training does not support reading odometry information. We use 
the same cutout hyperparameters selected in Jia et al. (2020) for 
optimal person detection, in particular: 56 points (1.0 m ×  1.0 m),
window size.

We train the networks for 5 epochs with a batch size of 8, the 
Adam optimizer, and with an exponential learning rate schedule 
ranging from 10−3 initially to 10−6 at the end of training. In 
particular, we use 5 epochs so that the overall number of minibatches 
processed during training on the FROG dataset is of the same order 
of magnitude as when training using the DROW dataset.

We perform inference speed tests using ROS 1 Noetic, the 
provided dr_spaam_ros package, and the latest available version 
of PyTorch at the time of writing (v2.0.1 with CUDA support). 

6 https://github.com/VisualComputingInstitute/2D_lidar_person_

detection
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TABLE 4  Benchmark results for several person detector models. Besides the baseline, all models are trained on FROG’s train split, and evaluated on 
FROG’s test split. Average Precision (AP), Peak F1 and Equal Error Rate (EER) are reported for two association distances: 0.5 m and 0.3 m, as well as 
averaged across [0.3:0.05:0.5]m. End-to-end inference times obtained with each detector’s ROS node are also reported, in milliseconds.

Method d = 0.5 m d = 0.3 m Time (ms)

mAP mPeak F1 mEER AP Peak F1 EER AP Peak F1 EER

ROS leg_detector 15.8 30.8 30.5 20.2 35.2 34.9 10.0 24.3 24.1 1.77

PeTra 49.6 66.4 66.2 50.1 66.6 66.4 49.1 66.1 65.9 28.17

PeTra∗ 58.3 67.7 67.1 59.0 67.9 67.3 57.9 67.4 66.8 —

LFE-Peaks (ours) 64.9 70.2 70.2 65.6 70.7 70.7 63.2 69.0 69.0 1.76

LFE-PPN (ours) 66.5 68.7 68.6 69.2 69.5 69.5 62.5 67.3 67.2 1.49

DROW3 (T = 1) 73.6 71.9 71.6 73.9 72.0 71.8 73.0 71.6 71.4 13.08

DR-SPAAM (T = 1) 73.3 71.9 71.6 73.7 72.1 71.8 72.7 71.6 71.3 13.95

DR-SPAAM (T = 5) 75.3 73.4 73.3 75.6 73.6 73.4 74.7 73.2 73.0 13.99

“DR-SPAAM∗” is not included in the comparison due to not being 
included in the ROS package provided by the authors.

5.2.4 LFE & PPN
We first train LFE on the segmentation problem described in 

Section 4.1.1, using a batch size of 32 and the AdamW (Loshchilov 
and Hutter, 2019) optimizer with η = 10−3 and λ = 4× 10−3. We 
set a target of 100 epochs, with an early stopping patience of 20 
epochs and ΔLmin = 10−3. As mentioned previously, we also evaluate 
LFE on its own as a person detector by adding a classical post-
processing step based around SciPy’s find_peaks function, a 
combination we are calling LFE-Peaks. The post-processing finds 
the height and width of the peaks in the segmentation signal, and 
afterwards computes centroids based on the Cartesian coordinates of 
the corresponding points in the range data. Centroids that are close 
together are interpreted as legs or part of legs, and merged together 
into final person detections using a NMS-like process. Outlier points 
are discarded from each centroid, so that we do not take into account 
parts of the background in the averaging formula. In a similar way to 
our adaptation of PeTra, the confidence score is the average output of 
the network corresponding to all points assigned to each detection.

LFE-PPN embeds LFE as its backbone, which can either 
be trained from scratch, or its weights reused from the LFE 
segmentation experiment and further fine-tuned during LFE-PPN 
training. For the purposes of this experiment, we follow and report 
the latter approach, although we have not observed any quantitative 
differences between the two. We employ a batch size of 4, use the 
AdamW optimizer with η = 10−4 and λ = 4× 10−4, and set a target of 
150 epochs with an early stopping patience of 20 epochs and ΔLmin =
10−3.

We perform inference speed tests using ROS 2 Humble and 
our own developed implementation of a person detection node 
based on either LFE-Peaks or LFE-PPN, using C++ and ONNX 
Runtime v1.14.17 with the CUDA backend. This runtime framework 

7 https://onnxruntime.ai/

is selected because of its intended use as a standalone inference 
engine with direct compatibility with C++, and its ability to use 
multiple backends tailored to different ML accelerators, such as 
those available on edge devices. In the case of LFE-Peaks, an 
embedded Python interpreter is used to execute the classical peak 
finding and post processing algorithm. Our ROS package is publicly 
available on GitHub8. 

5.3 Results

We present the quantitative results of the benchmark (shown 
in Table 4), as well as the corresponding Precision-Recall curves 
in Figure 8. Methods based on cutout preprocessing (DROW3 and 
DR-SPAAM) obtain the overall best metrics, as expected of the 
state of the art; while our own proposed methods (LFE and PPN) 
achieve good results considering how they utilize fewer or no 
hand-crafted features in their design. The ROS leg_detector
baseline produces very poor results, clearly indicating the end of its 
usefulness after the development of much better detectors; however 
they are consistent with the results obtained by Beyer et al. (2018) 
on the DROW dataset.

Counter-intuitive behavior can be observed in the behavior 
of the Average Precision metric. We suspect this metric rewards 
methods with a longer PR curve, said length being a result of 
incorporating a larger number of low confidence/quality guesses, 
which serendipitously inflates the maximum recall score (at the 
expense of precision). Methods which do not generate such guesses 
are unfairly punished. Another reason for this effect has to do 
with the nature of score outputs. Networks trained using binary 
crossentropy loss do not reach the extreme values (1.0, 0.0), and thus 
they produce many more data points for the Precision-Recall curve, 
while networks trained with other loss functions (such as PeTra’s 
Dice loss) may saturate towards the extremes due to loss of precision 

8 https://github.com/robotics-upo/upo_laser_people_detector
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FIGURE 9
Collection of qualitative results, sampled from the FROG dataset’s test set. In the case of PeTra and DR-SPAAM, we only show the best variant 
(PeTra∗and DR-SPAAM with T = 5) for clarity. Several scenes showcasing the performance of the detectors in different types of environments 
are included.

caused by extreme logit value outputs. For this reason we believe the 
Peak-F1 and EER metrics present a fairer comparison in practice.

We can observe that the PR curves and metrics of DROW3 
and DR-SPAAM in single scan mode are practically identical. We 
believe this to be related to the lack of temporal information used 
during training, indicating that the contributions in Jia et al. (2020) 
are not focused on improving the baseline network architecture 
introduced by Beyer et al. (2018). On the other hand, full DR-
SPAAM with a temporal window size of 5 scans achieves the best 
metrics overall, although its PR curve dips below that of DROW3 in 
the low recall section.

PeTra presents a challenging problem during evaluation. As 
explained earlier, its choice of loss function generates a large number 
of detections with the maximum possible confidence score (1.0), 

causing a significant portion of the data to be lumped together as 
a single point, which in turn results in a degenerate PR curve. We 
correct this by changing the loss function to incorporate binary 
crossentropy. The resulting model (PeTra∗) does not present this 
problem, and thus achieves results more in line with the ones 
obtained by other models. Despite being limited in the size of the 
training set, its results are fairly reasonable.

LFE-Peaks and LFE-PPN manage to outperform the state of 
the art in the low recall/high precision zone of the PR graph. LFE-
Peaks in particular is able to trade blows against LFE-PPN and be 
competitive on its own against DROW3, however it loses in mAP 
and AP @ 0.5 m due to the length of its PR curve (stopping at less 
than 80% recall, while LFE-PPN is able to cross that threshold). 
These results clearly indicate that the 1D convolutional layers in 
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LFE are capable of competently learning people-identifying features 
directly from range data. The PPN shows results that clearly validate 
the idea of replacing classical post-processing algorithms with a 
fully deep approach inspired by object detection, however it still 
requires further tuning and improvements to be able to outperform 
the state of the art. Of note is its difference in performance depending 
on the associating distance, which we theorize could be caused 
by shortcomings in the design of the regression targets, or the 
distribution of the training data; thus indicating the need to further 
adjust people center proposal generation.

In terms of inference speed, we can observe large differences 
between processing times achieved by each detector. Some 
implementations (leg_detector and our LFE-Peaks/LFE-PPN 
nodes) take less than 2 ms to process each scan. Comparing these 
three detectors, there is a difference of about 0.3 ms between LFE-
PPN and the other two–in other words, LFE-PPN is 15% faster. DR-
SPAAM takes around 14 ms (similar to the time reported in Jia et al. 
(2020)) regardless of temporal window size thanks to its auto-
regressive architecture. DROW3’s network architecture is slightly 
faster than DR-SPAAM’s, taking around 13 ms. Finally, PeTra 
takes around 28 ms. Some of these large differences could be 
attributed to a variety of reasons not necessarily related to model 
architecture, such as differences in the software technologies 
used. For instance, DROW3/DR-SPAAM’s ROS node is fully 
implemented in Python and PyTorch (which in turn includes
rospy serialization/deserialization overhead), while the rest are 
all implemented in C++. PeTra uses TensorFlow v1.x–a long since 
deprecated branch that is no longer maintained, while our LFE/PPN 
nodes use ONNX Runtime–a library specifically designed for 
fast inference times in deployed applications. In any case, this 
comparison involves real systems that are currently available for 
use by robotics researchers.

Finally, we qualitatively evaluate the detectors. We provide a video9 
showing the laser scan sequence (with the reference image feed from 
the robot in the upper right corner), and plotted circles corresponding 
to both the ground truth and each detector. We only plot detections 
whose confidence is greater or equal than a given threshold matching 
the confidence of the point at the Peak-F1 score of each detector. 
Stills from the video can be seen in Figure 9, showing several types of 
environments: indoors (Scenes 1, 4, 6), outdoors (2, 3, 5), crowded (4), 
with challenging geometry (1, 2, 6). The most interesting thing to note 
about the detectors is their different ways of producing false positives. 
Certain kinds of challenging geometry (such as pillars, fences or wall 
corners) can cause models to incorrectly predict the presence of people. 
Models that do not aggregate information from several scans tend to 
make more mistakes in these situations. 

6 Conclusions and future work

We showcased a brand new dataset for people detection using 
2D range finders called FROG, as well as the process and tools we 
used to semi-automatically carry out the annotation process. We also 
proposed our own deep learning based people detectors leveraging 
this data; and afterwards we designed, implemented and carried out 

9 https://youtu.be/czzddmL1pLI

a benchmark intended to evaluate people detectors using the FROG 
dataset. We obtained and reported results for a collection of state-of-
the-art detectors, and commented on the performance of each one. 
We can draw certain conclusions: 2D LiDAR-based person detection 
is still an open problem, and we hope we contribute to it through our 
dataset and our proposed models.

As future work, we intend to improve our models so that a fully 
deep learning based approach (without non-deep pre-processing 
and classical post-processing steps) can surpass the performance of 
existing models, besides already providing a faster implementation. 
Moreover, we plan to focus our efforts on the speed and usability 
of the models when executed directly on a real robot platform 
with low power on-device AI accelerators, as opposed to a separate 
desktop system with powerful hardware. Regarding the dataset, 
we recorded more sequences than we annotated. This opens the 
possibility of extending the dataset in the future, and using the new 
data as a hidden test set for competition purposes. Moreover, the 
FROG dataset is well suited to supporting further analysis of the 
generalization capability of people detectors, as the nature of its 
scenario generates difficult targets, such as far away or fast moving 
people. Finally, we propose further exploring the potential of self-
supervised approaches (Jia et al., 2021; Arreghini et al., 2025), as 
well as fusing detection results from different sensor sources for a 
combined integral approach to people detection.
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