[image: Frontiers Logo]Editorial: Robotics software engineering

EDITORIAL
published: 29 September 2025
doi: 10.3389/frobt.2025.1686496
[image: image2]
Editorial: Robotics software engineering
Federico Ciccozzi1*, Ivano Malavolta2*, Christopher Timperley3, Andreas Angerer4 and Alwin Hoffmann4
1Mälardalen University, Västerås, Sweden, 2Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 3Carnegie Mellon University, Pittsburgh, United States, 4XITASO Holding GmbH, Augsburg, Germany
Edited and reviewed by:
Junaid Qadir, Qatar University, Qatar
*Correspondence:
 Federico Ciccozzi, federico.ciccozzi@mdu.se; Ivano Malavolta, i.malavolta@vu.nl
Received: 15 August 2025
Accepted: 04 September 2025
Published: 29 September 2025
Citation:
Ciccozzi F, Malavolta I, Timperley C, Angerer A and Hoffmann A (2025) Editorial: Robotics software engineering. Front. Robot. AI 12:1686496. doi: 10.3389/frobt.2025.1686496

Keywords: robotic software, robotic software architecture, robotic software development, robotic software framework, software testing, software engineering
INTRODUCTION
Robotics software engineering stands at the intersection of multiple disciplines, where physical interaction with dynamic and uncertain environments amplifies the complexity of traditional software challenges. As robots become indispensable in domains such as manufacturing, healthcare, transportation, and exploration, they must exhibit high levels of autonomy, adaptability, robustness, and safety. Achieving these qualities requires not only technical breakthroughs in algorithms and hardware but also a strong foundation in software engineering principles tailored to the unique demands of robotics.
Robotics inherently involves multidisciplinary integration: navigation, motion planning, manipulation, perception, control, and human-robot interaction must all coalesce within a coherent software framework. Engineering these systems requires the careful coordination of experts from each domain, whose contributions must reliably interoperate, often in real time. Further challenges arise from operating in environments that are partially observable, dynamic, and sometimes adversarial, which raises the stakes for ensuring correctness, security, and resilience.
This Research Topic, Robotics Software Engineering, brings together a diverse Research Topic of contributions aimed at addressing foundational and emerging challenges in this space. Rather than presenting a simple catalog of articles, this editorial aims to situate these works within the broader themes that are shaping the future of robotics software.
BRINGING RIGOR TO ROBOTICS: MODEL-BASED ENGINEERING AND FORMAL METHODS
As robotic applications become increasingly safety-critical, ensuring correctness through formal verification becomes not just desirable but necessary. However formal methods remain difficult to apply due to the manual effort required to create models and extract system parameters. Dust et al. at Mälardalen University (Sweden) addressed this issue head-on with a model-driven methodology for the automated formal verification of ROS 2 systems. By integrating model transformation pipelines with real execution traces, this work demonstrates how verification can become more modular, reusable, and accessible to non-experts. This toolchain lowers the barrier to rigorous analysis, allowing developers to iteratively assess critical system properties such as timing and scheduling without being formal methods specialists.
Similarly, Barnett et al. (University of York, UK) proposed RoboArch, an architectural modeling language layered atop the formal DSL RoboChart, which advances the discipline by providing verifiable architectural abstractions. When applied in industrial contexts such as nuclear robotics, RoboArch emphasizes the value of model-driven design in bridging the gap between informal software practices and formal correctness in real-world systems.
ARCHITECTURES FOR ADAPTIVITY AND REUSABILITY
Adaptation is a recurring theme in robotic systems, where conditions often change unpredictably. Several contributions explored adaptive software architectures as key enablers of robustness and long-term autonomy. ROSA, a knowledge-driven framework for robot self-adaptation proposed by Silva et al. (TU Delft, Netherlands), exemplifies this direction. It captures application-specific knowledge in structured models and reasons over them at runtime to guide both task execution and architectural configuration—a co-adaptation capability rarely addressed in robotics.
Complementing this, the survey on ontology-enabled autonomy by Aguado et al. (Universidad Politécnica de Madrid, Spain) examined how semantic knowledge and reasoning improve robot behavior in open-ended environments. By analyzing trends in the use of ontologies for fault recovery, mission planning, and behavior selection, the article highlights how structured, declarative knowledge can foster more explainable and dependable autonomy.
The contribution by Schneider et al. (Hochschule Bonn-Rhein-Sieg, Germany and KU Leuven, Belgium), Semantic Composition of Robotic Solver Algorithms, introduced a composable, graph-based methodology for algorithm synthesis. By leveraging standards from the Semantic Web, the authors enabled the reuse and symbolic generation of solver code across application domains, from kinematics to probabilistic inference. These developments advance the field toward software that not only adapts itself but also explains its logic, a key step for collaborative and trustworthy robots.
IMPROVING SOFTWARE QUALITY THROUGH EARLY VALIDATION AND TESTING
Traditional debugging and validation approaches are inadequate for robotics, where errors discovered at runtime can lead to costly damage or unsafe behavior. Therefore, early and automated validation is crucial.
With EzSkiROS, Rizwan et al. (Lund University) and colleagues addressed this issue by using embedded domain-specific languages (DSLs) which enable the early detection of errors in robotic skill composition. By embedding checks in the design and deployment phases, this approach detected both high-level contract violations and low-level implementation bugs before they manifested during execution. This shift left in the validation pipeline shortens the debugging loop and improves overall safety.
At the other end of the deployment pipeline, with AAT4IRS, Dos Santos et al. (Université du Québec à Chicoutimi, Canada) introduced a novel framework for automated acceptance testing in industrial robotic systems. Built on behavior-driven development principles, this approach uses natural language to specify test scenarios, enabling cross-functional collaboration between engineers and stakeholders. Mutation testing results showed strong fault detection capability, indicating the practical utility of the framework in high-stakes industrial environments.
Simulation-based testing also receives attention. Despite its potential, it remains underused due to the complexity of scenario definition. To address this issue, the article by Ortega et al. (University of Bremen and Ruhr University Bochum, Germany) presented a composable scenario framework for testing mobile robots in virtual environments. By enabling developers to incrementally build and reuse complex scenarios, the approach reduces overhead while improving test coverage and configuration error detection.
FOUNDATIONS AND INFRASTRUCTURE: LANGUAGES, PATTERNS, AND PERFORMANCE
The infrastructure underlying robotic software must be efficient, reliable, and extensible. Several contributions examine foundational aspects, including runtime patterns, data structures, and energy consumption.
The study by Artigas et al. (KU Leuven and Flanders Make, Belgium) introduced software coordination patterns such as acquire-release and cache-awareness, alongside data structures such as Petri nets and finite state machines, to support real-time task execution. The proposed runtime infrastructure separates event firing from handling, facilitating distributed deployment and enabling consistent coordination across multiple robots.
The contribution by Albonico et al. (Federal University of Technology of Paraná, Brazil) and colleagues addressed an increasingly important concern—energy efficiency—by comparing the resource usage of ROS 2 nodes written in C++ and Python. Empirical results confirmed that C++ outperforms Python in energy consumption, particularly in high-frequency communication tasks, offering valuable guidance to developers who are optimizing for battery-powered or resource-constrained platforms.
Containerization also emerges as a promising strategy for scalable integration Cotugno et al. (Ocado Technology, UK) and colleagues proposed a containerized approach for multiform robotic architectures, demonstrating how virtualization can simplify the integration of third-party components without compromising performance. Evaluated in a real-world industrial robot, this method showed that modern software engineering practices such as containerization can be successfully adapted to robotics, reducing setup complexity while maintaining real-time guarantees.
TOWARD A MATURE DISCIPLINE OF ROBOTIC SOFTWARE ENGINEERING
Taken together, the articles in this Research Topic reflect a field that is rapidly maturing—seeking not only functional solutions to robotic problems but principled, reusable, and verifiable engineering practices. From architectural modeling to energy-aware programming, from scenario-based testing to self-adaptive reasoning, each contribution addresses a facet of the broader challenge: how to engineer robotic systems that are not only intelligent, but also trustworthy, maintainable, and ready for real-world deployment.
This Research Topic fosters synergy between academia and industry, theoretical rigor and practical deployment. It invites the community to further explore the foundational questions of variability, modularity, reusability, validation, and automation in robotic software development. As robots increasingly share our spaces and tasks, the importance of sound engineering for their software only grows.
We hope these contributions inspire continued innovation and cross-disciplinary collaboration in the journey toward robust and dependable robotic systems.
AUTHOR CONTRIBUTIONS
FC: Writing – original draft. IM: Writing – review and editing. CT: Writing – review and editing. AA: Writing – review and editing. AH: Writing – review and editing.
FUNDING
The author(s) declare that no financial support was received for the research and/or publication of this article.
CONFLICT OF INTEREST
Authors AA and AH were employed by XITASO Holding GmbH.
The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
GENERATIVE AI STATEMENT
The author(s) declare that no Generative AI was used in the creation of this manuscript.
Any alternative text (alt text) provided alongside figures in this article has been generated by Frontiers with the support of artificial intelligence and reasonable efforts have been made to ensure accuracy, including review by the authors wherever possible. If you identify any issues, please contact us.
Publisher’s note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.
Copyright © 2025 Ciccozzi, Malavolta, Timperley, Angerer and Hoffmann. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
Editorial on the Research Topic Robotics software engineering
OPS/xhtml/nav.xhtml
Table of Contents

		Cover

		Editorial: Robotics software engineering		INTRODUCTION

		BRINGING RIGOR TO ROBOTICS: MODEL-BASED ENGINEERING AND FORMAL METHODS

		ARCHITECTURES FOR ADAPTIVITY AND REUSABILITY

		IMPROVING SOFTWARE QUALITY THROUGH EARLY VALIDATION AND TESTING

		FOUNDATIONS AND INFRASTRUCTURE: LANGUAGES, PATTERNS, AND PERFORMANCE

		TOWARD A MATURE DISCIPLINE OF ROBOTIC SOFTWARE ENGINEERING

		AUTHOR CONTRIBUTIONS

		FUNDING

		CONFLICT OF INTEREST

		GENERATIVE AI STATEMENT









OPS/images/cover.jpg
& frontiers | Frontiers in Robotics and Al










OPS/images/crossmark.jpg
©

|





OPS/images/logo.jpg
& frontiers | Frontiers in Robotics and Al





