
 

TYPE Editorial
PUBLISHED 29 September 2025
DOI 10.3389/frobt.2025.1686496

OPEN ACCESS

EDITED AND REVIEWED BY

Junaid Qadir,
Qatar University, Qatar

*CORRESPONDENCE

Federico Ciccozzi,
federico.ciccozzi@mdu.se

Ivano Malavolta,
i.malavolta@vu.nl

RECEIVED 15 August 2025
ACCEPTED 04 September 2025
PUBLISHED 29 September 2025

CITATION

Ciccozzi F, Malavolta I, Timperley C, Angerer A 
and Hoffmann A (2025) Editorial: Robotics 
software engineering.
Front. Robot. AI 12:1686496.
doi: 10.3389/frobt.2025.1686496

COPYRIGHT

© 2025 Ciccozzi, Malavolta, Timperley, 
Angerer and Hoffmann. This is an 
open-access article distributed under the 
terms of the Creative Commons Attribution 
License (CC BY). The use, distribution or 
reproduction in other forums is permitted, 
provided the original author(s) and the 
copyright owner(s) are credited and that the 
original publication in this journal is cited, in 
accordance with accepted academic practice. 
No use, distribution or reproduction is 
permitted which does not comply with 
these terms.

Editorial: Robotics software 
engineering

Federico Ciccozzi1*, Ivano Malavolta2*, Christopher Timperley3, 
Andreas Angerer4 and Alwin Hoffmann4

1Mälardalen University, Västerås, Sweden, 2Vrije Universiteit Amsterdam, Amsterdam, Netherlands, 
3Carnegie Mellon University, Pittsburgh, United States, 4XITASO Holding GmbH, Augsburg, Germany

KEYWORDS

robotic software, robotic software architecture, robotic software development, robotic 
software framework, software testing, software engineering 

Editorial on the Research Topic

Robotics software engineering
s

Introduction

Robotics software engineering stands at the intersection of multiple disciplines, where 
physical interaction with dynamic and uncertain environments amplifies the complexity 
of traditional software challenges. As robots become indispensable in domains such as 
manufacturing, healthcare, transportation, and exploration, they must exhibit high levels of 
autonomy, adaptability, robustness, and safety. Achieving these qualities requires not only 
technical breakthroughs in algorithms and hardware but also a strong foundation in software 
engineering principles tailored to the unique demands of robotics.

Robotics inherently involves multidisciplinary integration: navigation, motion 
planning, manipulation, perception, control, and human-robot interaction must all coalesce 
within a coherent software framework. Engineering these systems requires the careful 
coordination of experts from each domain, whose contributions must reliably interoperate, 
often in real time. Further challenges arise from operating in environments that are partially 
observable, dynamic, and sometimes adversarial, which raises the stakes for ensuring 
correctness, security, and resilience.

This Research Topic, Robotics Software Engineering, brings together a diverse Research 
Topic of contributions aimed at addressing foundational and emerging challenges in this 
space. Rather than presenting a simple catalog of articles, this editorial aims to situate these 
works within the broader themes that are shaping the future of robotics software.

Bringing rigor to robotics: model-based 
engineering and formal methods

As robotic applications become increasingly safety-critical, ensuring correctness 
through formal verification becomes not just desirable but necessary. However formal 
methods remain difficult to apply due to the manual effort required to create models and 
extract system parameters. Dust et al. at Mälardalen University (Sweden) addressed this

Frontiers in Robotics and AI 01 frontiersin.org

https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org/journals/robotics-and-ai#editorial-board
https://doi.org/10.3389/frobt.2025.1686496
https://crossmark.crossref.org/dialog/?doi=10.3389/frobt.2025.1686496&domain=pdf&date_stamp=2025-09-26
mailto:federico.ciccozzi@mdu.se
mailto:federico.ciccozzi@mdu.se
mailto:i.malavolta@vu.nl
mailto:i.malavolta@vu.nl
https://doi.org/10.3389/frobt.2025.1686496
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frobt.2025.1686496/full
https://www.frontiersin.org/articles/10.3389/frobt.2025.1686496/full
https://www.frontiersin.org/research-topics/55665
https://doi.org/10.3389/frobt.2025.1592523
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ciccozzi et al. 10.3389/frobt.2025.1686496

issue head-on with a model-driven methodology for the automated 
formal verification of ROS 2 systems. By integrating model 
transformation pipelines with real execution traces, this work 
demonstrates how verification can become more modular, reusable, 
and accessible to non-experts. This toolchain lowers the barrier to 
rigorous analysis, allowing developers to iteratively assess critical 
system properties such as timing and scheduling without being 
formal methods specialists.

Similarly, Barnett et al. (University of York, UK) proposed 
RoboArch, an architectural modeling language layered atop the 
formal DSL RoboChart, which advances the discipline by providing 
verifiable architectural abstractions. When applied in industrial 
contexts such as nuclear robotics, RoboArch emphasizes the value of 
model-driven design in bridging the gap between informal software 
practices and formal correctness in real-world systems.

Architectures for adaptivity and 
reusability

Adaptation is a recurring theme in robotic systems, where 
conditions often change unpredictably. Several contributions 
explored adaptive software architectures as key enablers of 
robustness and long-term autonomy. ROSA, a knowledge-
driven framework for robot self-adaptation proposed by Silva 
et al. (TU Delft, Netherlands), exemplifies this direction. It 
captures application-specific knowledge in structured models 
and reasons over them at runtime to guide both task execution 
and architectural configuration—a co-adaptation capability rarely 
addressed in robotics.

Complementing this, the survey on ontology-enabled autonomy 
by Aguado et al. (Universidad Politécnica de Madrid, Spain) 
examined how semantic knowledge and reasoning improve robot 
behavior in open-ended environments. By analyzing trends in 
the use of ontologies for fault recovery, mission planning, and 
behavior selection, the article highlights how structured, declarative 
knowledge can foster more explainable and dependable autonomy.

The contribution by Schneider et al. (Hochschule Bonn-Rhein-
Sieg, Germany and KU Leuven, Belgium), Semantic Composition 
of Robotic Solver Algorithms, introduced a composable, graph-
based methodology for algorithm synthesis. By leveraging standards 
from the Semantic Web, the authors enabled the reuse and 
symbolic generation of solver code across application domains, from 
kinematics to probabilistic inference. These developments advance 
the field toward software that not only adapts itself but also explains 
its logic, a key step for collaborative and trustworthy robots.

Improving software quality through 
early validation and testing

Traditional debugging and validation approaches are inadequate 
for robotics, where errors discovered at runtime can lead 
to costly damage or unsafe behavior. Therefore, early and 
automated validation is crucial.

With EzSkiROS, Rizwan et al. (Lund University) and colleagues 
addressed this issue by using embedded domain-specific languages 
(DSLs) which enable the early detection of errors in robotic skill 
composition. By embedding checks in the design and deployment 
phases, this approach detected both high-level contract violations 
and low-level implementation bugs before they manifested during 
execution. This shift left in the validation pipeline shortens the 
debugging loop and improves overall safety.

At the other end of the deployment pipeline, with AAT4IRS, 
Dos Santos et al. (Université du Québec à Chicoutimi, Canada) 
introduced a novel framework for automated acceptance testing in 
industrial robotic systems. Built on behavior-driven development 
principles, this approach uses natural language to specify test 
scenarios, enabling cross-functional collaboration between 
engineers and stakeholders. Mutation testing results showed strong 
fault detection capability, indicating the practical utility of the 
framework in high-stakes industrial environments.

Simulation-based testing also receives attention. Despite 
its potential, it remains underused due to the complexity of 
scenario definition. To address this issue, the article by Ortega 
et al. (University of Bremen and Ruhr University Bochum, 
Germany) presented a composable scenario framework for testing 
mobile robots in virtual environments. By enabling developers to 
incrementally build and reuse complex scenarios, the approach 
reduces overhead while improving test coverage and configuration 
error detection.

Foundations and infrastructure: 
languages, patterns, and performance

The infrastructure underlying robotic software must be efficient, 
reliable, and extensible. Several contributions examine foundational 
aspects, including runtime patterns, data structures, and energy 
consumption.

The study by Artigas et al. (KU Leuven and Flanders Make, 
Belgium) introduced software coordination patterns such as 
acquire-release and cache-awareness, alongside data structures 
such as Petri nets and finite state machines, to support real-
time task execution. The proposed runtime infrastructure separates 
event firing from handling, facilitating distributed deployment and 
enabling consistent coordination across multiple robots.

The contribution by Albonico et al. (Federal University of 
Technology of Paraná, Brazil) and colleagues addressed an 
increasingly important concern—energy efficiency—by comparing 
the resource usage of ROS 2 nodes written in C++ and Python. 
Empirical results confirmed that C++ outperforms Python in energy 
consumption, particularly in high-frequency communication tasks, 
offering valuable guidance to developers who are optimizing for 
battery-powered or resource-constrained platforms.

Containerization also emerges as a promising strategy for 
scalable integration Cotugno et al. (Ocado Technology, UK) and 
colleagues proposed a containerized approach for multiform robotic 
architectures, demonstrating how virtualization can simplify the 
integration of third-party components without compromising 

Frontiers in Robotics and AI 02 frontiersin.org

https://doi.org/10.3389/frobt.2025.1686496
https://doi.org/10.3389/frobt.2022.991637
https://doi.org/10.3389/frobt.2025.1531743
https://doi.org/10.3389/frobt.2025.1531743
https://doi.org/10.3389/frobt.2024.1377897
https://doi.org/10.3389/frobt.2024.1363150
https://doi.org/10.3389/frobt.2024.1363443
https://doi.org/10.3389/frobt.2024.1346580
https://doi.org/10.3389/frobt.2024.1363281
https://doi.org/10.3389/frobt.2024.1363281
https://doi.org/10.3389/frobt.2024.1363041
https://doi.org/10.3389/frobt.2025.1548250
https://doi.org/10.3389/frobt.2024.1358978
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org


Ciccozzi et al. 10.3389/frobt.2025.1686496

performance. Evaluated in a real-world industrial robot, this 
method showed that modern software engineering practices such as 
containerization can be successfully adapted to robotics, reducing 
setup complexity while maintaining real-time guarantees.

Toward a mature discipline of robotic 
software engineering

Taken together, the articles in this Research Topic reflect 
a field that is rapidly maturing—seeking not only functional 
solutions to robotic problems but principled, reusable, and verifiable 
engineering practices. From architectural modeling to energy-
aware programming, from scenario-based testing to self-adaptive 
reasoning, each contribution addresses a facet of the broader 
challenge: how to engineer robotic systems that are not only 
intelligent, but also trustworthy, maintainable, and ready for real-
world deployment.

This Research Topic fosters synergy between academia and 
industry, theoretical rigor and practical deployment. It invites 
the community to further explore the foundational questions of 
variability, modularity, reusability, validation, and automation in 
robotic software development. As robots increasingly share our 
spaces and tasks, the importance of sound engineering for their 
software only grows.

We hope these contributions inspire continued innovation and 
cross-disciplinary collaboration in the journey toward robust and 
dependable robotic systems.

Author contributions

FC: Writing – original draft. IM: Writing – review and editing. 
CT: Writing – review and editing. AA: Writing – review and editing. 
AH: Writing – review and editing.

Funding

The author(s) declare that no financial support was received for 
the research and/or publication of this article.

Conflict of interest

Authors AA and AH were employed by XITASO 
Holding GmbH.

The remaining authors declare that the research was conducted 
in the absence of any commercial or financial relationships that 
could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the 
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in 
this article has been generated by Frontiers with the support of 
artificial intelligence and reasonable efforts have been made to 
ensure accuracy, including review by the authors wherever possible. 
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the 
authors and do not necessarily represent those of their affiliated 
organizations, or those of the publisher, the editors and the 
reviewers. Any product that may be evaluated in this article, or claim 
that may be made by its manufacturer, is not guaranteed or endorsed 
by the publisher.

Frontiers in Robotics and AI 03 frontiersin.org

https://doi.org/10.3389/frobt.2025.1686496
https://www.frontiersin.org/journals/robotics-and-ai
https://www.frontiersin.org

	Introduction
	Bringing rigor to robotics: model-based engineering and formal methods
	Architectures for adaptivity and reusability
	Improving software quality through early validation and testing
	Foundations and infrastructure: languages, patterns, and performance
	Toward a mature discipline of robotic software engineering
	Author contributions
	Funding
	Conflict of interest
	Generative AI statement
	Publisher’s note

