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Reinventing the wheel: a 
simulation-aided design of a soft, 
shape-adapting, lugged wheel 
for locomotion on sandy terrains

H. Shi*, P. Klaassen, D. L. Schott and J. Jovanova

Department of Maritime and Transport Technology, Faculty of Mechanical Engineering, Delft 
University of Technology, Delft, Netherlands

Locomotion over granular terrain poses significant challenges for autonomous 
robotic systems, particularly in coastal regions characterized by loose, shifting 
sands. To optimize the locomotion on these challenging terrains, a simulation-
aided design approach was used to develop a soft, shape-adapting, wheeled 
locomotion system. A co-simulation framework combining the discrete element 
method (DEM) and multibody dynamics (MBD) is employed to simulate the 
locomotion of a wheeled robot on varying sandy soils, covering both dry and wet 
sandy soil conditions. A shape-adapting wheel design is proposed, incorporating 
soft, inflatable elements that enable the wheel to transform between lugged and 
circular configurations. A discretized flexbody approach is adopted to model the 
interactions between the sandy soil and the soft, flexible bodies of the shape-
adapting wheel design. Simulation results demonstrate improved performance 
of the shape-adapting wheels across a variety of sandy terrains, including slopes 
and obstacles. Integrating softness into the wheel improves obstacle climbing 
performance, while a lugged wheel configuration performs particularly well on 
loose, dry sandy slopes. This DEM-MBD co-simulation further enables efficient 
evaluation of locomotion strategies without the need for extensive physical 
prototyping.

KEYWORDS

DEM, MBD, shape-adapting wheel, granular terrain, locomotion, simulation-aided 
design 

 1 Introduction

Locomotion on granular terrain has been a long-standing challenge in both space 
exploration and terrestrial applications. One of the most iconic examples is the Moon, where 
lunar soil poses significant difficulties for robotic mobility due to its fine, loosely packed 
particles. On Earth, desert environments, agricultural fields, and coastal regions represent 
key examples where robots must navigate loose and shifting substrates. Among these, coastal 
regions are especially significant. They serve as critical interfaces between land and sea, 
hosting a wide range of ecosystems, supporting major economic activities and providing
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habitat for over 40% of the world’s population (United 
Nations, 2007). Globally, approximately 31% of all coastlines 
are sandy (Luijendijk et al., 2018), while in the Netherlands 
approximately 75% of all coastlines consist of sandy beaches 
and dunes (Giardino et al., 2011).

The exploration and monitoring of these sandy coastal zones 
have gained importance in a variety of fields, including maintenance 
and inspection of coastal structures, environmental monitoring 
and search-and-rescue operations. These tasks are conducted in 
areas that are difficult or dangerous for humans to access, making 
autonomous robotic systems a valuable tool. Ensuring that robots 
can avoid getting immobilized is a critical factor in making 
autonomous operations practical and safe in these challenging sandy 
terrains. When sand is compressed under the weight of the robot, 
the grains lock together and resist deformation. In this state the 
sand behaves like a solid, offering support and enabling traction. 
When sand is disturbed by movement of the robot, the grains lose 
contact and start flowing. In this state the sand behaves like a fluid, 
offering little resistance and allowing objects to sink into the sand 
(Li H. et al., 2024; Wang and Wu, 2025). This unpredictable response 
of sandy soils or the presence of natural obstacles such as rocks, 
vegetation and slopes can lead to mission failure, especially if the 
robot becomes immobilized in the sandy terrain.

Robots use various strategies for locomotion on granular terrain. 
Robotic systems can be classified into six different categories: 
legged, wheeled, tracked, screw-based, undulatory and vibration-
based locomotion, where legged and wheeled locomotion are the 
most commonly used strategies. Wheeled locomotion strategies 
are also combined with other locomotion strategies, to create 
improved systems. The so-called wheel-leg systems combine 
wheeled locomotion with legged locomotion (Cordes et al., 2018; 
Shrivastava et al., 2020; Ma et al., 2022), where the wheel is attached 
at the end of the leg. Wheg designs, which are wheel-like structures 
with multiple spokes or legs, also combine wheeled locomotion 
with legged locomotion (Bagheri et al., 2022; Chen et al., 2017; 
Yun et al., 2017). Wheels with a wave-like surface combine wheeled 
locomotion with undulatory locomotion (Elsheikh, 2023; Lopez-
Arreguin and Montenegro, 2020) and wheel designs with a helical 
surface combine wheeled locomotion with screw-based locomotion 
(Lugo et al., 2017; Huang et al., 2022). Various adaptable wheels 
have also already been developed, such as wheels with a variable 
diameter (Chen et al., 2011) or extendable lugs (Salazar Luces et al., 
2020). Soft robotic locomotion systems have been developed for 
legged (Liu et al., 2020), snake-like (Li L. et al., 2024) or vibration-
based (Kühnel et al., 2016) locomotion systems.

Evaluating the performance of different locomotion systems 
can be achieved through simulations, eliminating the need for 
physical prototyping. Therefore, developing a simulation framework 
to model interactions between robotic structures and sandy 
terrains is essential for assessing the effectiveness of various 
design configurations. These interactions are often modelled with 
terramechanics-based models. Those terramechanics-based models 
are continuum-based models, which model the granular soil as 
a continuous medium and rely on empirical relations (Jin et al., 
2022). The use of discrete element method (DEM) modelling 
remains a relatively unexplored approach for evaluating robotic 
locomotion on sandy terrains. DEM is a numerical, particle-based 
modelling approach, which represents the granular soil as a finite 

number of discrete particles, each governed by Newton’s laws of 
motion (Ravula et al., 2021). The interactions between particles, 
such as collisions, friction or bonding, are explicitly modelled 
using contact models, which account for normal and tangential 
forces, damping and sometimes cohesion. By coupling DEM with 
multibody dynamics (MBD) simulations, both the robot’s motion 
and the granular terrain’s behaviour can be accurately captured 
(Jin et al., 2024; Gao et al., 2024). To model soft, flexible robotic 
structures, DEM is coupled with multi-flexible-body dynamics 
(MFBD) simulations, where the DEM part is simulating the granular 
material and the MFBD part is another co-simulation of MBD and 
FEM (Zhang et al., 2024a; Zhang et al., 2024b). These types of models 
would require significant computational power.

To assess the performance of soft robotic locomotion on sandy 
terrains, this study introduces a novel co-simulation framework that 
couples the Discrete Element Method (DEM) with Multiflexbody 
Dynamics (MFBD). Unlike conventional approaches that rely 
on simplified continuum models or rigid-body assumptions, our 
framework is uniquely capable of capturing the complex, large-
scale deformations of soft, inflatable structures and their interactions 
with granular soil. This allows for the investigation of how variable 
stiffness and shape-shifting capabilities influence a robot’s ability to 
traverse obstacles and adapt to varying terrain conditions, a crucial 
aspect for off-road robotics. While the simulation models provide 
a powerful framework for evaluating locomotion performance, a 
critical limitation has to be noted that they are not a substitute for 
experimental validation. The idealized conditions of a simulation 
can fail to capture real-world complexities such as hysteresis in soft 
materials and dynamic soil compaction. However, the simulation 
framework should be viewed as a foundational step for initial 
conceptual designs and it can still capture variations in simplified 
environmental conditions and provide insights with minimum 
costs and waste of materials. Therefore, this study consists of 
both conceptual design evaluations and numerical performance 
investigations of a soft, wheeled locomotion system, paving the way 
for future physical prototyping and testing.

Section 2 first presents the simulation framework used to 
evaluate the performance of robotic locomotion systems. Section 3 
presents the design methodology to clarify how simulations are 
used in the design process. The resulting design of the soft, wheeled 
locomotion system is presented in Section 4. The performance 
of the final prototype design is evaluated with simulations, as 
explained in Section 5. Section 6 presents the conclusions and 
provides recommendations for future research. 

2 Simulation framework

A coupled simulation of DEM and MBD is used to 
simulate the locomotion of a robot on sandy terrains. Altair 
EDEM 2024 is the used DEM simulation software, and Altair 
MotionView/MotionSolve 2024 is the used MBD simulation 
software. The DEM simulation models the granular material and 
its interactions with equipment. DEM is a numerical modelling 
approach used to simulate the behaviour of granular materials. DEM 
represents the granular soil as a finite number of discrete particles, 
each governed by Newton’s laws of motion. The interactions between 
particles, such as collisions, friction or bonding, are explicitly 
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FIGURE 1
Schematic of the typical contact model used in DEM (Hadi et al., 2024).

modelled using contact models. These contact models account for 
normal and tangential forces, damping and sometimes cohesion 
(Ravula et al., 2021). The typical contact model used in DEM 
is shown in Figure 1. The particle-particle interactions are resolved 
using a spring-damping system in both normal and tangential 
direction. The normal and tangential component both include a 
spring-damper system with stiffness K and damping D, which 
models how particles resist compression and dissipate energy during 
collisions. The tangential force computed from the spring damper 
system is limited by the Coulomb friction law, where the maximum 
resistive tangential force is determined by the value of the friction 
coefficient μ.

The multibody dynamics (MBD) simulation predicts the robot’s 
motion based on the interacting forces and system constraints. A 
multibody system refers to a collection of interconnected bodies. 
The bodies in the simulation can be rigid or flexible. A transient 
analysis is performed to determine how the system responds 
to loads and movements that change over time. The system 
responses are displacements, velocities, accelerations and forces, 
which are calculated using the equations of motion (Schott and 
Mohajeri, 2023; Schott et al., 2021). Both simulations will run 
in separate processes, but there is bi-directional communication 
between the DEM and MBD software. The MBD software will 
provide at each timestep the positions and velocities of the 
interacting bodies and EDEM returns the forces exerted by the 
granular material on the interacting bodies.

The MBD model of the robot consists of one rigid chassis 
body and four wheels. Each wheel consists of a rigid wheel hub 
and a certain number of soft, flexible elements, depending on 
the wheel design. The rigid wheels are constrained to the chassis 
body with four revolute joints in the centre of each wheel, which 
is shown in Figure 2. The motion is applied at each of the four joints, 
resulting in four-wheel-drive. The type of motion applied to the 
joints can vary from angular speed, angular acceleration or torque, 
depending on the goal of the simulation. The chassis of the robot is 

FIGURE 2
Simulation model of the robot with a rigid chassis and four rigid 
wheel bodies.

modelled as a solid body, where it is in reality a shell body with a 
certain thickness. The extra weight of the solid body compensates 
for the weight of all the actuation and electronic parts. The timestep 
of the DEM simulation should be set to a fixed value to ensure 
that the timestep of the DEM simulation is an exact multiple of the 
communication interval of the MBD simulation. The fixed value of 
the timestep in the DEM simulation is set to a value of 2.0e-05 or 
2.5e-05 s, corresponding to a Rayleigh percentage of approximately 
18%, which is suitable for most of the simulations. However, for the 
inflated configurations on the loose, dry sand, a lower timestep of 
7.0e-06 s (≈ 5%) is used to ensure simulation stability.

The next subsection explains the granular, sandy soils that have 
been used for the simulations. The input parameters related to 
the materials of the robot bodies for both the DEM and MBD 
simulations are given in Section 2.2. The modelling of the soft, 
flexible bodies is explained in Section 2.4. 

2.1 Sandy soils

Three different sandy soils have been selected, where each soil 
varies in moisture content. These granular soils are selected from 
the Soils Starter Pack of Altair EDEM 2024. The non-compressible 
dry soil is selected to represent dry sand, and the non-compressible 
sticky soil is selected to represent wet sand. The compressible, 
sticky soil is selected to represent very wet sand or clay. The input 
parameters of the three sandy soil types are obtained from the 
default library of EDEM and are given in Table 1 and the associated 
contact model was already shown in Figure 1. The moisture content 
is represented by the cohesion of the soil, which is modelled by 
the surface energy. Compressibility of the soil is modelled via the 
plasticity ratio, applicable only to the compressible, sticky, very 
wet sand. As we are aiming to compare three types of sand, it is 
essential to keep the basic contact model parameters unchanged 
across different types of soil, i.e., the coefficient of restitution, 
static friction and rolling friction are identical. The only differences 
are surface energy and contact plasticity ratio, which provide a 
qualitative difference in the soil response, such as the compressibility 
and stickiness.
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TABLE 1  Input parameters of the three different sandy soils.

Parameters Non-compressible dry 
sand

Non-compressible, sticky, 
wet sand

Compressible, sticky, very 
wet sand/clay

Contact model Hertz-Mindlin (Di Renzo and 
Di Maio, 2005)

Hertz-Mindlin + JKR (Barthel, 2008) EEPA (Thakur et al., 2014)

Poisson’s ratio v 0.25 0.25 0.25

Density ρ (kg/m3) 2600 2600 2600

Shear modulus G (MPa) 10 10 10

Co. of restitution e 0.55 0.55 0.55

Co. of static friction μs 0.2 0.2 0.2

Co. of rolling friction μr 0.1 0.1 0.1

Surface energy γs (J/m
2) — 3.75 50

Contact plasticity ratio λp — — 0.7

Upscaled spherical particles are commonly used to model 
the sandy soils, which minimizes the computational costs 
(Coetzee, 2017). The size of the sand particles is upscaled to a 
larger size of 3 mm, because modeling the sand particles with 
a realistic size of 0.063–2.0 mm would be computationally not 
feasible. These upscaled particles represent a collection of smaller 
sand particles, and the parameters are not a one-to-one match for 
a single sand particle. Therefore, the contact model parameters 
are also not calibrated against the real sand particles, as it goes 
beyond the scope of this study. Increasing the particle size by 
a factor of 1.5 does not influence the main behavior of the 
granular material (S. Lommen et al., 2019). A particle size of 2 mm 
has also been considered, but the number of particles would then be 
around 700,000. When using a 3 mm particle size, the number 
of particles is around 200,000, which is way better in terms of 
computational time (from 9 h to 3 h). 

2.2 Equipment materials

Other input parameters for the DEM simulations are related to 
the interactions between the equipment materials and the granular 
material or obstacle. The material properties of the equipment 
materials and the interaction parameters are all given in Table 2. 
The robot is designed using two different materials. The soft, flexible 
parts of the robot are made from silicone rubber. The material 
properties of standard silicone rubber are used, as the values of the 
exact silicone rubber material are unknown. The rigid parts of the 
robot are all 3D-printed from polylactic acid (PLA), which material 
properties are obtained from (Farah et al., 2016). The interaction 
properties between the rigid bodies of PLA and the granular soil are 
set to the default values of Altair EDEM (see Table 2), as these values 
are hard to find for the specific interactions between sandy soils and 
PLA. The interaction properties between the silicone soft parts of the 
robot and the granular soil are obtained from a study on tyre steering 
on sandy soils (Hu et al., 2021).

For the simulations with the obstacle, a contact is defined 
between the wheel bodies and the obstacle. The Poisson model is 
used to model the normal force of the contacts. The penalty of 
the normal force is set to a high value to reduce the penetration 
between the bodies and the coefficient of restitution is set to a low 
value to limit the bouncing (see Table 2). The friction values are 
set to the same values as for the friction between the particles and 
the equipment materials. Note that two sets of simulations were 
performed in current study, one set for concept design selection 
using component mode synthesis (CMS) technique, and another 
set using discretized flexbody method to optimised the wheel 
parameters. The standard silicone rubber parameters were only 
used for the first set to identify the best concept wheel design 
choice. While in the second set of simulations, the spring stiffness 
and damping values were manually calibrated to qualitatively 
match the behavior of the prototype wheel, which will be
elaborated on later. 

2.3 Modal flexbody representation

Modelling the soft, flexible bodies as a finite element 
model would be too costly in terms of computational time. A 
more computational efficient method is the component mode 
synthesis (CMS) technique (Altair Engineering, 2025). In CMS, 
the displacement of a single element in physical coordinates is 
represented as a linear combination of a small number of modal 
coordinates. MotionView uses the component mode synthesis 
(CMS) technique to create a flexible body. This technique reduces 
the degrees of freedom of the flexible body to a smaller set of 
modes. A mode is a specific way in which a structure naturally 
deforms or vibrates. The computational time for CMS flexible 
bodies is significantly lower than that of full FEM simulations 
due to the reduced number of DOFs. While FEM models may 
involve thousands or even millions of DOFs, a CMS flexible body 
uses only a limited number of selected modes, 15 in this case. 
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TABLE 2  Input parameters for the equipment materials and their interactions with the granular material and the obstacle.

Parameters Standard silicone rubber Polylactic acid (PLA)

Poisson’s ratio vg 0.47 0.36

Density ρg (kg/m3) 1100 1250

Shear modulus Gg (MPa) 20 1287

Co. of restitution eg 0.48 0.5

Co. of static friction μsg 0.55 0.5

Co. of rolling friction μrg 0.37 0.01

Normal force penalty 500,000 500,000

Normal force co. of restitution 0.1 0.1

FIGURE 3
Generation of flexible bodies with the CMS technique: undeformed initial state (left) and deformed state (right).

As a result, simulations using CMS flexbodies can be 10 to 1000 
times faster than full FEM simulations. However, CMS flexible 
bodies are only suitable for linear systems, so the deformations 
of the flexible body have to be small. This method is not ideal 
for simulating soft silicone parts, as these materials exhibit non-
linear behaviour and undergo large deformations. CMS flexible 
bodies can be generated in MotionView using the built-in FlexPrep 
tool, which requires a FEM file as the input. The FEM file and the 
generated flexible body for use in MotionView are shown in Figure 3. 
The flexible body is connected to the robot with the interface 
node in the center, which is connected to all the flexible parts
via rigid links.

2.4 Discretized flexbody representation

Modeling a soft, flexible robot body as rigid segments connected 
by springs is a necessary simplification that trades computational 
efficiency for physical accuracy. A full Finite Element Method (FEM) 
simulation of a flexible body coupled with a granular DEM model is 
computationally intensive and would be impractical for large-scale 

locomotion studies. While it may not accurately predict localized 
stress or detailed energy dissipation, it is sufficient for analyzing the 
gross motion and overall kinematic behavior of the robot. Therefore, 
a simplified approach is used to model the behaviour of the soft, 
flexible bodies in a more realistic way. These flexible bodies are 
discretized in multiple smaller bodies, which are connected with 
bushings to create a chain of bodies (Figure 4). Each small body 
is also connected to the centre of the wheel with a linear spring-
damper, which represents the stiffness of the flexible body. This 
chain of small bodies can behave like a flexible body and it can 
undergo large deformations if the spring stiffness is low. In this 
case the chain of bodies consist of five different bodies to minimize 
the computational time. The number of bodies will determine the 
computational time of the simulation, as each extra body will also 
add an extra bushing and an extra spring-damper. An odd number 
of bodies is chosen so that the highest point, where initial contact 
with the surface occurs, is located at the centre of a body rather than 
at a connection point.

Eight different input parameters are required for the discretized 
flexbody representation. The bushings require translational 
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FIGURE 4
One section of the discretized flexbody representation.

and rotational stiffness values in all three directions, as well 
as corresponding translational and rotational damping values. 
Additionally, stiffness and damping coefficients have to be assigned 
for the spring-dampers. These parameters have been obtained by 
comparing the behaviour in simulations with the behaviour of the 
physical prototype (see Figure 5), when moving over a small obstacle 
of 15 mm high and 30 mm wide. The values of spring stiffness and 
damping were manually tuned to produce the closest qualitative 
match to the observed behavior (Figure 5a) and are given in Table 3. 
The stiffness of the whole chain of discrete bodies is not solely 
dependent on the spring stiffness. The stiffness of the bushings is also 
playing a significant role and is set to relatively high values, which 
is required to achieve stable simulations. Low stiffness values would 
result in high deformations, which would require a smaller timestep 
to model those deformations. The damping values are also set to 
high values to reduce the bouncing in the simulation, which enables 
stable simulations for a higher timestep, and therefore minimizing 
the computational time.

One limitation of this discretized flexbody representation is the 
ability to model deformation only in two directions without a full 
material non-linearity. It is not possible to model the deformation 
of the soft, flexible bodies in the direction parallel to the wheel axis 
with this method. However, the deformation in this direction is not 
desired for wheel design, so this limitation does not influence the 
simulation results. An additional disadvantage occurs when using 
these discretized flexbodies in DEM simulations with small particles. 
Those particles can go between the rigid wheel and the chain of 
discrete bodies, which can influence the results and the stability 
of the simulation. This is solved by decreasing the timestep for 
loose granular soils to ensure stable simulations. The construction 
of the simulation model is quite complex. Each body in the chain of 
discrete bodies must be imported individually into the simulation 
environment, and the bushings and spring-damper elements must 
be added and configured manually. As a result, any change in the 
design requires the construction of an entirely new simulation model 
from scratch. This low adaptability is not a concern for this research, 
as this method will only be used to evaluate the performance of one 
final design configuration. 

FIGURE 5
Comparison of the prototype and simulation at a key moment during 
traversal of a 15 mm high, 30 mm wide obstacle. (a) physical 
prototype (b) simulated prototype.

3 Design methodology

The design methodology of developing a soft, wheeled 
locomotion method is presented schematically in Figure 6. The 
design process is supported with simulations. These simulations are 
used to evaluate the performance of different design configurations. 
The first design step is the concept design. Seven concept designs 
are developed to solve the design problem of the locomotion of soft, 
wheeled structures on dry sandy soils, as shown in Figure 7. The 
performance of the designed concepts is evaluated with locomotion 
simulations, where the soft, flexible bodies are represented with 
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TABLE 3  Input parameters for the discretized flexbody representation.

Simulation parameter Setting

Bushing translational stiffness (X,Y,Z) 1,000 N/m

Bushing rotational stiffness (X,Y,Z) 1,000 N⋅m/rad

Bushing translational damping (X,Y,Z) 15 N⋅s/m

Bushing rotational damping (X,Y,Z) 15 N⋅m⋅s/rad

Spring stiffness #1 & #5 15 N/m

Spring stiffness #2 & #4 11 N/m

Spring stiffness #3 7 N/m

Spring damping 10 N⋅s/m

FIGURE 6
Schematic overview of the design methodology.

the modal flexbody representation (CMS technique). This modal 
flexbody representation has low computational cost, resulting in the 
ability to quickly assess the performance of different concept designs.

The selected concept is developed further into the design 
of a prototype. Several locomotion simulations are conducted to 
optimize the design of the wheels and the prototype, which is 
explained in more detail in the following subsections. 

3.1 Performance evaluation of wheel 
designs

Five different wheel parameters can be varied to create the 
optimal wheel design for locomotion on sandy soils: wheel thickness, 
wheel diameter, lug length, lug thickness and lug spacing.

The wheel diameter is indicated with the blue arrow in Figure 8, 
and is an important parameter for the performance of the robot. 
Bigger wheels means a larger travelling distance for the same speed. 
A minimum wheel diameter is required to maintain sufficient body 
clearance and prevent the robot from becoming stuck on an obstacle 
or from dragging its body on the ground. The body clearance of the 
robot is the distance between the soil and the bottom of the chassis 
and is indicated with the yellow arrow in Figure 8. So, the wheel 
diameter is based on this body clearance and the size of the robot.

The wheel thickness is not indicated in Figure 8, but corresponds 
to the width of the wheel in lateral direction, perpendicular to the 
direction of travel. Thicker wheels provide a larger contact area with 
the ground, resulting in increased friction and improved stability. 
However, thicker wheels also increase the weight of the robot and 
therefore influence the performance, especially on slopes. For steep 
slopes, thinner wheels have better performance due to their lower 
weight. On small slopes, thicker wheels have better performance, as 
they can generate more traction (Laîné et al., 2018). Therefore, the 
wheel thickness is based on the size and weight of the robot.

The lug length is indicated with the green arrow in Figure 8 and 
is the distance from the top of the lug to the top of the soft body 
in deflated configuration. Increasing the lug length increases the 
travelling performance of the robot (Sutoh et al., 2012; Laîné et al., 
2018). However, the lug length is also determined by the design 
of the inflatable elements. When inflated, these elements should 
protrude beyond the wheel’s surface, meaning the lug length must 
be less than or equal to the maximum extension achieved through 
inflation. The soft, inflatable elements will be made of silicone 
rubber, which can be easily stretched to more than 200%. However, 
inflating the soft element for a greater inflation distance would also 
affect the shape of the soft, inflated element. Therefore, the lug length 
is set to a conservative value to make sure the soft elements can be 
inflated without interference.

The lug thickness is indicated with the red arrow in Figure 8. 
Increasing the lug thickness will decrease the tip-tip distance, 
which is indicated with the orange arrow in Figure 8. The influence 
of the lug thickness on the wheel performance is not found in 
any literature. To investigate this, four motion simulations have 
been performed to investigate four different lug thicknesses: 2 mm, 
5 mm, 10 mm and 15 mm. The performance of each configuration 
is evaluated by one KPI: the total distance travelled. The wheel 
thickness is then selected based on the outcomes of the simulations. 
These simulations are simulations with only rigid bodies to 
minimize the computational cost.

The lug spacing can be indicated with different measures, namely 
the tip-tip distance (see Figure 8), angle between two lugs or the 
number of lugs on the whole wheel. The lug spacing has influence 
on the traction, but also on the ability to traverse obstacles. In 
general, the smaller the lug spacing, the better the generated traction 
(Sutoh et al., 2012). However, the tip-tip distance should be at 
least smaller than the rupture distance, which is dependent on the 
lug length and the granular material (Sutoh et al., 2012). The soil 
in front of the lug is pushed, which creates a destructive phase 
in the soil. The rupture distance is the horizontal distance of the 
destructive phase of soil and is dependent on the internal friction 
angle of the soil (Sutoh et al., 2012). A larger tip-tip distance is 
also beneficial for the traversing of obstacles, as the robot can climb 
larger obstacles when the tip-tip distance is larger. To investigate the 
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FIGURE 7
Seven concept designs and example simulation of design five on dry sandy soils using DEM-MBD with CMS technique.

FIGURE 8
Schematic of the wheel parameters and the robot’s body clearance.

optimal lug spacing for both soil and obstacles, a few simulations 
of different lug spacings have been performed. Three different 
configurations are evaluated: wheels with 6, 8 or 10 lugs. Some 
obstacles, composed of four spheres arranged in a pyramid shape, 
are added to evaluate the influence of the lug spacing on the obstacle 
climbing performance. The performance is evaluated using one KPI: 
the total distance travelled. Again, the simulations use only rigid 
bodies to minimize the computational cost. 

3.2 Integrated robot design

The chassis of the robot is completely designed around the 
selected motors and corresponding electronics. Each wheel is 
individually driven by a single geared DC motor. The required motor 
torque is obtained by performing some simulations to measure 
the maximum torque on the wheels. The torque is estimated for a 
rotational speed of 3 rad/s (≈29 RPM) and 15 rad/s (≈143 RPM), 
which is set as the maximum speed the robot should achieve. The 
electronics are all selected based on the specifications of the selected 
motor. The chassis is designed around the motors and electronics to 
achieve an optimal, lightweight robot prototype. The battery, which 
is the heaviest component, will be placed in the middle of the chassis 
for an optimal weight distribution. 

4 Design results

The results of the design process are presented in this section. 
This includes the optimized wheel design, the soft, inflatable 
elements design and the integrated robot design.

To select the best concept, three main aspects were considered: 
simulation performance, adaptability, and fabrication feasibility. The 
simulation results in Table 4 show that Concepts 1, 3, 4, 5, and the 
inflated version of six have the best travel performance. Concepts 
2, 7, and the deflated version of six perform poorly. In terms of 
adaptability, Concepts 3, 4, and five are highly adaptable to different 
terrains and obstacles due to their design. Concept 1, with its 
simple rigid lugs, has low adaptability, while Concepts 2 and 6, 
despite being adaptable, have poor travel performance. Based on 
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TABLE 4  Total distances travelled for all configurations of each concept design as shown in Figure 7.

Concept no. Distance deflated (mm) Distance inflated (mm)

1 536 —

2 475 455

3 590 —

4 527 559

5 638 —

6 432 579

7 440 473

TABLE 5  Total distances travelled for wheels with four different lug 
thicknesses.

Lug thickness (mm) Distance travelled (mm)

2 620

5 610

10 580

15 540

both performance and adaptability, Concepts 3, 4, and five are the 
strongest candidates. However, fabrication feasibility becomes the 
deciding factor. Concept 4 is the most practical to build. Concept 
3 requires complex internal chambers, and Concept 5 requires very 
strong materials and faces issues with granular material interfering 
with the hub. Therefore, Concept 4 is chosen as the best option 
because it offers a great combination of high travel performance, 
adaptability through its shape-shifting ability, and a simple, easily 
fabricable structure.

For the selection of the wheel parameters, locomotion 
simulations have been performed to optimize the lug thickness 
and the lug spacing. Four different lug thicknesses are evaluated by 
a simple locomotion simulation. The results, given in Table 5, show 
that the travelling performance decreases when the lug thickness 
increases. Therefore, the optimal lug thickness should be minimized, 
constrained only by the structural strength required to maintain 
integrity. Therefore, the lug thickness is set to 3 mm to ensure the 
structural integrity of the lugs.

For the lug spacing, three different configurations are evaluated. 
The results, given in Table 6, show that the travelling performance 
increases with an increasing number of lugs, which is as expected 
from the literature (Sutoh et al., 2012). The selected number of lugs 
is 8, which is the best combination of a large tip-tip distance for 
the performance on obstacles and a high number of lugs for the 
performance on granular soils.

The optimized design of the shape-adapting wheel is shown in 
Figure 9. The selected values for all five wheel parameters are given in 
Table 7. The wheel is 3D-printed and consists of two parts which can 

be connected. The lugs are not connected to the center of the wheel, 
to leave space for the soft, inflatable elements. With this design, the 
soft, inflatable elements can be combined into a single soft body, 
which requires only one air inlet instead of separate air inlets for 
each element. The soft elements are placed between the lugs and are 
connected via a ring in the center of the wheel. The two halves of 
the wheel are fastened with M3 bolts, securing the soft body inside. 
The soft inflatable element has been fabricated by pouring silicone 
rubber into a mold. The used material is the Smooth-On EcoflexTM

00–50 rubber. The EcoflexTM 00–50 material was selected from the 
available materials because it has the highest shore hardness (00–50). 
The air inlet is constructed by attaching a small tube to the outside 
of the soft part. A small throttle valve is inserted into the small tube 
to control the air pressure inside the soft part, as shown in Figure 9b. 
The assembled wheel is inflated by pressurizing the soft part via 
the throttle valve, which creates the inflated configuration of the 
wheel shown in Figure 9b. Note that the prototype presented here 
is mainly used as a conceptual design of a proof of concept; it is not 
used to perform physical testing, as this goes beyond the scope of the 
current study.

The centre of the wheel is also connected to the motor via 
a coupling nut, which is visible in Figure 9a. The chassis of the 
robot is designed around the motors and electronic components, 
which results in the total prototype shown in Figure 10. For the 
motor selection, the required torque has been estimated by using 
locomotion simulations. The estimated nominal torque is 0.2 Nm 
and the estimated peak torque is 0.71 Nm. Therefore, a motor with 
a no-load speed of 200 RPM is required to ensure that the motor 
generates enough torque at the desired speed of approximately 143 
RPM (15 rad/s). The stall torque of the motor should be above 
1.0 Nm to ensure that enough torque is available at the desired 
motor speed. The 12 V geared DC motors are connected to the 
sides of the chassis. All the electronic components are placed on 
top of the robot chassis by using spacer nuts to create some air flow 
for the cooling. The motors are controlled using two dual motor 
drivers in combination with an Arduino. The input voltage of the 
motor drivers is regulated by two DC-DC converters. A lithium-
ion polymer (LiPo) battery of 14.8 V powers the robot, placed in the 
middle of the chassis. The total weight of one wheel is around 135 g 
and the total weight of the prototype around 2.5 kg.
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TABLE 6  Total distances travelled for wheels with three different lug spacings.

Number of lugs Angle between lugs (deg) Tip-tip distance (mm) Distance travelled (mm)

6 60 47 710

8 45 35 770

10 36 28 830

FIGURE 9
Assembled wheel in inflated and deflated configuration. (a) Deflated 
configuration (b) Inflated configuration.

TABLE 7  Overview of the wheel parameters for the optimized 
wheel design.

Wheel parameter Value

Wheel diameter 120 mm

Wheel thickness 20 mm

Lug length 12 mm

Lug thickness 3 mm

Lug spacing 8 lugs

FIGURE 10
Isometric view of the assembled prototype with inflated wheels.

5 Prototype locomotion simulations

Using the finalized optimal wheel design in Section 4, the 
performance of the robot prototype design is evaluated with 
various simulations of different cases and different soil types. Two 
configurations of the prototype have been evaluated. For the deflated 
configuration, shown in Figures 2, 9a, the wheels are modelled as 
rigid bodies. For this configuration, the soft, inflatable elements will 
not have any significant influence on the performance, since the 
granular soil contacts only the rigid sides of the wheel. The inflated 
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FIGURE 11
Simulation model of the prototype in inflated configuration.

configuration, shown in Figures 9b, 11, is simulated by using the 
discretized flexbody approach.

The performance of the prototype is evaluated for two different 
cases. The first case is evaluating the performance of the prototype 
when climbing a slope of 20°. The generated sand bed is shown 
in Figure 12a, where the total length, width and thickness of the 
sand bed are 1500 mm, 500 mm and 50 mm respectively. The second 
case is evaluating the performance of the prototype on a flat, sandy 
surface that includes a rigid 30 × 30 mm square beam obstacle, 
shown in Figure 12b. The dimensions of the flat sand bed are 
equal to the dimensions of the sloped sand bed. Both cases are 
evaluated for two configurations of the prototype across three types 
of sandy surfaces with varying moisture content. These surfaces are 
selected to represent different levels of soil cohesion: dry sand (low 
cohesion), wet sand (medium cohesion), and very wet sand (high 
cohesion). An overview of all simulations is given in Table 8, where 
also the timestep of each simulation is given. The motion of the 
wheels is generated by applying a certain torque, which is dependent 
on the angular velocity of the wheel, similar to the speed-torque 
relationship of a DC motor.

Simulations are evaluated using two KPIs: static sinkage 
and total distance travelled. Static sinkage refers to the vertical 
displacement of the prototype while it is stationary. Wheel motion 
begins after 0.5 s, allowing the prototype to sink into the sandy 
soil, enabling static sinkage to be estimated at 0.5 s. This metric 
is important, as it affects the prototype’s travelling performance. 
Less sinkage can enable higher speeds, while greater sinkage may 
improve traction. The second KPI is the estimation of the total 
distance travelled by the prototype. This KPI reflects the prototype’s 
overall locomotion capability and is used to assess how effectively 
the prototype moves across the sandy terrains.

The results of all simulations are presented in Table 8. In 
general, the sinkage of the inflated configurations is lower than 
for the deflated configurations. As a consequence, the effective 
wheel diameter is larger compared with the deflated configuration, 
which improves the travelling performance of the robot. The total 
distances travelled for each simulation on a sandy slope are also 
presented visually in Figure 13. This figure shows the inflated 
configuration has a better travelling performance than the deflated 

FIGURE 12
Overview of the two different simulation cases. (a) Sloped sand bed (b)
Flat sand bed with obstacle.

configuration on more cohesive sandy soils, due to the larger 
effective wheel diameter and less sinkage. For the loose, dry sand, 
the travelling performance is worse for the inflated configuration. 
It is observed that the inflated robot starts slipping in the loose, 
dry sand when climbing the slope. This is not the case for the 
deflated robot. Therefore, the deflated robot configuration with 
the lugged wheel outperforms the inflated configuration on loose, 
sandy slopes. The inflated configuration enables faster and more 
efficient locomotion on more cohesive sandy soils, where less 
sinkage occurs. These observations highlight the value of a variable-
stiffness design. A deflated wheel’s larger contact patch reduces 
pressure on loose, dry sand, preventing sinking and improving 
traction. Conversely, an inflated wheel’s rigidity allows it to apply 
concentrated force, effectively gripping the denser, cohesive surface 
of wet sand. This phenomenon implies that a successful design 
for all-terrain locomotion should incorporate variable stiffness and 
shape-shifting capabilities. By adjusting the internal pressure, a 
robot could optimize its wheel-terrain interaction in real-time. For a 
practical design, this would involve a control system that uses terrain 
sensors to autonomously change the wheel’s stiffness, maximizing 
performance whether on loose, dry sand or a compact, wet surface. 
This adaptive strategy is a key takeaway for future robotic designs 
intended for complex and varied environments.

For the locomotion simulations with the obstacle, a clear 
pattern is observed in Figure 14. The inflated configurations are 
always performing better in travelling a flat sand bed with an 
obstacle. The total distance travelled for the inflated configurations 
is higher compared with the deflated configurations. Furthermore, 
it is observed from the simulation that the inflated configuration 
tackles the obstacle more smoothly and efficiently than the deflated 
configuration, resulting in a much more efficient climbing over the 
obstacle. Therefore, the inflated configuration is always a better 
choice for traversing obstacles. The soft, inflatable bodies can deform 
and reshape around the obstacles, providing a strong grip on the 
obstacles, which enables fast and efficient movements. Even on the 
loose, dry sandy soil, the inflated configuration still performs better 
than the deflated configuration.
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FIGURE 13
Prototype travelling performance on a sloped surface, simulated for 
three different sandy soils.

FIGURE 14
Prototype travelling performance on a flat surface with an obstacle, 
simulated for three different sandy soils.

6 Conclusion and recommendations

Capturing the complex interactions between the robot 
and granular material involves integrating DEM with MBD 
simulations to simulate the behaviour of both the robot and 
the granular material. This simulation method is successfully 
used in the design process to evaluate the performance of 
different design configurations. A soft, shape-adapting wheel 
has been designed and a prototype is constructed. The 
performance of this prototype is evaluated with the locomotion 
simulations and the results clearly show the benefits of the 
shape-adapting wheel design. The use of DEM simulations 
makes it very easy to evaluate the robot performance on various 
granular terrains, for example on sandy terrains with a varying
moisture content.

Various methods for robotic locomotion on granular surfaces 
are already available in literature. The most used locomotion 
methods were legged and wheeled locomotion, where a variety of 
designs already exist. Besides this, tracked, screw-based, undulatory 

and vibration-based locomotion methods are also possibilities that 
could be explored. KPIs related to manoeuvrability and traction 
are the most effective in assessing the travelling capabilities of a 
locomotion system.

The integration of DEM with MBD simulation is considered 
the most promising modelling approach for capturing robotic 
locomotion on granular terrain, as it allows for accurate modelling 
of both the robot and the granular terrain. The MBD component of 
the simulation accurately captures the robot’s motion and dynamics, 
while the DEM component effectively models the behaviour of the 
granular terrain during interaction with the robot. The soft, flexible 
bodies can be accurately modelled by using a discretized flexbody 
representation. This method models the soft, flexible bodies as a 
chain of multiple rigid bodies, which are connected via bushings. 
The stiffness and damping is controlled by using multiple spring-
damper systems.

The simulation method is used to support the design process. As 
a result, a shape-adapting wheel is designed, which can be shaped as 
a lugged wheel and a more circular wheel. Soft, inflatable elements 
have been placed between the lugs, which can be inflated to change 
the shape of the wheel. Next to the wheel designs, a robot chassis 
is designed, which is optimized around the selected motors and 
electronics, resulting in a lightweight, small robotic prototype with 
shape-adapting wheels.

The performance of the prototype is only evaluated by 
simulations for two robot configurations, inflated and deflated, 
and for two different cases: a sloped sand bed and a flat sand 
bed including an obstacle. Each of these four different simulations 
is also evaluated for three different sandy soils: dry sand, wet 
sand and very wet sand. The interaction between the soft, flexible 
bodies and the granular soil or obstacles can be captured by the 
simulation, although it remains a simplified representation of reality, 
due to the small number of discrete bodies. The performance of 
the robotic system on exploring sandy terrains with obstacles is 
significantly better for the inflated wheel, because the soft elements 
in the wheel enhance the obstacle climbing performance. The 
deflated, lugged wheel configuration is performing significantly 
better on loose, dry sandy slopes where a lot of traction
is required.

The DEM-MBD framework, while powerful, contains 
simplifications that affect the reliability of conclusions. For example, 
the use of idealized particle shapes (e.g., perfect spheres) in the 
Discrete Element Method (DEM) model does not fully capture 
the complex interlocking and friction of real, angular sand grains. 
This can lead to an overestimation of the robot’s mobility and an 
underestimation of the terrain’s resistance. Similarly, the rigid-
body approximations in the Multibody Dynamics (MBD) part of 
the framework fail to account for high non-linear deformation 
of the robot’s components under load. This could result in an 
overestimation of traction and an inaccurate calculation of energy 
losses. Therefore, the simulation results should be viewed as 
providing a foundational understanding of the system’s behavior, 
rather than a direct, quantitative prediction of its real-world 
performance.

The inflatable design introduces significant practical 
complexities that go beyond the scope of a simulation. Durability is 
a major concern, as the soft materials are susceptible to punctures
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and abrasion, which could compromise the robot’s functionality. 
Furthermore, a real-world system would require a reliable and 
energy-efficient system for inflation control, including an onboard 
pump, pressure sensors, and control algorithms to adjust the robot’s 
stiffness for different terrains. The energy cost of inflation and 
deflation, along with the required maintenance procedures for 
managing air leaks, must also be considered for a successful field 
deployment. These challenges highlight the need for further research 
and development to bridge the gap between simulation and a 
practical, robust robotic system.

Last but not least, a comprehensive evaluation of the proposed 
simulation-aided framework’s practical application in the real world 
is beyond the scope of the current study. We acknowledge that 
our conclusions, which are based solely on simulation assumptions, 
have limitations without experimental validation. Therefore, it is not 
possible to fully evaluate the practical realization of these concepts 
without physical real-world testing. This will also be a critical next 
step in future research.
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Nomenclature

γs surface energy

μ coefficient of friction

μrg particle-geometry coefficient of rolling friction

μr particle-particle coefficient of rolling friction

μsg particle-geometry coefficient of static friction

μs particle-particle coefficient of static friction

ν particle Poisson’s ratio

νg geometry Poisson’s ratio

ω motor rotational speed

ω0 motor no-load speed

ωw wheel angular velocity

ϕ internal friction angle

ρ particle density

ρg geometry density

τm motor torque

τs motor stall torque

Cn damping normal force

Ct damping tangential force

dw wheel diameter

e particle-particle coefficient of restitution

eg particle-geometry coefficient of restitution

G particle shear modulus

g gravitational constant

Gg geometry shear modulus

Kn spring stiffness normal force

Kt spring stiffness tangential force

ll lug length

ls rupture distance

λp contact plasticity ratio

CAD Computer-Aided Design

CMS Component Mode Synthesis

COG Centre Of Gravity

CPR Counts Per Revolution

DC Direct Current

DD Dynamic Domain

DEM Discrete Element Method

DOF Degree Of Freedom

EEPA Edinburgh-Elasto-Plastic-Adhesive

FEM Finite Element Method

JKR Johnson-Kendall-Roberts

KPI Key Performance Indicator

LiPo Lithium-ion Polymer

MBD Multibody Dynamics

PB Periodic Boundary

PLA Polyactic Acid

PWM Pulse-Width Modulation

RFT Resistive Force Theory

RPM Revolutions Per Minute
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