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Abstract

Age-related neurodegenerative disorders, including dementia, are a major global
health concern. This article describes the first comprehensive, data-driven
molecular model of the neuro-glia-vascular system to explore the complex
relationships between the aging brain, energy metabolism, blood flow, and
neuronal activity. Comprising 16,800 interaction pathways, the model includes
all key enzymes, transporters, metabolites, and circulatory factors vital for
neuronal electrical activity. We found significant alterations in metabolite
concentrations and differential effects on adenosine triphosphate (ATP) supply
in neurons and astrocytes and within subcellular compartments in aged brains
and identified reduced sodium/potassium adenosine triphosphatase (Na*/K*-
ATPase) activity as the leading cause of impaired neuronal action potentials. The
model predicts that the metabolic pathways cluster more closely in the aged
brain, suggesting a loss of robustness and adaptability. Additionally, the aged
metabolic system displays reduced flexibility, undermining its capacity to
efficiently respond to stimuli and recover from damage. Through transcription
factor analysis, the estrogen-related receptor alpha (ESRRA) emerged as a central
target connected to these aging-related changes. An unguided optimization
search pinpointed potential interventions capable of restoring the brain’s
metabolic flexibility and action potential generation. These strategies include
increasing the nicotinamide adenine dinucleotide (NADH) cytosol-mitochondria
shuttle, NAD* pool, the ketone B-hydroxybutyrate, lactate, and Na*/K*-ATPase,
while reducing blood glucose levels. The model is open sourced to help guide
further research into brain metabolism.
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Key points

+ This is the most comprehensive molecular model of the
neuro-glia-vascular system to date, integrating the key
cellular and subcellular systems, molecules, metabolic
pathways, and processes required to couple neuronal
electrical behavior with brain energy metabolism and
blood flow.

- Supplied with publicly available RNA sequencing data,
the model closely reproduces known aging-related
changes in brain metabolism and electrical activity,
validating its utility as a research tool.

+ The model predicted reduced robustness, flexibility, and
metabolic adaptability in the aged brain and identified
various aging-associated transcription factors and
potential anti-aging therapies and strategies.

- We show that astrocytes may subserve the metabolic
stability of neurons during aging, calling into question
previous assumptions about selfish glia.

- This open-source resource should help accelerate research
to improve our understanding of age-related
neurodegenerative diseases (such as dementia) and how
their onset could be prevented or delayed.

Introduction

The rise in neurodegenerative disorders, including dementia, is a
leading public health and social care challenge around the world (1),
and the risks of these and other disorders increase dramatically with
age (2, 3). Globally, the number of people living with dementia is
projected to increase from approximately 57 million cases in 2019 to
153 million in 2050, largely owing to population growth and aging
(4). Accumulating evidence suggests that the onset of
neurodegenerative diseases may be prevented or delayed by
addressing modifiable risk factors, for example through lifestyle
changes and other interventions—many of which are subject to
ongoing investigations (1, 5-7).

Improving our understanding of the pathophysiology of age-
related neurological degeneration is vital to identify new targets,
interventions, and biomarkers. While traditional biomedical
research techniques remain necessary to reveal key factors, they
are insufficient for a comprehensive understanding of all the data
and complex relationships. Complementary computational
techniques that create data-driven models offer hope. With these
in silico experiments we can uniquely probe the functions of
complex biochemical and cellular networks to gain insights and
more efficiently guide future laboratory initiatives.

There is a virtual catalog of speculated root causes of
neurodegenerative diseases (8). Among the most cited and
fundamental to brain aging is energy metabolism (9-12). A recent
addition to this body of evidence has shown that rescuing
mitochondrial function can even reduce synaptic loss in aging,
one of the main correlates of dementia (13).
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Neuronal activity is energetically demanding, requiring
substantial amounts of adenosine triphosphate (ATP), as reflected
in the disproportionate oxygen and glucose consumption of the
brain compared with the rest of the body (14-17). Metabolic
support and neuronal activity are closely linked (18), suggesting
that age-related loss of metabolic support impairs the generation of
electrical activity in the brain. However, the vast number of
biochemical reactions forming the metabolic system make it
highly complex, therefore it is exceedingly difficult to isolate how
changes in that system impact neuronal activity.

Various dynamic models of brain metabolism have been
developed over the decades. Early models (19, 20) focused on
core components of the metabolic system and generalized many
processes, such as mitochondrial respiration. Recent models have
incorporated more detailed descriptions for selected subsystems,
such as the pentose phosphate pathway (21), mitochondrial
metabolism (22, 23), or neuronal electrophysiology (24). These
models are well-validated and suitable for the research questions for
which they were designed. However, a model with far greater
biological detail is required to tackle more complex questions,
such as how age-related changes in metabolism affect action
potential generation and responses to stimuli.

This article presents a novel model of the neuro-glia-vascular
(NGV) system that integrates previous models and adds greater
detail and previously omitted subsystems. As the literature and
databases contain extensive data relating to brain metabolism, we
adopted a strict data-driven strategy to constrain the construction
of this model, using relevant data to reconstruct and simulate
metabolic systems in both the young and aged brain. The model
integrates all key metabolites, transporters, and enzymes with all
key cellular and extracellular processes underlying neuronal firing
and their interactions with the blood (Figure 1), yielding a
comprehensive representation of the biochemical network
operating across the NGV system. It includes glutathione
metabolism and regulation of glycogenolysis; it also couples the
metabolic system to the intricate cellular processes underlying
action potential generation, such as the sodium/potassium
adenosine triphosphatase (Na*/K"-ATPase) pump, the glutamate-
glutamine cycle, and ATP production by mitochondria and the
cytosol. This allows the simulation of electrical activity impacting
the metabolic system and vice versa. Subcompartments such as
the mitochondrial matrix and intermembrane space, cytosol in
neurons and astrocytes, endothelium, and the extracellular space
(interstitium and basal lamina) are represented, allowing modeling
of cross-compartment processes such as transport and exchange.
Finally, the model also integrates blood flow and dynamic
exchanges between the vasculature and the neurons and glia,
thereby allowing research questions related to nutrient supply to
the brain to be addressed. The model does not capture metabolic
waste management, such as lactate removal, or the mechanistic
effects of cerebral blood flow regulation with neuronal activation.
Owing to limited data, the model also does not account for the
changes in oxygen availability and transport with aging, even
though oxygen is an important factor that affects multiple
processes in the cell. Concentrations of molecules are specified in

frontiersin.org


https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org

Shichkova et al. 10.3389/fsci.2025.1441297

Neuro-glia-vascular system

PYR

- { CoA+NAD.
€O, +NADH

GO6P < GL6P <

T

Extended HH-type of model Presynaptic input
Nt ﬁ" M t o—(lnterstitium)
K c (v}\fLArp Y § o (Basallamina)
0.V s
o

GLU M

bHB LAC GLC N
ol - CY-{
O 3 —ATP.

|~ CoA+NAD

F> €O, #NADH

Mitochondria
Astrocyte

V/4

> F6P > F26P

[>atp
—>ADP RSP

BPG13
s
> NADH

S7P <

NAD+i [ r

/AN

S >GAP< >FBP

Abbreviations: see Figure note in article

FIGURE 1
Model overview. The model consists of three connected sub-systems: metabolism, neuronal electrophysiology, and blood flow. Compartments of
the model include the neuronal and astrocytic cytosol, mitochondrial matrix and intermembrane space, interstitium, basal lamina, endothelium,
capillary, artery (only with fixed arterial concentrations of nutrients and oxygen), and endoplasmic reticulum (only with fixed pool of calcium).
Enzymes and transporters shown correspond to the rate equations in the model that govern the dynamics of metabolite concentration changes.
Neuronal electrophysiology is modeled in a slightly extended Hodgkin-Huxley-type model. Blood flow activation is described by a simple function
dependent on the stimulus onset and duration according to the literature models. For abbreviations, see Figure note section.
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molar units (mM) and fluxes of reactions and transport processes
are given in molar concentrations per second (mM/second). The
model is openly available to facilitate its reuse in future studies (see
“Data availability” below for links).

We validated the model extensively against reported
experimental data (not used to construct the model) on how
enzyme and transporter activities and metabolite concentrations
change in response to stimulation (Presentation 1: Supplementary
Figure S1, Presentation 1: Full Annex - Supplementary Table S1).
The consistency between the simulation and experimental data
suggests that the model accurately captures the most essential
elements of the metabolic system of the brain.

Alterations in enzyme expression have recently been shown to
actively contribute to tissue aging and therefore offer potential drug
targets to counter aging (25). To model aging of NGV metabolism, we
therefore used RNA expression changes (RNA fold changes) from a
comprehensive study on mouse cell-type changes (26, 27) to scale
enzyme and transporter concentrations. These concentrations
determine the output from their corresponding reaction/transport
rate equations. Applying the RNAseq data (26, 27) to the respective
metabolic pathways allows us to observe the decrease in expression of
most enzymes with aging in both neurons and astrocytes. In addition
to changes in enzyme and transporter expression, we used published
values to adjust arterial glucose, lactate, B-hydroxybutyrate levels, total
nicotinamide adenine dinucleotide (NAD; reduced and oxidized) pool,
and glutamate concentration changes caused by synaptic transmission
(28, 29). The metabolic system of a young brain is in an equilibrium at
rest, i.e., when no stimulus is applied. To be able to compare the young
and aged models, we ensured that the aged system was also in a steady
state by reducing the NADH shuttle capacity between the cytosol and
mitochondria. Figure 2 summarizes all aging data applied to the model,
with further details available in the Methods section. When we
simulated the dynamics of this complex system, driven by either
synaptic input or current injection that generated action potentials,
we observed numerous age-specific differences consistent with prior
reports (Presentation 1: Full Annex - Supplementary Table S1). This
further validated the model, provided a spectrum of new insights into
how the NGV metabolic system may age, and allowed us to identify
potential strategic interventions that could repair the aging metabolic
system, which could take the form of dietary and lifestyle changes or
even drug targets.

Results

Aging affects metabolite levels at rest and
during stimuli

In our model, the simulated aging brain phenotype exhibits a
distinct resting state profile of metabolite concentrations when
compared with that of the young brain (Presentation 1:
Supplementary Figure S3A). Changes in metabolite concentrations in
response to stimuli also differ between the young and aging brain
(Figure 3C, Figure 4; Presentation 1: Supplementary Figures 3SB, $4,
S5D, S6A), but metabolites differ in their changes in response to
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stimuli of varying amplitudes (Presentation 1: Supplementary
Figures S6, S7). We performed uniform manifold approximation
and projection (UMAP) for dimensionality reduction on relative
differences in concentration traces between the two ages and
observed numerous interdependencies between pathways. The
pentose phosphate pathway (PPP) and tricarboxylic acid cycle
(TCA) tend to form pathway-related clusters (Presentation 1:
Supplementary Figure S8). Moreover, the pairwise Kendall
correlation between metabolic concentration temporal profiles is
also affected by aging: some pairs of metabolites showed more
correlated response to stimuli, while the response of other pairs
either did not change or decreased (Presentation 1: Supplementary
Figure S9). This effect may be caused by the widely described
metabolic dysregulation in aging (11). Reaction and transport
fluxes are also impacted (Presentation 1: Supplementary Figures
§10-S12). Aging effects on metabolite concentrations at rest and in
response to stimuli are therefore metabolite-specific and largely
uncorrelated, indicative of a fragmentation of the metabolic
network in aging.

Lactate transport directionality changes in
the aging metabolic system

One of the central fueling mechanisms in brain neuroenergetics
is the astrocyte-to-neuron lactate shuttle (ANLS). The intensely
debated ANLS theory describes how neuronal activation drives
astrocytic glycolysis and lactate export to the extracellular space,
from where it can be taken up and used by neurons. Since its
proposal by Magistretti and Pellerin (30-32), many studies have
addressed it under various conditions [e.g., (33)]. Neuronal lactate
import is lower in the aged metabolic system than the young, while
astrocyte lactate export is slightly higher. This aging effect can be
partially explained by reduced expression of monocarboxylate
transporters (MCTs, based on RNA levels) and mitochondrial
hypometabolism, which results in increased pyruvate levels and
correspondingly higher levels of lactate. To examine the
dependence of lactate transport directionality upon glucose levels
in aged and young metabolic systems (Presentation I:
Supplementary Figure S13), we simulated the effects of varying
resting blood glucose levels between 1.6-13.6 mM at increments of
1 mM. We performed two experiments, one with arterial lactate
scaled proportionally to arterial glucose changes (where arterial
lactate in the young brain was scaled proportionally to arterial
glucose levels for comparability with the aged brain) and one with a
fixed scale of lactate independent of glucose in an aged brain.

In the young system with both glucose and lactate scaled, we
observed the expected ANLS at all tested blood glucose levels both
at rest and during neuronal activation (averaged over the time
interval of 20 seconds of pre-stimulation rest state and 20 seconds
upon neuronal activation); as blood glucose levels increase, lactate
export from astrocytes slightly increases in the range of low-to-
normal blood glucose (1.6-4.6 mM) and decreases in the range of
normal-to-high blood glucose (4.6-13.6 mM), while lactate import
to neurons slightly increases throughout the entire tested range
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FIGURE 2

Aging model input and results overview. (A) Aging input is modeled with RNA expression fold changes of enzymes and transporters, scaling of
arterial glucose, lactate, and B-hydroxybutyrate, as well as the total nicotinamide adenine dinucleotide (NAD; reduced and oxidized) pool, synaptic
effects of glutamate concentration changes upon release events, and the reducing equivalents (NADH-related) shuttle between cytosol and
mitochondria. (B) The key results include aging effects on metabolite levels, electrical activity of the neurons, and changes in adaptivity of the system
in response to kinetic parameter perturbations (mimicking molecular damage and other conditions affecting enzyme and transporter functions).

Frontiers in Science 05 frontiersin.org


https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org

Shichkova et al. 10.3389/fsci.2025.1441297

A Action potential

——Young —— Old
60
50
50 50
T T
14 15

0 10 20
Time (ms) Time (ms)

Voltage (mV)

Voltage (mV)

E Neuronal firing on synaptic activation

AP amplitude AP rise rate AP fall rate
2 2 820
< 10 c 20 c
= = =X
o o <)
(ST O o O 0
110 120 300 350 400 -110 -100 -90
mv V/s V/s

AP half width AHP

2 2
2 10 2 20
> >
o o)
(G O o
070 075 -10 0 10
ms mV

Metabolism dynamics on synaptic activation

—— — S ——
25 ATP (n:c) ‘ ATP (a:c)
I (syn. . 0.05mM ITRIT T oom==m 01mM | fgmme o=

input), NnA° 0.00
-------- —=o=——oe———
50 NADH (n:c) | “=—— NADH (a) |
Vm (n) 0.002 mM ‘*{'_“7_'" 0025mM ' ____
mv 50 P —
Glc. (n:c) [ Glc. (a:c)
Na* (n) 0.099 mM == 0.199 mM
at(n
5.0 mM
Pyr. (n:c) \“{'3— o O%/{;Q(a:ch)/\
K+ (ecs) 0025mM e : m
10 mM
Lac. (n:c) ‘ """ Lac. (a:c)
Glut. syn. 0.2mM 0.2 mM
1.0 mM
Pyr. (n:m) | em o Pyr. (a:m)
Ca?" (n)
0.00025 mM 0.025 mM 0.025 mM
Ca (a) | AcCOA (n:m) ‘v"m“ AcCoA (a:m)
5e-05 mM ||\ 0.0025 mM 0002 mM
Ven. v. a-KG (n:m) aKG (a:m)
0.0025 ml 01mMm 0.025 mM
dHb O, (n) O, (a)
0.01mM 0.0099 MM 0.00499 mM
O, (cap.) | NADH (n:m) —E===—<======" NADH (a:m)
2mM oocackaas 01mM | _ 02mM

Gle, (cap) CoA (n:m) W CoA (a:m)
ozsmm | 0.00L mM | - 0.001 mM

Lac (cap) | ATP (nix) | S ATP (axx)
0.099mM | 025mM | 0.25mM
B-HB(cap) | ATP (n:i) ‘v’— ATP (a:i)

odmm | 005mM [—Rg=mmoo==mm- 0.1mM

500s

Stimulation period (20 s)

Abbreviations: a, astrocyte; AcCoA, acetyl coenzyme A; AHP, afterhyperpolarization; a-KG, a-ketoglutarate; AP, action potential;
ATP, adenosine triphosphate; B-HB, B-hydroxybutyrate; ¢, cytosol; cap., capillary; CoA, coenzyme A; dHb, deoxyhemoglobin;
ecs, extracellular space; Glc., glucose; Glut. syn., synaptic glutamate; i, mitochondrial intermembrane space;

I (syn. input), synaptic input; Lac., lactate; n, neuron; m, mitochondria; NADH, reduced nicotinamide adenine dinucleotide;

Pyr., pyruvate; Ven.v., venous volume; Vm (n), membrane potential of the neuron; x, mitochondrial matrix

FIGURE 3

Simulation results comparing neural firing and metabolism in young and aged brains. (A) Example action potential in voltage traces in simulations of
young and aged neurons with insets providing a closer view. (B) Characteristics of neuronal firing in young and aged brains upon synaptic activation.
(C) Dynamics of metabolism in response to synaptic activation at different ages (only a selection of the most important variables is shown).
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FIGURE 4

Simulation results comparing metabolic activity in neurons and astrocytes in young and aged brains. (A) Amplitude of concentration changes in
response to synaptic activation in young and aged brains (see also Presentation 1: Supplementary Figure S18). (B) Adenylate energy charge (AEC) in
young and aged neurons and astrocytes. AEC = (ATP + 0.5ADP)/(ATP + ADP + AMP). (C) Main energy consumption: sodium/potassium adenosine
triphosphatase (Na*/K*-ATPase) rate of ATP use. (D) Ratio of astrocyte to neuron Na*/K* pump rate.

following the increase in concentration gradient. This directionality
is consistent with concentration gradients. In the aged metabolic
system with arterial lactate scaled proportionally to arterial glucose
(assumption due to sparse data), the lactate shuttle at rest and
during neuronal activation (averaged over the time interval of
20 seconds of pre-stimulation rest state and 20 seconds upon
neuronal activation) has the same directionality as in the young
system for moderate blood glucose levels (6.6-11.6 mM), consistent
with a recent publication (34). However, both neurons and
astrocytes export lactate when glucose levels are low-to-normal
(1.6-5.6 mM) and both neurons and astrocytes import lactate when
glucose levels are high (12.6-13.6 mM). A possible explanation for
this dysregulation in the aged metabolic system could involve
NAD'/NADH and ATP/ADP ratios owing to their regulatory
role over the entire metabolic network, but this counterintuitive
prediction requires experimental verification.

When aging-related changes in arterial lactate are independent of
those of glucose, the directionality of lactate transport depends on the
scaling coefficient of lactate levels relative to blood glucose levels. For
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the scaling based on our default aging model, lactate was exported by
both the aged neuron and astrocyte at all tested glucose concentrations
(given the same fixed arterial lactate), while the young state showed
ANLS at all tested concentrations. This shift in lactate supply could be
one of the underlying mechanisms of brain energy disruptions in aging.

Lactate serves as an alternative fuel to cells. Its levels depend on
relevant transport and pathway reaction rates, including the activity
of lactate dehydrogenase (LDH), which catalyzes the reversible
conversion of lactate to pyruvate with the reduction of NAD" to
NADH and vice versa. High glucose levels affect concentrations of
glycolytic metabolites, such as lactate, pyruvate, NAD", and NADH,
and consequently affect LDH and MCT activities.

Kinetics of enzymes and transporters, as well as metabolite
concentrations, can be cell-type specific, leading to the difference in
response to high blood glucose between neurons and astrocytes.
Due to these complex interactions, results of computational models
can seem counterintuitive, although they open new questions and
lead us to a better understanding of how the system behaves under
different conditions.
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Aging-associated changes in metabolism
alter electrophysiological characteristics

We show for the first time how aging in the metabolic system
leads to changes in the generation of action potentials by both
synaptic input (Figure 3) and current injection (Presentation 1:
Supplementary Figure S5). Age-related differences in neuronal
firing characteristics evoked by current injection are particularly
important for decomposing NGV energy use because this type of
stimulation protocol excludes the metabolic demand caused by
glutamate release. We found similar changes in metabolic profiles
following synaptic input and current injection (Presentation 1:
Supplementary Figure S14), suggesting that metabolic changes
mostly impact the action potential generation ability of neurons.
However, the model would require a more detailed molecular
coupling between the metabolic system and the entire glutamate
cycle to strengthen this prediction.

We found that changes in action potential shape and size are
caused by a reduction in Na'/K'-ATPase expression in the aged
brain, supporting a recent theory of non-canonical control of
neuronal energy status (35). To better understand whether other
aspects of the metabolic system, such as reduced supply of ATP, also
contribute to these changes, we increased the Na*/K*"-ATPase
expression levels in the aged brain model to match the young brain
while leaving all other aspects of the aging metabolic system in their
aged state. There were no significant differences in action potentials at
low frequencies (4-8 Hz) and only slight changes at much higher
frequencies (78-79 Hz), suggesting that the decreased expression of
the Na*/K*-ATPase pump is the main factor impairing the ability of
neurons to generate action potentials. However, it is still possible that
other aspects of the NGV metabolic network become more important
after sustained neuronal activity, such as those used during intense
cognitive demand.

Lower supply and demand for energy in
the aged brain

Although energy deficiency is a prominent hypothesis in brain
aging (12), it is not clear if the supply is limited and/or demand is
reduced; it is also unclear whether astrocytes and neurons are
impacted in the same way. Adenylate energy charge (AEC), a
widely used proxy for cellular energy availability (36), is higher in
the young state than in the aged (Figure 4B). However, this value
does not separate supply from demand. To separate the two
factors, we first computed the total ATP cost of firing action
potentials. We found that the young brain model consumes
approximately 2 billion ATP molecules per second per NGV
unit (where one unit is one neuron, one astrocyte, and their
associated extracellular matrix and capillaries) with 8 Hz firing,
while the aged brain model consumes around 1.8 billion molecules
per second per unit, which aligns well with literature estimates
(37-39). We found that ATP production is lower in the aged
cytosol of both neurons and astrocytes and in aged neuronal
mitochondria (Presentation 1: Supplementary Figure S2).
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However, ATP consumption is also lower (Figure 4C) due to the
lower levels of Na*/K*-ATPase (40, 41), and therefore ATP supply
is not necessarily a limiting factor. Nevertheless, while reduced
ATP supply does not seem to limit action potential generation in
the acute state, a persistently lower ATP supply may still cause
Na'/K'-ATPase expression to decrease, thereby impairing action
potential generation over a longer period.

We also found that neurons and astrocytes are differentially
affected by aging. Normally, astrocytic Na*/K"-ATPases consume
slightly less than two-thirds as much ATP as neuronal Na*/K'-
ATPases (Figure 4D). In astrocytes, the ATP supply is only reduced
in the cytosol and not in the mitochondria, and the catalytic subunit
of the Na"/K"-ATPases expression is unchanged with aging. While
ATP consumption of the Na®/K'-ATPase pump in neurons
decreases with aging (Figure 4C), it slightly increases in astrocytes
—resulting in an increase in the ratio of astrocyte to neuron
Na®/K"-ATPase ATP consumption from around 0.69 in the
young brain to around 0.72 in the aged. Since astrocytes do not
need to fire action potentials, this finding suggests that there is an
increased demand on astrocytes to support the neurons to clear
extracellular K™ in order to help neurons generate their
action potentials.

The model shows that Na™/K* pump ATP use in the astrocyte is
comparable with that of the neuron (Figure 4D), consistent with
recent evidence (42). In line with previous studies (43),
mitochondrial ATP production as a share of total ATP
production is higher in neurons than in astrocytes, at 84% versus
70% (Presentation 1: Supplementary Figure S2).

Applying the RN Aseq data (26, 27) to the respective metabolic
pathways revealed that succinate dehydrogenase (SDH) is
differentially affected by aging in neurons and astrocytes. SDH is
a mitochondrial energy nexus and serves as complex II of the
mitochondrial electron transport chain (ETC). SDH connects the
tricarboxylic acid cycle (TCA) to the ETC. This result indicates that
pre- and post-SDH enzymes of TCA (fumarase and succinate CoA
ligase) display opposite changes in aged neurons and astrocytes.
SDH itself decreases more in aged neurons than in aged astrocytes.
In neurons, aging reduces both succinate CoA ligase and SDH,
while increasing fumarase. Unlike in neurons, succinate CoA ligase
levels rise in astrocytes during aging. SDH decreases slightly while
fumarase levels decline further.

Aging brain metabolism is more fragile and
susceptible to damage

Protein dysfunction is associated with several aging hallmarks,
including loss of proteostasis, oxidative damage, and impaired
DNA repair (11, 26). Moreover, reduced fidelity of protein
translation leads to a phenotype resembling early Alzheimer’s
disease (44). To mimic molecular damage and simulate the effect
on enzyme and transporter functions, we introduced one
perturbation at a time for each protein’s kinetic parameters
(Michaelis constant, inhibition and activation constants, and
catalytic rate constant—i.e., parameters in the enzyme rate
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FIGURE 5

Metabolic response to kinetic perturbation changes with age. (A) Example metabolite level profiles in response to kinetic parameter perturbation.
(B) Active metabolism sensitivity. (C) Metabolic adaptability to kinetic parameter perturbations (upper) and metabolic adaptability networks in young

and aged brains (lower).
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equation), increasing or decreasing its value by 20% (in separate
simulations, Figure 5A). We then calculated the changes in the
response of all metabolites to measure the sensitivity of their
concentrations to each perturbation. We ran 2,264 simulations
with perturbed parameters, measuring metabolite sensitivities at
rest and during stimulus for both the young and aged systems
(see Equation 1).

M(@1.2p)[t] - M(p)[t]
M(p)t]

M(0.8p)[t] — M(p)[{]
M(p)lt]

dy/dp = max (0.5(abs( (1)

)/dp)

+ 0.5 (abs(

)/dp))

where dy/dp represents sensitivity, M(1.2p)[t] and M(0.8p)[¢]
are the metabolite concentrations at the time point ¢ in simulation
with the parameter p value multiplied by 1.2 and 0.8 respectively, M
(p)[t] is the metabolite concentration at the time point ¢ in the
original simulation (no parameter variation), and dp is the change
in parameter value from its value in the original model.

The difference between the sensitivities of the resting and
stimulated states (Figure 5B), normalized by the resting state
sensitivities, yielded a rest-normalized sensitivity. A larger value
for a metabolite implies that a stimulus produces a larger change in
its concentration (as compared with rest) when another parameter
in the system is perturbed. We therefore interpret such a change as

B Node centrality in adaptability networks

10.3389/fsci.2025.1441297

the ability of the system to adapt to damage; we call this metric
“metabolic adaptability” (Figure 5C).

This metric allowed us to compare the whole metabolic systems
of neurons and astrocytes in the young and aged brain (Figure 5C).
We found that the adaptability of most neuronal metabolites
decreases with age, while the adaptability of the astrocyte mostly
increases. This observation concurs with the literature on astrocyte
reactivity, which measures a set of phenotypic characteristics,
including those of metabolism, inflammatory cytokine secretion,
and cytoskeleton rearrangement (45). However, in contrast to the
“selfish” astrocyte hypothesis (45), it is possible that the increase in
astrocytic adaptability could instead be a “self-sacrifice” in an
attempt to support the declining neurons; the increased
adaptability of the astrocyte might be an attempt to stabilize the
already declining metabolic profile in the neuron during aging.

We visualized the adaptability of the entire NGV metabolic
network in the two age states by positioning the nodes of both
metabolites and enzymes using the Fruchterman-Reingold force-
directed algorithm (46). The length of each of the 16,800 edges were
weighted by the inverse of metabolic adaptability (Figure 5C lower;
see Presentation 1: Supplementary Information Files 1-8) to more
intuitively reflect “metabolic fragility”. These networks displayed
clustering of nodes largely by function and also revealed more
evenly distributed clusters in young than in aged systems, indicative
of a robust network. To quantify the network differences between
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FIGURE 6

Metabolic adaptability networks in young and aged brains. (A) Centrality of the nodes in the networks of metabolic adaptability aggregated by
enzymes. (B) Number of connected components in filtered networks of metabolic adaptability aggregated by enzymes. lons, membrane potential,
gating variables, mitochondrial membrane potential, and metabolites with fixed concentrations are omitted from the analysis for all figures in this
panel. (C) Connection density of filtered networks. (D) Maximum simplex dimension (log-transformed) normalized by connection density.

(E) Number of simplices (log-transformed) normalized by connection density (at 88% filtering threshold).
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young and aged systems, we calculated the centrality of nodes,
which is the reciprocal of the sum of the shortest path distances
between each node and all other nodes. The aged network showed
longer average distances than the young network (Figure 6A),
suggesting that the metabolic system of the aged brain is more
fragile than that of the young brain.

To quantify the effect of aging on metabolic system fragility, we
progressively removed edges below a given percentile and calculated
the number of connected components in young and aged metabolic
networks (Figure 6B). This revealed that the aged network is
fragmented into clusters or “islands”. Both networks are fully
connected at thresholds below 76% and fully disconnected at
100%, but between 76% and 93% thresholds we observed a higher
number of connected islands in the aged network. We computed
directed simplices, a type of all-to-all connected clique, using
algebraic topology (47, 48) to quantify the topological complexity
of the network (see Methods). This showed that the dimensions
(number of nodes) and number of simplices are higher in the young
state (Figures 6C-E), indicating that the young metabolic network is
more topologically complex, distributed, and robust than the
aged system.

Potential drug targets to repair the aging
metabolic system

The scale of the challenge of finding new drugs for therapeutic
interventions is revealed by the >16,800 possible enzyme/
transporter-metabolite interaction pathways we identified in the
NGV metabolic network, plus the complexity of the metabolic
response when any one pathway is perturbed. The measure of
metabolic adaptability can guide identification of targets within this
complex dynamical system. Here, interaction pathways with the
highest differences in metabolic adaptability (Presentation 1:
Supplementary Figure S16) are potential targets to repair the aged
metabolic system (Figure 7), with high-priority targets being those
that improve adaptability for the highest number of pathways. The
ideal drug to repair the metabolic system is one that acts like a
transcription factor (TF), regulating multiple enzymes and
transporters to modulate an even larger number of metabolic
pathways. We therefore applied the ChIP-X Enrichment Analysis
3 (ChEA3) optimization algorithm (49), which isolates the TFs with
the largest overlap between a prioritized set of genes for those
enzymes and transporters that show the biggest improvement in
metabolic adaptability for the largest number of interaction
pathways (Figure 8). We identified the ten highest-priority
potential targets.

The TF with the highest score was estrogen-related receptor o
(ESRRA). This TF regulates the expression of multiple metabolism-
related genes, including those of mitochondrial function, biogenesis,
and turnover, as well as lipid catabolism (50). It is also linked to
autophagy and the nuclear factor kappa B (NF-kB)-mediated
inflammatory response via silent information regulator 1 (Sirtl)
signaling (51-54). Mitochondrial dysfunction and autophagy
impairments are consistently among the hallmarks of aging
(9-11, 55). Notably, ESRRA expression is downregulated in aging
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(26, 50). Altogether, therefore, ESRRA acts as a regulatory hub of
multiple aging-associated pathways (outlined in Presentation 1:
Supplementary Figure S19). The other TFs that we identified are
also validated by literature reports on TFs implicated in aging and
neurodegeneration (see Presentation 1: Supplementary Information
Files 1-8).

Using the STRING database (56), we identified the following
proteins most prominently associated with the top-scoring TF,
ESRRA (Figure 8): hypoxia inducible factor 1 (HIF1A), Sirtl,
histone deacetylase 8 (HDACS), peroxisome proliferator-activated
receptor gamma coactivator 1-alpha (PPARGla, also called
PGCla), PPARG1B (PGC1B), myocyte enhancer factor 2C
(MEF2C), nuclear receptor interacting protein 1 (NRIP1), nuclear
receptor coactivator 1 (NCOA1), mitochondrial transcription factor
A (TFAM), and PGC-1 and ERR-induced regulator in muscle
protein 1 (PERM1). Numerous literature reports implicate these
proteins in aging and neurodegeneration. The repair targets
identified using our molecular model of the NGV system
therefore largely align with reported experimental data on
therapeutics for healthy aging (57). We additionally suggest a role
for less-studied TFs in aging brain energy metabolism and provide
insights into the links between molecular mechanisms implicated in
aging and neurodegeneration (see Presentation 1: Supplementary
Information Files 1-8). From a broader perspective, identified
targets can be further investigated for their potential as
biomarkers of aging. However, more research is needed to dissect
causes from consequences and accompanying effects.

Potential strategic interventions to repair
the aging metabolic system

As an alternative to specifically targeting the enzymes and
transporters, we investigated whether key features of the aged brain
phenotype, such as energy deficiency and altered neuronal firing,
could be repaired through strategic interventions. We conducted
constrained optimizations (see Methods) for (i) the interaction
pathway targets identified by the differences in metabolic
adaptability (same as the input for TF enrichment analysis above),
(ii) the interaction pathways potentially regulated by ESRRA (above),
(iii) parameters corresponding to arterial blood glucose and ketone
levels (mimicking dietary factors), (iv) parameters corresponding
to arterial blood lactate levels (mimicking exercise factors), and
(v) total NAD-pool parameters in neurons and astrocytes
(mimicking NAD-related supplementation). Surprisingly,
optimization using a combination of diet (lower blood glucose and
higher blood B-hydroxybutyrate), exercise (higher blood lactate), and
NAD-related supplementation and modulation of the cytosol-
mitochondria NAD-associated reducing equivalents shuttle
(hereafter referred to as DEN therapy) increased ATP levels in
both neurons and astrocytes toward values of the young metabolic
system—comparable to that of the top-scoring targeted therapy
(Figure 9A; Presentation 1: Supplementary Table S3). Interestingly,
even though the parameter bounds for the optimization were allowed
to search for increasing or decreasing values, the DEN therapy
optimization converged unguided to a lower blood glucose and
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FIGURE 8

Transcription factor (TF) enrichment results obtained from ChIP-X Enrichment Analysis 3 (ChEA3) analysis. The left side shows the top 10 TFs, with
estrogen-related receptor o (ESRRA) having the highest score. The right side shows the results of the STRING-database search for ESRRA from the

ChEA3 analysis.

higher blood B-hydroxybutyrate, blood lactate, and NAD-
modulation, consistent with commonly accepted benefits of calorie
restriction, exercise, and NAD supplementation (58).

The DEN therapy largely, although not completely, restored the
youthful state of the neuronal metabolic system but not their action
potential generation. As presented, action potential amplitude and
shape can only be restored in our model by increasing the levels of
the Na™/K" pump to youthful levels. We therefore additionally
reversed the age-related downregulation of the Na™/K* pump for
each intervention (i.e., for the best-scored combinatorial therapy
based on targeted selection of enzymes and transporters, NAD
supplementation, NADH cytosol-mitochondria shuttle capacity
modulation, and for the DEN therapy). This approach restored
neuronal firing characteristics similar to those of a young state for
each intervention (Figure 9B) as well as ATP levels of both neurons
and astrocytes. It is reasonable to assume that changes in action
potential shape could affect calcium influx into presynaptic boutons
and hence the probability of vesicle release, suggesting that
restoration of action potential shape may also influence release
properties. Interestingly, insulin is a common factor that activates
Na*/K"-ATPase and increases its expression while also lowering
blood glucose, consistent with DEN therapy. A sensitivity analysis,
calculating adaptabilities for the DEN therapy and top-scored
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therapy, showed that network fragility could not only be repaired
but even improved over the young state (Figure 9C).

Validation

To validate predictions of the model we used publicly available
data that were not used to construct the model.

First, we extensively validated the model against a corpus of
data reported in the literature on how enzyme and transporter
activities and metabolite concentrations change in response to
stimulation (Presentation 1: Supplementary Figure SI,
Supplementary Table S1). All concentration-related variables were
maintained in the range of biologically plausible values by the
callbacks and the “isoutofdomain” parameter to a solver, as
described in the Optimization part of the Methods section. We
also qualitatively compared reaction and transport fluxes to their
expected response to stimuli (Presentation 1: Supplementary
Figure S2).

Next, we calculated the blood-oxygen-level-dependent (BOLD)
signal (Presentation 1: Supplementary Figure S1D) and oxygen-
glucose index (OGI) (ranging from 4.5-5.0 depending on stimulus,
while literature data range from 4.0-5.5) using equations from Jolivet
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FIGURE 9
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Analysis of potential strategic interventions to repair the aging metabolic system in the brain. (A) Time series traces of selected metabolites in young,
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et al. to compare them with the literature (21, 24, 59). These two high-
level phenomena are commonly used as benchmarks in NGV
metabolism modeling papers (21, 24, 60), although these tissue-
level metrics cannot be applied directly to the unitary models of
NGV. We also found the lactate shuttle directionality in the aged
metabolic system under moderate blood glucose levels (6.45-10.6
mM) was consistent with a recent publication (34).

Then we estimated energy use from the components of the
Na"/K"-ATPase rate equation (calculated from the sum of
neuron and astrocyte Na*/K* pump ATP consumption flux in
mM concentration per second with the volume of 17.8 um® and
the literature estimate of ionic gradients sharing 31% of total
energy use). Our estimates of ATP consumption rate per NGV
unit at 8 Hz firing in both young and aged states align well with
literature estimates (37-39). Our observations in action potential
shape and size changes in aging as being caused by a reduction in
Na'/K"-ATPase expression in the aged brain are in line with a
recent theory of non-canonical control of neuronal energy
status (35).

Furthermore, the model shows that Na*/K* pump ATP use in
the astrocyte is comparable to that of the neuron (Figure 4C),
consistent with recent evidence (42). In line with previous studies
(43), mitochondrial ATP production as a share of total ATP
production is higher in neurons than in astrocytes, at 84% versus
70% (Presentation 1: Supplementary Figure S2). These data
emerged when the model was simulated and their consistency
with a range of reported experimental data suggests that the
model accurately captures the most essential elements of the
brain’s metabolic system.

We further validated aging-associated effects against the
literature data shown in Presentation 1: Supplementary Table S1.
TFs that we identified as regulating the most fragile enzymes and
transporters are also validated by literature reports on TFs
implicated in aging and neurodegeneration (see Presentation 1:
Supplementary Information Files 1-8), and promising anti-aging
therapies identified by this study are largely consistent with current
understanding in the field.

Limitations

Even though we strove to be as biologically detailed and
unbiased as possible, we had to refine weakly constrained
parameters due to limited available data and focus on the most
relevant pathways and processes rather than simulating dynamics at
the whole genome-scale. Additionally, owing to data sparsity,
differences between in vitro and in vivo conditions, as well as sex-
related differences, were not considered. Some potential refinements
of the model would be to include these aspects.

Furthermore, our model specifically emphasizes the key brain
energy metabolism pathways and processes involved in neuronal
signal transduction. However, to gain a more comprehensive
understanding of the various complementary molecular
mechanisms and pathways involved in aging and disease, it would
be desirable to further expand the model to a whole-cell scale and
incorporate more regulatory processes. At present, this task is
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hindered by data limitations. As more data become available, the
model can be iteratively refined and expanded.

As we mostly focused on metabolism, our model does not
incorporate detailed mechanisms of cerebral blood flow regulation
with neuronal activation. Changes in oxygen availability and
transport with aging were also not included due to data
challenges. Refinement of the blood-related part of the model
would be a highly valuable improvement. More details on
neuronal signaling and synaptic mechanisms would potentially
widen the model applications and level of biological detail.

For the various modeled conditions, we applied literature-based
scaling factors to the concentrations of enzymes and transporters, as
well as initial concentrations of variable metabolites. Owing to the
lack of high-quality cell-type-specific protein concentration data for
young and old rodents, we relied on data on RNA levels to derive
the concentrations of enzymes and transporters, with scaling in the
aging group based on the assumption that changes in RNA directly
affect enzyme concentrations (61). This procedure, however, is
often inaccurate due to various post-translational processes and
protein degradation (62). Also due to literature uncertainty and
potential biological variability, the scaling of blood nutrients in
aging was based on the expectation of only a mild increase in blood
glucose and proportional changes in blood lactate. Ketone body
B-hydroxybutyrate and glutamatergic signaling were assumed to
decrease by half in aging, but better measurements would be useful.
We also applied scaling to the NAD pool and synaptic glutamate
release, which were literature-driven but had to be approximated, as
we did not find exact numbers for their changes with aging. NADH
shuttle parameters were considered to be the most flexible as they
had the highest uncertainty in the sourced data, which is why we
optimized these to balance the aged model.

Another potential limitation is the uncertainty surrounding the
nature of molecular damage (including that which accumulates
with aging) and its effects on enzyme function, which we modeled as
perturbations to individual kinetic parameters. Various other
modifications of the model could be designed to be consistent
with experimental data, such as inhibition of glycolysis or
mitochondrial respiration via specific inhibition of the ETC
complex I. However, those are outside the scope of our
current study.

Discussion

This study presents a dynamical, molecular model of the NGV
system that integrates the key cellular and subcellular systems,
molecules, metabolic pathways, and processes required to couple
neuronal electrical behavior with brain energy metabolism and
blood flow. The data-driven strategy developed allows the
application of experimental data, in principle from any condition,
to produce a model of that condition. We applied experimental data
from the young and aged brain metabolic systems to model their
respective metabolic systems. We identified 16,800 enzyme/
transporter-metabolite interaction pathways in the metabolic
system of the brain. A sensitivity analysis for each pathway
produced a comprehensive view of how each pathway impacts
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every other to support action potential generation. We found that
the impact of one pathway on all the others is remarkably evenly
distributed, indicative of a highly robust system with multiple
routes to respond to changing metabolic demands, and one that
is resilient to damage of any one pathway. By normalizing to resting
sensitivities of each pathway, we developed a measure for the
metabolic adaptability of each pathway to evaluate changes under
different conditions, such as in the aged brain. Our analysis suggests
that the aged metabolic system breaks down into “islands” where
enzyme/transporter—metabolite interaction pathways cluster more
than in the young brain, leaving this complex molecular system less
robust to damage and more restricted when responding to stimuli.
We identified the TF, ESRRA, and several key proteins it regulates
as top potential drug targets and a prioritization of potential
strategic interventions that could repair the aging metabolic system.

This data-driven model captures how brain energy metabolism
interacts with neuronal activity through the ATP-dependent ion-
gradient-restoring activity of Na/K"-ATPase with a high degree of
biological fidelity. Each enzyme and transporter is modeled using an
experiment-derived rate equation featuring its concentration, key
kinetic properties, and effects of inhibitors and activators (where
applicable and relevant). This approach allows integration of
proteomics and transcriptomics data for modeling various
conditions and diseases that affect molecular levels and properties.
Compared with the more generalized phenomenological metabolic
models, the model features 183 processes, including 95 enzymatic
reactions, 19 processes for the transport of molecules across cell and
mitochondrial membranes, and 69 other processes for ionic currents,
blood flow dynamics, and other related non-enzymatic processes.
Changing molecular concentrations are simulated using 151
differential equations. Additionally, cytosolic adenosine diphosphate
(ADP), creatine, NAD, and NADP are computed from the
conservation law and total pool of relevant molecules.

To build such a complex model, we applied biologically reported
parameters for each component of the model (see Methods),
avoiding overriding biological values to fit literature reports of
time-series of metabolic responses, which are scant and often
contradictory. In order for the system of equations to have a
solution, we optimized the parameters by only requiring steady
state solutions at rest, rather than changing the parameters to fit
the metabolic time-series responses reported in the literature.
Alternative approaches used by others include likelihood-based
optimization targeting the reference time-series data. This approach
was not suitable in our case because most metabolites lacked data for
meaningful likelihood-based parameter estimation, i.e., with recorded
traces of metabolite levels in neurons and astrocytes. Others have
used Bayesian parameter estimation, but this was computationally
too costly for the scale and complexity of our model. To increase the
biological dataset for parameterization, we merged data across in vitro
and in vivo conditions and averaged these across natural ranges of
biological variability. In some cases, we had to optimize weakly
constrained parameters or include only the most relevant
components, pathways, and processes (see Methods). The model,
while containing an unprecedented level of detail, is also not yet at a
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whole-genome level. Similarly, while the model captures the key
cellular elements, compartments, and sub-compartments, it does not
yet capture explicit details on all possible geometric constraints.

The model was validated against numerous experimental
datasets, but a key litmus test was simply whether computational
convergence occurred for this complex system. Parameters were
minimally optimized to allow convergence for a steady state at rest,
but a self-constrained converged state emerged when the system was
stimulated with current injection and synaptic input. On the other
hand, when we introduced random modifications to enzyme and
transporter concentrations and their kinetic parameters, some
numeric solutions failed or diverged far from the steady state at
rest. It is therefore even more remarkable that simulations converged
without significant modifications introduced when we imported and
applied the data from the aged brain. Furthermore, single parameter
perturbations introduced instabilities in the simulations more often
than when multiple RNA-seq derived changes were introduced,
suggesting that the set of parameters are self-constraining.

Our results in both young and aged brain states align well with a
wide range of published experimental reports. Aside from the time-
series profiles of specific metabolites, enzymatic activities, and aging
observations, it is particularly noteworthy that the estimates that
emerged from the simulations for ATP consumption (37-39) and
the effects of aging-associated metabolic changes on neuronal action
potentials are consistent with experimental reports (63-67).

Calculating sensitivities is common when studying dynamical
systems. In addition to sensitivity analysis, we introduced
adaptability and fragility as biologically interpretable measures for
the system undergoing transition between rest and a stimulated
state. These measures capture the effects of perturbing an enzyme or
transporter on all the metabolite levels in response to stimuli.
These perturbations mimic the effects of conditions such as
phosphorylation levels, transcription and translation errors, and
molecular damage to enzyme and transporter kinetic properties.
Perturbation analysis predicted diminished adaptability to changing
energy demands with different changes in neurons and astrocytes in
the aged brain. We could construct a network of enzyme/
transporter-metabolite interaction pathways where each pathway
could be evaluated in terms of metabolic adaptability, allowing
quantification of the changes. We found a structural breakdown and
decreased topological complexity of the NGV metabolic systems in
the aged network as compared with the young state.

To identify potential targets for interventions to restore a
youthful metabolic brain state and guide a search for biomarkers
of aging, we determined the most fragile interaction pathways. We
performed TF enrichment analyses for the most sensitive enzymes
and transporters, whose functions largely overlap with known
mechanisms of aging. Through constrained optimization, we
identified a combination therapy that restores key features of the
young brain phenotype. This therapy involves maintaining specific
levels of blood glucose, lactate, and B-hydroxybutyrate—achievable
through diet and exercise—coupled with redox state maintenance
via NAD supplementation, modulation of the cytosol-mitochondria
reducing equivalent shuttle (related to NADH, i.e., DEN therapy),
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and Na'/K"-ATPase activation. For instance, reversing the aging
phenotype can be achieved in part by regulating insulin signaling,
which lowers blood glucose and activates Na*/K"-ATPase.

The model suggests that complex interventions that act on
multiple enzymatic targets, including some of the most promising
potential targets of DEN therapy, could also restore ATP levels in
cells. However, their development and implementation would
require more extensive research before they could be considered
for practical application in treating aging-related conditions. The
observed model effects of these complex therapies appear
comparable to those achieved with the simpler DEN therapy,
although we can only theoretically speculate about clinical
outcomes in each case.

The promising combination therapy identified in this study, which
includes diet, exercise, NAD supplementation, NAD shuttle, and Na*/
K*-ATPase modulation, agrees well with proposed anti-aging
interventions such as caloric restriction, the ketogenic diet, and
exercise (10). Physical exercise shows beneficial anti-aging and brain-
health effects mediated by the brain-derived neurotrophic factor
(BDNF), insulin-like growth factor 1 (IGF-1), and lactate (68-70).
The ketogenic diet and caloric restriction, for example, impact the levels
of B-hydroxybutyrate and glucose in the blood (71). Supplements
investigated as potential aging treatments such as urolithin (72),
metformin (73), and nicotinamide mononucleotide (74) benefit
mitochondrial health and energy supply, consistent with the
important role of energy regulation in aging.

Conclusion

In conclusion, this comprehensive, data-driven, molecular-level
model of the NGV system offers a novel research tool to couple
neuronal electrical behavior with brain energy metabolism and
blood flow. It has undergone multiple validations and generated
insights consistent with current findings, suggesting that it can
guide experiments on brain aging and diseases, including those on
disease-associated genetic variants, enzymatic deficiencies, and the
effects of different intervention strategies. Energy-metabolism
related transcriptomics, proteomics, and metabolomics data can
also be applied to the model to study their effects on metabolic
dynamics and neuronal firing. Furthermore, the model can simulate
a variety of stimuli to neurons to guide studies on the energy
constraints of brain activity. The model is open sourced for public
use to help accelerate research into these important areas.

Methods
Baseline model building

We reconstructed and simulated a model of NGV metabolism
coupled to a simple blood flow model and a Hodgkin-Huxley (HH)
type of neuron model. The main concepts of electro-metabo-
vascular coupling, as well as blood flow and the neuronal
electrophysiology model, are based on the models available from
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the literature (19, 21, 24, 60). Our model specifically emphasizes the
key brain energy metabolism pathways and processes involved in
neuronal signal transduction. However, to gain a more
comprehensive understanding of the various complementary
molecular mechanisms and pathways involved in aging and
disease, it is desirable to further expand the model to a whole-cell
scale and incorporate more regulatory processes. At present, this
task is hindered by data sparsity. As more data becomes available,
the model can be iteratively refined and expanded.

Compared with the more generalized phenomenological
metabolism models, our model features 183 processes:
95 enzymatic reactions; 19 processes for molecule transport
across the cell and mitochondrial membranes; and 69 other
processes related to ionic currents, blood flow dynamics, and
some miscellaneous non-enzymatic processes, e.g., magnesium
(Mg**) binding to mitochondrial adenine nucleotides. Every
reaction, transport, or other process is represented by a literature-
derived rate equation. Changes in molecular concentrations are
described by a system of 151 differential equations. Additionally,
cytosolic ADP, creatine, NAD, and NADP are calculated from the
conservation law and total pool of relevant molecules.

The model is based on literature data for enzyme kinetics and
molecular concentrations. We meticulously collected all parameters
and equations from literature sources (as referenced in Presentation 1:
Supplementary Table S2 and throughout the model code) and
programmatically queried the BRENDA (75) and SabioRK (76)
databases. However, observed discrepancies in the parameters
reported by different sources necessitated an optimization procedure
to derive biologically plausible middle-ground values. These
parameters with uncertainties were constrained by their lower and
upper bounds, taking into account the type of the parameter
(Michaelis constant of reaction, inhibition/activation constant,
maximal rate of reaction, equilibrium constant, and Hill coefficient)
and optimized as described in the Optimization section below.

To have the most realistic biological average for the initial
values of all variables (concentrations, membrane potential,
mitochondria membrane potential, venous volume, and gating
variables) according to the literature, we considered not only
measured and modeled literature data on the absolute values
themselves but also additional constraints, such as known ratios
of NADH to NAD" in the neuron (22, 77-79) and astrocyte (79).
One of the most important variables in the model, ATP
concentration, was reported as being 2 mM in many experimental
and modeling studies (20, 21, 24, 60, 80). However, more recent
data report it at the 1.0-1.5 mM scale (35, 81). Assuming that more
recent measurement technologies provide more precise data, we set
cytosolic ATP in the neuron to approximately 1.4 mM according to
Baeza-Lehnert et al. (35) and to approximately 1.3 mM in the
astrocyte according to Kohler et al. (81), who reported ATP
concentrations of 0.7-1.3 mM in acutely isolated cortical slices
and 1.5 mM in primary cultures of cortical astrocytes.

Reported mammalian ATP to ADP ratios vary widely from 1 to
>100 (82), while the ratio of ATP to adenosine monophosphate
(AMP) is around 100 (80). Furthermore, metabolite ratios from
Erecinska and Silver (80) were used to adjust initial concentrations
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of phosphocreatine and phosphate to the ATP levels. Lactate
concentrations in different compartments, which is central to the
ANLS debate, was set according to Machler et al. (83). We also
tested the model with all alternative literature-reported
concentrations for the metabolites mentioned above.

Glucose supply from blood is of key importance to brain energy
metabolism (84) and so we approached this meticulously.
In our model, glucose concentrations are assigned to detailed
compartments, such as arterial, capillary, endothelial, basal
lamina, interstitium, neuronal cytosol, and astrocytic cytosol (85).
According to the literature, hexokinase flux is split approximately
equally between neuron and astrocyte (85-87), so we adjusted the
maximum velocity (V) of hexokinase so that its flux matched
the literature data at rest. Upon activation, the ratio of glucose
influx to astrocyte versus neuron increases, consistent with the
literature (87, 88).

Implementation and simulation

This metabolism model is implemented and simulated in Julia
programming language (89). We used the DifferentialEquations.jl
package (90) to solve the differential equations system using order
2/3 L-stable Rosenbrock-W method (autodifferentiation disabled,
both absolute and relative tolerances set to 1e-8). We chose to use
the Julia language because of its high performance, its extensively
developed mathematical methods ecosystem, and the readability of
the code, which supports its future use. Most of the analysis and
figures-making code is written in Python programming language.

The model is built modularly, so that every molecular process
has a dedicated rate function, and the combination of relevant rate
functions defines the dynamics of variables. This supports
convenient testing of various enzymatic mechanisms, parameters,
and initial values of concentrations, as well as easier model
subsetting and expansion.

The code for model simulation, optimization, validation, and
analysis is openly available (see “Data availability” below).

Optimization

Time-series data on the dynamics of specific metabolites in
neurons and astrocytes are very limited and sometimes
contradictory. To avoid favoring one data source over another,
we only performed optimizations for the steady state (minimizing
derivatives). We built and optimized the model bottom-up in
multiple iterations, gradually expanding it with more details. We
started with the model of neuronal electrophysiology (24, 60,
91-93). We included detailed astrocytic ion management based
on the existing literature model (94). Then, for the metabolism
model, we started with capillary dynamics, oxygen and glucose
transport, and hexokinase, because these are very well studied and
the cerebral metabolic rate (CMR) of glucose is widely measured,
which sets a strong constraint on hexokinase rate. We then added
each reaction one at a time and evaluated rates in simulations,
manually (roughly) refining under-constrained parameters first,
when necessary. After several reactions were added we ran an
optimization (with an objective to minimize derivatives) for a
selected small set of parameters that were the least constrained by
the literature. Then we modeled lactate transport and connected it
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to glycolysis. We separately optimized PPP for steady state (with an
objective to minimize derivatives). For the mitochondria, we started
from the electron transport chain, which is mitochondrial-
membrane potential-dependent and extremely sensitive to
parameter variations. We mostly used the electron transport
chain (ETC) model obtained from the publication of Theurey and
colleagues (23) and then carefully selected a small number of
parameters to optimize (with an objective to minimize
derivatives) to make the ETC model compatible with ATP and
ADP concentrations from more recent experimental evidence.
Then we added TCA reactions to ETC one by one, as described
above for other pathways. We also added the equations for
modeling ketone metabolism, part of the malate-aspartate shuttle
(MAS), and the glutamate-glutamine cycle (after having both
neuron and astrocyte together in the system) based on the
references given in Presentation 1: Supplementary Table S2.

The optimization procedure referenced above is a single
objective optimization performed using BlackBoxOptim.jl (https://
github.com/robertfeldt/BlackBoxOptim.jl of Robert Feldt) with the
default algorithm (adaptive differential evolution optimizer)
iteratively selecting different sets of processes to reduce the
parameter space.

To avoid non-physiological molecular concentrations (negative
or too high values), we used Julia-callbacks and the “isoutofdomain”
mechanism to solve the differential equations system during
optimization. For these biological plausibility reasons, we utilized
“isoutofdomain” to control the solution of the differential equations
system to stay non-negative, so that the solver takes smaller time
steps if the solution leaves the domain, unless the minimum step
size is reached and integration is terminated. The same methods
were applied for the anti-aging optimization, but the selection of
neuronal firing-related variables from the simulated time-series
data from the young state were used for the objective function.

Computational models are often optimized by fitting parameters
to the data using a selected algorithm. Indeed, some time-series data
are available for various aspects of brain metabolism, including for
concentrations of glucose, lactate, pyruvate, NADH and ATP, the
BOLD signal, and cerebral metabolic rates of oxygen and glucose.
However, to our knowledge, these usually come from different
experiments rather than simultaneous measurements of multiple
metabolite concentrations and other characteristics. Numerous
studies have shown that one can fit system dynamics to selected
data given a sufficient number of weakly constrained parameters and
nonlinear rate equations (95). An interesting case is when
measurements with similar metadata from different studies produce
significantly different dynamics of metabolite concentrations, such as
in the example of extracellular brain glucose from Kiyatkin and
Lenoir (96) as compared with Fillenz and Lowry (97), which was
further used in one of the early integrative NGV models (20). We
therefore aimed to avoid the global optimization of fitting parameters
to selected time series. Instead, we iteratively refined the bottom-up
model by estimating parameters that would achieve the desired values
of metabolite concentrations at a steady state (in which the
concentration derivatives with respect to time are minimized).
More details are available in the next section and the entire
pipeline is shown in Presentation 1: Supplementary Figure S17.
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However, this approach has a downside: it does not guarantee exact
matching of the experimentally recorded dynamics of any selected
experiment. Good matching with the time series observed
experimentally and in other models can only be obtained if the
underlying model has a sufficient level of detail, uses relevant kinetic
data for initial parameterization, and employs applicable constraints
(e.g., a physiological range of metabolite concentrations and a typical
range of values for kinetic parameters of a given type). While many of
the time series produced by our model are close to the literature
reports, glucose concentration traces and cerebral metabolic rate of
glucose consumption have only modest stimulus responses as
compared with the literature. This can be explained by our decision
to follow the most detailed (to our knowledge) approach to glucose
transport in the brain available in the literature (86, 98)—
compartmentalizing arterial, capillary, basal lamina, interstitial
space, astrocytes, and neuron spaces with glucose transfer between
these compartments, described by rates that consider intracellular/
extracellular concentration-dependent trans-acceleration and
asymmetry of transporters.

Workflow and key aspects of bottom-up model
building and optimization

We developed a workflow to build the model in a bottom-up,
data-driven way, avoiding unreasonable bias for any particular data
source. The resulting model performed remarkably well for different
setups, producing high-quality simulation outcomes largely
consistent with relevant literature. The only drawback was the
workflow was largely iterative and time-demanding and required
manual intervention. The steps and key considerations were
as follows.

Step 1. Data collection

Models rely on the collection of as much reliable data as
possible. Combining metabolism, electrophysiology, and blood
flow, our model required the following data: molar concentrations
of molecules (metabolites, proteins, and ions), enzyme and
transporter kinetic parameters, electrophysiology and blood
flow dynamics parameters, rate equations for all processes,
mechanisms of reactions, and data on their inhibitors and
activators (with corresponding mechanisms of action, existing
pathway models, and their combinations). In most cases, the
relevant reaction rates are modeled in the literature with
multiple different equations owing to the use of different
formalisms. For example, the same reaction can be described in
a precise mechanistic way considering multiple transition states of
complexes formed by enzymes with substrates, products, or
regulators or using a more simplified form of modular rate law
or Michaelis-Menten kinetics, when assumptions about the
reaction mechanism are met. Due to iterative expansion of the
model, we find it particularly important to keep collected data on
reactions and how they are used in the existing models of
pathways. For example, detailed mechanistic rate equations can
be parameterized well for small models when sufficient
consistently reliable data exist. However, where the data are
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highly uncertain, it is often hard to optimize and not overfit
such models.

Step 2. Modeling of individual reactions

Time-series data were available for some individual enzymes,
mostly from relatively old studies. These could be used to optimize
the parameters of enzymatic rate equations, especially those that
were under-constrained or came from different species or tissues.
This step also allowed us to evaluate the rate of individual reactions,
the significance of inhibitor and activator effects and whether these
should be included in the model, and how problematic each
particular reaction was in terms of the steady state and response
to changing inputs.

Step 3. Combining reactions

Once data collection was complete, reactions were combined in the
model one at a time according to the reconstructed pathway networks.
This process was highly iterative and required multiple repetitions
using different data. We evaluated multiple combinations to identify
those in which minimal optimization was necessary to bring the system
toward a steady state. It was also important to combine those small
subsets of reactions with pseudo-reactions of substrates source flux and
products sink flux to estimate how this unit will perform once it is
connected to a larger system. Iterating on this step, we expanded the
system to model pathways in individual cells. We offer the following
guidance to researchers in this process:

* Existing models of those pathways are very helpful to guide
the initial choice of the most promising combinations of
reaction rates and parameters.

* Equations should have a similar level of detail for all
reactions in a given pathway.

e When refining parameters for reactions connected in a
pathway, it is useful to follow the sequential steps of the
pathway (rather than following a commonly used list of
reactions of the pathway and the metabolites); it helps to
focus on reactions that are known to be key regulators of the
overall pathway flux (bottlenecks), those close to
connection points to other pathways, and those with the
most complicated mechanisms.

*  When setting the parameters in the model, the key factors
for consideration are the concentrations at the steady state
(or pseudo-steady state if a formal steady state cannot be
achieved in a reasonable time), their response to stimuli
(at least qualitatively in which direction and approximately
how fast do they change, if no data are available), and the
reaction and transport fluxes. Several “best performing”
models should be retained for all subsystems/pathways
because their relative performance rankings may change
once they are plugged into a bigger system.

Step 4. Network expansion of metabolic system
Once small units/pathways had been built in at least a few
variations, they were connected into larger systems. When
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optimizing connecting reactions, it is important to start from
different entry points, compare overall fluxes of the pathways, and
consider volumetric scaling aspects. In some cases, temporary use of
pseudo-reactions for source and sink of some metabolites for
optimization significantly improved the performance.

Step 5. Connecting metabolic, electrophysiology, and
vascular models

The large metabolic system was connected (using the same
strategy as in Step 4) to the electrophysiology and blood flow
models. Variations of electrophysiology and blood flow models
exist in the literature and these were optimized separately,
if needed.

Step 6. Connecting neuron and astrocyte models

The models of the neuron and the astrocyte were connected in
the same way as described above. Simulations and sensitivity
analyses were used to select the parameters whose optimization
had the greatest effect and which efficiently improved the model
according to available data. If no consistently reliable data were
available, the objective function was set to a level that minimized
derivatives in the rest state for the system to be at the steady state.

Validation

First, we tested the response of the key metabolites (ATP,
NADH, lactate, and glucose) to the stimuli. All concentration-
related variables were maintained in the range of biologically
plausible values by the callbacks and the “isoutofdomain”
parameter to a solver as described under “Optimization”. Next,
we calculated the BOLD signal (Presentation 1: Supplementary
Figure S1D) and OGI (in the range of 4.5-5 depending on stimulus,
while literature data is in the range of 4-5.5) using equations from
Jolivet et al. to compare them with the literature (21, 24, 59). These
two high-level phenomena are commonly used as benchmarks in
NGV metabolism modeling papers (21, 24, 60). We also
qualitatively compared dynamics of some key metabolites and
reaction and transport fluxes to their expected response to
stimuli. Then we estimated energy use from the components of
the Na/K*'-ATPase rate equation (calculated from the sum of
neuron and astrocyte Na'/K" pump ATP consumption flux in
mM concentration per second with the volume of 17.8 um? and the
literature estimate of ionic gradients sharing 31% of total energy
use) and compared it to the literature estimates (37). We further
validated aging-associated effects against the literature data shown
in Presentation 1: Supplementary Table S1.

Implementing aging effects in the model

Aging is a multifactor phenomenon that affects metabolism at
different levels, such as transcriptome, proteome, metabolome, and
potentially even kinetic properties of enzymes and transporters
owing to accumulated genetic damage, lower protein synthesis
fidelity, and higher chances of protein misfolding. Implementing
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the aging effect in our model in a fully data-driven way would
require data on neuron- and astrocyte-specific proteomics,
metabolomics, and enzyme kinetics. However, for the most part
such data are not yet publicly available.

We modeled the aging effects using the following data:

» expression fold changes of enzymes and transporters from
the Tabula Muris Senis (TMS) dataset (26, 27) applied as
scaling factors to levels of corresponding enzymes
and transporters

* scaled initial concentrations of blood glucose, lactate, and
B-hydroxybutyrate according to the literature data on
difference in their levels in aging (approximation, because
effect size depends on the literature source)

+ total NAD" and NADH concentration pool scaling
(approximation), because it decreases in aging according
to qualitative literature

* synaptic glutamate release pool (approximation, but
synaptic input is set as the same for comparability of
the results)

* scaling of reducing equivalents shuttles between cytosol and
mitochondria: the NADH shuttle is a generalized rate
equation based on the activity of multiple enzymes of
malate-aspartate and glycerol-phosphate shuttles, for
which we followed the literature to model it (24).

For the above factors, which mention “approximative/
approximation”, the direction of change is according to the
literature, but the absolute number of scaling factors (not known/
contradictory in the literature) is set with an objective for the model
to be steady at rest.

We implemented the aging effects on enzyme and transporter
levels in two parallel ways: (i) using cell-type specific
transcriptomics data (26, 27) and (ii) using integrated proteomics
data from our earlier meta-analysis (99). The first approach
featured higher coverage depth for the astrocyte-specific data. To
reduce bias from inferring missing data in the second method, we
relied on RNA data for implementing aging effects into simulation,
while we used the second data source for validation.

RNA fold changes for modeling aging effects

An extensive single-cell transcriptomics mouse dataset (26, 27)
has recently provided insights into the aging patterns of various
cells, including neurons and astrocytes. However, RNA needs to
be translated into proteins. RNA data need to be used with caution
when inferring age-dependent protein concentrations. Nonetheless,
using RNA fold changes to scale enzyme and transporter levels
results in metabolite concentration changes that are consistent with
the literature (Presentation 1: Supplementary Table S1).

We mapped reaction identifiers to gene names using the gene-
reaction-rules from a publicly available metabolism reconstruction,
Recon 3D (100). Then for the cases of multiple genes per reaction
(i.e., enzymes comprising several protein subunits or different
isoforms present at the same time), we calculated age-scaling in
two ways: (i) using the geometric mean of all fold changes and
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(ii) taking fold changes, which results in the lowest levels of RNA in
aging (i.e., using the assumption that each protein subunit or
isoform can be rate-limiting if its concentration is not sufficient
to build a fully functional protein). We applied each of these
methods twice: first for all genes and second only for those with
significant changes (significance defined by the source data paper).
Next, we manually reviewed the mapping of all genes-to-reactions
and kept only those that were enzyme subunits/isoforms and not
regulatory factors. We then refined it by subcellular location.

Protein levels for modeling aging effects

Several studies measured brain protein levels at different ages,
but they provided mostly brain tissue/regions data rather than
single neuron and astrocyte age-specific protein levels. Studies
that did provide neuron- and astrocyte specific-protein levels used
cultured cells or young/adult rodents. For these reasons, even a
combination of proteomics datasets remains sparse in terms of cell-
type and age-specific protein quantification. Even though using
protein levels directly to scale V .« of the enzymes and transporters
would allow consideration of posttranscriptional effects of protein
synthesis and degradation, to reduce potential bias we relied only on
the RNAseq data for age-associated changes in enzyme and
transporter levels.

Other necessary aging factors

Arterial glucose, lactate, B-hydroxybutyrate, and total NAD
(reduced and oxidized) pool are fixed in the model. However, as
multiple studies report that these variables change on aging we scaled
them according to the literature. The resulting model was far from a
steady state, which could be explained by some missing age-associated
changes. We then scaled NADH exchange between the mitochondria
and cytosol, which is also known to be affected by the aging process,
and this resulted in a well-functioning model producing biologically
meaningful observations. For a more realistic setup, we also scaled
synaptic effects of glutamate concentration changes upon release
events, but this had less of an effect and the age-associated changes
in electric features extracted from simulations with only current
injection are consistent with those driven synaptically.

Adaptability calculation and search for potential
anti-aging strategies

As described in the main text, the adaptability calculation was a
modified sensitivity analysis with perturbation of one parameter at a
time by 20% of its initial value and subsequent calculation of the
difference between the resting and stimulated state’s sensitivities,
normalized by the resting state sensitivities (see Equation 1 above).
We then considered enzymes and transporters with the highest
difference in adaptability between young and aged states as the most
fragile and, therefore, as potential anti-aging targets. Furthermore,
to identify enriched TFs for these targets we applied the ChEA3
algorithm (49). As described in the main text, we then performed
constrained optimization for 20 sets of parameters combining those
of adaptability-based and the top-scoring TF-regulated enzymes
and transporters, as well as parameters related to diet, exercise, and
NAD supplementation.
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Topological analysis

We used algebraic topology methods in our topological analysis
of the adaptability networks. The distribution of directed simplices,
introduced by Reimann et al. (47), has been essential for the study of
brain networks and has revealed significant links between the
maximum simplex dimension and the robustness of networks.
The distribution of directed simplices was computed with the
open-source software Flagser-count (https://github.com/
JasonPSmith/flagser-count). Owing to varied connectivity density
(defined as the number of edges over the total number of possible
edges), we divided the logarithm of the number of simplices by
the connectivity density for different sensitivity thresholds.
This normalization allowed us to compare networks of different
connectivity densities and identify which parts of the networks are
more susceptible to changes.

Figure note

The following abbreviations are used in Figure 1 and Figure 7:
AAT, aspartate aminotransferase; AC, adenylyl cyclase; AcAc,
acetoacetate; ACOA, acetyl coenzyme A; AcAcCoA, acetoacetyl
coenzyme A; ACN, aconitase; ADK, adenylate kinase; ADP,
adenosine diphosphate; AGC, aspartate/glutamate carrier; AHP,
after-hyperpolarization; oKG, alpha-ketoglutarate; ALD, aldolase;
ANT, adenine nucleotide translocator; AP, action potential;
Asp, aspartate; ATP, adenosine triphosphate; ATPase,
adenylpyrophosphatase; B2R, adrenergic receptor; BHB, beta-
hydroxybutyrate; BHBDH, beta-hydroxybutyric dehydrogenase;
BPG13, 1,3-biphosphoglycerate; CAAT, cytosolic aspartate
aminotransferase; cAMP, cyclic adenosine monophosphate; Cit,
citrate; CK, creatine kinase; cMDH, cytosolic malate dehydrogenase;
CoA, coenzyme A; Cr, creatine; CS, citrate synthase; DHAP,
dihydroxyacetone phosphate; EAAT, excitatory amino acid
transporters; EN, enolase; E4P, erythrose 4-phosphate; FO/F1, FOF1-
ATPase/ATP synthase; FAD, flavin adenine dinucleotide; FADH?2,
hydroquinone form of FAD; FBP, fructose-1,6-bisphosphate; F6P,
fructose-6-phosphate; F26P, fructose 2,6-bisphosphate; Fum,
fumarate; FUMR, fumarase; GABA, gamma-aminobutyric acid;
GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GAP,
glyceraldehyde 3-phosphate; GDH, glutamate dehydrogenase; GDP,
guanosine diphosphate; GLC, glucose; GLN, glutamine; GLNsyn,
glutamine synthetase; GL6P, 6-phosphogluconolactone; GLTGLN,
glutamate/glutamine; GLU, glutamate; GLUN, glutaminase;
GLUT1, glucose transporter 1; GLUT3, glucose transporter 3; GLY,
glucose; GOG6P, 6-phosphogluconate; G1P, glucose-1-phosphate;
G6P, glucose-6 phosphate; GPa, active glycogen phosphorylase a;
GPb, inactive glycogen phophorylase b; G6PDH, glucose-6-
phosphate dehydrogenase; GPX, glutathione peroxidase; GSa,
glycogen synthase a; GSb, glycogen synthase b; GSH, glutathione;
GSHsyn, GSH synthetase; GSK3, glycogen synthase kinase 3; GSSG,
glutathione disulfide; GSSGR, GSSG reductase; GTP, guanosine-5'-
triphosphate; HH, Hodgkin-Huxley model; HK, hexokinase; IDH,
isocitrate dehydrogenase; IsoCit, isocitrate; KGDH, ketoglutarate
dehydrogenase; LAC, lactate; LDH, lactate dehydrogenase;
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MAKGC, malate/o-ketoglutarate carrier; Mal, malate; MCT1,4,
monocarboxylate transporter 1,4; MCT2, monocarboxylate
transporter 2; MDH, malate dehydrogenase; MPC, mitochondrial
pyruvate carrier; NAD, nicotinamide adenine dinucleotide; NADH,
reduced nicotinamide adenine dinucleotide; NADP, nicotinamide
adenine dinucleotide phosphate; NE, norepinephrine; NOX,
NADPH oxidase; OA, oxaloacetate; PCr, phosphocreatine; PDE,
phosphodiesterase; PDH, pyruvate dehydrogenase; PEP,
phosphoenolpyruvate; PFK, phosphofructokinase; PFKFB3, 6-
phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PG2, 2-
phosphoglycerate; PG3, 3-phosphoglycerate; 6PGDH, 6-
phosphogluconate dehydrogenase; PGI, phosphoglucose isomerase;
PGK, phosphoglycerate kinase; 6PGL, 6-phosphogluconolactone;
PGLM, phosphoglucomutase; PGM, phosphoglycerate mutase;
PHK, phosphorylase kinase; Pi, inorganic phosphate; PK, pyruvate
kinase; PKA, protein kinase A; PP1, protein phosphatase 1; PPI,
protein-protein interaction; PYR, pyruvate; PyrCarb, pyruvate
carboxylase; Pyr-Lac-keto, pyruvate-lactate-ketones; R5P, ribose 5-
phosphate; RPE, ribulose-5-phosphate epimerase; RPI, ribose-5-
phosphate isomerase; Ru5P, ribulose 5-phosphate; SCOT, succinyl-
CoA:3-oxoacid-CoA transferase; SCS, succinyl-CoA synthetase; SDH,
succinate dehydrogenase; SNAT3, sodium-coupled neutral amino
acid transporter 3; S7P, sedoheptulose 7-phosphate; Suc, succinate;
SucCoA, succinyl-coenzyme A; TAL, transaldolase; TKLI,
transketolase 1; TKL2, transketolase 2; TPI, triose phosphate
isomerase; UDPGLC, uridine diphosphate glucose; uGPPase, UDP-
glucose pyrophosphorylase; UTP, uridine triphosphate; X5P,
xylulose-5-phosphate.

Supplementary material

The Supplementary material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fsci.2025.1441297/
full#supplementary-material. See Appendix for additional details.

Acknowledgments

The authors thank Judit Planas Carbonell, Claudia Savoia, and
Jean-Denis Courcol for organizing web portal development and
visualization and Matthias Wolf for software support. We thank
Karin Holm for writing assistance and Ayima Okeeva for the model
notebook evaluation. All of the persons acknowledged above are
affiliated with the Blue Brain Project, Ecole Fédérale Polytechnique
de Lausanne (EPFL), Geneva, Switzerland.

Statements
Author contributions
PS: Conceptualization, Data Curation, Formal Analysis,

Investigation, Methodology, Software, Validation, Visualization,
Writing - original draft, Writing - review & editing. JC:

Frontiers in Science

10.3389/fsci.2025.1441297

Conceptualization, Supervision, Writing — original draft, Writing -
review & editing. LK: Formal Analysis, Investigation, Writing -
original draft, Writing - review & editing. EB: Visualization,
Writing - original draft, Writing - review & editing. CF:
Visualization, Writing — original draft, Writing — review & editing.
SA: Software, Visualization, Writing - original draft, Writing - review
& editing. DK: Conceptualization, Project Administration,
Supervision, Writing — original draft, Writing - review & editing.
HM: Conceptualization, Funding acquisition, Resources, Supervision,
Writing - original draft, Writing — review & editing.

Data availability statement

Data collected from various sources are listed in Presentation 1:
Supplementary Table S2 and referenced therein. A dataset that is
not included in the Supplementary material is the dataset from the
Tabula Muris Consortium with the figshare data referenced
therein (101).

The model described in the present article is available via
Github (https://github.com/BlueBrain/metabolism-in-aging) and
Google Colab (https://colab.research.google.com/drive/
12EZSRjzq5elaezpT41kv0e7LBMWEDZ_Y?usp=sharing). It is
also available for use at the Open Brain Platform hosted by the
Open Brain Institute (https://www.openbraininstitute.org), under
the following DOI: 10.25453/fsci.28653347.

Funding

The author(s) declare financial support was received for the
research presented in this article. This study was supported
by funding to the Blue Brain Project, a research center of the
Ecole Polytechnique Fédérale de Lausanne, from the Swiss
government’s Eidgendssische Technische Hochschule (ETH)
Board of the Swiss Federal Institutes of Technology. The
funder was not involved in the study design, collection, analysis,
interpretation of data, the writing of this article, or the decision to
submit it for publication.

Conflict of interest

HM is a co-founder and board member of Frontiers Media SA.

HM declared that he was an editorial board member of
Frontiers, at the time of submission. This had no impact on the
peer review process and the final decision.

PS is employed as a proteomics application data scientist at
Biognosys AG.

The remaining authors declare that the research was conducted
in the absence of any commercial or financial relationships that
could be construed as a potential conflict of interest.

This study received funding from the Swiss government’s ETH
Board of the Swiss Federal Institutes of Technology. Neither the
funder nor the companies listed above were involved in the study

frontiersin.org


https://www.frontiersin.org/articles/10.3389/fsci.2025.1441297/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fsci.2025.1441297/full#supplementary-material
https://github.com/BlueBrain/metabolism-in-aging
https://colab.research.google.com/drive/12EZSRjzq5eIaezpT41kv0e7LBMWFDZ_Y?usp=sharing
https://colab.research.google.com/drive/12EZSRjzq5eIaezpT41kv0e7LBMWFDZ_Y?usp=sharing
https://www.openbraininstitute.org
https://doi.org/10.25453/fsci.28653347
https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org

Shichkova et al.

design, collection, analysis, interpretation of data, the writing of this
article, or the decision to submit it for publication.

Generative Al statement

The authors declared that no generative Al was used in the
creation of this manuscript.

References

1. Livingston G, Sommerlad A, Orgeta V, Costafreda SG, Huntley J, Ames D, et al.
Dementia prevention, intervention, and care. Lancet (2017) 390(10113):2673-734.
doi: 10.1016/S0140-6736(17)31363-6

2. Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol (2012) 22(17):
R741-52. doi: 10.1016/j.cub.2012.07.024

3. Hou Y, Dan X, Babbar M, Wei Y, Hasselbalch SG, Croteau DL, et al. Ageing as a
risk factor for neurodegenerative disease. Nat Rev Neurol (2019) 15(10):565-81.
doi: 10.1038/s41582-019-0244-7

4. GBD 2019 Dementia Forecasting Collaborators. Estimation of the global
prevalence of dementia in 2019 and forecasted prevalence in 2050: an analysis for
the Global Burden of Disease Study 2019. Lancet Public Health (2022) 7((2):€105-25.
doi: 10.1016/S2468-2667(21)00249-8

5. Kivipelto M, Mangialasche F, Ngandu T. Lifestyle interventions to prevent
cognitive impairment, dementia and Alzheimer disease. Nat Rev Neurol (2018)
14(11):653-66. doi: 10.1038/s41582-018-0070-3

6. Kivipelto M, Mangialasche F, Snyder HM, Allegri R, Andrieu S, Arai H, et al.
World-Wide FINGERS Network: a global approach to risk reduction and prevention of
dementia. Alzheimers Dement (2020) 16(7):1078-94. doi: 10.1002/alz.12123

7. Coley N, Giulioli C, Aisen PS, Vellas B, Andrieu S. Randomised controlled trials
for the prevention of cognitive decline or dementia: a systematic review. Ageing Res Rev
(2022) 82:101777. doi: 10.1016/j.arr.2022.101777

8. Wilson DM 3rd, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM,
Dewachter I. Hallmarks of neurodegenerative diseases. Cell (2023) 186(4):693-714.
doi: 10.1016/j.cell.2022.12.032

9. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of
aging. Cell (2013) 153(6):1194-217. doi: 10.1016/j.cell.2013.05.039

10. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging:
an expanding universe. Cell (2023) 186(2):243-78. doi: 10.1016/j.cell.2022.11.001

11. Mattson MP, Arumugam TV. Hallmarks of brain aging: adaptive and
pathological modification by metabolic states. Cell Metab (2018) 27(6):1176-99.
doi: 10.1016/j.cmet.2018.05.011

12. Bonvento G, Bolafios JP. Astrocyte-neuron metabolic cooperation shapes brain
activity. Cell Metab (2021) 33(8):1546-64. doi: 10.1016/j.cmet.2021.07.006

13. Andreyev AY, Yang H, Doulias PT, Dolatabadi N, Zhang X, Luevanos M, et al.
Metabolic bypass rescues aberrant S-nitrosylation-Induced TCA cycle inhibition and
synapse loss in Alzheimer’s disease human neurons. Adv Sci (Weinh) (2024) 11(12):
€2306469. doi: 10.1002/advs.202306469

14. Kety SS. The general metabolism of the brain in vivo. In: Richter D, editor.
Metabolism of the nervous system. Pergamon: Elsevier (1957). 221-37. doi: 10.1016/
B978-0-08-009062-7.50026-6

15. Mink JW, Blumenschine R], Adams DB. Ratio of central nervous system to body
metabolism in vertebrates: its constancy and functional basis. Am ] Physiol (1981)
241(3):R203-12. doi: 10.1152/ajpregu.1981.241.3.R203

16. Sokoloff L. Cerebral metabolism and visualization of cerebral activity. In: Greger
R, Windhorst U, editors. Comprehensive human physiology. Berlin, Heidelberg:
Springer (1996). 579-602. doi: 10.1007/978-3-642-60946-6_30

17. Rolfe DF, Brown GC. Cellular energy utilization and molecular origin of
standard metabolic rate in mammals. Physiol Rev (1997) 77(3):731-58. doi: 10.1152/
physrev.1997.77.3.731

18. Mann K, Deny S, Ganguli S, Clandinin TR. Coupling of activity, metabolism and
behaviour across the Drosophila brain. Nature (2021) 593(7858):244-8. doi: 10.1038/
541586-021-03497-0

19. Aubert A, Costalat R, Valabregue R. Modelling of the coupling between brain
electrical activity and metabolism. Acta Biotheor (2001) 49(4):301-26. doi: 10.1023/
a:1014286728421

20. Cloutier M, Bolger FB, Lowry JP, Wellstead P. An integrative dynamic model of
brain energy metabolism using in vivo neurochemical measurements. | Comput
Neurosci (2009) 27(3):391-414. doi: 10.1007/s10827-009-0152-8

Frontiers in Science

10.3389/fsci.2025.1441297

Publisher’s note

All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or
claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

21. Winter F, Bludszuweit-Philipp C, Wolkenhauer O. Mathematical analysis of the
influence of brain metabolism on the BOLD signal in Alzheimer’s disease. ] Cereb Blood
Flow Metab (2018) 38(2):304-16. doi: 10.1177/0271678X17693024

22. Berndt N, Kann O, Holzhiitter H-G. Physiology-based kinetic modeling of
neuronal energy metabolism unravels the molecular basis of NAD(P)H fluorescence
transients. J Cereb Blood Flow Metab (2015) 35(9):1494-506. doi: 10.1038/jcbfm.2015.70

23. Theurey P, Connolly NMC, Fortunati I, Basso E, Lauwen S, Ferrante C, et al.
Systems biology identifies preserved integrity but impaired metabolism of
mitochondria due to a glycolytic defect in Alzheimer’s disease neurons. Aging Cell
(2019) 18(3):e12924. doi: 10.1111/acel.12924

24. Jolivet R, Coggan JS, Allaman I, Magistretti P]. Multi-timescale modeling of
activity-dependent metabolic coupling in the neuron-glia-vasculature ensemble. PloS
Comput Biol (2015) 11(2):e1004036. doi: 10.1371/journal.pcbi.1004036

25. Palla AR, Ravichandran M, Wang YX, Alexandrova L, Yang AV, Kraft P, et al.
Inhibition of prostaglandin-degrading enzyme 15-PGDH rejuvenates aged muscle
mass and strength. Science (2021) 371(6528):eabc8059. doi: 10.1126/science.abc8059

26. Schaum N, Lehallier B, Hahn O, Palovics R, Hosseinzadeh S, Lee SE, et al.
Ageing hallmarks exhibit organ-specific temporal signatures. Nature (2020)
583(7817):596-602. doi: 10.1038/s41586-020-2499-y

27. Zhang M]J, Pisco AO, Darmanis S, Zou J. Mouse aging cell atlas analysis reveals
global and cell type-specific aging signatures. eLife (2021) 10:¢62293. doi: 10.7554/
eLife.62293

28. Dong Y, Brewer GJ. Global metabolic shifts in age and Alzheimer’s disease
mouse brains pivot at NAD*/NADH redox sites. ] Alzheimers Dis (2019) 71(1):119-40.
doi: 10.3233/JAD-190408

29. Cox MF, Hascup ER, Bartke A, Hascup KN. Friend or foe? Defining the role of
glutamate in aging and Alzheimer’s disease. Front Aging (2022) 3:929474. doi: 10.3389/
fragi.2022.929474

30. Pellerin L, Magistretti PJ. Glutamate uptake into astrocytes stimulates aerobic
glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc Natl
Acad Sci USA (1994) 91(22):10625-9. doi: 10.1073/pnas.91.22.10625

31. Magistretti PJ, Pellerin L. Cellular bases of brain energy metabolism and their
relevance to functional brain imaging: evidence for a prominent role of astrocytes.
Cereb Cortex (1996) 6(1):50-61. doi: 10.1093/cercor/6.1.50

32. Pellerin L, Pellegri G, Bittar PG, Charnay Y, Bouras C, Martin JL, et al. Evidence
supporting the existence of an activity-dependent astrocyte-neuron lactate shuttle. Dev
Neurosci (1998) 20(4-5):291-9. doi: 10.1159/000017324

33. Mason S. Lactate shuttles in neuroenergetics-homeostasis, allostasis and beyond.
Front Neurosci (2017) 11:43. doi: 10.3389/fnins.2017.00043

34. Acevedo A, Torres F, Kiwi M, Baeza-Lehnert F, Barros LF, Lee-Liu D, et al.
Metabolic switch in the aging astrocyte supported via integrative approach comprising
network and transcriptome analyses. Aging (2023) 15(19):9896-912. doi: 10.18632/
aging.204663

35. Baeza-Lehnert F, Saab AS, Gutiérrez R, Larenas V, Diaz E, Horn M, et al. Non-
canonical control of neuronal energy status by the Na* pump. Cell Metab (2019)
29(3):668-680.e4. doi: 10.1016/j.cmet.2018.11.005

36. Atkinson DE. The energy charge of the adenylate pool as a regulatory parameter.
Interaction with feedback modifiers. Biochemistry (1968) 7(11):4030-4. doi: 10.1021/
bi00851a033

37. Howarth C, Gleeson P, Attwell D. Updated energy budgets for neural
computation in the neocortex and cerebellum. J Cereb Blood Flow Metab (2012)
32(7):1222-32. doi: 10.1038/jcbfm.2012.35

38. Yi G, Grill WM. Average firing rate rather than temporal pattern determines
metabolic cost of activity in thalamocortical relay neurons. Sci Rep (2019) 9(1):6940.
doi: 10.1038/541598-019-43460-8

39. Zhu F, Wang R, Pan X, Zhu Z. Energy expenditure computation of a single
bursting neuron. Cognit Neurodyn (2019) 13(1):75-87. doi: 10.1007/s11571-018-
9503-3

frontiersin.org


https://doi.org/10.1016/S0140-6736(17)31363-6
https://doi.org/10.1016/j.cub.2012.07.024
https://doi.org/10.1038/s41582-019-0244-7
https://doi.org/10.1016/S2468-2667(21)00249-8
https://doi.org/10.1038/s41582-018-0070-3
https://doi.org/10.1002/alz.12123
https://doi.org/10.1016/j.arr.2022.101777
https://doi.org/10.1016/j.cell.2022.12.032
https://doi.org/10.1016/j.cell.2013.05.039
https://doi.org/10.1016/j.cell.2022.11.001
https://doi.org/10.1016/j.cmet.2018.05.011
https://doi.org/10.1016/j.cmet.2021.07.006
https://doi.org/10.1002/advs.202306469
https://doi.org/10.1016/B978-0-08-009062-7.50026-6
https://doi.org/10.1016/B978-0-08-009062-7.50026-6
https://doi.org/10.1152/ajpregu.1981.241.3.R203
https://doi.org/10.1007/978-3-642-60946-6_30
https://doi.org/10.1152/physrev.1997.77.3.731
https://doi.org/10.1152/physrev.1997.77.3.731
https://doi.org/10.1038/s41586-021-03497-0
https://doi.org/10.1038/s41586-021-03497-0
https://doi.org/10.1023/a:1014286728421
https://doi.org/10.1023/a:1014286728421
https://doi.org/10.1007/s10827-009-0152-8
https://doi.org/10.1177/0271678X17693024
https://doi.org/10.1038/jcbfm.2015.70
https://doi.org/10.1111/acel.12924
https://doi.org/10.1371/journal.pcbi.1004036
https://doi.org/10.1126/science.abc8059
https://doi.org/10.1038/s41586-020-2499-y
https://doi.org/10.7554/eLife.62293
https://doi.org/10.7554/eLife.62293
https://doi.org/10.3233/JAD-190408
https://doi.org/10.3389/fragi.2022.929474
https://doi.org/10.3389/fragi.2022.929474
https://doi.org/10.1073/pnas.91.22.10625
https://doi.org/10.1093/cercor/6.1.50
https://doi.org/10.1159/000017324
https://doi.org/10.3389/fnins.2017.00043
https://doi.org/10.18632/aging.204663
https://doi.org/10.18632/aging.204663
https://doi.org/10.1016/j.cmet.2018.11.005
https://doi.org/10.1021/bi00851a033
https://doi.org/10.1021/bi00851a033
https://doi.org/10.1038/jcbfm.2012.35
https://doi.org/10.1038/s41598-019-43460-8
https://doi.org/10.1007/s11571-018-9503-3
https://doi.org/10.1007/s11571-018-9503-3
https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org

Shichkova et al.

40. Niven JE. Neuronal energy consumption: biophysics, efficiency and evolution.
Curr Opin Neurobiol (2016) 41:129-35. doi: 10.1016/j.conb.2016.09.004

41. Meyer DJ, Diaz-Garcia CM, Nathwani N, Rahman M, Yellen G. The Na'/K*
pump dominates control of glycolysis in hippocampal dentate granule cells. eLife
(2022) 11:e81645. doi: 10.7554/eLife.81645

42. Barros LF. How expensive is the astrocyte? J Cereb Blood Flow Metab (2022)
42(5):738-45. doi: 10.1177/0271678X221077343

43. Bélanger M, Allaman I, Magistretti PJ. Brain energy metabolism: focus on
astrocyte-neuron metabolic cooperation. Cell Metab (2011) 14(6):724-38. doi: 10.1016/
j.cmet.2011.08.016

44. Brilkova M, Nigri M, Kumar HS, Moore ], Mantovani M, Keller C, et al. Error-
prone protein synthesis recapitulates early symptoms of Alzheimer disease in aging
mice. Cell Rep (2022) 40(13):111433. doi: 10.1016/j.celrep.2022.111433

45. Weber B, Barros LF. The astrocyte: powerhouse and recycling center. Cold Spring
Harb Perspect Biol (2015) 7(12):a020396. doi: 10.1101/cshperspect.a020396

46. Hagberg AA, Schult DA, Swart PJ. Exploring network structure, dynamics, and
function using NetworkX [paper 2]. In: Varoquaux G, Vaught T, Millman J, editors.
Proceedings of the 7th Python in Science Conference. Pasadena, CA: SciPy (2008). 11-
5. doi: 10.25080/TCWV9851

47. Reimann MW, Nolte M, Scolamiero M, Turner K, Perin R, Chindemi G, et al.
Cliques of neurons bound into cavities provide a missing link between structure and
function. Front Comput Neurosci (2017) 11:48. doi: 10.3389/fncom.2017.00048

48. Sizemore AE, Giusti C, Kahn A, Vettel JM, Betzel RF, Bassett DS. Cliques and
cavities in the human connectome. J Comput Neurosci (2018) 44(1):115-45.
doi: 10.1007/s10827-017-0672-6

49. Keenan AB, Torre D, Lachmann A, Leong AK, Wojciechowicz ML, Utti V, et al.
ChEA3: transcription factor enrichment analysis by orthogonal omics integration.
Nucleic Acids Res (2019) 47(W1):W212-24. doi: 10.1093/nar/gkz446

50. Tripathi M, Yen PM, Singh BK. Estrogen-related receptor alpha: an under-
appreciated potential target for the treatment of metabolic diseases. Int ] Mol Sci (2020)
21(5):1645. doi: 10.3390/ijms21051645

51. Cant6 C, Gerhart-Hines Z, Feige JN, Lagouge M, Noriega L, Milne JC, et al.
AMPK regulates energy expenditure by modulating NAD" metabolism and SIRT1
activity. Nature (2009) 458(7241):1056-60. doi: 10.1038/nature07813

52. Yuk J-M, Kim TS, Kim SY, Lee H-M, Han ], Dufour CR, et al. Orphan nuclear
receptor ERRat controls macrophage metabolic signaling and A20 expression to
negatively regulate TLR-induced inflammation. Immunity (2015) 43(1):80-91.
doi: 10.1016/j.immuni.2015.07.003

53. Kim SY, Yang C-S, Lee H-M, Kim JK, Kim Y-S, Kim Y-R, et al. ESRRA
(estrogen-related receptor o) is a key coordinator of transcriptional and post-
translational activation of autophagy to promote innate host defense. Autophagy
(2018) 14(1):152-68. doi: 10.1080/15548627.2017.1339001

54. Suresh SN, Chavalmane AK, Pillai M, Ammanathan V, Vidyadhara DJ,
Yarreiphang H, et al. Modulation of autophagy by a small molecule inverse agonist
of ERRa. is neuroprotective. Front Mol Neurosci (2018) 11:109. doi: 10.3389/
fnmol.2018.00109

55. Amorim JA, Coppotelli G, Rolo AP, Palmeira CM, Ross JM, Sinclair DA.
Mitochondrial and metabolic dysfunction in ageing and age-related diseases. Nat Rev
Endocrinol (2022) 18(4):243-58. doi: 10.1038/s41574-021-00626-7

56. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, et al.
STRING v11: protein-protein association networks with increased coverage,
supporting functional discovery in genome-wide experimental datasets. Nucleic Acids
Res (2019) 47(D1):D607-13. doi: 10.1093/nar/gky1131

57. Campisi J, Kapahi P, Lithgow GJ, Melov S, Newman JC, Verdin E. From
discoveries in ageing research to therapeutics for healthy ageing. Nature (2019)
571(7764):183-92. doi: 10.1038/s41586-019-1365-2

58. Rajman L, Chwalek K, Sinclair DA. Therapeutic potential of NAD-boosting
molecules: the in vivo evidence. Cell Metab (2018) 27(3):529-47. doi: 10.1016/
j.cmet.2018.02.011

59. Jung WB, Im GH, Jiang H, Kim S-G. Early fMRI responses to somatosensory and
optogenetic stimulation reflect neural information flow. Proc Natl Acad Sci USA (2021)
118(11):€2023265118. doi: 10.1073/pnas.2023265118

60. Calvetti D, Capo Rangel G, Gerardo Giorda L, Somersalo E. A computational
model integrating brain electrophysiology and metabolism highlights the key role of
extracellular potassium and oxygen. J Theor Biol (2018) 446:238-58. doi: 10.1016/
1jtbi.2018.02.029

61. Edfors F, Danielsson F, Hallstrom BM, Kill L, Lundberg E, Pontén F, et al. Gene-

specific correlation of RNA and protein levels in human cells and tissues. Mol Syst Biol
(2016) 12(10):883. doi: 10.15252/msb.20167144

62. Liu Y, Beyer A, Aebersold R. On the dependency of cellular protein levels on
mRNA abundance. Cell (2016) 165(3):535-50. doi: 10.1016/j.cell.2016.03.014

63. Power JM, Wu WW, Sametsky E, Oh MM, Disterhoft JF. Age-related
enhancement of the slow outward calcium-activated potassium current in
hippocampal CA1l pyramidal neurons in vitro. J Neurosci (2002) 22(16):7234-43.
doi: 10.1523/]NEUROSCI.22-16-07234.2002

64. Disterhoft JF, Oh MM. Alterations in intrinsic neuronal excitability during
normal aging. Aging Cell (2007) 6(3):327-36. doi: 10.1111/j.1474-9726.2007.00297.x

Frontiers in Science

10.3389/fsci.2025.1441297

65. Kumar A, Foster TC. Neurophysiology of old neurons and synapses. In:
Riddle DR, editor. Brain aging: models, methods, and mechanisms. Boca Raton, FL:
CRC Press (2007). 229-50. doi: 10.1201/9781420005523.ch10

66. Smithers HE, Terry JR, Brown JT, Randall AD. Aging-associated changes
to intrinsic neuronal excitability in the bed nucleus of the stria terminalis is cell
type-dependent. Front Aging Neurosci (2017) 9:424. doi: 10.3389/fnagi.
2017.00424

67. Vitale P, Salgueiro-Pereira AR, Lupascu CA, Willem M, Migliore R, Migliore M,
et al. Analysis of age-dependent alterations in excitability properties of CA1 pyramidal
neurons in an APPPS1 model of Alzheimer’s disease. Front Aging Neurosci (2021)
13:668948. doi: 10.3389/fnagi.2021.668948

68. Horowitz AM, Fan X, Bieri G, Smith LK, Sanchez-Diaz CI, Schroer AB, et al.
Blood factors transfer beneficial effects of exercise on neurogenesis and cognition to the
aged brain. Science (2020) 369(6500):167-73. doi: 10.1126/science.aaw2622

69. Stillman CM, Esteban-Cornejo I, Brown B, Bender CM, Erickson KI. Effects of
exercise on brain and cognition across age groups and health states. Trends Neurosci
(2020) 43(7):533-43. doi: 10.1016/j.tins.2020.04.010

70. Xue X, Liu B, Hu J, Bian X, Lou S. The potential mechanisms of lactate in
mediating exercise-enhanced cognitive function: a dual role as an energy supply
substrate and a signaling molecule. Nutr Metab (Lond) (2022) 19(1):52. doi: 10.1186/
$12986-022-00687-z

71. Meidenbauer JJ, Ta N, Seyfried TN. Influence of a ketogenic diet, fish-oil, and
calorie restriction on plasma metabolites and lipids in C57BL/6] mice. Nutr Metab
(Lond) (2014) 11:23. doi: 10.1186/1743-7075-11-23

72. Singh A, D’Amico D, Andreux PA, Fouassier AM, Blanco-Bose W, Evans M,
et al. Urolithin A improves muscle strength, exercise performance, and biomarkers of
mitochondrial health in a randomized trial in middle-aged adults. Cell Rep Med (2022)
3(5):100633. doi: 10.1016/j.xcrm.2022.100633

73. Kulkarni AS, Gubbi S, Barzilai N. Benefits of metformin in attenuating the
hallmarks of aging. Cell Metab (2020) 32(1):15-30. doi: 10.1016/j.cmet.2020.04.001

74. Yoshino J, Baur JA, Imai S-1. NAD" intermediates: the biology and therapeutic
potential of NMN and NR. Cell Metab (2018) 27(3):513-28. doi: 10.1016/
j.cmet.2017.11.002

75. Chang A, Jeske L, Ulbrich S, Hofmann J, Koblitz J, Schomburg I, et al. BRENDA,
the ELIXIR core data resource in 2021: new developments and updates. Nucleic Acids
Res (2021) 49(D1):D498-508. doi: 10.1093/nar/gkaal025

76. Wittig U, Rey M, Weidemann A, Kania R, Miiller W. SABIO-RK: an updated
resource for manually curated biochemical reaction kinetics. Nucleic Acids Res (2018)
46(D1):D656-60. doi: 10.1093/nar/gkx1065

77. Neves SR. Obtaining and estimating kinetic parameters from the literature. Sci
Signal (2011) 4(191):tr8. doi: 10.1126/scisignal.2001988

78. Dienel GA. Brain lactate metabolism: the discoveries and the controversies.
J Cereb Blood Flow Metab (2012) 32(7):1107-38. doi: 10.1038/jcbfm.2011.175

79. Mongeon R, Venkatachalam V, Yellen G. Cytosolic NADH-NAD" redox
visualized in brain slices by two-photon fluorescence lifetime biosensor imaging.
Antioxid Redox Signal (2016) 25(10):553-63. doi: 10.1089/ars.2015.6593

80. Erecinska M, Silver IA. ATP and brain function. J Cereb Blood Flow Metab
(1989) 9(1):2-19. doi: 10.1038/jcbfm.1989.2

81. Kohler S, Schmidt H, Fiille P, Hirrlinger J, Winkler U. A dual nanosensor
approach to determine the cytosolic concentration of ATP in astrocytes. Front Cell
Neurosci (2020) 14:565921. doi: 10.3389/fncel.2020.565921

82. Tantama M, Martinez-Frangois JR, Mongeon R, Yellen G. Imaging energy status
in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP ratio. Nat
Commun (2013) 4:2550. doi: 10.1038/ncomms3550

83. Michler P, Wyss MT, Elsayed M, Stobart J, Gutierrez R, von Faber-Castell A,
et al. In vivo evidence for a lactate gradient from astrocytes to neurons. Cell Metab
(2016) 23(1):94-102. doi: 10.1016/j.cmet.2015.10.010

84. Benton D, Parker PY, Donohoe RT. The supply of glucose to the brain and
cognitive functioning. J Biosoc Sci (1996) 28(4):463-79. doi: 10.1017/
$0021932000022537

85. Barros LF, San Martin A, Ruminot [, Sandoval PY, Fernandez-Moncada I, Baeza-
Lehnert F, et al. Near-critical GLUT1 and neurodegeneration. ] Neurosci Res (2017) 95
(11):2267-74. doi: 10.1002/jnr.23998

86. Barros LF, Bittner CX, Loaiza A, Porras OH. A quantitative overview of glucose
dynamics in the gliovascular unit. Glia (2007) 55(12):1222-37. doi: 10.1002/glia.20375

87. Jolivet R, Allaman I, Pellerin L, Magistretti PJ, Weber B. Comment on recent
modeling studies of astrocyte-neuron metabolic interactions. J Cereb Blood Flow Metab
(2010) 30(12):1982-6. doi: 10.1038/jcbfm.2010.132

88. Chuquet J, Quilichini P, Nimchinsky EA, Buzsaki G. Predominant enhancement
of glucose uptake in astrocytes versus neurons during activation of the somatosensory
cortex. ] Neurosci (2010) 30(45):15298-303. doi: 10.1523/JNEUROSCI.0762-10.2010

89. Bezanson J, Edelman A, Karpinski S, Shah VB. Julia: A fresh approach to
numerical computing. SIAM Rev (2017) 59(1):65-98. doi: 10.1137/141000671

90. Rackauckas C, Nie Q. DifferentialEquations.jl - A performant and feature-rich
ecosystem for solving differential equations in Julia. ] Open Res Softw (2017) 5(1):15.
doi: 10.5334/jors.151

frontiersin.org


https://doi.org/10.1016/j.conb.2016.09.004
https://doi.org/10.7554/eLife.81645
https://doi.org/10.1177/0271678X221077343
https://doi.org/10.1016/j.cmet.2011.08.016
https://doi.org/10.1016/j.cmet.2011.08.016
https://doi.org/10.1016/j.celrep.2022.111433
https://doi.org/10.1101/cshperspect.a020396
https://doi.org/10.25080/TCWV9851
https://doi.org/10.3389/fncom.2017.00048
https://doi.org/10.1007/s10827-017-0672-6
https://doi.org/10.1093/nar/gkz446
https://doi.org/10.3390/ijms21051645
https://doi.org/10.1038/nature07813
https://doi.org/10.1016/j.immuni.2015.07.003
https://doi.org/10.1080/15548627.2017.1339001
https://doi.org/10.3389/fnmol.2018.00109
https://doi.org/10.3389/fnmol.2018.00109
https://doi.org/10.1038/s41574-021-00626-7
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1038/s41586-019-1365-2
https://doi.org/10.1016/j.cmet.2018.02.011
https://doi.org/10.1016/j.cmet.2018.02.011
https://doi.org/10.1073/pnas.2023265118
https://doi.org/10.1016/j.jtbi.2018.02.029
https://doi.org/10.1016/j.jtbi.2018.02.029
https://doi.org/10.15252/msb.20167144
https://doi.org/10.1016/j.cell.2016.03.014
https://doi.org/10.1523/JNEUROSCI.22-16-07234.2002
https://doi.org/10.1111/j.1474-9726.2007.00297.x
https://doi.org/10.1201/9781420005523.ch10
https://doi.org/10.3389/fnagi.2017.00424
https://doi.org/10.3389/fnagi.2017.00424
https://doi.org/10.3389/fnagi.2021.668948
https://doi.org/10.1126/science.aaw2622
https://doi.org/10.1016/j.tins.2020.04.010
https://doi.org/10.1186/s12986-022-00687-z
https://doi.org/10.1186/s12986-022-00687-z
https://doi.org/10.1186/1743-7075-11-23
https://doi.org/10.1016/j.xcrm.2022.100633
https://doi.org/10.1016/j.cmet.2020.04.001
https://doi.org/10.1016/j.cmet.2017.11.002
https://doi.org/10.1016/j.cmet.2017.11.002
https://doi.org/10.1093/nar/gkaa1025
https://doi.org/10.1093/nar/gkx1065
https://doi.org/10.1126/scisignal.2001988
https://doi.org/10.1038/jcbfm.2011.175
https://doi.org/10.1089/ars.2015.6593
https://doi.org/10.1038/jcbfm.1989.2
https://doi.org/10.3389/fncel.2020.565921
https://doi.org/10.1038/ncomms3550
https://doi.org/10.1016/j.cmet.2015.10.010
https://doi.org/10.1017/S0021932000022537
https://doi.org/10.1017/S0021932000022537
https://doi.org/10.1002/jnr.23998
https://doi.org/10.1002/glia.20375
https://doi.org/10.1038/jcbfm.2010.132
https://doi.org/10.1523/JNEUROSCI.0762-10.2010
https://doi.org/10.1137/141000671
https://doi.org/10.5334/jors.151
https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org

Shichkova et al.

91. Pospischil M, Toledo-Rodriguez M, Monier C, Piwkowska Z, Bal T, Fregnac Y, et al.
Minimal Hodgkin-Huxley type models for different classes of cortical and thalamic neurons.
Biol Cybern (2008) 99(4-5):427-41. doi: 10.1007/s00422-008-0263-8

92. Q@yehaug L, Ostby I, Lloyd CM, Ombholt SW, Einevoll GT. Dependence of
spontaneous neuronal firing and depolarisation block on astroglial membrane transport
mechanisms. ] Comput Neurosci (2012) 32(1):147-65. doi: 10.1007/s10827-011-0345-9

93. Krishnan GP, Filatov G, Shilnikov A, Bazhenov M. Electrogenic properties of the
Na'/K* ATPase control transitions between normal and pathological brain states.
J Neurophysiol (2015) 113(9):3356-74. doi: 10.1152/jn.00460.2014

94. Witthoft A, Filosa JA, Karniadakis GE. Potassium buffering in the neurovascular
unit: models and sensitivity analysis. Biophys J (2013) 105(9):2046-54. doi: 10.1016/
j.bpj.2013.09.012

95. Dyson F. A meeting with Enrico Fermi. Nature (2004) 427(6972):297.
doi: 10.1038/427297a

96. Kiyatkin EA, Lenoir M. Rapid fluctuations in extracellular brain glucose levels
induced by natural arousing stimuli and intravenous cocaine: fueling the brain
during neural activation. J Neurophysiol (2012) 108(6):1669-84. doi: 10.1152/
jn.00521.2012

Frontiers in Science

25

10.3389/fsci.2025.1441297

97. Fillenz M, Lowry JP. Studies of the source of glucose in the extracellular
compartment of the rat brain. Dev Neurosci (1998) 20(4-5):365-8. doi: 10.1159/
000017332

98. Simpson IA, Carruthers A, Vannucci SJ. Supply and demand in cerebral energy
metabolism: the role of nutrient transporters. J Cereb Blood Flow Metab (2007)
27(11):1766-91. doi: 10.1038/sj.jcbfm.9600521

99. Shichkova P, Coggan JS, Markram H, Keller D. A standardized brain molecular
atlas: a resource for systems modeling and simulation. Front Mol Neurosci (2021)
14:604559. doi: 10.3389/fnmol.2021.604559

100. Brunk E, Sahoo S, Zielinski DC, Altunkaya A, Drager A, Mih N, et al. Recon3D
enables a three-dimensional view of gene variation in human metabolism. Nat
Biotechnol (2018) 36(3):272-81. doi: 10.1038/nbt.4072

101. Tabula Muris Consortium. A single-cell transcriptomic atlas characterizes
ageing tissues in the mouse. Nature (2020) 583(7817):590-5. doi: 10.1038/s41586-
020-2496-1

102. King ZA, Lu J, Drager A, Miller P, Federowicz S, Lerman JA, et al. BiGG
Models: a platform for integrating, standardizing and sharing genome-scale models.
Nucleic Acids Res (2016) 44(D1):D515-22. doi: 10.1093/nar/gkv1049

frontiersin.org


https://doi.org/10.1007/s00422-008-0263-8
https://doi.org/10.1007/s10827-011-0345-9
https://doi.org/10.1152/jn.00460.2014
https://doi.org/10.1016/j.bpj.2013.09.012
https://doi.org/10.1016/j.bpj.2013.09.012
https://doi.org/10.1038/427297a
https://doi.org/10.1152/jn.00521.2012
https://doi.org/10.1152/jn.00521.2012
https://doi.org/10.1159/000017332
https://doi.org/10.1159/000017332
https://doi.org/10.1038/sj.jcbfm.9600521
https://doi.org/10.3389/fnmol.2021.604559
https://doi.org/10.1038/nbt.4072
https://doi.org/10.1038/s41586-020-2496-1
https://doi.org/10.1038/s41586-020-2496-1
https://doi.org/10.1093/nar/gkv1049
https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org

Shichkova et al. 10.3389/fsci.2025.1441297

Appendix
See Supplementary Material (Presentation 1) for more » Supplementary Figure 13. Lactate shuttle in conditions with

information, as well as the following supplementary tables and figures: different blood glucose levels.

Supplementary Table 1. Observed aging effects and their
comparison to the literature.

Supplementary Table 2. Data sources with references per
model component.

Supplementary Table 3. Anti-aging optimization results.
Supplementary Figure 1. Validation, predicted energy budget.
Supplementary Figure 2. ATP production, glucose and
lactate transport fluxes.

Supplementary Figure 3. Differences between young and
old in rest state concentrations (top) and in sum of relative
deviations of concentration from rest (normalized by rest
state) upon synaptic activation (bottom), both ranked by
rest state differences (top), only top ranked are shown.
Supplementary Figure 4. Comparison of amplitudes of
metabolic response to synaptic activation in young and
old ages (filtered by absolute values of deviations and
difference in deviations of higher than 1%).
Supplementary Figure 5. Train of APs evoked by 1 nA
current injection simulations.

Supplementary Figure 6. Aging-associated differences in range
of response to the current injections of different amplitudes.
Supplementary Figure 7. Dependence of metabolism and
electrophysiology responses on the current injection
amplitude in young and old ages.

Supplementary Figure 8. UMAP of relative differences in
concentration traces in old compared to young.
Supplementary Figure 9. Kendall correlation of metabolite
concentrations time series data in aging.

Supplementary Figure 10. Cytosolic NADH fluxes.
Supplementary Figure 11. Cytosolic NADPH fluxes.
Supplementary Figure 12. Mitochondrial NADH fluxes.
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Supplementary Figure 14. Comparison of synaptic activation
and current injection evoked metabolic responses.
Supplementary Figure 15. Sensitivities curve fit.
Supplementary Figure 16. Metabolic adaptability difference.
Supplementary Figure 17. Bottom-up iterative model
building workflow and the key considerations.
Supplementary Figure 18. Labels of individual metabolites
for Figure 4A.

Supplementary Figure 19. Literature evidence for ESRRA
being a regulatory hub of aging-associated pathways
(colored by reference).

Supplementary Information File 1: Explanation of the
Fruchterman-Reingold force-directed algorithm to position
nodes. Centrality in the context of metabolic adaptability.
Supplementary Information File 2: Changes in other
characteristics of neuronal firing (related to Figure 3).
Statistical tests for comparison of characteristics of
neuronal firing (Figure 3).

Supplementary Information File 3: Detailed discussion of
top-scored TFs.

Supplementary Information File 4: Model equations.
Baseline young state rate functions. Rate functions with
the aging-defined scaling factors.

Supplementary Information File 5: Model parameters. Age-
specific parameters and initial values of variables.
Supplementary Information File 6: Derived entities.
Supplementary Information File 7: Mapping of model
variables indexes to descriptive names and Bigg (102)
nomenclature (where available).

Supplementary Information File 8: Model variables
initial values.
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