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Abstract

Age-related neurodegenerative disorders, including dementia, are a major global

health concern. This article describes the first comprehensive, data-driven

molecular model of the neuro-glia-vascular system to explore the complex

relationships between the aging brain, energy metabolism, blood flow, and

neuronal activity. Comprising 16,800 interaction pathways, the model includes

all key enzymes, transporters, metabolites, and circulatory factors vital for

neuronal electrical activity. We found significant alterations in metabolite

concentrations and differential effects on adenosine triphosphate (ATP) supply

in neurons and astrocytes and within subcellular compartments in aged brains

and identified reduced sodium/potassium adenosine triphosphatase (Na+/K+-

ATPase) activity as the leading cause of impaired neuronal action potentials. The

model predicts that the metabolic pathways cluster more closely in the aged

brain, suggesting a loss of robustness and adaptability. Additionally, the aged

metabolic system displays reduced flexibility, undermining its capacity to

efficiently respond to stimuli and recover from damage. Through transcription

factor analysis, the estrogen-related receptor alpha (ESRRA) emerged as a central

target connected to these aging-related changes. An unguided optimization

search pinpointed potential interventions capable of restoring the brain’s

metabolic flexibility and action potential generation. These strategies include

increasing the nicotinamide adenine dinucleotide (NADH) cytosol-mitochondria

shuttle, NAD+ pool, the ketone b-hydroxybutyrate, lactate, and Na+/K+-ATPase,

while reducing blood glucose levels. The model is open sourced to help guide

further research into brain metabolism.
KEYWORDS

brain aging, aging metabolism, brain energy metabolism, neurometabolic coupling,
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Key points
Fro
• This is the most comprehensive molecular model of the
neuro-glia-vascular system to date, integrating the key
cellular and subcellular systems, molecules, metabolic
pathways, and processes required to couple neuronal
electrical behavior with brain energy metabolism and
blood flow.

• Supplied with publicly available RNA sequencing data,
the model closely reproduces known aging-related
changes in brain metabolism and electrical activity,
validating its utility as a research tool.

• The model predicted reduced robustness, flexibility, and
metabolic adaptability in the aged brain and identified
various aging-associated transcription factors and
potential anti-aging therapies and strategies.

• We show that astrocytes may subserve the metabolic
stability of neurons during aging, calling into question
previous assumptions about selfish glia.

• This open-source resource should help accelerate research
to improve our understanding of age-related
neurodegenerative diseases (such as dementia) and how
their onset could be prevented or delayed.
Introduction

The rise in neurodegenerative disorders, including dementia, is a

leading public health and social care challenge around the world (1),

and the risks of these and other disorders increase dramatically with

age (2, 3). Globally, the number of people living with dementia is

projected to increase from approximately 57 million cases in 2019 to

153 million in 2050, largely owing to population growth and aging

(4). Accumulating evidence suggests that the onset of

neurodegenerative diseases may be prevented or delayed by

addressing modifiable risk factors, for example through lifestyle

changes and other interventions—many of which are subject to

ongoing investigations (1, 5–7).

Improving our understanding of the pathophysiology of age-

related neurological degeneration is vital to identify new targets,

interventions, and biomarkers. While traditional biomedical

research techniques remain necessary to reveal key factors, they

are insufficient for a comprehensive understanding of all the data

and complex relationships. Complementary computational

techniques that create data-driven models offer hope. With these

in silico experiments we can uniquely probe the functions of

complex biochemical and cellular networks to gain insights and

more efficiently guide future laboratory initiatives.

There is a virtual catalog of speculated root causes of

neurodegenerative diseases (8). Among the most cited and

fundamental to brain aging is energy metabolism (9–12). A recent

addition to this body of evidence has shown that rescuing

mitochondrial function can even reduce synaptic loss in aging,

one of the main correlates of dementia (13).
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Neuronal activity is energetically demanding, requiring

substantial amounts of adenosine triphosphate (ATP), as reflected

in the disproportionate oxygen and glucose consumption of the

brain compared with the rest of the body (14–17). Metabolic

support and neuronal activity are closely linked (18), suggesting

that age-related loss of metabolic support impairs the generation of

electrical activity in the brain. However, the vast number of

biochemical reactions forming the metabolic system make it

highly complex, therefore it is exceedingly difficult to isolate how

changes in that system impact neuronal activity.

Various dynamic models of brain metabolism have been

developed over the decades. Early models (19, 20) focused on

core components of the metabolic system and generalized many

processes, such as mitochondrial respiration. Recent models have

incorporated more detailed descriptions for selected subsystems,

such as the pentose phosphate pathway (21), mitochondrial

metabolism (22, 23), or neuronal electrophysiology (24). These

models are well-validated and suitable for the research questions for

which they were designed. However, a model with far greater

biological detail is required to tackle more complex questions,

such as how age-related changes in metabolism affect action

potential generation and responses to stimuli.

This article presents a novel model of the neuro-glia-vascular

(NGV) system that integrates previous models and adds greater

detail and previously omitted subsystems. As the literature and

databases contain extensive data relating to brain metabolism, we

adopted a strict data-driven strategy to constrain the construction

of this model, using relevant data to reconstruct and simulate

metabolic systems in both the young and aged brain. The model

integrates all key metabolites, transporters, and enzymes with all

key cellular and extracellular processes underlying neuronal firing

and their interactions with the blood (Figure 1), yielding a

comprehensive representation of the biochemical network

operating across the NGV system. It includes glutathione

metabolism and regulation of glycogenolysis; it also couples the

metabolic system to the intricate cellular processes underlying

action potential generation, such as the sodium/potassium

adenosine triphosphatase (Na+/K+-ATPase) pump, the glutamate-

glutamine cycle, and ATP production by mitochondria and the

cytosol. This allows the simulation of electrical activity impacting

the metabolic system and vice versa. Subcompartments such as

the mitochondrial matrix and intermembrane space, cytosol in

neurons and astrocytes, endothelium, and the extracellular space

(interstitium and basal lamina) are represented, allowing modeling

of cross-compartment processes such as transport and exchange.

Finally, the model also integrates blood flow and dynamic

exchanges between the vasculature and the neurons and glia,

thereby allowing research questions related to nutrient supply to

the brain to be addressed. The model does not capture metabolic

waste management, such as lactate removal, or the mechanistic

effects of cerebral blood flow regulation with neuronal activation.

Owing to limited data, the model also does not account for the

changes in oxygen availability and transport with aging, even

though oxygen is an important factor that affects multiple

processes in the cell. Concentrations of molecules are specified in
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FIGURE 1

Model overview. The model consists of three connected sub-systems: metabolism, neuronal electrophysiology, and blood flow. Compartments of
the model include the neuronal and astrocytic cytosol, mitochondrial matrix and intermembrane space, interstitium, basal lamina, endothelium,
capillary, artery (only with fixed arterial concentrations of nutrients and oxygen), and endoplasmic reticulum (only with fixed pool of calcium).
Enzymes and transporters shown correspond to the rate equations in the model that govern the dynamics of metabolite concentration changes.
Neuronal electrophysiology is modeled in a slightly extended Hodgkin-Huxley-type model. Blood flow activation is described by a simple function
dependent on the stimulus onset and duration according to the literature models. For abbreviations, see Figure note section.
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molar units (mM) and fluxes of reactions and transport processes

are given in molar concentrations per second (mM/second). The

model is openly available to facilitate its reuse in future studies (see

“Data availability” below for links).

We validated the model extensively against reported

experimental data (not used to construct the model) on how

enzyme and transporter activities and metabolite concentrations

change in response to stimulation (Presentation 1: Supplementary

Figure S1, Presentation 1: Full Annex - Supplementary Table S1).

The consistency between the simulation and experimental data

suggests that the model accurately captures the most essential

elements of the metabolic system of the brain.

Alterations in enzyme expression have recently been shown to

actively contribute to tissue aging and therefore offer potential drug

targets to counter aging (25). To model aging of NGV metabolism, we

therefore used RNA expression changes (RNA fold changes) from a

comprehensive study on mouse cell-type changes (26, 27) to scale

enzyme and transporter concentrations. These concentrations

determine the output from their corresponding reaction/transport

rate equations. Applying the RNAseq data (26, 27) to the respective

metabolic pathways allows us to observe the decrease in expression of

most enzymes with aging in both neurons and astrocytes. In addition

to changes in enzyme and transporter expression, we used published

values to adjust arterial glucose, lactate, b-hydroxybutyrate levels, total
nicotinamide adenine dinucleotide (NAD; reduced and oxidized) pool,

and glutamate concentration changes caused by synaptic transmission

(28, 29). The metabolic system of a young brain is in an equilibrium at

rest, i.e., when no stimulus is applied. To be able to compare the young

and aged models, we ensured that the aged system was also in a steady

state by reducing the NADH shuttle capacity between the cytosol and

mitochondria. Figure 2 summarizes all aging data applied to the model,

with further details available in the Methods section. When we

simulated the dynamics of this complex system, driven by either

synaptic input or current injection that generated action potentials,

we observed numerous age-specific differences consistent with prior

reports (Presentation 1: Full Annex - Supplementary Table S1). This

further validated the model, provided a spectrum of new insights into

how the NGV metabolic system may age, and allowed us to identify

potential strategic interventions that could repair the aging metabolic

system, which could take the form of dietary and lifestyle changes or

even drug targets.
Results

Aging affects metabolite levels at rest and
during stimuli

In our model, the simulated aging brain phenotype exhibits a

distinct resting state profile of metabolite concentrations when

compared with that of the young brain (Presentation 1:

Supplementary Figure S3A). Changes in metabolite concentrations in

response to stimuli also differ between the young and aging brain

(Figure 3C, Figure 4; Presentation 1: Supplementary Figures 3SB, S4,

S5D, S6A), but metabolites differ in their changes in response to
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stimuli of varying amplitudes (Presentation 1: Supplementary

Figures S6, S7). We performed uniform manifold approximation

and projection (UMAP) for dimensionality reduction on relative

differences in concentration traces between the two ages and

observed numerous interdependencies between pathways. The

pentose phosphate pathway (PPP) and tricarboxylic acid cycle

(TCA) tend to form pathway-related clusters (Presentation 1:

Supplementary Figure S8). Moreover, the pairwise Kendall

correlation between metabolic concentration temporal profiles is

also affected by aging: some pairs of metabolites showed more

correlated response to stimuli, while the response of other pairs

either did not change or decreased (Presentation 1: Supplementary

Figure S9). This effect may be caused by the widely described

metabolic dysregulation in aging (11). Reaction and transport

fluxes are also impacted (Presentation 1: Supplementary Figures

S10–S12). Aging effects on metabolite concentrations at rest and in

response to stimuli are therefore metabolite-specific and largely

uncorrelated, indicative of a fragmentation of the metabolic

network in aging.
Lactate transport directionality changes in
the aging metabolic system

One of the central fueling mechanisms in brain neuroenergetics

is the astrocyte-to-neuron lactate shuttle (ANLS). The intensely

debated ANLS theory describes how neuronal activation drives

astrocytic glycolysis and lactate export to the extracellular space,

from where it can be taken up and used by neurons. Since its

proposal by Magistretti and Pellerin (30–32), many studies have

addressed it under various conditions [e.g., (33)]. Neuronal lactate

import is lower in the aged metabolic system than the young, while

astrocyte lactate export is slightly higher. This aging effect can be

partially explained by reduced expression of monocarboxylate

transporters (MCTs, based on RNA levels) and mitochondrial

hypometabolism, which results in increased pyruvate levels and

correspondingly higher levels of lactate. To examine the

dependence of lactate transport directionality upon glucose levels

in aged and young metabolic systems (Presentation 1:

Supplementary Figure S13), we simulated the effects of varying

resting blood glucose levels between 1.6–13.6 mM at increments of

1 mM. We performed two experiments, one with arterial lactate

scaled proportionally to arterial glucose changes (where arterial

lactate in the young brain was scaled proportionally to arterial

glucose levels for comparability with the aged brain) and one with a

fixed scale of lactate independent of glucose in an aged brain.

In the young system with both glucose and lactate scaled, we

observed the expected ANLS at all tested blood glucose levels both

at rest and during neuronal activation (averaged over the time

interval of 20 seconds of pre-stimulation rest state and 20 seconds

upon neuronal activation); as blood glucose levels increase, lactate

export from astrocytes slightly increases in the range of low-to-

normal blood glucose (1.6–4.6 mM) and decreases in the range of

normal-to-high blood glucose (4.6–13.6 mM), while lactate import

to neurons slightly increases throughout the entire tested range
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FIGURE 2

Aging model input and results overview. (A) Aging input is modeled with RNA expression fold changes of enzymes and transporters, scaling of
arterial glucose, lactate, and b-hydroxybutyrate, as well as the total nicotinamide adenine dinucleotide (NAD; reduced and oxidized) pool, synaptic
effects of glutamate concentration changes upon release events, and the reducing equivalents (NADH-related) shuttle between cytosol and
mitochondria. (B) The key results include aging effects on metabolite levels, electrical activity of the neurons, and changes in adaptivity of the system
in response to kinetic parameter perturbations (mimicking molecular damage and other conditions affecting enzyme and transporter functions).
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FIGURE 3

Simulation results comparing neural firing and metabolism in young and aged brains. (A) Example action potential in voltage traces in simulations of
young and aged neurons with insets providing a closer view. (B) Characteristics of neuronal firing in young and aged brains upon synaptic activation.
(C) Dynamics of metabolism in response to synaptic activation at different ages (only a selection of the most important variables is shown).
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following the increase in concentration gradient. This directionality

is consistent with concentration gradients. In the aged metabolic

system with arterial lactate scaled proportionally to arterial glucose

(assumption due to sparse data), the lactate shuttle at rest and

during neuronal activation (averaged over the time interval of

20 seconds of pre-stimulation rest state and 20 seconds upon

neuronal activation) has the same directionality as in the young

system for moderate blood glucose levels (6.6–11.6 mM), consistent

with a recent publication (34). However, both neurons and

astrocytes export lactate when glucose levels are low-to-normal

(1.6–5.6 mM) and both neurons and astrocytes import lactate when

glucose levels are high (12.6–13.6 mM). A possible explanation for

this dysregulation in the aged metabolic system could involve

NAD+/NADH and ATP/ADP ratios owing to their regulatory

role over the entire metabolic network, but this counterintuitive

prediction requires experimental verification.

When aging-related changes in arterial lactate are independent of

those of glucose, the directionality of lactate transport depends on the

scaling coefficient of lactate levels relative to blood glucose levels. For
Frontiers in Science 07
the scaling based on our default aging model, lactate was exported by

both the aged neuron and astrocyte at all tested glucose concentrations

(given the same fixed arterial lactate), while the young state showed

ANLS at all tested concentrations. This shift in lactate supply could be

one of the underlyingmechanisms of brain energy disruptions in aging.

Lactate serves as an alternative fuel to cells. Its levels depend on

relevant transport and pathway reaction rates, including the activity

of lactate dehydrogenase (LDH), which catalyzes the reversible

conversion of lactate to pyruvate with the reduction of NAD+ to

NADH and vice versa. High glucose levels affect concentrations of

glycolytic metabolites, such as lactate, pyruvate, NAD+, and NADH,

and consequently affect LDH and MCT activities.

Kinetics of enzymes and transporters, as well as metabolite

concentrations, can be cell-type specific, leading to the difference in

response to high blood glucose between neurons and astrocytes.

Due to these complex interactions, results of computational models

can seem counterintuitive, although they open new questions and

lead us to a better understanding of how the system behaves under

different conditions.
FIGURE 4

Simulation results comparing metabolic activity in neurons and astrocytes in young and aged brains. (A) Amplitude of concentration changes in
response to synaptic activation in young and aged brains (see also Presentation 1: Supplementary Figure S18). (B) Adenylate energy charge (AEC) in
young and aged neurons and astrocytes. AEC = (ATP + 0.5ADP)/(ATP + ADP + AMP). (C) Main energy consumption: sodium/potassium adenosine
triphosphatase (Na+/K+-ATPase) rate of ATP use. (D) Ratio of astrocyte to neuron Na+/K+ pump rate.
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Aging-associated changes in metabolism
alter electrophysiological characteristics

We show for the first time how aging in the metabolic system

leads to changes in the generation of action potentials by both

synaptic input (Figure 3) and current injection (Presentation 1:

Supplementary Figure S5). Age-related differences in neuronal

firing characteristics evoked by current injection are particularly

important for decomposing NGV energy use because this type of

stimulation protocol excludes the metabolic demand caused by

glutamate release. We found similar changes in metabolic profiles

following synaptic input and current injection (Presentation 1:

Supplementary Figure S14), suggesting that metabolic changes

mostly impact the action potential generation ability of neurons.

However, the model would require a more detailed molecular

coupling between the metabolic system and the entire glutamate

cycle to strengthen this prediction.

We found that changes in action potential shape and size are

caused by a reduction in Na+/K+-ATPase expression in the aged

brain, supporting a recent theory of non-canonical control of

neuronal energy status (35). To better understand whether other

aspects of the metabolic system, such as reduced supply of ATP, also

contribute to these changes, we increased the Na+/K+-ATPase

expression levels in the aged brain model to match the young brain

while leaving all other aspects of the aging metabolic system in their

aged state. There were no significant differences in action potentials at

low frequencies (4–8 Hz) and only slight changes at much higher

frequencies (78–79 Hz), suggesting that the decreased expression of

the Na+/K+-ATPase pump is the main factor impairing the ability of

neurons to generate action potentials. However, it is still possible that

other aspects of the NGVmetabolic network become more important

after sustained neuronal activity, such as those used during intense

cognitive demand.
Lower supply and demand for energy in
the aged brain

Although energy deficiency is a prominent hypothesis in brain

aging (12), it is not clear if the supply is limited and/or demand is

reduced; it is also unclear whether astrocytes and neurons are

impacted in the same way. Adenylate energy charge (AEC), a

widely used proxy for cellular energy availability (36), is higher in

the young state than in the aged (Figure 4B). However, this value

does not separate supply from demand. To separate the two

factors, we first computed the total ATP cost of firing action

potentials. We found that the young brain model consumes

approximately 2 billion ATP molecules per second per NGV

unit (where one unit is one neuron, one astrocyte, and their

associated extracellular matrix and capillaries) with 8 Hz firing,

while the aged brain model consumes around 1.8 billion molecules

per second per unit, which aligns well with literature estimates

(37–39). We found that ATP production is lower in the aged

cytosol of both neurons and astrocytes and in aged neuronal

mitochondria (Presentation 1: Supplementary Figure S2).
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However, ATP consumption is also lower (Figure 4C) due to the

lower levels of Na+/K+-ATPase (40, 41), and therefore ATP supply

is not necessarily a limiting factor. Nevertheless, while reduced

ATP supply does not seem to limit action potential generation in

the acute state, a persistently lower ATP supply may still cause

Na+/K+-ATPase expression to decrease, thereby impairing action

potential generation over a longer period.

We also found that neurons and astrocytes are differentially

affected by aging. Normally, astrocytic Na+/K+-ATPases consume

slightly less than two-thirds as much ATP as neuronal Na+/K+-

ATPases (Figure 4D). In astrocytes, the ATP supply is only reduced

in the cytosol and not in the mitochondria, and the catalytic subunit

of the Na+/K+-ATPases expression is unchanged with aging. While

ATP consumption of the Na+/K+-ATPase pump in neurons

decreases with aging (Figure 4C), it slightly increases in astrocytes

—resulting in an increase in the ratio of astrocyte to neuron

Na+/K+-ATPase ATP consumption from around 0.69 in the

young brain to around 0.72 in the aged. Since astrocytes do not

need to fire action potentials, this finding suggests that there is an

increased demand on astrocytes to support the neurons to clear

extracellular K+ in order to help neurons generate their

action potentials.

The model shows that Na+/K+ pump ATP use in the astrocyte is

comparable with that of the neuron (Figure 4D), consistent with

recent evidence (42). In line with previous studies (43),

mitochondrial ATP production as a share of total ATP

production is higher in neurons than in astrocytes, at 84% versus

70% (Presentation 1: Supplementary Figure S2).

Applying the RNAseq data (26, 27) to the respective metabolic

pathways revealed that succinate dehydrogenase (SDH) is

differentially affected by aging in neurons and astrocytes. SDH is

a mitochondrial energy nexus and serves as complex II of the

mitochondrial electron transport chain (ETC). SDH connects the

tricarboxylic acid cycle (TCA) to the ETC. This result indicates that

pre- and post-SDH enzymes of TCA (fumarase and succinate CoA

ligase) display opposite changes in aged neurons and astrocytes.

SDH itself decreases more in aged neurons than in aged astrocytes.

In neurons, aging reduces both succinate CoA ligase and SDH,

while increasing fumarase. Unlike in neurons, succinate CoA ligase

levels rise in astrocytes during aging. SDH decreases slightly while

fumarase levels decline further.
Aging brain metabolism is more fragile and
susceptible to damage

Protein dysfunction is associated with several aging hallmarks,

including loss of proteostasis, oxidative damage, and impaired

DNA repair (11, 26). Moreover, reduced fidelity of protein

translation leads to a phenotype resembling early Alzheimer’s

disease (44). To mimic molecular damage and simulate the effect

on enzyme and transporter functions, we introduced one

perturbation at a time for each protein’s kinetic parameters

(Michaelis constant, inhibition and activation constants, and

catalytic rate constant—i.e., parameters in the enzyme rate
frontiersin.org
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FIGURE 5

Metabolic response to kinetic perturbation changes with age. (A) Example metabolite level profiles in response to kinetic parameter perturbation.
(B) Active metabolism sensitivity. (C) Metabolic adaptability to kinetic parameter perturbations (upper) and metabolic adaptability networks in young
and aged brains (lower).
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equation), increasing or decreasing its value by 20% (in separate

simulations, Figure 5A). We then calculated the changes in the

response of all metabolites to measure the sensitivity of their

concentrations to each perturbation. We ran 2,264 simulations

with perturbed parameters, measuring metabolite sensitivities at

rest and during stimulus for both the young and aged systems

(see Equation 1).

dy=dp   =  max (0:5(abs(
M(1:2p)½t�  −  M(p)½t�

M(p)½t� )=dp)  

+   0:5 (abs(
M(0:8p)½t�  −  M(p)½t�

M(p)½t� )=dp))

(1)

where dy/dp represents sensitivity, M(1.2p)[t] and M(0.8p)[t]

are the metabolite concentrations at the time point t in simulation

with the parameter p value multiplied by 1.2 and 0.8 respectively,M

(p)[t] is the metabolite concentration at the time point t in the

original simulation (no parameter variation), and dp is the change

in parameter value from its value in the original model.

The difference between the sensitivities of the resting and

stimulated states (Figure 5B), normalized by the resting state

sensitivities, yielded a rest-normalized sensitivity. A larger value

for a metabolite implies that a stimulus produces a larger change in

its concentration (as compared with rest) when another parameter

in the system is perturbed. We therefore interpret such a change as
Frontiers in Science 10
the ability of the system to adapt to damage; we call this metric

“metabolic adaptability” (Figure 5C).

This metric allowed us to compare the whole metabolic systems

of neurons and astrocytes in the young and aged brain (Figure 5C).

We found that the adaptability of most neuronal metabolites

decreases with age, while the adaptability of the astrocyte mostly

increases. This observation concurs with the literature on astrocyte

reactivity, which measures a set of phenotypic characteristics,

including those of metabolism, inflammatory cytokine secretion,

and cytoskeleton rearrangement (45). However, in contrast to the

“selfish” astrocyte hypothesis (45), it is possible that the increase in

astrocytic adaptability could instead be a “self-sacrifice” in an

attempt to support the declining neurons; the increased

adaptability of the astrocyte might be an attempt to stabilize the

already declining metabolic profile in the neuron during aging.

We visualized the adaptability of the entire NGV metabolic

network in the two age states by positioning the nodes of both

metabolites and enzymes using the Fruchterman-Reingold force-

directed algorithm (46). The length of each of the 16,800 edges were

weighted by the inverse of metabolic adaptability (Figure 5C lower;

see Presentation 1: Supplementary Information Files 1–8) to more

intuitively reflect “metabolic fragility”. These networks displayed

clustering of nodes largely by function and also revealed more

evenly distributed clusters in young than in aged systems, indicative

of a robust network. To quantify the network differences between
FIGURE 6

Metabolic adaptability networks in young and aged brains. (A) Centrality of the nodes in the networks of metabolic adaptability aggregated by
enzymes. (B) Number of connected components in filtered networks of metabolic adaptability aggregated by enzymes. Ions, membrane potential,
gating variables, mitochondrial membrane potential, and metabolites with fixed concentrations are omitted from the analysis for all figures in this
panel. (C) Connection density of filtered networks. (D) Maximum simplex dimension (log-transformed) normalized by connection density.
(E) Number of simplices (log-transformed) normalized by connection density (at 88% filtering threshold).
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young and aged systems, we calculated the centrality of nodes,

which is the reciprocal of the sum of the shortest path distances

between each node and all other nodes. The aged network showed

longer average distances than the young network (Figure 6A),

suggesting that the metabolic system of the aged brain is more

fragile than that of the young brain.

To quantify the effect of aging on metabolic system fragility, we

progressively removed edges below a given percentile and calculated

the number of connected components in young and aged metabolic

networks (Figure 6B). This revealed that the aged network is

fragmented into clusters or “islands”. Both networks are fully

connected at thresholds below 76% and fully disconnected at

100%, but between 76% and 93% thresholds we observed a higher

number of connected islands in the aged network. We computed

directed simplices, a type of all-to-all connected clique, using

algebraic topology (47, 48) to quantify the topological complexity

of the network (see Methods). This showed that the dimensions

(number of nodes) and number of simplices are higher in the young

state (Figures 6C–E), indicating that the young metabolic network is

more topologically complex, distributed, and robust than the

aged system.
Potential drug targets to repair the aging
metabolic system

The scale of the challenge of finding new drugs for therapeutic

interventions is revealed by the >16,800 possible enzyme/

transporter-metabolite interaction pathways we identified in the

NGV metabolic network, plus the complexity of the metabolic

response when any one pathway is perturbed. The measure of

metabolic adaptability can guide identification of targets within this

complex dynamical system. Here, interaction pathways with the

highest differences in metabolic adaptability (Presentation 1:

Supplementary Figure S16) are potential targets to repair the aged

metabolic system (Figure 7), with high-priority targets being those

that improve adaptability for the highest number of pathways. The

ideal drug to repair the metabolic system is one that acts like a

transcription factor (TF), regulating multiple enzymes and

transporters to modulate an even larger number of metabolic

pathways. We therefore applied the ChIP-X Enrichment Analysis

3 (ChEA3) optimization algorithm (49), which isolates the TFs with

the largest overlap between a prioritized set of genes for those

enzymes and transporters that show the biggest improvement in

metabolic adaptability for the largest number of interaction

pathways (Figure 8). We identified the ten highest-priority

potential targets.

The TF with the highest score was estrogen-related receptor a
(ESRRA). This TF regulates the expression of multiple metabolism-

related genes, including those of mitochondrial function, biogenesis,

and turnover, as well as lipid catabolism (50). It is also linked to

autophagy and the nuclear factor kappa B (NF-kB)-mediated

inflammatory response via silent information regulator 1 (Sirt1)

signaling (51–54). Mitochondrial dysfunction and autophagy

impairments are consistently among the hallmarks of aging

(9–11, 55). Notably, ESRRA expression is downregulated in aging
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(26, 50). Altogether, therefore, ESRRA acts as a regulatory hub of

multiple aging-associated pathways (outlined in Presentation 1:

Supplementary Figure S19). The other TFs that we identified are

also validated by literature reports on TFs implicated in aging and

neurodegeneration (see Presentation 1: Supplementary Information

Files 1–8).

Using the STRING database (56), we identified the following

proteins most prominently associated with the top-scoring TF,

ESRRA (Figure 8): hypoxia inducible factor 1 (HIF1A), Sirt1,

histone deacetylase 8 (HDAC8), peroxisome proliferator-activated

receptor gamma coactivator 1-alpha (PPARG1a, also called

PGC1a), PPARG1b (PGC1b), myocyte enhancer factor 2C

(MEF2C), nuclear receptor interacting protein 1 (NRIP1), nuclear

receptor coactivator 1 (NCOA1), mitochondrial transcription factor

A (TFAM), and PGC-1 and ERR-induced regulator in muscle

protein 1 (PERM1). Numerous literature reports implicate these

proteins in aging and neurodegeneration. The repair targets

identified using our molecular model of the NGV system

therefore largely align with reported experimental data on

therapeutics for healthy aging (57). We additionally suggest a role

for less-studied TFs in aging brain energy metabolism and provide

insights into the links between molecular mechanisms implicated in

aging and neurodegeneration (see Presentation 1: Supplementary

Information Files 1–8). From a broader perspective, identified

targets can be further investigated for their potential as

biomarkers of aging. However, more research is needed to dissect

causes from consequences and accompanying effects.
Potential strategic interventions to repair
the aging metabolic system

As an alternative to specifically targeting the enzymes and

transporters, we investigated whether key features of the aged brain

phenotype, such as energy deficiency and altered neuronal firing,

could be repaired through strategic interventions. We conducted

constrained optimizations (see Methods) for (i) the interaction

pathway targets identified by the differences in metabolic

adaptability (same as the input for TF enrichment analysis above),

(ii) the interaction pathways potentially regulated by ESRRA (above),

(iii) parameters corresponding to arterial blood glucose and ketone

levels (mimicking dietary factors), (iv) parameters corresponding

to arterial blood lactate levels (mimicking exercise factors), and

(v) total NAD-pool parameters in neurons and astrocytes

(mimicking NAD-related supplementation). Surprisingly,

optimization using a combination of diet (lower blood glucose and

higher blood b-hydroxybutyrate), exercise (higher blood lactate), and
NAD-related supplementation and modulation of the cytosol-

mitochondria NAD-associated reducing equivalents shuttle

(hereafter referred to as DEN therapy) increased ATP levels in

both neurons and astrocytes toward values of the young metabolic

system—comparable to that of the top-scoring targeted therapy

(Figure 9A; Presentation 1: Supplementary Table S3). Interestingly,

even though the parameter bounds for the optimization were allowed

to search for increasing or decreasing values, the DEN therapy

optimization converged unguided to a lower blood glucose and
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FIGURE 7

Reversing aging via targeted metabolism interventions. Sensitivity analysis-based potential targets are outlined by pink boxes and grouped by
function in thick line boxes in the modeled system. For abbreviations, see Figure note section.
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higher blood b-hydroxybutyrate, blood lactate, and NAD-

modulation, consistent with commonly accepted benefits of calorie

restriction, exercise, and NAD supplementation (58).

The DEN therapy largely, although not completely, restored the

youthful state of the neuronal metabolic system but not their action

potential generation. As presented, action potential amplitude and

shape can only be restored in our model by increasing the levels of

the Na+/K+ pump to youthful levels. We therefore additionally

reversed the age-related downregulation of the Na+/K+ pump for

each intervention (i.e., for the best-scored combinatorial therapy

based on targeted selection of enzymes and transporters, NAD

supplementation, NADH cytosol-mitochondria shuttle capacity

modulation, and for the DEN therapy). This approach restored

neuronal firing characteristics similar to those of a young state for

each intervention (Figure 9B) as well as ATP levels of both neurons

and astrocytes. It is reasonable to assume that changes in action

potential shape could affect calcium influx into presynaptic boutons

and hence the probability of vesicle release, suggesting that

restoration of action potential shape may also influence release

properties. Interestingly, insulin is a common factor that activates

Na+/K+-ATPase and increases its expression while also lowering

blood glucose, consistent with DEN therapy. A sensitivity analysis,

calculating adaptabilities for the DEN therapy and top-scored
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therapy, showed that network fragility could not only be repaired

but even improved over the young state (Figure 9C).
Validation

To validate predictions of the model we used publicly available

data that were not used to construct the model.

First, we extensively validated the model against a corpus of

data reported in the literature on how enzyme and transporter

activities and metabolite concentrations change in response to

stimulation (Presentation 1: Supplementary Figure S1,

Supplementary Table S1). All concentration-related variables were

maintained in the range of biologically plausible values by the

callbacks and the “isoutofdomain” parameter to a solver, as

described in the Optimization part of the Methods section. We

also qualitatively compared reaction and transport fluxes to their

expected response to stimuli (Presentation 1: Supplementary

Figure S2).

Next, we calculated the blood-oxygen-level-dependent (BOLD)

signal (Presentation 1: Supplementary Figure S1D) and oxygen-

glucose index (OGI) (ranging from 4.5–5.0 depending on stimulus,

while literature data range from 4.0–5.5) using equations from Jolivet
FIGURE 8

Transcription factor (TF) enrichment results obtained from ChIP-X Enrichment Analysis 3 (ChEA3) analysis. The left side shows the top 10 TFs, with
estrogen-related receptor a (ESRRA) having the highest score. The right side shows the results of the STRING-database search for ESRRA from the
ChEA3 analysis.
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FIGURE 9

Analysis of potential strategic interventions to repair the aging metabolic system in the brain. (A) Time series traces of selected metabolites in young,
aged, and treated aged states. (B) Characteristics of neuronal firing in young, aged, and treated aged states with selected therapies. In addition to
selected top-performing and top-translatable therapies, we restored sodium/potassium (Na+/K+) pump expression to the young state. Application of
the Na+/K+ pump expression restoration and each of the treatments restored characteristics of neuronal firing. Center line represents the median.
(C) Therapeutic effects on metabolic network fragility.
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et al. to compare them with the literature (21, 24, 59). These two high-

level phenomena are commonly used as benchmarks in NGV

metabolism modeling papers (21, 24, 60), although these tissue-

level metrics cannot be applied directly to the unitary models of

NGV. We also found the lactate shuttle directionality in the aged

metabolic system under moderate blood glucose levels (6.45–10.6

mM) was consistent with a recent publication (34).

Then we estimated energy use from the components of the

Na+/K+-ATPase rate equation (calculated from the sum of

neuron and astrocyte Na+/K+ pump ATP consumption flux in

mM concentration per second with the volume of 17.8 μm3 and

the literature estimate of ionic gradients sharing 31% of total

energy use). Our estimates of ATP consumption rate per NGV

unit at 8 Hz firing in both young and aged states align well with

literature estimates (37–39). Our observations in action potential

shape and size changes in aging as being caused by a reduction in

Na+/K+-ATPase expression in the aged brain are in line with a

recent theory of non-canonical control of neuronal energy

status (35).

Furthermore, the model shows that Na+/K+ pump ATP use in

the astrocyte is comparable to that of the neuron (Figure 4C),

consistent with recent evidence (42). In line with previous studies

(43), mitochondrial ATP production as a share of total ATP

production is higher in neurons than in astrocytes, at 84% versus

70% (Presentation 1: Supplementary Figure S2). These data

emerged when the model was simulated and their consistency

with a range of reported experimental data suggests that the

model accurately captures the most essential elements of the

brain’s metabolic system.

We further validated aging-associated effects against the

literature data shown in Presentation 1: Supplementary Table S1.

TFs that we identified as regulating the most fragile enzymes and

transporters are also validated by literature reports on TFs

implicated in aging and neurodegeneration (see Presentation 1:

Supplementary Information Files 1–8), and promising anti-aging

therapies identified by this study are largely consistent with current

understanding in the field.
Limitations

Even though we strove to be as biologically detailed and

unbiased as possible, we had to refine weakly constrained

parameters due to limited available data and focus on the most

relevant pathways and processes rather than simulating dynamics at

the whole genome-scale. Additionally, owing to data sparsity,

differences between in vitro and in vivo conditions, as well as sex-

related differences, were not considered. Some potential refinements

of the model would be to include these aspects.

Furthermore, our model specifically emphasizes the key brain

energy metabolism pathways and processes involved in neuronal

signal transduction. However, to gain a more comprehensive

understanding of the various complementary molecular

mechanisms and pathways involved in aging and disease, it would

be desirable to further expand the model to a whole-cell scale and

incorporate more regulatory processes. At present, this task is
Frontiers in Science 15
hindered by data limitations. As more data become available, the

model can be iteratively refined and expanded.

As we mostly focused on metabolism, our model does not

incorporate detailed mechanisms of cerebral blood flow regulation

with neuronal activation. Changes in oxygen availability and

transport with aging were also not included due to data

challenges. Refinement of the blood-related part of the model

would be a highly valuable improvement. More details on

neuronal signaling and synaptic mechanisms would potentially

widen the model applications and level of biological detail.

For the various modeled conditions, we applied literature-based

scaling factors to the concentrations of enzymes and transporters, as

well as initial concentrations of variable metabolites. Owing to the

lack of high-quality cell-type-specific protein concentration data for

young and old rodents, we relied on data on RNA levels to derive

the concentrations of enzymes and transporters, with scaling in the

aging group based on the assumption that changes in RNA directly

affect enzyme concentrations (61). This procedure, however, is

often inaccurate due to various post-translational processes and

protein degradation (62). Also due to literature uncertainty and

potential biological variability, the scaling of blood nutrients in

aging was based on the expectation of only a mild increase in blood

glucose and proportional changes in blood lactate. Ketone body

b-hydroxybutyrate and glutamatergic signaling were assumed to

decrease by half in aging, but better measurements would be useful.

We also applied scaling to the NAD pool and synaptic glutamate

release, which were literature-driven but had to be approximated, as

we did not find exact numbers for their changes with aging. NADH

shuttle parameters were considered to be the most flexible as they

had the highest uncertainty in the sourced data, which is why we

optimized these to balance the aged model.

Another potential limitation is the uncertainty surrounding the

nature of molecular damage (including that which accumulates

with aging) and its effects on enzyme function, which we modeled as

perturbations to individual kinetic parameters. Various other

modifications of the model could be designed to be consistent

with experimental data, such as inhibition of glycolysis or

mitochondrial respiration via specific inhibition of the ETC

complex I. However, those are outside the scope of our

current study.
Discussion

This study presents a dynamical, molecular model of the NGV

system that integrates the key cellular and subcellular systems,

molecules, metabolic pathways, and processes required to couple

neuronal electrical behavior with brain energy metabolism and

blood flow. The data-driven strategy developed allows the

application of experimental data, in principle from any condition,

to produce a model of that condition. We applied experimental data

from the young and aged brain metabolic systems to model their

respective metabolic systems. We identified 16,800 enzyme/

transporter–metabolite interaction pathways in the metabolic

system of the brain. A sensitivity analysis for each pathway

produced a comprehensive view of how each pathway impacts
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every other to support action potential generation. We found that

the impact of one pathway on all the others is remarkably evenly

distributed, indicative of a highly robust system with multiple

routes to respond to changing metabolic demands, and one that

is resilient to damage of any one pathway. By normalizing to resting

sensitivities of each pathway, we developed a measure for the

metabolic adaptability of each pathway to evaluate changes under

different conditions, such as in the aged brain. Our analysis suggests

that the aged metabolic system breaks down into “islands” where

enzyme/transporter–metabolite interaction pathways cluster more

than in the young brain, leaving this complex molecular system less

robust to damage and more restricted when responding to stimuli.

We identified the TF, ESRRA, and several key proteins it regulates

as top potential drug targets and a prioritization of potential

strategic interventions that could repair the aging metabolic system.

This data-driven model captures how brain energy metabolism

interacts with neuronal activity through the ATP-dependent ion-

gradient-restoring activity of Na+/K+-ATPase with a high degree of

biological fidelity. Each enzyme and transporter is modeled using an

experiment-derived rate equation featuring its concentration, key

kinetic properties, and effects of inhibitors and activators (where

applicable and relevant). This approach allows integration of

proteomics and transcriptomics data for modeling various

conditions and diseases that affect molecular levels and properties.

Compared with the more generalized phenomenological metabolic

models, the model features 183 processes, including 95 enzymatic

reactions, 19 processes for the transport of molecules across cell and

mitochondrial membranes, and 69 other processes for ionic currents,

blood flow dynamics, and other related non-enzymatic processes.

Changing molecular concentrations are simulated using 151

differential equations. Additionally, cytosolic adenosine diphosphate

(ADP), creatine, NAD, and NADP are computed from the

conservation law and total pool of relevant molecules.

To build such a complex model, we applied biologically reported

parameters for each component of the model (see Methods),

avoiding overriding biological values to fit literature reports of

time-series of metabolic responses, which are scant and often

contradictory. In order for the system of equations to have a

solution, we optimized the parameters by only requiring steady

state solutions at rest, rather than changing the parameters to fit

the metabolic time-series responses reported in the literature.

Alternative approaches used by others include likelihood-based

optimization targeting the reference time-series data. This approach

was not suitable in our case because most metabolites lacked data for

meaningful likelihood-based parameter estimation, i.e., with recorded

traces of metabolite levels in neurons and astrocytes. Others have

used Bayesian parameter estimation, but this was computationally

too costly for the scale and complexity of our model. To increase the

biological dataset for parameterization, wemerged data across in vitro

and in vivo conditions and averaged these across natural ranges of

biological variability. In some cases, we had to optimize weakly

constrained parameters or include only the most relevant

components, pathways, and processes (see Methods). The model,

while containing an unprecedented level of detail, is also not yet at a
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whole-genome level. Similarly, while the model captures the key

cellular elements, compartments, and sub-compartments, it does not

yet capture explicit details on all possible geometric constraints.

The model was validated against numerous experimental

datasets, but a key litmus test was simply whether computational

convergence occurred for this complex system. Parameters were

minimally optimized to allow convergence for a steady state at rest,

but a self-constrained converged state emerged when the system was

stimulated with current injection and synaptic input. On the other

hand, when we introduced random modifications to enzyme and

transporter concentrations and their kinetic parameters, some

numeric solutions failed or diverged far from the steady state at

rest. It is therefore even more remarkable that simulations converged

without significant modifications introduced when we imported and

applied the data from the aged brain. Furthermore, single parameter

perturbations introduced instabilities in the simulations more often

than when multiple RNA-seq derived changes were introduced,

suggesting that the set of parameters are self-constraining.

Our results in both young and aged brain states align well with a

wide range of published experimental reports. Aside from the time-

series profiles of specific metabolites, enzymatic activities, and aging

observations, it is particularly noteworthy that the estimates that

emerged from the simulations for ATP consumption (37–39) and

the effects of aging-associated metabolic changes on neuronal action

potentials are consistent with experimental reports (63–67).

Calculating sensitivities is common when studying dynamical

systems. In addition to sensitivity analysis, we introduced

adaptability and fragility as biologically interpretable measures for

the system undergoing transition between rest and a stimulated

state. These measures capture the effects of perturbing an enzyme or

transporter on all the metabolite levels in response to stimuli.

These perturbations mimic the effects of conditions such as

phosphorylation levels, transcription and translation errors, and

molecular damage to enzyme and transporter kinetic properties.

Perturbation analysis predicted diminished adaptability to changing

energy demands with different changes in neurons and astrocytes in

the aged brain. We could construct a network of enzyme/

transporter-metabolite interaction pathways where each pathway

could be evaluated in terms of metabolic adaptability, allowing

quantification of the changes. We found a structural breakdown and

decreased topological complexity of the NGV metabolic systems in

the aged network as compared with the young state.

To identify potential targets for interventions to restore a

youthful metabolic brain state and guide a search for biomarkers

of aging, we determined the most fragile interaction pathways. We

performed TF enrichment analyses for the most sensitive enzymes

and transporters, whose functions largely overlap with known

mechanisms of aging. Through constrained optimization, we

identified a combination therapy that restores key features of the

young brain phenotype. This therapy involves maintaining specific

levels of blood glucose, lactate, and b-hydroxybutyrate—achievable

through diet and exercise—coupled with redox state maintenance

via NAD supplementation, modulation of the cytosol-mitochondria

reducing equivalent shuttle (related to NADH, i.e., DEN therapy),
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and Na+/K+-ATPase activation. For instance, reversing the aging

phenotype can be achieved in part by regulating insulin signaling,

which lowers blood glucose and activates Na+/K+-ATPase.

The model suggests that complex interventions that act on

multiple enzymatic targets, including some of the most promising

potential targets of DEN therapy, could also restore ATP levels in

cells. However, their development and implementation would

require more extensive research before they could be considered

for practical application in treating aging-related conditions. The

observed model effects of these complex therapies appear

comparable to those achieved with the simpler DEN therapy,

although we can only theoretically speculate about clinical

outcomes in each case.

The promising combination therapy identified in this study, which

includes diet, exercise, NAD supplementation, NAD shuttle, and Na+/

K+-ATPase modulation, agrees well with proposed anti-aging

interventions such as caloric restriction, the ketogenic diet, and

exercise (10). Physical exercise shows beneficial anti-aging and brain-

health effects mediated by the brain-derived neurotrophic factor

(BDNF), insulin-like growth factor 1 (IGF-1), and lactate (68–70).

The ketogenic diet and caloric restriction, for example, impact the levels

of b-hydroxybutyrate and glucose in the blood (71). Supplements

investigated as potential aging treatments such as urolithin (72),

metformin (73), and nicotinamide mononucleotide (74) benefit

mitochondrial health and energy supply, consistent with the

important role of energy regulation in aging.
Conclusion

In conclusion, this comprehensive, data-driven, molecular-level

model of the NGV system offers a novel research tool to couple

neuronal electrical behavior with brain energy metabolism and

blood flow. It has undergone multiple validations and generated

insights consistent with current findings, suggesting that it can

guide experiments on brain aging and diseases, including those on

disease-associated genetic variants, enzymatic deficiencies, and the

effects of different intervention strategies. Energy-metabolism

related transcriptomics, proteomics, and metabolomics data can

also be applied to the model to study their effects on metabolic

dynamics and neuronal firing. Furthermore, the model can simulate

a variety of stimuli to neurons to guide studies on the energy

constraints of brain activity. The model is open sourced for public

use to help accelerate research into these important areas.
Methods

Baseline model building

We reconstructed and simulated a model of NGV metabolism

coupled to a simple blood flow model and a Hodgkin-Huxley (HH)

type of neuron model. The main concepts of electro-metabo-

vascular coupling, as well as blood flow and the neuronal

electrophysiology model, are based on the models available from
Frontiers in Science 17
the literature (19, 21, 24, 60). Our model specifically emphasizes the

key brain energy metabolism pathways and processes involved in

neuronal signal transduction. However, to gain a more

comprehensive understanding of the various complementary

molecular mechanisms and pathways involved in aging and

disease, it is desirable to further expand the model to a whole-cell

scale and incorporate more regulatory processes. At present, this

task is hindered by data sparsity. As more data becomes available,

the model can be iteratively refined and expanded.

Compared with the more generalized phenomenological

metabolism models, our model features 183 processes:

95 enzymatic reactions; 19 processes for molecule transport

across the cell and mitochondrial membranes; and 69 other

processes related to ionic currents, blood flow dynamics, and

some miscellaneous non-enzymatic processes, e.g., magnesium

(Mg2+) binding to mitochondrial adenine nucleotides. Every

reaction, transport, or other process is represented by a literature-

derived rate equation. Changes in molecular concentrations are

described by a system of 151 differential equations. Additionally,

cytosolic ADP, creatine, NAD, and NADP are calculated from the

conservation law and total pool of relevant molecules.

The model is based on literature data for enzyme kinetics and

molecular concentrations. We meticulously collected all parameters

and equations from literature sources (as referenced in Presentation 1:

Supplementary Table S2 and throughout the model code) and

programmatically queried the BRENDA (75) and SabioRK (76)

databases. However, observed discrepancies in the parameters

reported by different sources necessitated an optimization procedure

to derive biologically plausible middle-ground values. These

parameters with uncertainties were constrained by their lower and

upper bounds, taking into account the type of the parameter

(Michaelis constant of reaction, inhibition/activation constant,

maximal rate of reaction, equilibrium constant, and Hill coefficient)

and optimized as described in the Optimization section below.

To have the most realistic biological average for the initial

values of all variables (concentrations, membrane potential,

mitochondria membrane potential, venous volume, and gating

variables) according to the literature, we considered not only

measured and modeled literature data on the absolute values

themselves but also additional constraints, such as known ratios

of NADH to NAD+ in the neuron (22, 77–79) and astrocyte (79).

One of the most important variables in the model, ATP

concentration, was reported as being 2 mM in many experimental

and modeling studies (20, 21, 24, 60, 80). However, more recent

data report it at the 1.0–1.5 mM scale (35, 81). Assuming that more

recent measurement technologies provide more precise data, we set

cytosolic ATP in the neuron to approximately 1.4 mM according to

Baeza-Lehnert et al. (35) and to approximately 1.3 mM in the

astrocyte according to Köhler et al. (81), who reported ATP

concentrations of 0.7–1.3 mM in acutely isolated cortical slices

and 1.5 mM in primary cultures of cortical astrocytes.

Reported mammalian ATP to ADP ratios vary widely from 1 to

>100 (82), while the ratio of ATP to adenosine monophosphate

(AMP) is around 100 (80). Furthermore, metabolite ratios from

Erecińska and Silver (80) were used to adjust initial concentrations
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of phosphocreatine and phosphate to the ATP levels. Lactate

concentrations in different compartments, which is central to the

ANLS debate, was set according to Mächler et al. (83). We also

tested the model with all alternative literature-reported

concentrations for the metabolites mentioned above.

Glucose supply from blood is of key importance to brain energy

metabolism (84) and so we approached this meticulously.

In our model, glucose concentrations are assigned to detailed

compartments, such as arterial, capillary, endothelial, basal

lamina, interstitium, neuronal cytosol, and astrocytic cytosol (85).

According to the literature, hexokinase flux is split approximately

equally between neuron and astrocyte (85–87), so we adjusted the

maximum velocity (Vmax) of hexokinase so that its flux matched

the literature data at rest. Upon activation, the ratio of glucose

influx to astrocyte versus neuron increases, consistent with the

literature (87, 88).

Implementation and simulation
This metabolism model is implemented and simulated in Julia

programming language (89). We used the DifferentialEquations.jl

package (90) to solve the differential equations system using order

2/3 L-stable Rosenbrock-W method (autodifferentiation disabled,

both absolute and relative tolerances set to 1e-8). We chose to use

the Julia language because of its high performance, its extensively

developed mathematical methods ecosystem, and the readability of

the code, which supports its future use. Most of the analysis and

figures-making code is written in Python programming language.

The model is built modularly, so that every molecular process

has a dedicated rate function, and the combination of relevant rate

functions defines the dynamics of variables. This supports

convenient testing of various enzymatic mechanisms, parameters,

and initial values of concentrations, as well as easier model

subsetting and expansion.

The code for model simulation, optimization, validation, and

analysis is openly available (see “Data availability” below).

Optimization
Time-series data on the dynamics of specific metabolites in

neurons and astrocytes are very limited and sometimes

contradictory. To avoid favoring one data source over another,

we only performed optimizations for the steady state (minimizing

derivatives). We built and optimized the model bottom-up in

multiple iterations, gradually expanding it with more details. We

started with the model of neuronal electrophysiology (24, 60,

91–93). We included detailed astrocytic ion management based

on the existing literature model (94). Then, for the metabolism

model, we started with capillary dynamics, oxygen and glucose

transport, and hexokinase, because these are very well studied and

the cerebral metabolic rate (CMR) of glucose is widely measured,

which sets a strong constraint on hexokinase rate. We then added

each reaction one at a time and evaluated rates in simulations,

manually (roughly) refining under-constrained parameters first,

when necessary. After several reactions were added we ran an

optimization (with an objective to minimize derivatives) for a

selected small set of parameters that were the least constrained by

the literature. Then we modeled lactate transport and connected it
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to glycolysis. We separately optimized PPP for steady state (with an

objective to minimize derivatives). For the mitochondria, we started

from the electron transport chain, which is mitochondrial-

membrane potential-dependent and extremely sensitive to

parameter variations. We mostly used the electron transport

chain (ETC) model obtained from the publication of Theurey and

colleagues (23) and then carefully selected a small number of

parameters to optimize (with an objective to minimize

derivatives) to make the ETC model compatible with ATP and

ADP concentrations from more recent experimental evidence.

Then we added TCA reactions to ETC one by one, as described

above for other pathways. We also added the equations for

modeling ketone metabolism, part of the malate-aspartate shuttle

(MAS), and the glutamate-glutamine cycle (after having both

neuron and astrocyte together in the system) based on the

references given in Presentation 1: Supplementary Table S2.

The optimization procedure referenced above is a single

objective optimization performed using BlackBoxOptim.jl (https://

github.com/robertfeldt/BlackBoxOptim.jl of Robert Feldt) with the

default algorithm (adaptive differential evolution optimizer)

iteratively selecting different sets of processes to reduce the

parameter space.

To avoid non-physiological molecular concentrations (negative

or too high values), we used Julia-callbacks and the “isoutofdomain”

mechanism to solve the differential equations system during

optimization. For these biological plausibility reasons, we utilized

“isoutofdomain” to control the solution of the differential equations

system to stay non-negative, so that the solver takes smaller time

steps if the solution leaves the domain, unless the minimum step

size is reached and integration is terminated. The same methods

were applied for the anti-aging optimization, but the selection of

neuronal firing-related variables from the simulated time-series

data from the young state were used for the objective function.

Computational models are often optimized by fitting parameters

to the data using a selected algorithm. Indeed, some time-series data

are available for various aspects of brain metabolism, including for

concentrations of glucose, lactate, pyruvate, NADH and ATP, the

BOLD signal, and cerebral metabolic rates of oxygen and glucose.

However, to our knowledge, these usually come from different

experiments rather than simultaneous measurements of multiple

metabolite concentrations and other characteristics. Numerous

studies have shown that one can fit system dynamics to selected

data given a sufficient number of weakly constrained parameters and

nonlinear rate equations (95). An interesting case is when

measurements with similar metadata from different studies produce

significantly different dynamics of metabolite concentrations, such as

in the example of extracellular brain glucose from Kiyatkin and

Lenoir (96) as compared with Fillenz and Lowry (97), which was

further used in one of the early integrative NGV models (20). We

therefore aimed to avoid the global optimization of fitting parameters

to selected time series. Instead, we iteratively refined the bottom-up

model by estimating parameters that would achieve the desired values

of metabolite concentrations at a steady state (in which the

concentration derivatives with respect to time are minimized).

More details are available in the next section and the entire

pipeline is shown in Presentation 1: Supplementary Figure S17.
frontiersin.org

https://github.com/robertfeldt/BlackBoxOptim.jl
https://github.com/robertfeldt/BlackBoxOptim.jl
https://doi.org/10.3389/fsci.2025.1441297
https://www.frontiersin.org/journals/science
https://www.frontiersin.org


Shichkova et al. 10.3389/fsci.2025.1441297
However, this approach has a downside: it does not guarantee exact

matching of the experimentally recorded dynamics of any selected

experiment. Good matching with the time series observed

experimentally and in other models can only be obtained if the

underlying model has a sufficient level of detail, uses relevant kinetic

data for initial parameterization, and employs applicable constraints

(e.g., a physiological range of metabolite concentrations and a typical

range of values for kinetic parameters of a given type). While many of

the time series produced by our model are close to the literature

reports, glucose concentration traces and cerebral metabolic rate of

glucose consumption have only modest stimulus responses as

compared with the literature. This can be explained by our decision

to follow the most detailed (to our knowledge) approach to glucose

transport in the brain available in the literature (86, 98)—

compartmentalizing arterial, capillary, basal lamina, interstitial

space, astrocytes, and neuron spaces with glucose transfer between

these compartments, described by rates that consider intracellular/

extracellular concentration-dependent trans-acceleration and

asymmetry of transporters.
Workflow and key aspects of bottom-up model
building and optimization

We developed a workflow to build the model in a bottom-up,

data-driven way, avoiding unreasonable bias for any particular data

source. The resulting model performed remarkably well for different

setups, producing high-quality simulation outcomes largely

consistent with relevant literature. The only drawback was the

workflow was largely iterative and time-demanding and required

manual intervention. The steps and key considerations were

as follows.
Step 1. Data collection

Models rely on the collection of as much reliable data as

possible. Combining metabolism, electrophysiology, and blood

flow, our model required the following data: molar concentrations

of molecules (metabolites, proteins, and ions), enzyme and

transporter kinetic parameters, electrophysiology and blood

flow dynamics parameters, rate equations for all processes,

mechanisms of reactions, and data on their inhibitors and

activators (with corresponding mechanisms of action, existing

pathway models, and their combinations). In most cases, the

relevant reaction rates are modeled in the literature with

multiple different equations owing to the use of different

formalisms. For example, the same reaction can be described in

a precise mechanistic way considering multiple transition states of

complexes formed by enzymes with substrates, products, or

regulators or using a more simplified form of modular rate law

or Michaelis-Menten kinetics, when assumptions about the

reaction mechanism are met. Due to iterative expansion of the

model, we find it particularly important to keep collected data on

reactions and how they are used in the existing models of

pathways. For example, detailed mechanistic rate equations can

be parameterized well for small models when sufficient

consistently reliable data exist. However, where the data are
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highly uncertain, it is often hard to optimize and not overfit

such models.

Step 2. Modeling of individual reactions

Time-series data were available for some individual enzymes,

mostly from relatively old studies. These could be used to optimize

the parameters of enzymatic rate equations, especially those that

were under-constrained or came from different species or tissues.

This step also allowed us to evaluate the rate of individual reactions,

the significance of inhibitor and activator effects and whether these

should be included in the model, and how problematic each

particular reaction was in terms of the steady state and response

to changing inputs.

Step 3. Combining reactions

Once data collection was complete, reactions were combined in the

model one at a time according to the reconstructed pathway networks.

This process was highly iterative and required multiple repetitions

using different data. We evaluated multiple combinations to identify

those in whichminimal optimization was necessary to bring the system

toward a steady state. It was also important to combine those small

subsets of reactions with pseudo-reactions of substrates source flux and

products sink flux to estimate how this unit will perform once it is

connected to a larger system. Iterating on this step, we expanded the

system to model pathways in individual cells. We offer the following

guidance to researchers in this process:
• Existing models of those pathways are very helpful to guide

the initial choice of the most promising combinations of

reaction rates and parameters.

• Equations should have a similar level of detail for all

reactions in a given pathway.

• When refining parameters for reactions connected in a

pathway, it is useful to follow the sequential steps of the

pathway (rather than following a commonly used list of

reactions of the pathway and the metabolites); it helps to

focus on reactions that are known to be key regulators of the

overall pathway flux (bottlenecks), those close to

connection points to other pathways, and those with the

most complicated mechanisms.

• When setting the parameters in the model, the key factors

for consideration are the concentrations at the steady state

(or pseudo-steady state if a formal steady state cannot be

achieved in a reasonable time), their response to stimuli

(at least qualitatively in which direction and approximately

how fast do they change, if no data are available), and the

reaction and transport fluxes. Several “best performing”

models should be retained for all subsystems/pathways

because their relative performance rankings may change

once they are plugged into a bigger system.
Step 4. Network expansion of metabolic system

Once small units/pathways had been built in at least a few

variations, they were connected into larger systems. When
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optimizing connecting reactions, it is important to start from

different entry points, compare overall fluxes of the pathways, and

consider volumetric scaling aspects. In some cases, temporary use of

pseudo-reactions for source and sink of some metabolites for

optimization significantly improved the performance.
Step 5. Connecting metabolic, electrophysiology, and
vascular models

The large metabolic system was connected (using the same

strategy as in Step 4) to the electrophysiology and blood flow

models. Variations of electrophysiology and blood flow models

exist in the literature and these were optimized separately,

if needed.
Step 6. Connecting neuron and astrocyte models

The models of the neuron and the astrocyte were connected in

the same way as described above. Simulations and sensitivity

analyses were used to select the parameters whose optimization

had the greatest effect and which efficiently improved the model

according to available data. If no consistently reliable data were

available, the objective function was set to a level that minimized

derivatives in the rest state for the system to be at the steady state.
Validation
First, we tested the response of the key metabolites (ATP,

NADH, lactate, and glucose) to the stimuli. All concentration-

related variables were maintained in the range of biologically

plausible values by the callbacks and the “isoutofdomain”

parameter to a solver as described under “Optimization”. Next,

we calculated the BOLD signal (Presentation 1: Supplementary

Figure S1D) and OGI (in the range of 4.5–5 depending on stimulus,

while literature data is in the range of 4–5.5) using equations from

Jolivet et al. to compare them with the literature (21, 24, 59). These

two high-level phenomena are commonly used as benchmarks in

NGV metabolism modeling papers (21, 24, 60). We also

qualitatively compared dynamics of some key metabolites and

reaction and transport fluxes to their expected response to

stimuli. Then we estimated energy use from the components of

the Na+/K+-ATPase rate equation (calculated from the sum of

neuron and astrocyte Na+/K+ pump ATP consumption flux in

mM concentration per second with the volume of 17.8 μm3 and the

literature estimate of ionic gradients sharing 31% of total energy

use) and compared it to the literature estimates (37). We further

validated aging-associated effects against the literature data shown

in Presentation 1: Supplementary Table S1.
Implementing aging effects in the model

Aging is a multifactor phenomenon that affects metabolism at

different levels, such as transcriptome, proteome, metabolome, and

potentially even kinetic properties of enzymes and transporters

owing to accumulated genetic damage, lower protein synthesis

fidelity, and higher chances of protein misfolding. Implementing
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the aging effect in our model in a fully data-driven way would

require data on neuron- and astrocyte-specific proteomics,

metabolomics, and enzyme kinetics. However, for the most part

such data are not yet publicly available.

We modeled the aging effects using the following data:
• expression fold changes of enzymes and transporters from

the Tabula Muris Senis (TMS) dataset (26, 27) applied as

scaling factors to levels of corresponding enzymes

and transporters

• scaled initial concentrations of blood glucose, lactate, and

b-hydroxybutyrate according to the literature data on

difference in their levels in aging (approximation, because

effect size depends on the literature source)

• total NAD+ and NADH concentration pool scaling

(approximation), because it decreases in aging according

to qualitative literature

• synaptic glutamate release pool (approximation, but

synaptic input is set as the same for comparability of

the results)

• scaling of reducing equivalents shuttles between cytosol and

mitochondria: the NADH shuttle is a generalized rate

equation based on the activity of multiple enzymes of

malate-aspartate and glycerol-phosphate shuttles, for

which we followed the literature to model it (24).
For the above factors, which mention “approximative/

approximation”, the direction of change is according to the

literature, but the absolute number of scaling factors (not known/

contradictory in the literature) is set with an objective for the model

to be steady at rest.

We implemented the aging effects on enzyme and transporter

levels in two parallel ways: (i) using cell-type specific

transcriptomics data (26, 27) and (ii) using integrated proteomics

data from our earlier meta-analysis (99). The first approach

featured higher coverage depth for the astrocyte-specific data. To

reduce bias from inferring missing data in the second method, we

relied on RNA data for implementing aging effects into simulation,

while we used the second data source for validation.

RNA fold changes for modeling aging effects
An extensive single-cell transcriptomics mouse dataset (26, 27)

has recently provided insights into the aging patterns of various

cells, including neurons and astrocytes. However, RNA needs to

be translated into proteins. RNA data need to be used with caution

when inferring age-dependent protein concentrations. Nonetheless,

using RNA fold changes to scale enzyme and transporter levels

results in metabolite concentration changes that are consistent with

the literature (Presentation 1: Supplementary Table S1).

We mapped reaction identifiers to gene names using the gene-

reaction-rules from a publicly available metabolism reconstruction,

Recon 3D (100). Then for the cases of multiple genes per reaction

(i.e., enzymes comprising several protein subunits or different

isoforms present at the same time), we calculated age-scaling in

two ways: (i) using the geometric mean of all fold changes and
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(ii) taking fold changes, which results in the lowest levels of RNA in

aging (i.e., using the assumption that each protein subunit or

isoform can be rate-limiting if its concentration is not sufficient

to build a fully functional protein). We applied each of these

methods twice: first for all genes and second only for those with

significant changes (significance defined by the source data paper).

Next, we manually reviewed the mapping of all genes-to-reactions

and kept only those that were enzyme subunits/isoforms and not

regulatory factors. We then refined it by subcellular location.

Protein levels for modeling aging effects
Several studies measured brain protein levels at different ages,

but they provided mostly brain tissue/regions data rather than

single neuron and astrocyte age-specific protein levels. Studies

that did provide neuron- and astrocyte specific-protein levels used

cultured cells or young/adult rodents. For these reasons, even a

combination of proteomics datasets remains sparse in terms of cell-

type and age-specific protein quantification. Even though using

protein levels directly to scale Vmax of the enzymes and transporters

would allow consideration of posttranscriptional effects of protein

synthesis and degradation, to reduce potential bias we relied only on

the RNAseq data for age-associated changes in enzyme and

transporter levels.

Other necessary aging factors
Arterial glucose, lactate, b-hydroxybutyrate, and total NAD

(reduced and oxidized) pool are fixed in the model. However, as

multiple studies report that these variables change on aging we scaled

them according to the literature. The resulting model was far from a

steady state, which could be explained by somemissing age-associated

changes. We then scaled NADH exchange between the mitochondria

and cytosol, which is also known to be affected by the aging process,

and this resulted in a well-functioning model producing biologically

meaningful observations. For a more realistic setup, we also scaled

synaptic effects of glutamate concentration changes upon release

events, but this had less of an effect and the age-associated changes

in electric features extracted from simulations with only current

injection are consistent with those driven synaptically.

Adaptability calculation and search for potential
anti-aging strategies

As described in the main text, the adaptability calculation was a

modified sensitivity analysis with perturbation of one parameter at a

time by 20% of its initial value and subsequent calculation of the

difference between the resting and stimulated state’s sensitivities,

normalized by the resting state sensitivities (see Equation 1 above).

We then considered enzymes and transporters with the highest

difference in adaptability between young and aged states as the most

fragile and, therefore, as potential anti-aging targets. Furthermore,

to identify enriched TFs for these targets we applied the ChEA3

algorithm (49). As described in the main text, we then performed

constrained optimization for 20 sets of parameters combining those

of adaptability-based and the top-scoring TF-regulated enzymes

and transporters, as well as parameters related to diet, exercise, and

NAD supplementation.
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Topological analysis
We used algebraic topology methods in our topological analysis

of the adaptability networks. The distribution of directed simplices,

introduced by Reimann et al. (47), has been essential for the study of

brain networks and has revealed significant links between the

maximum simplex dimension and the robustness of networks.

The distribution of directed simplices was computed with the

open-source software Flagser-count (https://github.com/

JasonPSmith/flagser-count). Owing to varied connectivity density

(defined as the number of edges over the total number of possible

edges), we divided the logarithm of the number of simplices by

the connectivity density for different sensitivity thresholds.

This normalization allowed us to compare networks of different

connectivity densities and identify which parts of the networks are

more susceptible to changes.
Figure note

The following abbreviations are used in Figure 1 and Figure 7:

AAT, aspartate aminotransferase; AC, adenylyl cyclase; AcAc,

acetoacetate; ACoA, acetyl coenzyme A; AcAcCoA, acetoacetyl

coenzyme A; ACN, aconitase; ADK, adenylate kinase; ADP,

adenosine diphosphate; AGC, aspartate/glutamate carrier; AHP,

after-hyperpolarization; aKG, alpha-ketoglutarate; ALD, aldolase;
ANT, adenine nucleotide translocator; AP, action potential;

Asp, aspartate; ATP, adenosine triphosphate; ATPase,

adenylpyrophosphatase; b2R, adrenergic receptor; bHB, beta-

hydroxybutyrate; bHBDH, beta-hydroxybutyric dehydrogenase;

BPG13, 1,3-biphosphoglycerate; CAAT, cytosolic aspartate

aminotransferase; cAMP, cyclic adenosine monophosphate; Cit,

citrate; CK, creatine kinase; cMDH, cytosolic malate dehydrogenase;

CoA, coenzyme A; Cr, creatine; CS, citrate synthase; DHAP,

dihydroxyacetone phosphate; EAAT, excitatory amino acid

transporters; EN, enolase; E4P, erythrose 4-phosphate; F0/F1, F0F1-

ATPase/ATP synthase; FAD, flavin adenine dinucleotide; FADH2,

hydroquinone form of FAD; FBP, fructose-1,6-bisphosphate; F6P,

fructose-6-phosphate; F26P, fructose 2,6-bisphosphate; Fum,

fumarate; FUMR, fumarase; GABA, gamma-aminobutyric acid;

GAPDH, glyceraldehyde-3-phosphate dehydrogenase; GAP,

glyceraldehyde 3-phosphate; GDH, glutamate dehydrogenase; GDP,

guanosine diphosphate; GLC, glucose; GLN, glutamine; GLNsyn,

glutamine synthetase; GL6P, 6-phosphogluconolactone; GLTGLN,

glutamate/glutamine; GLU, glutamate; GLUN, glutaminase;

GLUT1, glucose transporter 1; GLUT3, glucose transporter 3; GLY,

glucose; GO6P, 6-phosphogluconate; G1P, glucose-1-phosphate;

G6P, glucose-6 phosphate; GPa, active glycogen phosphorylase a;

GPb, inactive glycogen phophorylase b; G6PDH, glucose-6-

phosphate dehydrogenase; GPX, glutathione peroxidase; GSa,

glycogen synthase a; GSb, glycogen synthase b; GSH, glutathione;

GSHsyn, GSH synthetase; GSK3, glycogen synthase kinase 3; GSSG,

glutathione disulfide; GSSGR, GSSG reductase; GTP, guanosine-5'-

triphosphate; HH, Hodgkin–Huxley model; HK, hexokinase; IDH,

isocitrate dehydrogenase; IsoCit, isocitrate; KGDH, ketoglutarate

dehydrogenase; LAC, lactate; LDH, lactate dehydrogenase;
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MAKGC, malate/a-ketoglutarate carrier; Mal, malate; MCT1,4,

monocarboxylate transporter 1,4; MCT2, monocarboxylate

transporter 2; MDH, malate dehydrogenase; MPC, mitochondrial

pyruvate carrier; NAD, nicotinamide adenine dinucleotide; NADH,

reduced nicotinamide adenine dinucleotide; NADP, nicotinamide

adenine dinucleotide phosphate; NE, norepinephrine; NOX,

NADPH oxidase; OA, oxaloacetate; PCr, phosphocreatine; PDE,

phosphodiesterase; PDH, pyruvate dehydrogenase; PEP,

phosphoenolpyruvate; PFK, phosphofructokinase; PFKFB3, 6-

phosphofructo-2-kinase/fructose-2,6-biphosphatase 3; PG2, 2-

phosphoglycerate; PG3, 3-phosphoglycerate; 6PGDH, 6-

phosphogluconate dehydrogenase; PGI, phosphoglucose isomerase;

PGK, phosphoglycerate kinase; 6PGL, 6-phosphogluconolactone;

PGLM, phosphoglucomutase; PGM, phosphoglycerate mutase;

PHK, phosphorylase kinase; Pi, inorganic phosphate; PK, pyruvate

kinase; PKA, protein kinase A; PP1, protein phosphatase 1; PPI,

protein–protein interaction; PYR, pyruvate; PyrCarb, pyruvate

carboxylase; Pyr-Lac-keto, pyruvate-lactate-ketones; R5P, ribose 5-

phosphate; RPE, ribulose-5-phosphate epimerase; RPI, ribose-5-

phosphate isomerase; Ru5P, ribulose 5-phosphate; SCOT, succinyl-

CoA:3-oxoacid-CoA transferase; SCS, succinyl-CoA synthetase; SDH,

succinate dehydrogenase; SNAT3, sodium-coupled neutral amino

acid transporter 3; S7P, sedoheptulose 7-phosphate; Suc, succinate;

SucCoA, succinyl-coenzyme A; TAL, transaldolase; TKL1,

transketolase 1; TKL2, transketolase 2; TPI, triose phosphate

isomerase; UDPGLC, uridine diphosphate glucose; uGPPase, UDP-

glucose pyrophosphorylase; UTP, uridine triphosphate; X5P,

xylulose-5-phosphate.
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Appendix

See Supplementary Material (Presentation 1) for more

information, as well as the following supplementary tables and figures:
Fron
• Supplementary Table 1. Observed aging effects and their

comparison to the literature.

• Supplementary Table 2. Data sources with references per

model component.

• Supplementary Table 3. Anti-aging optimization results.

• Supplementary Figure 1. Validation, predicted energy budget.

• Supplementary Figure 2. ATP production, glucose and

lactate transport fluxes.

• Supplementary Figure 3. Differences between young and

old in rest state concentrations (top) and in sum of relative

deviations of concentration from rest (normalized by rest

state) upon synaptic activation (bottom), both ranked by

rest state differences (top), only top ranked are shown.

• Supplementary Figure 4. Comparison of amplitudes of

metabolic response to synaptic activation in young and

old ages (filtered by absolute values of deviations and

difference in deviations of higher than 1%).

• Supplementary Figure 5. Train of APs evoked by 1 nA

current injection simulations.

• Supplementary Figure 6. Aging-associated differences in range

of response to the current injections of different amplitudes.

• Supplementary Figure 7. Dependence of metabolism and

electrophysiology responses on the current injection

amplitude in young and old ages.

• Supplementary Figure 8. UMAP of relative differences in

concentration traces in old compared to young.

• Supplementary Figure 9. Kendall correlation of metabolite

concentrations time series data in aging.

• Supplementary Figure 10. Cytosolic NADH fluxes.

• Supplementary Figure 11. Cytosolic NADPH fluxes.

• Supplementary Figure 12. Mitochondrial NADH fluxes.
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• Supplementary Figure 13. Lactate shuttle in conditions with

different blood glucose levels.

• Supplementary Figure 14. Comparison of synaptic activation

and current injection evoked metabolic responses.

• Supplementary Figure 15. Sensitivities curve fit.

• Supplementary Figure 16. Metabolic adaptability difference.

• Supplementary Figure 17. Bottom-up iterative model

building workflow and the key considerations.

• Supplementary Figure 18. Labels of individual metabolites

for Figure 4A.

• Supplementary Figure 19. Literature evidence for ESRRA

being a regulatory hub of aging-associated pathways

(colored by reference).

• Supplementary Information File 1: Explanation of the

Fruchterman-Reingold force-directed algorithm to position

nodes. Centrality in the context of metabolic adaptability.

• Supplementary Information File 2: Changes in other

characteristics of neuronal firing (related to Figure 3).

Statistical tests for comparison of characteristics of

neuronal firing (Figure 3).

• Supplementary Information File 3: Detailed discussion of

top-scored TFs.

• Supplementary Information File 4: Model equations.

Baseline young state rate functions. Rate functions with

the aging-defined scaling factors.

• Supplementary Information File 5: Model parameters. Age-

specific parameters and initial values of variables.

• Supplementary Information File 6: Derived entities.

• Supplementary Information File 7: Mapping of model

variables indexes to descriptive names and Bigg (102)

nomenclature (where available).

• Supplementary Information File 8: Model variables

initial values.

• Supplementary Information References
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